1
|
Sun H, Shen W, Ma YM, Nie HQ, Zhong HJ. Challenges and perspectives in understanding the role of CD147 in keloids. Burns 2025; 51:107517. [PMID: 40279788 DOI: 10.1016/j.burns.2025.107517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Affiliation(s)
- Hui Sun
- Department of Dermatology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, Zhejiang Province 313003, China; Department of Dermatology, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang Province 313003, China.
| | - Wei Shen
- Department of Dermatology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, Zhejiang Province 313003, China; Department of Dermatology, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang Province 313003, China
| | - Ying-Ming Ma
- Department of Dermatology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, Zhejiang Province 313003, China; Department of Dermatology, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang Province 313003, China
| | - Hui-Qiong Nie
- Department of Dermatology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, Zhejiang Province 313003, China; Department of Dermatology, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang Province 313003, China
| | - Hua-Jie Zhong
- Department of Dermatology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, Zhejiang Province 313003, China; Department of Dermatology, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang Province 313003, China.
| |
Collapse
|
2
|
Verduijn K, de Rooster H, Meyer E, Steenbrugge J. Canine organoids: state-of-the-art, translation potential for human medicine and plea for standardization. Front Vet Sci 2025; 12:1562004. [PMID: 40417361 PMCID: PMC12098350 DOI: 10.3389/fvets.2025.1562004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/14/2025] [Indexed: 05/27/2025] Open
Abstract
Organoids have already shown great promise as research tools in human medicine. However, in veterinary medicine, such applications are limited and largely confined to canine organoids. In the Cross Health context, the potential of canine organoids lies in the translation to human diseases, such as cancer. This review provides a state-of-the-art, highlights the current challenges, and at first compares the reported culture conditions of canine organoids derived from both non-neoplastic and neoplastic tissue (i.e., tumoroids), identifying substantial gaps and discrepancies in used culture methods. We make a plea for the standardization of canine organoid culture characteristics and increased rigor in parameter reporting, which will ultimately enhance the reproducibility and applicability of canine organoids in both veterinary and human medicine, especially in the oncology field.
Collapse
Affiliation(s)
- Kim Verduijn
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Cancer Research Institute Ghent (CRIG)-Veterinary Oncology Network (VON), Ghent, Belgium
| | - Hilde de Rooster
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Cancer Research Institute Ghent (CRIG)-Veterinary Oncology Network (VON), Ghent, Belgium
| | - Evelyne Meyer
- Cancer Research Institute Ghent (CRIG)-Veterinary Oncology Network (VON), Ghent, Belgium
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jonas Steenbrugge
- Cancer Research Institute Ghent (CRIG)-Veterinary Oncology Network (VON), Ghent, Belgium
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
3
|
Shiraishi M, Sowa Y, Sunaga A, Yamamoto K, Okazaki M. Bioengineering strategies for regeneration of skin integrity: A literature review. Regen Ther 2025; 28:153-160. [PMID: 39790492 PMCID: PMC11713503 DOI: 10.1016/j.reth.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
Objective The skin is a complex organ that includes various stem cell populations. Current approaches for non-healing skin defects are sometimes inadequate and many attempts have been made to regenerate skin integrity. The aim of this review is to bridge the gap between basic research and clinical application of skin integrity regeneration. Methods A literature search was carried out in PubMed using combinations of the keywords "skin integrity", "tissue-engineered skin", "bioengineered skin", and "skin regeneration". Articles published from 1968 to 2023 reporting evidence from in vivo and in vitro skin regeneration experiments were included. Results These articles showed that stem cells can be differentiated into normal skin cells, including keratinocytes, and are a significant source of skin organoids, which are useful for investigating skin biology; and that emerging direct reprogramming methods have great potential to regenerate skin from the wounded skin surface. Conclusion Recent advances in skin regeneration will facilitate further advancement of both basic and clinical research in skin biology.
Collapse
Affiliation(s)
- Makoto Shiraishi
- Department of Plastic and Reconstructive Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Yoshihiro Sowa
- Department of Plastic Surgery, Jichi Medical University, Japan
| | - Ataru Sunaga
- Department of Plastic Surgery, Jichi Medical University, Japan
| | - Kenta Yamamoto
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mutsumi Okazaki
- Department of Plastic and Reconstructive Surgery, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
4
|
Zhu Z, Cheng Y, Liu X, Ding W, Liu J, Ling Z, Wu L. Advances in the Development and Application of Human Organoids: Techniques, Applications, and Future Perspectives. Cell Transplant 2025; 34:9636897241303271. [PMID: 39874083 PMCID: PMC11775963 DOI: 10.1177/09636897241303271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/10/2024] [Accepted: 11/11/2024] [Indexed: 01/30/2025] Open
Abstract
Organoids are three-dimensional (3D) cell cultures derived from human pluripotent stem cells or adult stem cells that recapitulate the cellular heterogeneity, structure, and function of human organs. These microstructures are invaluable for biomedical research due to their ability to closely mimic the complexity of native tissues while retaining human genetic material. This fidelity to native organ systems positions organoids as a powerful tool for advancing our understanding of human biology and for enhancing preclinical drug testing. Recent advancements have led to the successful development of a variety of organoid types, reflecting a broad range of human organs and tissues. This progress has expanded their application across several domains, including regenerative medicine, where organoids offer potential for tissue replacement and repair; disease modeling, which allows for the study of disease mechanisms and progression in a controlled environment; drug discovery and evaluation, where organoids provide a more accurate platform for testing drug efficacy and safety; and microecological research, where they contribute to understanding the interactions between microbes and host tissues. This review provides a comprehensive overview of the historical development of organoid technology, highlights the key achievements and ongoing challenges in the field, and discusses the current and emerging applications of organoids in both laboratory research and clinical practice.
