1
|
Chen T, Zhang H, Shan W, Zhou J, You Y. Liver sinusoidal endothelial cells in hepatic fibrosis: opportunities for future strategies. Biochem Biophys Res Commun 2025; 766:151881. [PMID: 40286764 DOI: 10.1016/j.bbrc.2025.151881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/16/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Liver sinusoidal endothelial cells (LSECs) are highly specialized endothelial cells that form the interface between the hepatic vasculature and parenchymal cells, playing a crucial role in maintaining hepatic homeostasis. Under pathological conditions, LSECs undergo capillarization, marked by the loss of fenestrae and formation of a basement membrane, thereby impairing microcirculation and promoting fibrosis. Beyond capillarization, LSECs experience a spectrum of pathological changes-including angiogenesis, endothelial-to-mesenchymal transition (EndMT), autophagy, and senescence-all of which contribute to fibrogenesis through distinct molecular pathways. Moreover, LSECs orchestrate liver fibrotic remodeling through dynamic crosstalk with hepatic stellate cells (HSCs), hepatocytes, Kupffer cells, and immune cells, exerting both pro- and anti-fibrotic effects. This review comprehensively summarizes LSECs dysfunction in hepatic fibrosis, with a particular focus on intercellular communication and emerging therapeutic strategies. Elucidating the regulatory networks that govern LSECs behavior may uncover new opportunities for the diagnosis and treatment of chronic liver disease.
Collapse
Affiliation(s)
- Ting Chen
- Department of human anatomy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Huan Zhang
- Department of human anatomy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Wenqi Shan
- Department of human anatomy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Jinxue Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China.
| | - Yanwen You
- Department of human anatomy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China.
| |
Collapse
|
2
|
Pu Y, Ren W, Gan Z, Wang S, Peng M, Yue R, Huang R. Heshuxiaoji pill suppresses steatohepatitis and fibrosis by regulating the AngII-BACH1 mediated vasoconstriction. JOURNAL OF ETHNOPHARMACOLOGY 2025:119989. [PMID: 40383247 DOI: 10.1016/j.jep.2025.119989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 05/13/2025] [Accepted: 05/16/2025] [Indexed: 05/20/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Non-alcoholic steatohepatitis (NASH), a widespread hepatic affliction marked by hepatic fibrosis progression towards hepatocellular carcinoma, is significantly influenced by endothelial dysfunction and endothelial-to-mesenchymal transition (EndMT). Although Heshuxiaoji (HSXJ) Pill, an empirical prescription formulated by Prof. Tongjiao Sun has demonstrated significant efficacy in mitigating steatohepatitis and fibrosis, the precise mechanisms underlying its therapeutic effects remain to be fully elucidated. AIM OF THE STUDY To investigate the antifibrotic effect of HSXJ pill and to explore its mechanism in vivo and in vitro. MATERIALS AND METHODS To probe the antifibrotic impact of HSXJ pill and unravel its mechanisms, murine liver fibrosis and NASH models were induced in vivo via Western diet and CCl4 injection. In vitro, human umbilical vein endothelial cells were stimulated with AngII, followed by Western blot analysis. Additionally, liver biopsies from patients with mild-to-moderate fibrosis (S1-S2) were utilized to verify EndMT involvement in fibrosis. RESULTS In the hepatocyte sections exhibiting human liver fibrosis, we observed a significant upregulation of AngII and the transcription factor BTB and CNC homology 1 (BACH1). Genetic ablation of AngII significantly ameliorates hepatic fibrosis and EndMT, while attenuating pathological angiogenesis via decreased BACH1 expression. In contrast, AngII overexpression exacerbates these conditions. In vivo, the HSXJ pill effectively alleviates hepatic fibrosis, reduces alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, and suppresses BACH1 and AngII production, thereby inhibiting EndMT. In vitro, the pill mitigates EndMT-associated fibrosis by regulating BACH1 to inhibit AngII activation. CONCLUSION The study indicates that the HSXJ pill effectively diminishes hepatocyte injury markers and alleviates liver fibrosis, with optimal efficacy at medium/high doses. BACH1 serves as a key regulator of hepatic fibrosis via modulation of AngII expression.
Collapse
Affiliation(s)
- Yueheng Pu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China.
| | - Wei Ren
- National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China.
| | - Zhonghua Gan
- National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China.
| | - Shiyang Wang
- National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China.
| | - Mengyun Peng
- National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China.
| | - Rensong Yue
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China.
| | - Rui Huang
- National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China; State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau SAR 999078, China.
| |
Collapse
|
3
|
Abad-Jordà L, Martínez-Alcocer A, Guixé-Muntet S, Hunt NJ, Westwood LJ, Lozano JJ, Gallego-Durán R, Cogger VC, Fernández-Iglesias A, Gracia-Sancho J. miR-27b-3p modulates liver sinusoidal endothelium dedifferentiation in chronic liver disease. Hepatol Commun 2025; 9:e0700. [PMID: 40304581 PMCID: PMC12045533 DOI: 10.1097/hc9.0000000000000700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/19/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND During chronic liver diseases, LSECs undergo a dedifferentiation process contributing to the development of hepatic microvascular dysfunction. Although microRNAs (miRNAs) have been associated with chronic liver disease, their role as modulators of liver endothelial phenotype is mostly unknown. Therefore, the aim of this study was to analyze miRNAs as regulators of hepatic sinusoidal endothelial dysfunction in chronic liver disease to suggest novel and translatable therapeutic options for cirrhosis. METHODS Global expression of miRNAs was determined in primary LSECs from healthy and cirrhotic patients (alcohol abuse) and rats (CCl4 inhalation). LSECs were transfected with the mimetic or inhibitor of dysregulated miRNAs or with quantum dot nano-complexes containing miR-27b-3p or negative control, and endothelial phenotype was analyzed by RNA sequencing, quantitative PCR, and western blot. Endothelial or mesenchymal phenotypes were analyzed in LSEC by RNA sequencing, followed by pathway analyses and gene deconvolution. RESULTS In all, 30 and 69 dysregulated miRNAs were identified in human and rat cirrhosis, respectively, of which 6 miRNAs were commonly dysregulated. Specific exogenous downregulation of miR-27b-3p was associated with the upregulation of target genes, suggesting a correlation between loss of miR-27b-3p and LSEC dedifferentiation. Finally, the expression of miR-27b-3p was efficiently and physiologically re-established in cirrhotic LSECs using nano-miR-27b-3p, leading to modulation of 1055 genes compared with the negative control, ultimately leading to inhibition of the endothelial-to-mesenchymal transition process observed in cirrhosis. CONCLUSIONS Loss of miR-27b-3p expression contributes to LSECs dedifferentiation in cirrhosis. The use of nano-miR-27b-3p represents a new therapeutic option for hepatic diseases coursing with endothelial dysfunction.
Collapse
Affiliation(s)
- Laia Abad-Jordà
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Ana Martínez-Alcocer
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Sergi Guixé-Muntet
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Nicholas J. Hunt
- ANZAC Research Institute & Centre for Education and Research on Ageing, Concord Repatriation General Hospital, Concord, New South Wales, Australia
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Lara J. Westwood
- ANZAC Research Institute & Centre for Education and Research on Ageing, Concord Repatriation General Hospital, Concord, New South Wales, Australia
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Juan José Lozano
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Rocío Gallego-Durán
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
| | - Victoria C. Cogger
- ANZAC Research Institute & Centre for Education and Research on Ageing, Concord Repatriation General Hospital, Concord, New South Wales, Australia
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Anabel Fernández-Iglesias
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Puri M, Sonawane S. Liver Sinusoidal Endothelial Cells in the Regulation of Immune Responses and Fibrosis in Metabolic Dysfunction-Associated Fatty Liver Disease. Int J Mol Sci 2025; 26:3988. [PMID: 40362227 PMCID: PMC12071881 DOI: 10.3390/ijms26093988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/08/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
Liver Sinusoidal Endothelial Cells (LSECs) play a crucial role in maintaining liver homeostasis, regulating immune responses, and fibrosis in liver diseases. This review explores the unique functions of LSECs in liver pathology, particularly their roles in immune tolerance, antigen presentation, and the modulation of hepatic stellate cells (HSCs) during fibrosis. LSECs act as key regulators of immune balance in the liver by preventing excessive immune activation while also filtering antigens and interacting with immune cells, including Kupffer cells and T cells. Metabolic Dysfunction-Associated Fatty Liver Disease(MAFLD) is significant because it can lead to advanced liver dysfunction, such as cirrhosis and liver cancer. The prevalence of Metabolic Associated Steatohepatitis (MASH) is increasing globally, particularly in the United States, and is closely linked to rising rates of obesity and type 2 diabetes. Early diagnosis and intervention are vital to prevent severe outcomes, highlighting the importance of studying LSECs in liver disease. However, during chronic liver diseases, LSECs undergo dysfunction, leading to their capillarization, loss of fenestrations, and promotion of pro-fibrotic signaling pathways such as Transforming growth factor-beta (TGF-β), which subsequently activates HSCs and contributes to the progression of liver fibrosis. The review also discusses the dynamic interaction between LSECs, HSCs, and other hepatic cells during the progression of liver diseases, emphasizing how changes in LSEC phenotype contribute to liver scarring and fibrosis. Furthermore, it highlights the potential of LSECs as therapeutic targets for modulating immune responses and preventing fibrosis in liver diseases. By restoring LSECs' function and targeting pathways associated with their dysfunction, novel therapies could be developed to halt or reverse liver disease progression. The findings of this review reinforce the importance of LSECs in liver pathology and suggest that they hold significant promises as targets for future treatment strategies aimed at addressing chronic liver diseases.