Collapse
Affiliation(s)
- Zhangcheng Zhu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenwen Ding
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiaming Liu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lingbin Wu
- Department of Laboratory Medicine, Lishui Second People’s Hospital, Lishui, China
| |
Collapse
|
5
|
Ahmed IA, Sun J, Kong MJ, Khosrotehrani K, Shafiee A. Generating Skin-Derived Precursor-Like Cells From Human-Induced Pluripotent Stem Cell-Derived Skin Organoids. Exp Dermatol 2024; 33:e70017. [PMID: 39582396 DOI: 10.1111/exd.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/20/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024]
Abstract
Skin-derived precursor (SKPs) cells are multipotent stem cells found in the dermis that contribute to wound healing and induce hair follicle neogenesis when transplanted. The clinical application of adult human SKPs, however, is hindered by their loss of potency after in vitro expansion. To overcome this challenge, we aimed to isolate SKPs from human-induced pluripotent stem cell-derived skin organoids (SKOs), to enable mass production of these cells for therapeutics. We developed a protocol to isolate skin-derived precursor-like cells (SKP-like cells) from human SKOs. SKP-like cells derived from SKOs exhibited characteristic spheroid morphology and were capable of self-renewal in defined SKP growth medium. Immunofluorescence analysis confirmed the expression of key markers, including SOX2, fibronectin and S100β, within the SKP-like cells. The findings of this pilot study shed light on the potential of SKO-derived SKP-like cells for future hair regenerative applications. Furthermore, this research highlights the application of human SKOs as a valuable source for isolating progenitor cells, aiming to advance hair regeneration and restore skin function.
Collapse
Affiliation(s)
- Imaan A Ahmed
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Jane Sun
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Min Jie Kong
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Kiarash Khosrotehrani
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Abbas Shafiee
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Queensland Health, Brisbane, Queensland, Australia
- Royal Brisbane and Women's Hospital, Metro North Hospital and Health Service, Queensland Health, Brisbane, Queensland, Australia
| |
Collapse
|
6
|
Ismayilzada N, Tarar C, Dabbagh SR, Tokyay BK, Dilmani SA, Sokullu E, Abaci HE, Tasoglu S. Skin-on-a-chip technologies towards clinical translation and commercialization. Biofabrication 2024; 16:042001. [PMID: 38964314 DOI: 10.1088/1758-5090/ad5f55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
Skin is the largest organ of the human body which plays a critical role in thermoregulation, metabolism (e.g. synthesis of vitamin D), and protection of other organs from environmental threats, such as infections, microorganisms, ultraviolet radiation, and physical damage. Even though skin diseases are considered to be less fatal, the ubiquity of skin diseases and irritation caused by them highlights the importance of skin studies. Furthermore, skin is a promising means for transdermal drug delivery, which requires a thorough understanding of human skin structure. Current animal andin vitrotwo/three-dimensional skin models provide a platform for disease studies and drug testing, whereas they face challenges in the complete recapitulation of the dynamic and complex structure of actual skin tissue. One of the most effective methods for testing pharmaceuticals and modeling skin diseases are skin-on-a-chip (SoC) platforms. SoC technologies provide a non-invasive approach for examining 3D skin layers and artificially creating disease models in order to develop diagnostic or therapeutic methods. In addition, SoC models enable dynamic perfusion of culture medium with nutrients and facilitate the continuous removal of cellular waste to further mimic thein vivocondition. Here, the article reviews the most recent advances in the design and applications of SoC platforms for disease modeling as well as the analysis of drugs and cosmetics. By examining the contributions of different patents to the physiological relevance of skin models, the review underscores the significant shift towards more ethical and efficient alternatives to animal testing. Furthermore, it explores the market dynamics ofin vitroskin models and organ-on-a-chip platforms, discussing the impact of legislative changes and market demand on the development and adoption of these advanced research tools. This article also identifies the existing obstacles that hinder the advancement of SoC platforms, proposing directions for future improvements, particularly focusing on the journey towards clinical adoption.