Collapse
Affiliation(s)
- Munish Puri
- Onco-Immunology, Magnit Global, Folsom, CA 95630, USA
| | - Snehal Sonawane
- Department of Pathology, University of Illinois, Chicago, IL 60612, USA;
| |
Collapse
|
5
|
Ojha U, Kim S, Rhee CY, You J, Choi YH, Yoon SH, Park SY, Lee YR, Kim JK, Bae SC, Lee YM. Endothelial RUNX3 controls LSEC dysfunction and angiocrine LRG1 signaling to prevent liver fibrosis. Hepatology 2025; 81:1228-1243. [PMID: 39042837 PMCID: PMC11902585 DOI: 10.1097/hep.0000000000001018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 06/23/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND AND AIMS Liver fibrosis represents a global health burden, given the paucity of approved antifibrotic therapies. Liver sinusoidal endothelial cells (LSECs) play a major gatekeeping role in hepatic homeostasis and liver disease pathophysiology. In early tumorigenesis, runt-related transcription factor 3 (RUNX3) functions as a sentinel; however, its function in liver fibrosis in LSECs remains unclear. This study aimed to investigate the role of RUNX3 as an important regulator of the gatekeeping functions of LSECs and explore novel angiocrine regulators of liver fibrosis. APPROACH AND RESULTS Mice with endothelial Runx3 deficiency develop gradual and spontaneous liver fibrosis secondary to LSEC dysfunction, thereby more prone to liver injury. Mechanistic studies in human immortalized LSECs and mouse primary LSECs revealed that IL-6/JAK/STAT3 pathway activation was associated with LSEC dysfunction in the absence of RUNX3. Single-cell RNA sequencing and quantitative RT-PCR revealed that leucine-rich alpha-2-glycoprotein 1 ( LRG1 ) was highly expressed in RUNX3-deficient and dysfunctional LSECs. In in vitro and coculture experiments, RUNX3-depleted LSECs secreted LRG1, which activated HSCs throughTGFBR1-SMAD2/3 signaling in a paracrine manner. Furthermore, circulating LRG1 levels were elevated in mouse models of liver fibrosis and in patients with fatty liver and cirrhosis. CONCLUSIONS RUNX3 deficiency in the endothelium induces LSEC dysfunction, LRG1 secretion, and liver fibrosis progression. Therefore, endothelial RUNX3 is a crucial gatekeeping factor in LSECs, and profibrotic angiocrine LRG1 may be a novel target for combating liver fibrosis.
Collapse
Affiliation(s)
- Uttam Ojha
- Vessel-Organ Interaction Research Center, VOICE (MRC), Research Institute of Pharmaceutical Sciences, Department of Molecular Pathophysiology, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Somi Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Chang Yun Rhee
- Vessel-Organ Interaction Research Center, VOICE (MRC), Research Institute of Pharmaceutical Sciences, Department of Molecular Pathophysiology, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Jihye You
- Vessel-Organ Interaction Research Center, VOICE (MRC), Research Institute of Pharmaceutical Sciences, Department of Molecular Pathophysiology, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Yoon Ha Choi
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Soo-Hyun Yoon
- Vessel-Organ Interaction Research Center, VOICE (MRC), Research Institute of Pharmaceutical Sciences, Department of Molecular Pathophysiology, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Soo Young Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Yu Rim Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jong Kyoung Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Suk-Chul Bae
- Department of Biochemistry, School of Medicine, Institute for Tumor Research, Chungbuk National University, Cheongju, Republic of Korea
| | - You Mie Lee
- Vessel-Organ Interaction Research Center, VOICE (MRC), Research Institute of Pharmaceutical Sciences, Department of Molecular Pathophysiology, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
6
|
Mo H, Yue P, Li Q, Tan Y, Yan X, Liu X, Xu Y, Luo Y, Palihati S, Yi C, Zhang H, Yuan M, Yang B. The role of liver sinusoidal endothelial cells in metabolic dysfunction-associated steatotic liver diseases and liver cancer: mechanisms and potential therapies. Angiogenesis 2025; 28:14. [PMID: 39899173 DOI: 10.1007/s10456-025-09969-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/15/2025] [Indexed: 02/04/2025]
Abstract
Liver sinusoidal endothelial cells (LSECs), with their unique morphology and function, have garnered increasing attention in chronic liver disease research. This review summarizes the critical roles of LSECs under physiological conditions and in two representative chronic liver diseases: metabolic dysfunction-associated steatotic liver disease (MASLD) and liver cancer. Under physiological conditions, LSECs act as selective barriers, regulating substance exchange and hepatic blood flow. Interestingly, LSECs exhibit contrasting roles at different stages of disease progression: in the early stages, they actively resist disease advancement and help restore sinusoidal homeostasis; whereas in later stages, they contribute to disease worsening. During this transition, LSECs undergo capillarization, lose their characteristic markers, and become dysfunctional. As the disease progresses, LSECs closely interact with hepatocytes, hepatic stellate cells, various immune cells, and tumor cells, driving processes such as steatosis, inflammation, fibrosis, angiogenesis, and carcinogenesis. Consequently, targeting LSECs represents a promising therapeutic strategy for chronic liver diseases. Relevant therapeutic targets and potential drugs are summarized in this review.
Collapse
Affiliation(s)
- Hanjun Mo
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Pengfei Yue
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Qiaoqi Li
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Yinxi Tan
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Xinran Yan
- Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyue Liu
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuanwei Xu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yingzhe Luo
- Department of Medical Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, No. 39 Shierqiao Road, Chengdu, 610075, Sichuan, China
| | - Suruiya Palihati
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Cheng Yi
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| | - Hua Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, China.
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, 610041, China.
| | - Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China.
| | - Biao Yang
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
7
|
Xu L, Yang J, Cao X, Chen J, Liu Z, Cai L, Yu Y, Huang H. Sequential system based on ferritin delivery system and cell therapy for modulating the pathological microenvironment and promoting recovery. Int J Pharm 2024; 664:124607. [PMID: 39159856 DOI: 10.1016/j.ijpharm.2024.124607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/10/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
The vicious crosstalk among capillarization of hepatic sinusoidal endothelial cells (LSECs), activation of hepatic stellate cells (aHSCs), and hepatocyte damage poses a significant impediment to the successful treatment of liver fibrosis. In this study, we propose a sequential combination therapy aimed at disrupting the malignant crosstalk and reshaping the benign microenvironment while repairing damaged hepatocytes to achieve effective treatment of liver fibrosis. Firstly, H-subunit apoferrin (Ferritin) was adopted to load platycodonin D (PLD) and MnO2, forming ferritin@MnO2/PLD (FMP) nanoparticles, which exploited the high affinity of ferritin for the highly expressed transferrin receptor 1 (TfR1) to achieve the precise targeted delivery of FMP in the liver. Upon PLD intervention, restoration of the fenestration pores in capillarized LSECs was facilitated by modulating the phosphatidyl inositol 3-kinase/protein kinase B (PI3K/AKT) and Kruppel Like Factor 2 (KLF2) signaling pathways both in vitro and in vivo, enabling efficient entry of FMP into the Disse space. Subsequently, FMP NPs effectively inhibited HSC activation by modulating the TLR2/TLR4/NF-κB-p65 signaling pathway. Moreover, FMP NPs efficiently scavenged reactive oxygen species (ROS) and mitigated the expression of inflammatory mediators, thereby reshaping the microenvironment to support hepatocyte repair. Finally, administration of bone marrow mesenchymal stem cells (BMMSCs) was employed to promote the regeneration and functional recovery of damaged hepatocytes. In conclusion, the combined sequential therapy involving FMP and BMMSCs effectively attenuated liver fibrosis induced by CCl4 administration, resulting in significant amelioration of the fibrotic condition. The therapeutic strategy outlined in this study underscores the significance of disrupting the deleterious cellular interactions and remodeling the microenvironment, thereby presenting a promising avenue for clinical intervention in liver fibrosis.
Collapse
Affiliation(s)
- Lixing Xu
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Jie Yang
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China; Department of Pharmacy, Haimen People's Hospital, Nantong 226100, China
| | - Xinyu Cao
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Jiayi Chen
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Zhikuan Liu
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Liangliang Cai
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China; Department of Pharmacy, Affiliated Hospital of Nantong University, Pharmacy School of Nantong University, Nantong 226001, China.
| | - Yanyan Yu
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Haiqin Huang
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China.
| |
Collapse
|
8
|
Dai CY, Tsai YM, Chang CY, Tsai HP, Wu KL, Wu YY, Wu LY, Jian SF, Tsai PH, Ong CT, Sun CH, Hsu YL. Reconstruction of the Hepatic Microenvironment and Pathological Changes Underlying Type II Diabetes through Single-Cell RNA Sequencing. Int J Biol Sci 2024; 20:5531-5547. [PMID: 39494341 PMCID: PMC11528452 DOI: 10.7150/ijbs.99176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024] Open
Abstract
The global prevalence of type 2 diabetes mellitus (T2DM) continues to rise. Therefore, it has become a major concern health issue worldwide. T2DM leads to various complications, including metabolic-associated fatty liver disease (MAFLD). However, comprehensive studies on MAFLD as a diabetic complication at different stages are still lacking. Using advanced single-cell RNA-seq technology, we explored changes of livers in two T2DM murine models. Our findings revealed that increase activation of hepatic stellate cells (HSCs) exacerbated the development of MAFLD to steatohepatitis by upregulating transforming growth factor β1 induced transcript 1 (Tgfb1i1). Upregulated thioredoxin-interacting protein (Txnip) contributed to hepatocyte damage by impairing reactive oxygen species clearance. Additionally, the capillarization of liver sinusoidal endothelial cells correlated with Fabp4 overexpression in endothelial cells. A novel subset of Kupffer cells (KCs) that expressed Cd36 exhibited an activated phenotype, potentially participating in inflammation in the liver of diabetic mice. Furthermore, ligand-receptor pair analysis indicated that activated HSCs interacted with hepatocytes or KCs through Thbs2 and Lamb2 in late-stage diseases. The reduction in cell-cell interactions within hepatocytes in diabetic mice, reflects that the mechanisms regulating liver homeostasis is disrupted. This research underscores the importance of dynamics in diabetic MAFLD, and provides new insights for targeted therapies.