Collapse
Affiliation(s)
- Nilufar Ismayilzada
- Department of Mechanical Engineering, Koç University, Istanbul 34450, Turkey
| | - Ceren Tarar
- Department of Mechanical Engineering, Koç University, Istanbul 34450, Turkey
| | | | - Begüm Kübra Tokyay
- Koç University Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
| | - Sara Asghari Dilmani
- Koç University Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
| | - Emel Sokullu
- School of Medicine, Koç University, Istanbul 34450, Turkey
| | - Hasan Erbil Abaci
- Department of Dermatology, Columbia University, New York City, NY, United States of America
| | - Savas Tasoglu
- Department of Mechanical Engineering, Koç University, Istanbul 34450, Turkey
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul 34684, Turkey
- Koç University Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Istanbul 34450, Turkey
| |
Collapse
|
7
|
Lee S, Rim YA, Kim J, Lee SH, Park HJ, Kim H, Ahn SJ, Ju JH. Guidelines for Manufacturing and Application of Organoids: Skin. Int J Stem Cells 2024; 17:182-193. [PMID: 38783680 PMCID: PMC11170114 DOI: 10.15283/ijsc24045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/12/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
To address the limitations of animal testing, scientific research is increasingly focused on developing alternative testing methods. These alternative tests utilize cells or tissues derived from animals or humans for in vitro testing, as well as artificial tissues and organoids. In western countries, animal testing for cosmetics has been banned, leading to the adoption of artificial skin for toxicity evaluation, such as skin corrosion and irritation assessments. Standard guidelines for skin organoid technology becomes necessary to ensure consistent data and evaluation in replacing animal testing with in vitro methods. These guidelines encompass aspects such as cell sourcing, culture techniques, quality requirements and assessment, storage and preservation, and organoid-based assays.
Collapse
Affiliation(s)
- Seunghee Lee
- Organoid Standards Initiative
- Kangstem Biotech Co., Ltd., Seoul, Korea
| | - Yeri Alice Rim
- Catholic Induced Pluripotent Stem Cell Research Center (CiSTEM), Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine & Health Sciences, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | - Su Hyon Lee
- Organoid Standards Initiative
- Biosolution Co., Ltd., Seoul, Korea
| | - Hye Jung Park
- Organoid Standards Initiative
- CellinCells, Seoul National University Dental Hospital, Seoul, Korea
| | - Hyounwoo Kim
- CellinCells, Seoul National University Dental Hospital, Seoul, Korea
| | - Sun-Ju Ahn
- Organoid Standards Initiative
- Department of Biophysics, Sungkyunkwan University, Suwon, Korea
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Korea
| | - Ji Hyeon Ju
- Organoid Standards Initiative
- Catholic Induced Pluripotent Stem Cell Research Center (CiSTEM), Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine & Health Sciences, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- YiPSCELL Inc., Seoul, Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
8
|
Bartlett KE, Hall SR, Rasmussen SA, Crittenden E, Dawson CA, Albulescu LO, Laprade W, Harrison RA, Saviola AJ, Modahl CM, Jenkins TP, Wilkinson MC, Gutiérrez JM, Casewell NR. Dermonecrosis caused by a spitting cobra snakebite results from toxin potentiation and is prevented by the repurposed drug varespladib. Proc Natl Acad Sci U S A 2024; 121:e2315597121. [PMID: 38687786 PMCID: PMC11087757 DOI: 10.1073/pnas.2315597121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/26/2024] [Indexed: 05/02/2024] Open
Abstract
Snakebite envenoming is a neglected tropical disease that causes substantial mortality and morbidity globally. The venom of African spitting cobras often causes permanent injury via tissue-destructive dermonecrosis at the bite site, which is ineffectively treated by current antivenoms. To address this therapeutic gap, we identified the etiological venom toxins in Naja nigricollis venom responsible for causing local dermonecrosis. While cytotoxic three-finger toxins were primarily responsible for causing spitting cobra cytotoxicity in cultured keratinocytes, their potentiation by phospholipases A2 toxins was essential to cause dermonecrosis in vivo. This evidence of probable toxin synergism suggests that a single toxin-family inhibiting drug could prevent local envenoming. We show that local injection with the repurposed phospholipase A2-inhibiting drug varespladib significantly prevents local tissue damage caused by several spitting cobra venoms in murine models of envenoming. Our findings therefore provide a therapeutic strategy that may effectively prevent life-changing morbidity caused by snakebite in rural Africa.