Collapse
Affiliation(s)
- Chia-Yen Dai
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Hepato/Billiary/Pancreatic, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ying-Ming Tsai
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chao-Yuan Chang
- Department of Anatomy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Kuan-Li Wu
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Hepato/Billiary/Pancreatic, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yu-Yuan Wu
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ling-Yu Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shu-Fang Jian
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Pei-Hsun Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chai-Tung Ong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chien-Hui Sun
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- National Pingtung University of Science and Technology, Department of Biological Science and Technology, Pingtung, 912, Taiwan
| |
Collapse
|
9
|
Wenbo Z, Jianwei H, Hua L, Lei T, Guijuan C, Mengfei T. The potential of flavonoids in hepatic fibrosis: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155932. [PMID: 39146877 DOI: 10.1016/j.phymed.2024.155932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Hepatic fibrosis is a pathophysiological process of extracellular matrix abnormal deposition induced by multiple pathogenic factors. Currently, there is still a lack of effective and non-toxic drugs for treating fibrosis in clinic. Flavonoids are polyphenolic compounds synthesized in plants and modern pharmacological studies confirmed flavonoids exhibit potent hepatoprotective effect. PURPOSE Summarize literature to elaborate the mechanism of HF and evaluate the potential of flavonoids in HF, aiming to provide a new perspective for future research. METHODS The literatures about hepatic fibrosis and flavonoids are collected via a series of scientific search engines including Google Scholar, Elsevier, PubMed, CNKI, WanFang, SciFinder and Web of Science database. The key words are "flavonoids", "hepatic fibrosis", "pharmacokinetic", "toxicity", "pathogenesis" "traditional Chinese medicine" and "mechanism" as well as combination application. RESULTS Phytochemical and pharmacological studies revealed that about 86 natural flavonoids extracted from Chinese herbal medicines possess significantly anti-fibrosis effect and the mechanisms maybe through anti-inflammatory, antioxidant, inhibiting hepatic stellate cells activation and clearing activated hepatic stellate cells. CONCLUSIONS This review summarizes the flavonoids which are effective in HF and the mechanisms in vivo and in vitro. However, fewer studies are focused on the pharmacokinetics of flavonoids in HF model and most studies are limited to preclinical studies, therefore there is no reliable data from clinical trials for the development of new drugs. Further in-depth research related it can be conducted to improve the bioavailability of flavonoids and serve the development of new drugs.
Collapse
Affiliation(s)
- Zhu Wenbo
- Faculty of Chinese Medicine, Jiangsu College of Nursing, Huaian 223001, China.
| | - Han Jianwei
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Liu Hua
- NHC Key Laboratory of Birth Defect for Research and Prevention (Hunan Provincial Maternal and Child Health Care Hospital), Changsha, Hunan 410008, China
| | - Tang Lei
- Faculty of Chinese Medicine, Jiangsu College of Nursing, Huaian 223001, China
| | - Chen Guijuan
- Faculty of Chinese Medicine, Jiangsu College of Nursing, Huaian 223001, China
| | - Tian Mengfei
- Faculty of Chinese Medicine, Jiangsu College of Nursing, Huaian 223001, China
| |
Collapse
|
10
|
Gao J, Lan T, Kostallari E, Guo Y, Lai E, Guillot A, Ding B, Tacke F, Tang C, Shah VH. Angiocrine signaling in sinusoidal homeostasis and liver diseases. J Hepatol 2024; 81:543-561. [PMID: 38763358 PMCID: PMC11906189 DOI: 10.1016/j.jhep.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024]
Abstract
The hepatic sinusoids are composed of liver sinusoidal endothelial cells (LSECs), which are surrounded by hepatic stellate cells (HSCs) and contain liver-resident macrophages called Kupffer cells, and other patrolling immune cells. All these cells communicate with each other and with hepatocytes to maintain sinusoidal homeostasis and a spectrum of hepatic functions under healthy conditions. Sinusoidal homeostasis is disrupted by metabolites, toxins, viruses, and other pathological factors, leading to liver injury, chronic liver diseases, and cirrhosis. Alterations in hepatic sinusoids are linked to fibrosis progression and portal hypertension. LSECs are crucial regulators of cellular crosstalk within their microenvironment via angiocrine signaling. This review discusses the mechanisms by which angiocrine signaling orchestrates sinusoidal homeostasis, as well as the development of liver diseases. Here, we summarise the crosstalk between LSECs, HSCs, hepatocytes, cholangiocytes, and immune cells in health and disease and comment on potential novel therapeutic methods for treating liver diseases.
Collapse
Affiliation(s)
- Jinhang Gao
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Tian Lan
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China; Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Yangkun Guo
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Enjiang Lai
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Adrien Guillot
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Bisen Ding
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany.
| | - Chengwei Tang
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
11
|
Declercq M, Treps L, Geldhof V, Conchinha NV, de Rooij LPMH, Subramanian A, Feyeux M, Cotinat M, Boeckx B, Vinckier S, Dupont L, Vermeulen F, Boon M, Proesmans M, Libbrecht L, Pirenne J, Monbaliu D, Jochmans I, Dewerchin M, Eelen G, Roskams T, Verleden S, Lambrechts D, Carmeliet P, Witters P. Single-cell RNA sequencing of cystic fibrosis liver disease explants reveals endothelial complement activation. Liver Int 2024; 44:2382-2395. [PMID: 38847551 DOI: 10.1111/liv.15963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/04/2024] [Accepted: 04/21/2024] [Indexed: 08/30/2024]
Abstract
BACKGROUND & AIMS Cystic fibrosis (CF) is considered a multisystemic disorder in which CF-associated liver disease (CFLD) is the third most common cause of mortality. Currently, no effective treatment is available for CFLD because its pathophysiology is still unclear. Interestingly, CFLD exhibits identical vascular characteristics as non-cirrhotic portal hypertension, recently classified as porto-sinusoidal vascular disorders (PSVD). METHODS Since endothelial cells (ECs) are an important component in PSVD, we performed single-cell RNA sequencing (scRNA-seq) on four explant livers from CFLD patients to identify differential endothelial characteristics which could contribute to the disease. We comprehensively characterized the endothelial compartment and compared it with publicly available scRNA-seq datasets from cirrhotic and healthy livers. Key gene signatures were validated ex vivo on patient tissues. RESULTS We found that ECs from CF liver explants are more closely related to healthy than cirrhotic patients. In CF patients we also discovered a distinct population of liver sinusoidal ECs-coined CF LSECs-upregulating genes involved in the complement cascade and coagulation. Finally, our immunostainings further validated the predominant periportal location of CF LSECs. CONCLUSIONS Our work showed novel aspects of human liver ECs at the single-cell level thereby supporting endothelial involvement in CFLD, and reinforcing the hypothesis that ECs could be a driver of PSVD. Therefore, considering the vascular compartment in CF and CFLD may help developing new therapeutic approaches for these diseases.
Collapse
Affiliation(s)
- Mathias Declercq
- Department of Development and Regeneration, Woman and Child Unit, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Lucas Treps
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Nantes Université, INSERM UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France
| | - Vincent Geldhof
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Nadine V Conchinha
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Laura P M H de Rooij
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- The CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Abhishek Subramanian
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Biotechnology, Indian Institute of Technology, Hyderabad, Telangana, India
| | - Magalie Feyeux
- Nantes Université, CHU Nantes, CNRS, Inserm, BioCore, US16, SFR Bonamy, Nantes, France
| | - Marine Cotinat
- Nantes Université, INSERM UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France
| | - Bram Boeckx
- Laboratory for Translational Genetics, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Stefan Vinckier
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Lieven Dupont
- Department of Pneumology, UZ Leuven, Leuven, Belgium
- Department of Chronic Diseases and Metabolism, Respiratory Diseases and Thoracic Surgery, KU Leuven, Leuven, Belgium
| | - Francois Vermeulen
- Department of Development and Regeneration, Woman and Child Unit, KU Leuven, Leuven, Belgium
- Department of Pediatrics, Pediatric Pulmonology, University Hospital of Leuven, Leuven, Flanders, Belgium
| | - Mieke Boon
- Department of Development and Regeneration, Woman and Child Unit, KU Leuven, Leuven, Belgium
- Department of Pediatrics, Pediatric Pulmonology, University Hospital of Leuven, Leuven, Flanders, Belgium
| | - Marijke Proesmans
- Department of Development and Regeneration, Woman and Child Unit, KU Leuven, Leuven, Belgium
- Department of Pediatrics, Pediatric Pulmonology, University Hospital of Leuven, Leuven, Flanders, Belgium
| | - Louis Libbrecht
- Department of Pathology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Department of Pathology, AZ Groeninge, Kortrijk, Belgium
- Laboratory of Hepatology, KU Leuven, Leuven, Belgium
| | - Jacques Pirenne
- Transplantation Research Group, Department of Immunology, Microbiology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Diethard Monbaliu
- Transplantation Research Group, Department of Immunology, Microbiology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Ina Jochmans
- Transplantation Research Group, Department of Immunology, Microbiology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Tania Roskams
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Stijn Verleden
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department CHROMETA, KU Leuven, Leuven, Belgium
- Department of ASTARC, University of Antwerp, Wilrijk, Belgium
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Peter Witters
- Department of Development and Regeneration, Woman and Child Unit, KU Leuven, Leuven, Belgium
- Department of Paediatrics and Metabolic Center, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Li P, Xie W, Wei H, Yang F, Chen Y, Li Y. Transcriptome Analyses of Liver Sinusoidal Endothelial Cells Reveal a Consistent List of Candidate Genes Associated with Endothelial Dysfunction and the Fibrosis Progression. Curr Issues Mol Biol 2024; 46:7997-8014. [PMID: 39194690 DOI: 10.3390/cimb46080473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Liver fibrosis is an important step in the transformation of chronic liver disease into cirrhosis and liver cancer, and structural changes and functional disorders of liver sinusoidal endothelial cells (LSECs) are early events in the occurrence of liver fibrosis. Therefore, it is necessary to identify the key regulatory genes of endothelial dysfunction in the process of liver fibrosis to provide a reference for the diagnosis and treatment of liver fibrosis. In this study, we identified 230 common differentially expressed genes (Co-DEGs) by analyzing transcriptomic data of primary LSECs from three different liver fibrosis mouse models (carbon tetrachloride; choline-deficient, l-amino acid-defined diet; and nonalcoholic steatohepatitis). Enrichment analysis revealed that the Co-DEGs were mainly involved in regulating the inflammatory response, immune response, angiogenesis, formation and degradation of the extracellular matrix, and mediating chemokine-related pathways. A Venn diagram analysis was used to identify 17 key genes related to the progression of liver cirrhosis. Regression analysis using the Lasso-Cox method identified genes related to prognosis among these key genes: SOX4, LGALS3, SERPINE2, CD52, and LPXN. In mouse models of liver fibrosis (bile duct ligation and carbon tetrachloride), all five key genes were upregulated in fibrotic livers. This study identified key regulatory genes for endothelial dysfunction in liver fibrosis, namely SOX4, LGALS3, SERPINE2, CD52, and LPXN, which will provide new targets for the development of therapeutic strategies targeting endothelial dysfunction in LSECs and liver fibrosis.
Collapse
Affiliation(s)
- Penghui Li
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Wenjie Xie
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Hongjin Wei
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Fan Yang
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yan Chen
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yinxiong Li
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangzhou 510530, China
| |
Collapse
|
13
|
Qu J, Wang L, Li Y, Li X. Liver sinusoidal endothelial cell: An important yet often overlooked player in the liver fibrosis. Clin Mol Hepatol 2024; 30:303-325. [PMID: 38414375 PMCID: PMC11261236 DOI: 10.3350/cmh.2024.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 02/29/2024] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) are liver-specific endothelial cells with the highest permeability than other mammalian endothelial cells, characterized by the presence of fenestrae on their surface, the absence of diaphragms and the lack of basement membrane. Located at the interface between blood and other liver cell types, LSECs mediate the exchange of substances between the blood and the Disse space, playing a crucial role in maintaining substance circulation and homeostasis of multicellular communication. As the initial responders to chronic liver injury, the abnormal LSEC activation not only changes their own physicochemical properties but also interrupts their communication with hepatic stellate cells and hepatocytes, which collectively aggravates the process of liver fibrosis. In this review, we have comprehensively updated the various pathways by which LSECs were involved in the initiation and aggravation of liver fibrosis, including but not limited to cellular phenotypic change, the induction of capillarization, decreased permeability and regulation of intercellular communications. Additionally, the intervention effects and latest regulatory mechanisms of anti-fibrotic drugs involved in each aspect have been summarized and discussed systematically. As we studied deeper into unraveling the intricate role of LSECs in the pathophysiology of liver fibrosis, we unveil a promising horizon that pave the way for enhanced patient outcomes.
Collapse
Affiliation(s)
- Jiaorong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Le Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yufei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
14
|
Zuo B, Yang F, Huang L, Han J, Li T, Ma Z, Cao L, Li Y, Bai X, Jiang M, He Y, Xia L. Endothelial Slc35a1 Deficiency Causes Loss of LSEC Identity and Exacerbates Neonatal Lipid Deposition in the Liver in Mice. Cell Mol Gastroenterol Hepatol 2024; 17:1039-1061. [PMID: 38467191 PMCID: PMC11061248 DOI: 10.1016/j.jcmgh.2024.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND & AIMS The functional maturation of the liver largely occurs after birth. In the early stages of life, the liver of a newborn encounters enormous high-fat metabolic stress caused by the consumption of breast milk. It is unclear how the maturing liver adapts to high lipid metabolism. Liver sinusoidal endothelial cells (LSECs) play a fundamental role in establishing liver vasculature and are decorated with many glycoproteins on their surface. The Slc35a1 gene encodes a cytidine-5'-monophosphate (CMP)-sialic acid transporter responsible for transporting CMP-sialic acids between the cytoplasm and the Golgi apparatus for protein sialylation. This study aimed to determine whether endothelial sialylation plays a role in hepatic vasculogenesis and functional maturation. METHODS Endothelial-specific Slc35a1 knockout mice were generated. Liver tissues were collected for histologic analysis, lipidomic profiling, RNA sequencing, confocal immunofluorescence, and immunoblot analyses. RESULTS Endothelial Slc35a1-deficient mice exhibited excessive neonatal hepatic lipid deposition, severe liver damage, and high mortality. Endothelial deletion of Slc35a1 led to sinusoidal capillarization and disrupted hepatic zonation. Mechanistically, vascular endothelial growth factor receptor 2 (VEGFR2) in LSECs was desialylated and VEGFR2 signaling was enhanced in Slc35a1-deficient mice. Inhibition of VEGFR2 signaling by SU5416 alleviated lipid deposition and restored hepatic vasculature in Slc35a1-deficient mice. CONCLUSIONS Our findings suggest that sialylation of LSECs is critical for maintaining hepatic vascular development and lipid homeostasis. Targeting VEGFR2 signaling may be a new strategy to prevent liver disorders associated with abnormal vasculature and lipid deposition.
Collapse
Affiliation(s)
- Bin Zuo
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China; Engineering Center of Hematological Disease of Ministry of Education, Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Fei Yang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lulu Huang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingjing Han
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tianyi Li
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhenni Ma
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lijuan Cao
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yun Li
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xia Bai
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China; Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Miao Jiang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yang He
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China; Engineering Center of Hematological Disease of Ministry of Education, Cyrus Tang Hematology Center, Soochow University, Suzhou, China; Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| | - Lijun Xia
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China; Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China; Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma.
| |
Collapse
|
15
|
Gao J, Zuo B, He Y. Liver sinusoidal endothelial cells as potential drivers of liver fibrosis (Review). Mol Med Rep 2024; 29:40. [PMID: 38240102 PMCID: PMC10828992 DOI: 10.3892/mmr.2024.13164] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Liver fibrosis due to viral or metabolic chronic liver diseases is a major challenge of global health. It is a critical pre‑stage condition of severe hepatopathy, characterized by excessive accumulation of extracellular matrix components and ongoing chronic inflammation. To date, early prevention of liver fibrosis remains challenging. As the most abundant non‑parenchymal hepatic cell population, liver sinusoidal endothelial cells (LSECs) are stabilizers that maintain the intrahepatic environment. Notably, LSECs dysfunction appears to be implicated in the progression of liver fibrosis via numerous mechanisms. Following sustained liver injury, they lose their fenestrae (cytoplasmic pores) and change their crosstalk with other cellular interactions in the hepatic blood environment. LSEC‑targeted therapy has shown promising effects on fibrosis resolution, opening up new opportunities for anti‑fibrotic therapy. In light of this, the present study summarized changes in LSECs during liver fibrosis and their interactions with hepatic milieu, as well as possible therapeutic approaches that specially target LSECs.
Collapse
Affiliation(s)
- Jiaqin Gao
- National Health Commission Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Ministry of Education Engineering Center of Hematological Disease, Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Bin Zuo
- National Health Commission Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Ministry of Education Engineering Center of Hematological Disease, Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yang He
- National Health Commission Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
16
|
Tan PK, Ostertag T, Rosenthal SB, Chilin-Fuentes D, Aidnik H, Linker S, Murphy K, Miner JN, Brenner DA. Role of Hepatic Stellate and Liver Sinusoidal Endothelial Cells in a Human Primary Cell Three-Dimensional Model of Nonalcoholic Steatohepatitis. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:353-368. [PMID: 38158078 PMCID: PMC10913759 DOI: 10.1016/j.ajpath.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/30/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Nonalcoholic steatohepatitis (NASH) is an inflammatory and fibrotic liver disease that has reached epidemic proportions and has no approved pharmacologic therapies. Research and drug development efforts are hampered by inadequate preclinical models. This research describes a three-dimensional bioprinted liver tissue model of NASH built using primary human hepatocytes and nonparenchymal liver cells (hepatic stellate cells, liver sinusoidal endothelial cells, and Kupffer cells) from either healthy or NASH donors. Three-dimensional tissues bioprinted with cells sourced from diseased patients showed a NASH phenotype, including fibrosis. More importantly, this NASH phenotype occurred without the addition of disease-inducing agents. Bioprinted tissues composed entirely of healthy cells exhibited significantly less evidence of disease. The role of individual cell types in driving the NASH phenotype was examined by producing chimeric bioprinted tissues composed of healthy cells together with the addition of one or more diseased nonparenchymal cell types. These experiments reveal a role for both hepatic stellate and liver sinusoidal endothelial cells in the disease process. This model represents a fully human system with potential to detect clinically active targets and eventually therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - David A Brenner
- University of California, San Diego, La Jolla, California; Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California.