Collapse
Affiliation(s)
- Keirah E. Bartlett
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
| | - Steven R. Hall
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
- Centre for Drugs & Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
| | - Sean A. Rasmussen
- Department of Pathology and Laboratory Medicine, Queen Elizabeth II Health Sciences Centre and Dalhousie University, Halifax, NSB3H 1V8, Canada
| | - Edouard Crittenden
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
| | - Charlotte A. Dawson
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
| | - Laura-Oana Albulescu
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
- Centre for Drugs & Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
| | - William Laprade
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens LyngbyDK-2800, Denmark
| | - Robert A. Harrison
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
- Centre for Drugs & Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
| | - Anthony J. Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO80045
| | - Cassandra M. Modahl
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
| | - Timothy P. Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens LyngbyDK-2800, Denmark
| | - Mark C. Wilkinson
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José11501–2060, Costa Rica
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
- Centre for Drugs & Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
| |
Collapse
|
9
|
Patrignoni L, Hurtier A, Orlacchio R, Joushomme A, Poulletier de Gannes F, Lévêque P, Arnaud-Cormos D, Revzani HR, Mahfouf W, Garenne A, Percherancier Y, Lagroye I. Evaluation of mitochondrial stress following ultraviolet radiation and 5G radiofrequency field exposure in human skin cells. Bioelectromagnetics 2024; 45:110-129. [PMID: 38115173 DOI: 10.1002/bem.22495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
Whether human cells are impacted by environmental electromagnetic fields (EMF) is still a matter of debate. With the deployment of the fifth generation (5G) of mobile communication technologies, the carrier frequency is increasing and the human skin becomes the main biological target. Here, we evaluated the impact of 5G-modulated 3.5 GHz radiofrequency (RF) EMF on mitochondrial stress in human fibroblasts and keratinocytes that were exposed for 24 h at specific absorption rate of 0.25, 1, and 4 W/kg. We assessed cell viability, mitochondrial reactive oxygen species (ROS) production, and membrane polarization. Knowing that human skin is the main target of environmental ultraviolet (UV), using the same read-out, we investigated whether subsequent exposure to 5G signal could alter the capacity of UV-B to damage skin cells. We found a statistically significant reduction in mitochondrial ROS concentration in fibroblasts exposed to 5G signal at 1 W/kg. On the contrary, the RF exposure slightly but statistically significantly enhanced the effects of UV-B radiation specifically in keratinocytes at 0.25 and 1 W/kg. No effect was found on mitochondrial membrane potential or apoptosis in any cell types or exposure conditions suggesting that the type and amplitude of the observed effects are very punctual.
Collapse
Affiliation(s)
- Lorenza Patrignoni
- Paris Sciences et Lettres Research University-École Pratique des Hautes Études (EPHE), IMS laboratory - SANE team, Paris, France
| | - Annabelle Hurtier
- Univ. Bordeaux, CNRS, IMS laboratory / UMR 5218, SANE Team, Talence, France
| | - Rosa Orlacchio
- Paris Sciences et Lettres Research University-École Pratique des Hautes Études (EPHE), IMS laboratory - SANE team, Paris, France
| | | | | | - Philippe Lévêque
- Univ. Limoges, CNRS, XLIM / UMR 7252, RF-ELITE team, Limoges, France
| | | | | | - Walid Mahfouf
- Univ. Bordeaux, Inserm, BRIC / UMR 1312, TRIO2 team, Bordeaux, France
| | - André Garenne
- Univ. Bordeaux, CNRS, IMS laboratory / UMR 5218, SANE Team, Talence, France
| | - Yann Percherancier
- Univ. Bordeaux, CNRS, IMS laboratory / UMR 5218, SANE Team, Talence, France
| | - Isabelle Lagroye
- Paris Sciences et Lettres Research University-École Pratique des Hautes Études (EPHE), IMS laboratory - SANE team, Paris, France
| |
Collapse
|
10
|
Mulaudzi PE, Abrahamse H, Crous A. Insights on Three Dimensional Organoid Studies for Stem Cell Therapy in Regenerative Medicine. Stem Cell Rev Rep 2024; 20:509-523. [PMID: 38095787 PMCID: PMC10837234 DOI: 10.1007/s12015-023-10655-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 02/03/2024]
Abstract
Regenerative medicine has developed as a promising discipline that utilizes stem cells to address limitations in traditional therapies, using innovative techniques to restore and repair damaged organs and tissues. One such technique is the generation of three-dimensional (3D) organoids in stem cell therapy. Organoids are 3D constructs that resemble specific organs' structural and functional characteristics and are generated from stem cells or tissue-specific progenitor cells. The use of 3D organoids is advantageous in comparison to traditional two-dimensional (2D) cell culture by bridging the gap between in vivo and in vitro research. This review aims to provide an overview of the advancements made towards regenerative medicine using stem cells to generate organoids, explore the techniques used in generating 3D organoids and their applications and finally elucidate the challenges and future directions in regenerative medicine using 3D organoids.
Collapse
Affiliation(s)
- Precious Earldom Mulaudzi
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Anine Crous
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa.
| |
Collapse
|
11
|
Galvan A, Pellicciari C, Calderan L. Recreating Human Skin In Vitro: Should the Microbiota Be Taken into Account? Int J Mol Sci 2024; 25:1165. [PMID: 38256238 PMCID: PMC10816982 DOI: 10.3390/ijms25021165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Skin plays crucial roles in the human body: besides protecting the organism from external threats, it acts as a thermal regulator, is responsible for the sense of touch, hosts microbial communities (the skin microbiota) involved in preventing the invasion of foreign pathogens, contains immunocompetent cells that maintain a healthy immunogenic/tolerogenic balance, and is a suitable route for drug administration. In the skin, four defense levels can be identified: besides the physical, chemical, and immune barriers that are inherent to the tissue, the skin microbiota (i.e., the numerous microorganisms living on the skin surface) provides an additional barrier. Studying the skin barrier function or the effects of drugs or cosmetic agents on human skin is a difficult task since snapshot evidence can only be obtained using bioptic samples where dynamic processes cannot properly be followed. To overcome these limitations, many different in vitro models of human skin have been developed that are characterized by diverse levels of complexity in terms of chemical, structural, and cellular composition. The aim of this review is to summarize and discuss the advantages and disadvantages of the different human skin models so far available and to underline how the insertion of a proper microbiota would positively impact an in vitro human skin model in an attempt to better mimic conditions in vivo.