| |
Collapse
|
17
|
Trogisch FA, Abouissa A, Keles M, Birke A, Fuhrmann M, Dittrich GM, Weinzierl N, Wink E, Cordero J, Elsherbiny A, Martin-Garrido A, Grein S, Hemanna S, Hofmann E, Nicin L, Bibli SI, Airik R, Kispert A, Kist R, Quanchao S, Kürschner SW, Winkler M, Gretz N, Mogler C, Korff T, Koch PS, Dimmeler S, Dobreva G, Heineke J. Endothelial cells drive organ fibrosis in mice by inducing expression of the transcription factor SOX9. Sci Transl Med 2024; 16:eabq4581. [PMID: 38416842 DOI: 10.1126/scitranslmed.abq4581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 01/24/2024] [Indexed: 03/01/2024]
Abstract
Fibrosis is a hallmark of chronic disease. Although fibroblasts are involved, it is unclear to what extent endothelial cells also might contribute. We detected increased expression of the transcription factor Sox9 in endothelial cells in several different mouse fibrosis models. These models included systolic heart failure induced by pressure overload, diastolic heart failure induced by high-fat diet and nitric oxide synthase inhibition, pulmonary fibrosis induced by bleomycin treatment, and liver fibrosis due to a choline-deficient diet. We also observed up-regulation of endothelial SOX9 in cardiac tissue from patients with heart failure. To test whether SOX9 induction was sufficient to cause disease, we generated mice with endothelial cell-specific overexpression of Sox9, which promoted fibrosis in multiple organs and resulted in signs of heart failure. Endothelial Sox9 deletion prevented fibrosis and organ dysfunction in the two mouse models of heart failure as well as in the lung and liver fibrosis mouse models. Bulk and single-cell RNA sequencing of mouse endothelial cells across multiple vascular beds revealed that SOX9 induced extracellular matrix, growth factor, and inflammatory gene expression, leading to matrix deposition by endothelial cells. Moreover, mouse endothelial cells activated neighboring fibroblasts that then migrated and deposited matrix in response to SOX9, a process partly mediated by the secreted growth factor CCN2, a direct SOX9 target; endothelial cell-specific Sox9 deletion reversed these changes. These findings suggest a role for endothelial SOX9 as a fibrosis-promoting factor in different mouse organs during disease and imply that endothelial cells are an important regulator of fibrosis.
Collapse
Affiliation(s)
- Felix A Trogisch
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 68167 Mannheim, Germany
- CFPM (Core Facility Platform Mannheim), Cardiac Imaging Center, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Aya Abouissa
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 68167 Mannheim, Germany
- CFPM (Core Facility Platform Mannheim), Cardiac Imaging Center, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Merve Keles
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 68167 Mannheim, Germany
- CFPM (Core Facility Platform Mannheim), Cardiac Imaging Center, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Anne Birke
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Manuela Fuhrmann
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Gesine M Dittrich
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 68167 Mannheim, Germany
| | - Nina Weinzierl
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Elvira Wink
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Julio Cordero
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 68167 Mannheim, Germany
- ECAS, Department of Cardiovascular Genomics and Epigenomics, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Adel Elsherbiny
- ECAS, Department of Cardiovascular Genomics and Epigenomics, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Abel Martin-Garrido
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Steve Grein
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 68167 Mannheim, Germany
| | - Shruthi Hemanna
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 68167 Mannheim, Germany
| | - Ellen Hofmann
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Luka Nicin
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- Cardiopulmonary Institute, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- DZHK, partner site Frankfurt Rhine-Main, Frankfurt, 60590 Frankfurt am Main, Germany
| | - Sofia-Iris Bibli
- Cardiopulmonary Institute, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- DZHK, partner site Frankfurt Rhine-Main, Frankfurt, 60590 Frankfurt am Main, Germany
- Institute of Vascular Signaling, Centre for Molecular Medicine, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Rannar Airik
- Institute of Molecular Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Andreas Kispert
- Institute of Molecular Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Ralf Kist
- School of Dental Sciences, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4BW, UK
| | - Sun Quanchao
- Medical Research Center, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Sina W Kürschner
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, 68167 Mannheim, Germany
- ECAS, Adjunct Faculty, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Manuel Winkler
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, 68167 Mannheim, Germany
- ECAS, Adjunct Faculty, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Norbert Gretz
- Medical Research Center, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Carolin Mogler
- Institute of Pathology, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Thomas Korff
- ECAS, Adjunct Faculty, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
- Department of Cardiovascular Physiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Philipp-Sebastian Koch
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, 68167 Mannheim, Germany
- ECAS, Adjunct Faculty, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- Cardiopulmonary Institute, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- DZHK, partner site Frankfurt Rhine-Main, Frankfurt, 60590 Frankfurt am Main, Germany
| | - Gergana Dobreva
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 68167 Mannheim, Germany
- ECAS, Department of Cardiovascular Genomics and Epigenomics, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Joerg Heineke
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 68167 Mannheim, Germany
- CFPM (Core Facility Platform Mannheim), Cardiac Imaging Center, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
18
|
Liu D, Wang L, Ha W, Li K, Shen R, Wang D. HIF-1α: A potential therapeutic opportunity in renal fibrosis. Chem Biol Interact 2024; 387:110808. [PMID: 37980973 DOI: 10.1016/j.cbi.2023.110808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/04/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Renal fibrosis is a common outcome of various renal injuries, leading to structural destruction and functional decline of the kidney, and is also a critical prognostic indicator and determinant in renal diseases therapy. Hypoxia is induced in different stress and injuries in kidney, and the hypoxia inducible factors (HIFs) are activated in the context of hypoxia in response and regulation the hypoxia in time. Under stress and hypoxia conditions, HIF-1α increases rapidly and regulates intracellular energy metabolism, cell proliferation, apoptosis, and inflammation. Through reprogramming cellular metabolism, HIF-1α can directly or indirectly induce abnormal accumulation of metabolites, changes in cellular epigenetic modifications, and activation of fibrotic signals. HIF-1α protein expression and activity are regulated by various posttranslational modifications. The drugs targeting HIF-1α can regulate the downstream cascade signals by inhibiting HIF-1α activity or promoting its degradation. As the renal fibrosis is affected by renal diseases, different diseases may trigger different mechanisms which will affect the therapy effect. Therefore, comprehensive analysis of the role and contribution of HIF-1α in occurrence and progression of renal fibrosis, and determination the appropriate intervention time of HIF-1α in the process of renal fibrosis are important ideas to explore effective treatment strategies. This study reviews the regulation of HIF-1α and its mediated complex cascade reactions in renal fibrosis, and lists some drugs targeting HIF-1α that used in preclinical studies, to provide new insight for the study of the renal fibrosis mechanism.
Collapse
Affiliation(s)
- Disheng Liu
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Lu Wang
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Wuhua Ha
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Kan Li
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Rong Shen
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Degui Wang
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| |
Collapse
|
19
|
Senk K, Rio Bartulos C, Belkoura JMC, Schmid S, Schlosser-Hupf S, Jung EM, Wiggermann P, Einspieler I. LiMAx test and ultrasound elastography to measure biomarkers of declining liver function in patients with liver fibrosis: A correlation analysis. Clin Hemorheol Microcirc 2024; 88:S85-S93. [PMID: 39422931 PMCID: PMC11613062 DOI: 10.3233/ch-248107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
BACKGROUND Monitoring liver changes is crucial in the management of liver fibrosis. Current diagnostic methods include liver function tests such as the Liver Maximum Capacity (LiMAx) test and measurements of liver stiffness. While the LiMAx test quantifies liver function through 13C-methacetin metabolism, ultrasound (US) elastography noninvasively assesses liver stiffness. The relationship between the findings of these methods in patients with liver fibrosis is not fullyunderstood. OBJECTIVE This study evaluated the correlation between LiMAx measurements of liver function and US elastography-based liver stiffness measurements to better understand the interplay between functional and structural liver parameters in fibrotic liver disease. Additionally, the relationship between body mass index (BMI) and these parameters isevaluated. METHODS This retrospective study analysed data from 97 patients who underwent both LiMAx testing and real-time elastography, resulting in a total data set of 108 examinations. The correlations between the results of the LiMAx test and elastography and their relationships with body mass index (BMI) were analysed. RESULTS There was a significant negative correlation (r = -0.25, p < 0.05) between LiMAx test values and liver stiffness measurements. BMI was significantly negatively correlated with LiMAx values (r = -0.29, p < 0.001) but not significantly correlated with liver stiffness values. CONCLUSIONS This retrospective study confirms the results of previous studies showing a notable but weak association between liver function and liver stiffness. Our results highlight the potential value of both tests as complementary tools for the evaluation of liver health, reinforcing the necessity for a multimodal approach to liver assessment.
Collapse
Affiliation(s)
- Karin Senk
- Institut für Röntgendiagnostik, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Carolina Rio Bartulos
- Institut für Röntgendiagnostik und Nuklearmedizin, Städtischen Klinikum Braunschweig gGmbH, Braunschweig. Germany
| | | | - Stephan Schmid
- Klinik für Innere Medizin I, Gastroenterologie, Hepatologie, Endokrinologie, Rheumatologie, Immunologie und Infektiologie, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Sophie Schlosser-Hupf
- Klinik für Innere Medizin I, Gastroenterologie, Hepatologie, Endokrinologie, Rheumatologie, Immunologie und Infektiologie, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Ernst Michael Jung
- Institut für Röntgendiagnostik, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Philipp Wiggermann
- Institut für Röntgendiagnostik und Nuklearmedizin, Städtischen Klinikum Braunschweig gGmbH, Braunschweig. Germany
| | - Ingo Einspieler
- Institut für Röntgendiagnostik, Universitätsklinikum Regensburg, Regensburg, Germany
| |
Collapse
|
20
|
Song P, Duan J, Ding J, Liu J, Fang Z, Xu H, Li Z, Du W, Xu M, Ling Y, He F, Tao K, Wang L. Cellular senescence primes liver fibrosis regression through Notch-EZH2. MedComm (Beijing) 2023; 4:e346. [PMID: 37614965 PMCID: PMC10442476 DOI: 10.1002/mco2.346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/27/2023] [Accepted: 07/12/2023] [Indexed: 08/25/2023] Open
Abstract
Cellular senescence plays a pivotal role in wound healing. At the initiation of liver fibrosis regression, accumulated senescent cells were detected and genes of senescence were upregulated. Flow cytometry combined with single-cell RNA sequencing analyses revealed that most of senescent cells were liver nonparenchymal cells. Removing senescent cells by dasatinib and quercetin (DQ), alleviated hepatic cellular senescence, impeded fibrosis regression, and disrupted liver sinusoids. Clearance of senescent cells not only decreased senescent macrophages but also shrank the proportion of anti-inflammatory M2 macrophages through apoptotic pathway. Subsequently, macrophages were depleted by clodronate, which diminished hepatic senescent cells and impaired fibrosis regression. Mechanistically, the change of the epigenetic regulator enhancer of zeste homolog2 (EZH2) accompanied with the emergence of hepatic senescent cells while liver fibrosis regressed. Blocking EZH2 signaling by EPZ6438 reduced hepatic senescent cells and macrophages, decelerating liver fibrosis regression. Moreover, the promoter region of EZH2 was transcriptionally suppressed by Notch-Hes1 (hairy and enhancer of split 1) signaling. Disruption of Notch in macrophages using Lyz2 (lysozyme 2) Cre-RBP-J (recombination signal binding protein Jκ) f/f transgenic mice, enhanced hepatic cellular senescence, and facilitated fibrosis regression by upregulating EZH2 and blocking EZH2 abrogated the above effects caused by Notch deficiency. Ultimately, adopting Notch inhibitor Ly3039478 or exosome-mediated RBP-J decoy oligodeoxynucleotides accelerated liver fibrosis regression by augmenting hepatic cellular senescence.
Collapse
Affiliation(s)
- Ping Song
- Department of Hepatobiliary SurgeryXi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| | - Juan‐Li Duan
- Department of Hepatobiliary SurgeryXi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| | - Jian Ding
- Department of Hepatobiliary SurgeryXi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| | - Jing‐Jing Liu
- Department of Hepatobiliary SurgeryXi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| | - Zhi‐Qiang Fang
- Department of Hepatobiliary SurgeryXi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| | - Hao Xu
- Department of Hepatobiliary SurgeryXi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| | - Zhi‐Wen Li
- Department of Hepatobiliary SurgeryXi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| | - Wei Du
- Department of Hepatobiliary SurgeryXi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| | - Ming Xu
- Department of Hepatobiliary SurgeryXi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| | - Yu‐Wei Ling
- Department of Hepatobiliary SurgeryXi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| | - Fei He
- Department of Hepatobiliary SurgeryXi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| | - Kai‐Shan Tao
- Department of Hepatobiliary SurgeryXi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| | - Lin Wang
- Department of Hepatobiliary SurgeryXi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| |
Collapse
|
21
|
Li ZW, Ruan B, Yang PJ, Liu JJ, Song P, Duan JL, Wang L. Oit3, a promising hallmark gene for targeting liver sinusoidal endothelial cells. Signal Transduct Target Ther 2023; 8:344. [PMID: 37696816 PMCID: PMC10495338 DOI: 10.1038/s41392-023-01621-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/13/2023] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) play a pivotal role in maintaining liver homeostasis and influencing the pathological processes of various liver diseases. However, neither LSEC-specific hallmark genes nor a LSEC promoter-driven Cre mouse line has been introduced before, which largely restricts the study of liver diseases with vascular disorders. To explore LSEC-specific hallmark genes, we compared the top 50 marker genes between liver endothelial cells (ECs) and liver capillary ECs and identified 18 overlapping genes. After excluding globally expressed genes and those with low expression percentages, we narrowed our focus to two final candidates: Oit3 and Dnase1l3. Through single-cell RNA sequencing (scRNA-seq) and analysis of the NCBI database, we confirmed the extrahepatic expression of Dnase1l3. The paired-cell sequencing data further demonstrated that Oit3 was predominantly expressed in the midlobular liver ECs. Subsequently, we constructed inducible Oit3-CreERT2 transgenic mice, which were further crossed with ROSA26-tdTomato mice. Microscopy validated that the established Oit3-CreERT2-tdTomato mice exhibited significant fluorescence in the liver rather than in other organs. The staining analysis confirmed the colocalization of tdTomato and EC markers. Ex-vivo experiments further confirmed that isolated tdTomato+ cells exhibited well-differentiated fenestrae and highly expressed EC markers, confirming their identity as LSECs. Overall, Oit3 is a promising hallmark gene for tracing LSECs. The establishment of Oit3-CreERT2-tdTomato mice provides a valuable model for studying the complexities of LSECs in liver diseases.
Collapse
Affiliation(s)
- Zhi-Wen Li
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, 710032, Xi'an, China
| | - Bai Ruan
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, 710032, Xi'an, China
- Center of Clinical Aerospace Medicine & Department of Aviation Medicine, Fourth Military Medical University, 710032, Xi'an, China
| | - Pei-Jun Yang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, 710032, Xi'an, China
| | - Jing-Jing Liu
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, 710032, Xi'an, China
| | - Ping Song
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, 710032, Xi'an, China
| | - Juan-Li Duan
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, 710032, Xi'an, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, 710032, Xi'an, China.
| |
Collapse
|
22
|
Shen B, Gu T, Shen Z, Zhou C, Guo Y, Wang J, Li B, Xu X, Li F, Zhang Q, Cai X, Dong H, Lu L. Escherichia coli Promotes Endothelial to Mesenchymal Transformation of Liver Sinusoidal Endothelial Cells and Exacerbates Nonalcoholic Fatty Liver Disease Via Its Flagellin. Cell Mol Gastroenterol Hepatol 2023; 16:857-879. [PMID: 37572735 PMCID: PMC10598062 DOI: 10.1016/j.jcmgh.2023.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND&AIMS: Gut bacteria translocate into the liver through a disrupted gut vascular barrier, which is an early and common event in the development of nonalcoholic fatty liver disease (NAFLD). Liver sinusoidal endothelial cells (LSECs) are directly exposed to translocated gut microbiota in portal vein blood. Escherichia coli, a commensal gut bacterium with flagella, is markedly enriched in the gut microbiota of patients with NAFLD. However, the impact of E coli on NAFLD progression and its underlying mechanisms remains unclear. METHODS The abundance of E coli was analyzed by using 16S ribosomal RNA sequencing in a cohort of patients with NAFLD and healthy controls. The role of E coli was assessed in NAFLD mice after 16 weeks of administration, and the features of NAFLD were evaluated. Endothelial to mesenchymal transition (EndMT) in LSECs induced by E coli was analyzed through Western blotting and immunofluorescence. RESULTS The abundance of gut Enterobacteriaceae increased in NAFLD patients with severe fat deposition and fibrosis. Importantly, translocated E coli in the liver aggravated hepatic steatosis, inflammation, and fibrosis in NAFLD mice. Mechanistically, E coli induced EndMT in LSECs through the TLR5/MYD88/TWIST1 pathway during NAFLD development. The toll-like receptor 5 inhibitor attenuated E coli-induced EndMT in LSECs and liver injury in NAFLD mice. Interestingly, flagellin-deficient E coli promoted less EndMT in LSECs and liver injury in NAFLD mice. CONCLUSIONS E coli promoted the development of NAFLD and promoted EndMT in LSECs through toll-like receptor 5/nuclear factor kappa B-dependent activation of TWIST1 mediated by flagellin. Therapeutic interventions targeting E coli and/or flagellin may represent a promising candidate for NAFLD treatment.
Collapse
Affiliation(s)
- Bo Shen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyi Gu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenyang Shen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cui Zhou
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuecheng Guo
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjun Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Binghang Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xianjun Xu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qidi Zhang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaobo Cai
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Dong
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lungen Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
23
|
McConnell MJ, Kostallari E, Ibrahim SH, Iwakiri Y. The evolving role of liver sinusoidal endothelial cells in liver health and disease. Hepatology 2023; 78:649-669. [PMID: 36626620 PMCID: PMC10315420 DOI: 10.1097/hep.0000000000000207] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/25/2022] [Indexed: 01/12/2023]
Abstract
LSECs are a unique population of endothelial cells within the liver and are recognized as key regulators of liver homeostasis. LSECs also play a key role in liver disease, as dysregulation of their quiescent phenotype promotes pathological processes within the liver including inflammation, microvascular thrombosis, fibrosis, and portal hypertension. Recent technical advances in single-cell analysis have characterized distinct subpopulations of the LSECs themselves with a high resolution and defined their gene expression profile and phenotype, broadening our understanding of their mechanistic role in liver biology. This article will review 4 broad advances in our understanding of LSEC biology in general: (1) LSEC heterogeneity, (2) LSEC aging and senescence, (3) LSEC role in liver regeneration, and (4) LSEC role in liver inflammation and will then review the role of LSECs in various liver pathologies including fibrosis, DILI, alcohol-associated liver disease, NASH, viral hepatitis, liver transplant rejection, and ischemia reperfusion injury. The review will conclude with a discussion of gaps in knowledge and areas for future research.