Collapse
Affiliation(s)
- Andrea Galvan
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (A.G.); (L.C.)
| | - Carlo Pellicciari
- Department of Biology and Biotechnology, University of Pavia, Via A. Ferrata 9, 27100 Pavia, Italy
| | - Laura Calderan
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (A.G.); (L.C.)
| |
Collapse
|
12
|
Novis T, Takiya CM. Skin Resident Stem Cells. RESIDENT STEM CELLS AND REGENERATIVE THERAPY 2024:205-249. [DOI: 10.1016/b978-0-443-15289-4.00005-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Liang A, Fang Y, Ye L, Meng J, Wang X, Chen J, Xu X. Signaling pathways in hair aging. Front Cell Dev Biol 2023; 11:1278278. [PMID: 38033857 PMCID: PMC10687558 DOI: 10.3389/fcell.2023.1278278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Hair follicle (HF) homeostasis is regulated by various signaling pathways. Disruption of such homeostasis leads to HF disorders, such as alopecia, pigment loss, and hair aging, which is causing severe health problems and aesthetic concerns. Among these disorders, hair aging is characterized by hair graying, hair loss, hair follicle miniaturization (HFM), and structural changes to the hair shaft. Hair aging occurs under physiological conditions, while premature hair aging is often associated with certain pathological conditions. Numerous investigations have been made to determine the mechanisms and explore treatments to prevent hair aging. The most well-known hypotheses about hair aging include oxidative stress, hormonal disorders, inflammation, as well as DNA damage and repair defects. Ultimately, these factors pose threats to HF cells, especially stem cells such as hair follicle stem cells, melanocyte stem cells, and mesenchymal stem cells, which hamper hair regeneration and pigmentation. Here, we summarize previous studies investigating the above mechanisms and the existing therapeutic methods for hair aging. We also provide insights into hair aging research and discuss the limitations and outlook.
Collapse
Affiliation(s)
- Aishi Liang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yingshan Fang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Lan Ye
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Jianda Meng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Xusheng Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Jinsong Chen
- Endocrinology Department, First People’s Hospital of Foshan, Foshan, China
| | - Xuejuan Xu
- Endocrinology Department, First People’s Hospital of Foshan, Foshan, China
| |
Collapse
|
14
|
Hong ZX, Zhu ST, Li H, Luo JZ, Yang Y, An Y, Wang X, Wang K. Bioengineered skin organoids: from development to applications. Mil Med Res 2023; 10:40. [PMID: 37605220 PMCID: PMC10463602 DOI: 10.1186/s40779-023-00475-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023] Open
Abstract
Significant advancements have been made in recent years in the development of highly sophisticated skin organoids. Serving as three-dimensional models that mimic human skin, these organoids have evolved into complex structures and are increasingly recognized as effective alternatives to traditional culture models and human skin due to their ability to overcome the limitations of two-dimensional systems and ethical concerns. The inherent plasticity of skin organoids allows for their construction into physiological and pathological models, enabling the study of skin development and dynamic changes. This review provides an overview of the pivotal work in the progression from 3D layered epidermis to cyst-like skin organoids with appendages. Furthermore, it highlights the latest advancements in organoid construction facilitated by state-of-the-art engineering techniques, such as 3D printing and microfluidic devices. The review also summarizes and discusses the diverse applications of skin organoids in developmental biology, disease modelling, regenerative medicine, and personalized medicine, while considering their prospects and limitations.
Collapse
Affiliation(s)
- Zi-Xuan Hong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Shun-Tian Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Hao Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Jing-Zhi Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Yu Yang
- Department of Hepatopancreatobiliary Surgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu, China
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China.
| | - Xi Wang
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China.
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China.
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Beijing, 100037, China.
- Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Disease, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
15
|
Vatanashevanopakorn C, Sartyoungkul T. iPSC-based approach for human hair follicle regeneration. Front Cell Dev Biol 2023; 11:1149050. [PMID: 37325563 PMCID: PMC10266356 DOI: 10.3389/fcell.2023.1149050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Hair follicles (HFs) are a multifunctional structure involved in physical protection, thermoregulation, sensational detection, and wound healing. Formation and cycling of HFs require dynamic interaction between different cell types of the follicles. Although the processes have been well studied, the generation of human functional HFs with a normal cycling pattern for clinical utilization has yet to be achieved. Recently, human pluripotent stem cells (hPSCs) serve as an unlimited cell source for generating various types of cells including cells of the HFs. In this review, HF morphogenesis and cycling, different cell sources used for HF regeneration, and potential strategies for HF bioengineering using induced pluripotent stem cells (iPSCs) are depicted. Challenges and perspectives toward the therapeutic use of bioengineered HFs for hair loss disorder are also discussed.