Collapse
Affiliation(s)
- Matthew J. McConnell
- Section of Digestive Disease, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | | | - Samar H. Ibrahim
- Division of Gastroenterology, Mayo Clinic, Rochester, MN
- Division of Pediatric Gastroenterology, Mayo Clinic, Rochester, MN
| | - Yasuko Iwakiri
- Section of Digestive Disease, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
24
|
Cooper SA, Kostallari E, Shah VH. Angiocrine Signaling in Sinusoidal Health and Disease. Semin Liver Dis 2023; 43:245-257. [PMID: 37442155 PMCID: PMC10798369 DOI: 10.1055/a-2128-5907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Liver sinusoidal endothelial cells (LSECs) are key players in maintaining hepatic homeostasis. They also play crucial roles during liver injury by communicating with liver cell types as well as immune cells and promoting portal hypertension, fibrosis, and inflammation. Cutting-edge technology, such as single cell and spatial transcriptomics, have revealed the existence of distinct LSEC subpopulations with a clear zonation in the liver. The signals released by LSECs are commonly called "angiocrine signaling." In this review, we summarize the role of angiocrine signaling in health and disease, including zonation in healthy liver, regeneration, fibrosis, portal hypertension, nonalcoholic fatty liver disease, alcohol-associated liver disease, aging, drug-induced liver injury, and ischemia/reperfusion, as well as potential therapeutic advances. In conclusion, sinusoidal endotheliopathy is recognized in liver disease and promising preclinical studies are paving the path toward LSEC-specific pharmacotherapies.
Collapse
Affiliation(s)
- Shawna A. Cooper
- Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
25
|
Furuta K, Tang X, Islam S, Tapia A, Chen ZB, Ibrahim SH. Endotheliopathy in the metabolic syndrome: Mechanisms and clinical implications. Pharmacol Ther 2023; 244:108372. [PMID: 36894027 PMCID: PMC10084912 DOI: 10.1016/j.pharmthera.2023.108372] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023]
Abstract
The increasing prevalence of the metabolic syndrome (MetS) is a threat to global public health due to its lethal complications. Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the MetS characterized by hepatic steatosis, which is potentially progressive to the inflammatory and fibrotic nonalcoholic steatohepatitis (NASH). The adipose tissue (AT) is also a major metabolic organ responsible for the regulation of whole-body energy homeostasis, and thereby highly involved in the pathogenesis of the MetS. Recent studies suggest that endothelial cells (ECs) in the liver and AT are not just inert conduits but also crucial mediators in various biological processes via the interaction with other cell types in the microenvironment both under physiological and pathological conditions. Herein, we highlight the current knowledge of the role of the specialized liver sinusoidal endothelial cells (LSECs) in NAFLD pathophysiology. Next, we discuss the processes through which AT EC dysfunction leads to MetS progression, with a focus on inflammation and angiogenesis in the AT as well as on endothelial-to-mesenchymal transition of AT-ECs. In addition, we touch upon the function of ECs residing in other metabolic organs including the pancreatic islet and the gut, the dysregulation of which may also contribute to the MetS. Finally, we highlight potential EC-based therapeutic targets for human MetS, and NASH based on recent achievements in basic and clinical research and discuss how to approach unsolved problems in the field.
Collapse
Affiliation(s)
- Kunimaro Furuta
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA; Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Xiaofang Tang
- Department of Diabetes Complications & Metabolism, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Shahidul Islam
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Alonso Tapia
- Department of Diabetes Complications & Metabolism, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Zhen Bouman Chen
- Department of Diabetes Complications & Metabolism, City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| | - Samar H Ibrahim
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA; Division of Pediatric Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
26
|
Huang R, Deng J, Zhu CP, Liu SQ, Cui YL, Chen F, Zhang X, Tao X, Xie WF. Sulodexide attenuates liver fibrosis in mice by restoration of differentiated liver sinusoidal endothelial cell. Biomed Pharmacother 2023; 160:114396. [PMID: 36791568 DOI: 10.1016/j.biopha.2023.114396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Sulodexide is a heparinoid compound with wide-ranging pharmacological activities. However, the effect of sulodexide on liver fibrogenesis has not been reported. In this study, we aim to evaluate the therapeutic potential of sulodexide in mouse model of liver fibrosis and explore the underlying antifibrotic mechanisms. We found that sulodexide treatment significantly attenuated thioacetamide (TAA) and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-induced liver fibrosis in mice. Transcriptome analysis revealed that sulodexide treatment downregulated fibrosis-related genes and liver sinusoidal endothelial cells (LSECs) capillarization-associated genes in fibrotic livers. Immunohistochemistry confirmed that the increased expression of LSEC capillarization-related genes (CD34, CD31 and Laminin) in liver fibrotic tissues was reduced by sulodexide treatment. Scanning electron microscopy showed that LSECs fenestrations were preserved upon sulodexide treatment. Quantitative real-time PCR and immunofluorescence demonstrated that the expression of mesenchymal markers was downregulated by sulodexide administration, suggesting sulodexide inhibited endothelial-mesenchymal transition of LSECs during liver fibrosis. Furthermore, sulodexide administration protected primary LSECs from endothelial dysfunction in vitro. In conclusion, sulodexide attenuated liver fibrosis in mice by restoration of differentiated LSECs, indicating that sulodexide treatment may present as a potential therapy for patients with liver fibrosis.
Collapse
Affiliation(s)
- Ru Huang
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Juan Deng
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Chang-Peng Zhu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Shu-Qing Liu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Ya-Lu Cui
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Fei Chen
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Xin Zhang
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Xia Tao
- Department of Pharmacology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China.
| | - Wei-Fen Xie
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China.
| |
Collapse
|
27
|
Zhou Q, Li B, Li J. DLL4-Notch signalling in acute-on-chronic liver failure: State of the art and perspectives. Life Sci 2023; 317:121438. [PMID: 36709913 DOI: 10.1016/j.lfs.2023.121438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/28/2023]
Abstract
Acute-on-chronic liver failure (ACLF) is a syndrome characterized by acute decompensation of chronic liver disease associated with multiple-organ failures and high short-term mortality. Acute insults to patients with chronic liver disease can lead to ACLF, among which, hepatitis B virus-related ACLF is the most common type of liver failure in the Asia-Pacific region. Currently, immune-metabolism disorders and systemic inflammation are proposed to be the main mechanisms of ACLF. The resulting cholestasis and intrahepatic microcirculatory dysfunction accelerate the development of ACLF. Treatments targeting immune regulation, metabolic balance, microcirculation maintenance and bile duct repair can alleviate inflammation and restore the tissue structure. An increasing number of studies have demonstrated that delta-like ligand 4 (DLL4), one of the Notch signalling ligands, plays a vital role in immune regulation, metabolism, angiogenesis, and biliary regeneration, which participate in liver pathological and physiological processes. The detailed mechanism of the DLL4-Notch signalling pathway in ACLF has rarely been investigated. Here, we review the evidence showing that DLL4-Notch signalling is involved in ACLF and analyse the potential role of DLL4 in the treatment of ACLF.
Collapse
Affiliation(s)
- Qian Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Bingqi Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Jun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China; Precision Medicine Center of Taizhou Central Hospital, Taizhou University Medical School, Taizhou, China.
| |
Collapse
|
28
|
Vasuri F, Germinario G, Ciavarella C, Carroli M, Motta I, Valente S, Cescon M, D’Errico A, Pasquinelli G, Ravaioli M. Trophism and Homeostasis of Liver Sinusoidal Endothelial Graft Cells during Preservation, with and without Hypothermic Oxygenated Perfusion. BIOLOGY 2022; 11:biology11091329. [PMID: 36138808 PMCID: PMC9495341 DOI: 10.3390/biology11091329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022]
Abstract
The aim of the present study was to evaluate the homeostasis and trophism of liver sinusoidal endothelial cells (LSECs) in vivo in different stages of liver graft donation, in order to understand the effects of graft ischemia and perfusion on LSEC activity in liver grafts. Special attention was paid to grafts that underwent hypothermic oxygenated perfusion (HOPE). Forty-seven donors were prospectively enrolled, and two distinct biopsies were performed in each case: one allocation biopsy (at the stage of organ allocation) and one post-perfusion biopsy, performed after graft implant in the recipients. In all biopsies, immunohistochemistry and RT-PCR analyses were carried out for the endothelial markers CD34, ERG, Nestin, and VEGFR-2. We observed an increase in CD34 immunoreactivity in LSEC during the whole preservation/perfusion period (p < 0.001). Nestin and ERG expression was low in allocation biopsies, but increased in post-perfusion biopsies, in both immunohistochemistry and RT-PCR (p < 0.001). An inverse correlation was observed between ERG positivity and donor age. Our results indicate that LSEC trophism is severely depressed in liver grafts, but it is restored after reperfusion in standard conditions. The execution of HOPE seems to improve this recovery, confirming the effectiveness of this machine perfusion technique in restoring endothelial functions.
Collapse
Affiliation(s)
- Francesco Vasuri
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy
| | - Giuliana Germinario
- Department of General Surgery and Transplantation, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Carmen Ciavarella
- Clinical Pathology, Experimental, Diagnostic and Specialty Medicine Department (DIMES), University of Bologna, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy
| | - Michele Carroli
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy
| | - Ilenia Motta
- Clinical Pathology, Experimental, Diagnostic and Specialty Medicine Department (DIMES), University of Bologna, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy
| | - Sabrina Valente
- Clinical Pathology, Experimental, Diagnostic and Specialty Medicine Department (DIMES), University of Bologna, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy
| | - Matteo Cescon
- Department of General Surgery and Transplantation, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Antonia D’Errico
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy
| | - Gianandrea Pasquinelli
- Clinical Pathology, Experimental, Diagnostic and Specialty Medicine Department (DIMES), University of Bologna, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy
| | - Matteo Ravaioli
- Department of General Surgery and Transplantation, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
- Correspondence: ; Tel.: +39-051-214-4810
| |
Collapse
|
29
|
Duan JL, Zhou ZY, Ruan B, Fang ZQ, Ding J, Liu JJ, Song P, Xu H, Xu C, Yue ZS, Han H, Dou GR, Wang L. Notch-Regulated c-Kit-Positive Liver Sinusoidal Endothelial Cells Contribute to Liver Zonation and Regeneration. Cell Mol Gastroenterol Hepatol 2022; 13:1741-1756. [PMID: 35114417 PMCID: PMC9046233 DOI: 10.1016/j.jcmgh.2022.01.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND & AIMS Liver sinusoidal endothelial cells (SECs) promote the proliferation of hepatocytes during liver regeneration. However, the specific subset of SECs and its mechanisms during the process remain unclear. In this study, we investigated the potential role of c-kit+ SECs, a newly identified subset of SECs in liver regeneration. METHODS Partial hepatectomy mice models were established to induce liver regeneration. Hepatic c-kit expression was detected by quantitative reverse-transcription polymerase chain reaction, immunofluorescent staining, and fluorescence-activated cell sorting. VE-cadherin-cyclization recombinase-estrogen receptor (Cdh5-Cre-ERT) Notch intracellular domain and Cdh5-Cre recombination signal binding protein Jκfloxp mice were introduced to mutate Notch signaling. c-Kit+ SECs were isolated by magnetic beads. Single-cell RNA sequencing was performed on isolated SECs. Liver injuries were induced by CCl4 or quantitative polymerase chain reaction injection. RESULTS Hepatic c-kit is expressed predominantly in SECs. Liver resident SECs contribute to the increase of c-kit during partial hepatectomy-induced liver regeneration. Isolated c-kit+ SECs promote hepatocyte proliferation in vivo and in vitro by facilitating angiocrine. The distribution of c-kit shows distinct spatial differences that are highly coincident with the liver zonation marker wingless-type MMTV integration site family, member2 (Wnt2). Notch mutation reshapes the c-kit distribution and liver zonation, resulting in altered hepatocyte proliferation. c-Kit+ SECs were shown to regulate hepatocyte regeneration through angiocrine in a Wnt2-dependent manner. Activation of the Notch signaling pathway weakens liver regeneration by inhibiting positive regulatory effects of c-kit+ SECs on hepatocytes. Furthermore, c-kit+ SEC infusion attenuates toxin-induced liver injuries in mice. CONCLUSIONS Our results suggest that c-kit+ SECs contributes to liver zonation and regeneration through Wnt2 and is regulated by Notch signaling, providing opportunities for novel therapeutic approaches to liver injury in the future. Transcript profiling: GEO (accession number: GSE134037).
Collapse
Affiliation(s)
- Juan-Li Duan
- Department of Hepatobiliary Surgery, Xi'an, China
| | - Zi-Yi Zhou
- Department of Ophthalmology, Xi-Jing Hospital, Xi'an, China
| | - Bai Ruan
- Department of Hepatobiliary Surgery, Xi'an, China; State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Xi'an, China; Center of Clinical Aerospace Medicine, Department of Aviation Medicine, Fourth Military Medical University, Xi'an, China
| | | | - Jian Ding
- Department of Hepatobiliary Surgery, Xi'an, China
| | | | - Ping Song
- Department of Hepatobiliary Surgery, Xi'an, China
| | - Hao Xu
- Department of Hepatobiliary Surgery, Xi'an, China
| | - Chen Xu
- Department of Hepatobiliary Surgery, Xi'an, China
| | - Zhen-Sheng Yue
- Department of Hepatobiliary Surgery, Xi'an, China; Department of Ophthalmology, Xi-Jing Hospital, Xi'an, China
| | - Hua Han
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Xi'an, China.
| | - Guo-Rui Dou
- Department of Ophthalmology, Xi-Jing Hospital, Xi'an, China.
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi'an, China; State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Xi'an, China.
| |
Collapse
|
30
|
He ZQ, Yuan XW, Lu ZB, Li YH, Li YF, Liu X, Wang L, Zhang Y, Zhou Q, Li W. Pharmacological regulation of tissue fibrosis by targeting the mechanical contraction of myofibroblasts. FUNDAMENTAL RESEARCH 2022; 2:37-47. [PMID: 38933917 PMCID: PMC11197686 DOI: 10.1016/j.fmre.2021.11.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 11/22/2022] Open
Abstract
Fibrosis can occur in almost all tissues and organs and affects normal physiological function, which may have serious consequences, such as organ failure. However, there are currently no effective, broad-spectrum drugs suitable for clinical application. Revealing the process of fibrosis is an important prerequisite for the development of new therapeutic targets and drugs. Studies have shown that the limiting of myofibroblast activation or the promoting of their elimination can ameliorate fibrosis. However, it has not been reported whether a direct decrease in cell contraction can inhibit fibrosis in vivo. Here, we have shown that (-)-blebbistatin (Ble), a non-muscle myosin Ⅱ inhibitor, displayed significant inhibition of liver fibrosis in different chronic injury mouse models in vivo. We found that Ble reduced the stiffness of fibrotic tissues from the early stage, which reduced the extent of myofibroblast activation induced by a stiffer extracellular matrix (ECM). Moreover, Ble also reduced the activation of myofibroblasts induced by TGF-β1, which is the most potent pro-fibrotic cytokine. Mechanistically, Ble reduced mechanical contraction, which inhibited the assembly of stress fibers, decreased the F/G-actin ratio, and led to the exnucleation of YAP1 and MRTF-A. Finally, we verified its broad-spectrum antifibrotic effect in multiple models of organ fibrosis. Our results highlighted the important role of mechanical contraction in myofibroblast activation and maintenance, rather than just a characteristic of activation, suggesting that it may be a potential target to explore broad-spectrum drugs for the treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Zheng-Quan He
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
| | - Xue-Wei Yuan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
| | - Zong-Bao Lu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Huan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- The First Hospital of Jilin University, Changchun Jilin 130021, China
| | - Yu-Fei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liu Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
31
|
Belinskaia DA, Voronina PA, Goncharov NV. Integrative Role of Albumin: Evolutionary, Biochemical and Pathophysiological Aspects. J EVOL BIOCHEM PHYS+ 2021; 57:1419-1448. [PMID: 34955553 PMCID: PMC8685822 DOI: 10.1134/s002209302106020x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022]
Abstract
Being one of the main proteins in the human body and many
animal species, albumin plays a crucial role in the transport of
various ions, electrically neutral molecules and in maintaining
the colloidal osmotic pressure of the blood. Albumin is able to
bind almost all known drugs, many nutraceuticals and toxic substances,
determining their pharmaco- and toxicokinetics. However, albumin
is not only the passive but also the active participant of the pharmacokinetic
and toxicokinetic processes possessing a number of enzymatic activities.
Due to the thiol group of Cys34, albumin can serve as a trap for
reactive oxygen and nitrogen species, thus participating in redox
processes. The interaction of the protein with blood cells, blood
vessels, and also with tissue cells outside the vascular bed is
of great importance. The interaction of albumin with endothelial glycocalyx
and vascular endothelial cells largely determines its integrative
role. This review provides information of a historical nature, information
on evolutionary changes, inflammatory and antioxidant properties
of albumin, on its structural and functional modifications and their significance
in the pathogenesis of some diseases.
Collapse
Affiliation(s)
- D. A. Belinskaia
- Sechenov Institute of Evolutionary
Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | - P. A. Voronina
- Sechenov Institute of Evolutionary
Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | - N. V. Goncharov
- Sechenov Institute of Evolutionary
Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
- Research Institute of Hygiene,
Occupational Pathology and Human Ecology, p/o Kuzmolovsky, Vsevolozhsky District, Leningrad
Region, Russia
| |
Collapse
|
32
|
Serum Albumin in Health and Disease: Esterase, Antioxidant, Transporting and Signaling Properties. Int J Mol Sci 2021; 22:ijms221910318. [PMID: 34638659 PMCID: PMC8508759 DOI: 10.3390/ijms221910318] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
Being one of the main proteins in the human body and many animal species, albumin plays a decisive role in the transport of various ions-electrically neutral and charged molecules-and in maintaining the colloidal osmotic pressure of the blood. Albumin is able to bind to almost all known drugs, as well as many nutraceuticals and toxic substances, largely determining their pharmaco- and toxicokinetics. Albumin of humans and respective representatives in cattle and rodents have their own structural features that determine species differences in functional properties. However, albumin is not only passive, but also an active participant of pharmacokinetic and toxicokinetic processes, possessing a number of enzymatic activities. Numerous experiments have shown esterase or pseudoesterase activity of albumin towards a number of endogeneous and exogeneous esters. Due to the free thiol group of Cys34, albumin can serve as a trap for reactive oxygen and nitrogen species, thus participating in redox processes. Glycated albumin makes a significant contribution to the pathogenesis of diabetes and other diseases. The interaction of albumin with blood cells, blood vessels and tissue cells outside the vascular bed is of great importance. Interactions with endothelial glycocalyx and vascular endothelial cells largely determine the integrative role of albumin. This review considers the esterase, antioxidant, transporting and signaling properties of albumin, as well as its structural and functional modifications and their significance in the pathogenesis of certain diseases.
Collapse
|