Collapse
Affiliation(s)
- Chinnavuth Vatanashevanopakorn
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center for Regenerative Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thanutchaporn Sartyoungkul
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center for Regenerative Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
16
|
Penning LC, van den Boom R. Companion animal organoid technology to advance veterinary regenerative medicine. Front Vet Sci 2023; 10:1032835. [PMID: 37008367 PMCID: PMC10063859 DOI: 10.3389/fvets.2023.1032835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
First year medical and veterinary students are made very aware that drugs can have very different effects in various species or even in breeds of one specific species. On the other hand, the “One Medicine” concept implies that therapeutic and technical approaches are exchangeable between man and animals. These opposing views on the (dis)similarities between human and veterinary medicine are magnified in regenerative medicine. Regenerative medicine promises to stimulate the body's own regenerative capacity via activation of stem cells and/or the application of instructive biomaterials. Although the potential is enormous, so are the hurdles that need to be overcome before large scale clinical implementation is realistic. It is in the advancement of regenerative medicine that veterinary regenerative medicine can play an instrumental and crucial role. This review describes the discovery of (adult) stem cells in domesticated animals, mainly cats and dogs. The promise of cell-mediated regenerative veterinary medicine is compared to the actual achievements, and this will lead to a set of unanswered questions (controversies, research gaps, potential developments in relation to fundamental, pre-clinical, and clinical research). For veterinary regenerative medicine to have impact, either for human medicine and/or for domesticated animals, answering these questions is pivotal.
Collapse
|
17
|
Future regenerative medicine developments and their therapeutic applications. Biomed Pharmacother 2023; 158:114131. [PMID: 36538861 DOI: 10.1016/j.biopha.2022.114131] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Although the currently available pharmacological assays can cure most pathological disorders, they have limited therapeutic value in relieving certain disorders like myocardial infarct, peripheral vascular disease, amputated limbs, or organ failure (e.g. renal failure). Pilot studies to overcome such problems using regenerative medicine (RM) delivered promising data. Comprehensive investigations of RM in zebrafish or reptilians are necessary for better understanding. However, the precise mechanisms remain poorly understood despite the tremendous amount of data obtained using the zebrafish model investigating the exact mechanisms behind their regenerative capability. Indeed, understanding such mechanisms and their application to humans can save millions of lives from dying due to potentially life-threatening events. Recent studies have launched a revolution in replacing damaged human organs via different approaches in the last few decades. The newly established branch of medicine (known as Regenerative Medicine aims to enhance natural repair mechanisms. This can be done through the application of several advanced broad-spectrum technologies such as organ transplantation, tissue engineering, and application of Scaffolds technology (support vascularization using an extracellular matrix), stem cell therapy, miRNA treatment, development of 3D mini-organs (organoids), and the construction of artificial tissues using nanomedicine and 3D bio-printers. Moreover, in the next few decades, revolutionary approaches in regenerative medicine will be applied based on artificial intelligence and wireless data exchange, soft intelligence biomaterials, nanorobotics, and even living robotics capable of self-repair. The present work presents a comprehensive overview that summarizes the new and future advances in the field of RM.
Collapse
|
18
|
Rousselle P, Laigle C, Rousselet G. The basement membrane in epidermal polarity, stemness, and regeneration. Am J Physiol Cell Physiol 2022; 323:C1807-C1822. [PMID: 36374168 DOI: 10.1152/ajpcell.00069.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The epidermis is a specialized epithelium that constitutes the outermost layer of the skin, and it provides a protective barrier against environmental assaults. Primarily consisting of multilayered keratinocytes, the epidermis is continuously renewed by proliferation of stem cells and the differentiation of their progeny, which undergo terminal differentiation as they leave the basal layer and move upward toward the surface, where they die and slough off. Basal keratinocytes rest on a basement membrane at the dermal-epidermal junction that is composed of specific extracellular matrix proteins organized into interactive and mechanically supportive networks. Firm attachment of basal keratinocytes, and their dynamic regulation via focal adhesions and hemidesmosomes, is essential for maintaining major skin processes, such as self-renewal, barrier function, and resistance to physical and chemical stresses. The adhesive integrin receptors expressed by epidermal cells serve structural, signaling, and mechanosensory roles that are critical for epidermal cell anchorage and tissue homeostasis. More specifically, the basement membrane components play key roles in preserving the stem cell pool, and establishing cell polarity cues enabling asymmetric cell divisions, which result in the transition from a proliferative basal cell layer to suprabasal cells committed to terminal differentiation. Finally, through a well-regulated sequence of synthesis and remodeling, the components of the dermal-epidermal junction play an essential role in regeneration of the epidermis during skin healing. Here too, they provide biological and mechanical signals that are essential to the restoration of barrier function.
Collapse
Affiliation(s)
- Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS, Université Lyon 1, Lyon, France
| | - Chloé Laigle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS, Université Lyon 1, Lyon, France
| | - Gaelle Rousselet
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS, Université Lyon 1, Lyon, France
| |
Collapse
|
19
|
Oceguera-Yanez F, Avila-Robinson A, Woltjen K. Differentiation of pluripotent stem cells for modeling human skin development and potential applications. Front Cell Dev Biol 2022; 10:1030339. [PMID: 36506084 PMCID: PMC9728031 DOI: 10.3389/fcell.2022.1030339] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
The skin of mammals is a multilayered and multicellular tissue that forms an environmental barrier with key functions in protection, regulation, and sensation. While animal models have long served to study the basic functions of the skin in vivo, new insights are expected from in vitro models of human skin development. Human pluripotent stem cells (PSCs) have proven to be invaluable tools for studying human development in vitro. To understand the mechanisms regulating human skin homeostasis and injury repair at the molecular level, recent efforts aim to differentiate PSCs towards skin epidermal keratinocytes, dermal fibroblasts, and skin appendages such as hair follicles and sebaceous glands. Here, we present an overview of the literature describing strategies for human PSC differentiation towards the components of skin, with a particular focus on keratinocytes. We highlight fundamental advances in the field employing patient-derived human induced PSCs (iPSCs) and skin organoid generation. Importantly, PSCs allow researchers to model inherited skin diseases in the search for potential treatments. Skin differentiation from human PSCs holds the potential to clarify human skin biology.
Collapse
Affiliation(s)
- Fabian Oceguera-Yanez
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan,*Correspondence: Fabian Oceguera-Yanez, ; Knut Woltjen,
| | | | - Knut Woltjen
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan,*Correspondence: Fabian Oceguera-Yanez, ; Knut Woltjen,
| |
Collapse
|
20
|
Kageyama T, Shimizu A, Anakama R, Nakajima R, Suzuki K, Okubo Y, Fukuda J. Reprogramming of three-dimensional microenvironments for in vitro hair follicle induction. SCIENCE ADVANCES 2022; 8:eadd4603. [PMID: 36269827 PMCID: PMC9586475 DOI: 10.1126/sciadv.add4603] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/02/2022] [Indexed: 06/08/2023]
Abstract
During embryonic development, reciprocal interactions between epidermal and mesenchymal layers trigger hair follicle morphogenesis. This study revealed that microenvironmental reprogramming via control over these interactions enabled hair follicle induction in vitro. A key approach is to modulate spatial distributions of epithelial and mesenchymal cells in their spontaneous organization. The de novo hair follicles with typical morphological features emerged in aggregates of the two cell types, termed hair follicloids, and hair shafts sprouted with near 100% efficiency in vitro. The hair shaft length reached ~3 mm in culture. Typical trichogenic signaling pathways were up-regulated in hair follicloids. Owing to replication of hair follicle morphogenesis in vitro, melanosome production and transportation were also monitored in the hair bulb region. This in vitro hair follicle model might be valuable for better understanding hair follicle induction, evaluating hair growth and inhibition of hair growth by drugs, and modeling gray hairs in a well-defined environment.
Collapse
Affiliation(s)
- Tatsuto Kageyama
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
- Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
- Japan Science and Technology Agency (JST)-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Akihiro Shimizu
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Riki Anakama
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Rikuma Nakajima
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Kohei Suzuki
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
- Nissan Chemical Corporation, 2-5-1 Nihonbashi, Chuo-ku, Tokyo 103-6119, Japan
| | - Yusuke Okubo
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tono-machi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Junji Fukuda
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
- Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| |
Collapse
|
21
|
Zhang HL, Sun H, Yang YF, Li YM. Skin substitutes comprised of recombinant human collagen hydrogel promote full-thickness skin defect reconstruction. Burns 2022; 48:1523-1524. [PMID: 35786501 DOI: 10.1016/j.burns.2022.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 01/03/2023]
Affiliation(s)
- Han-Lin Zhang
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China; Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China; School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Hui Sun
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China; Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China; School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Yi-Fei Yang
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China; Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China; School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Yu-Mei Li
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China; Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China; School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212001, China.
| |
Collapse
|
22
|
Innovative Treatment Strategies to Accelerate Wound Healing: Trajectory and Recent Advancements. Cells 2022; 11:cells11152439. [PMID: 35954282 PMCID: PMC9367945 DOI: 10.3390/cells11152439] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/26/2022] Open
Abstract
Wound healing is highly specialized dynamic multiple phase process for the repair of damaged/injured tissues through an intricate mechanism. Any failure in the normal wound healing process results in abnormal scar formation, and chronic state which is more susceptible to infections. Chronic wounds affect patients’ quality of life along with increased morbidity and mortality and are huge financial burden to healthcare systems worldwide, and thus requires specialized biomedical intensive treatment for its management. The clinical assessment and management of chronic wounds remains challenging despite the development of various therapeutic regimens owing to its painstakingly long-term treatment requirement and complex wound healing mechanism. Various conventional approaches such as cell therapy, gene therapy, growth factor delivery, wound dressings, and skin grafts etc., are being utilized for promoting wound healing in different types of wounds. However, all these abovementioned therapies are not satisfactory for all wound types, therefore, there is an urgent demand for the development of competitive therapies. Therefore, there is a pertinent requirement to develop newer and innovative treatment modalities for multipart therapeutic regimens for chronic wounds. Recent developments in advanced wound care technology includes nanotherapeutics, stem cells therapy, bioengineered skin grafts, and 3D bioprinting-based strategies for improving therapeutic outcomes with a focus on skin regeneration with minimal side effects. The main objective of this review is to provide an updated overview of progress in therapeutic options in chronic wounds healing and management over the years using next generation innovative approaches. Herein, we have discussed the skin function and anatomy, wounds and wound healing processes, followed by conventional treatment modalities for wound healing and skin regeneration. Furthermore, various emerging and innovative strategies for promoting quality wound healing such as nanotherapeutics, stem cells therapy, 3D bioprinted skin, extracellular matrix-based approaches, platelet-rich plasma-based approaches, and cold plasma treatment therapy have been discussed with their benefits and shortcomings. Finally, challenges of these innovative strategies are reviewed with a note on future prospects.
Collapse
|
23
|
Corsini NS, Knoblich JA. Human organoids: New strategies and methods for analyzing human development and disease. Cell 2022; 185:2756-2769. [PMID: 35868278 DOI: 10.1016/j.cell.2022.06.051] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 01/06/2023]
Abstract
For decades, insight into fundamental principles of human biology and disease has been obtained primarily by experiments in animal models. While this has allowed researchers to understand many human biological processes in great detail, some developmental and disease mechanisms have proven difficult to study due to inherent species differences. The advent of organoid technology more than 10 years ago has established laboratory-grown organ tissues as an additional model system to recapitulate human-specific aspects of biology. The use of human 3D organoids, as well as other advances in single-cell technologies, has revealed unprecedented insights into human biology and disease mechanisms, especially those that distinguish humans from other species. This review highlights novel advances in organoid biology with a focus on how organoid technology has generated a better understanding of human-specific processes in development and disease.
Collapse
Affiliation(s)
- Nina S Corsini
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Juergen A Knoblich
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria; Medical University of Vienna, Department of Neurology, Vienna, Austria.
| |
Collapse
|
24
|
Moss MI, Pauli M, Moreau JM, Cohen JN, Rosenblum MD, Lowe MM. Xenograft Skin Model to Manipulate Human Immune Responses In Vivo. J Vis Exp 2022:10.3791/64040. [PMID: 35848826 PMCID: PMC10552904 DOI: 10.3791/64040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The human skin xenograft model, in which human donor skin is transplanted onto an immunodeficient mouse host, is an important option for translational research in skin immunology. Murine and human skin differ substantially in anatomy and immune cell composition. Therefore, traditional mouse models have limitations for dermatological research and drug discovery. However, successful xenotransplants are technically challenging and require optimal specimen and mouse graft site preparation for graft and host survival. The present protocol provides an optimized technique for transplanting human skin onto mice and discusses necessary considerations for downstream experimental aims. This report describes the appropriate preparation of a human donor skin sample, assembly of a surgical setup, mouse and surgical site preparation, skin transplantation, and post-surgical monitoring. Adherence to these methods allows for maintenance of xenografts for over 6 weeks post-surgery. The techniques outlined below allow maximum grafting efficiency due to the development of engineering controls, sterile technique, and pre- and post-surgical conditioning. Appropriate performance of the xenograft model results in long-lived human skin graft samples for experimental characterization of human skin and preclinical testing of compounds in vivo.
Collapse
|
25
|
Microglia-like Cells Promote Neuronal Functions in Cerebral Organoids. Cells 2021; 11:cells11010124. [PMID: 35011686 PMCID: PMC8750120 DOI: 10.3390/cells11010124] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/17/2022] Open
Abstract
Human cerebral organoids, derived from induced pluripotent stem cells, offer a unique in vitro research window to the development of the cerebral cortex. However, a key player in the developing brain, the microglia, do not natively emerge in cerebral organoids. Here we show that erythromyeloid progenitors (EMPs), differentiated from induced pluripotent stem cells, migrate to cerebral organoids, and mature into microglia-like cells and interact with synaptic material. Patch-clamp electrophysiological recordings show that the microglia-like population supported the emergence of more mature and diversified neuronal phenotypes displaying repetitive firing of action potentials, low-threshold spikes and synaptic activity, while multielectrode array recordings revealed spontaneous bursting activity and increased power of gamma-band oscillations upon pharmacological challenge with NMDA. To conclude, microglia-like cells within the organoids promote neuronal and network maturation and recapitulate some aspects of microglia-neuron co-development in vivo, indicating that cerebral organoids could be a useful biorealistic human in vitro platform for studying microglia-neuron interactions.
Collapse
|