1
|
Graifer D, Malygin A, Shefer A, Tamkovich S. Ribosomal Proteins as Exosomal Cargo: Random Passengers or Crucial Players in Carcinogenesis? Adv Biol (Weinh) 2025; 9:e2400360. [PMID: 39895482 DOI: 10.1002/adbi.202400360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/28/2024] [Indexed: 02/04/2025]
Abstract
Many ribosomal proteins (RPs) have functions beyond their canonical role as constituents of the ribosome. They often relate to human pathologies, primarily, to carcinogenesis, and the expression of specific RPs is considerably changed in malignant cells. On the other hand, extracellular vesicles (including exosomes), which provide intercellular communication by transporting specific molecular cargo from donor to recipient cells, often contain specific sets of RPs. Thus, one can assume that oncogenic properties of RPs can be transferred from one cell to another by exosomes. Such kind transfer has been already documented with RPS3 and gastric cancer cells. However, it remains largely unclear how widespread is the above effect and to which extent it contributes to the tumor progression and metastasis. To shed light on this issue, a comparative analysis of the sets of RPs found in exosomes and of the available data on oncogenic properties of these proteins is conducted.
Collapse
Affiliation(s)
- Dmitri Graifer
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, pr. Lavrentieva, 8, Novosibirsk, 630090, Russia
| | - Alexey Malygin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, pr. Lavrentieva, 8, Novosibirsk, 630090, Russia
| | - Aleksei Shefer
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, pr. Lavrentieva, 8, Novosibirsk, 630090, Russia
| | - Svetlana Tamkovich
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, pr. Lavrentieva, 8, Novosibirsk, 630090, Russia
| |
Collapse
|
2
|
Guo L, Liu Y, Yan S, Li H, Zhang K, Li J. The RNA-binding protein LARP6 regulates the alternative splicing of related genes in MDA-MB-231 cells. Sci Rep 2025; 15:7883. [PMID: 40050364 PMCID: PMC11885556 DOI: 10.1038/s41598-025-92351-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/27/2025] [Indexed: 03/09/2025] Open
Abstract
Triple-negative breast cancer (TNBC) has the highest mortality rate of all breast cancer subtypes and currently lacks effective targeted therapies. LARP6 is an RNA-binding protein associated with cancer promotion, but its mechanism of action in TNBC remains unclear. We conducted RNA sequencing (RNA-seq) and improved RNA immunoprecipitation and sequencing (iRIP-seq) to identify the differentially expressed genes (DEGs) and alternative splice sites bound and regulated by LARP6 in MDA-MB-231 cells. Finally, both RT-qPCR and RIP-qPCR were employed for verification. Our study revealed that LARP6 overexpression altered the expression levels of 171 genes and that the number of regulated alternative splicing events (RASEs) exceeded 1000. The regulated alternative splicing genes (RASGs) corresponding to RASEs were enriched in biological processes such as DNA repair, the cell cycle, and the cellular response to DNA damage stimulus. In addition, we found that LARP6 tends to bind the CGACGAG motif. The intersection of peak-related genes with RASGs suggested that LARP6 can bind to 16 genes and regulate their alternative splicing (AS), thus playing an important role in TNBC progression. Our research indicated that LARP6 may promote the proliferation and invasion of TNBC cells by directly regulating the AS of related genes, providing new clues for targeted therapy for TNBC.
Collapse
Affiliation(s)
- Li Guo
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, No. 804, Shengli Street, Xingqing District, Yinchuan, 750001, Ningxia, China
| | - Yaobang Liu
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, No. 804, Shengli Street, Xingqing District, Yinchuan, 750001, Ningxia, China
| | - Shuxun Yan
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Hong Li
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, No. 804, Shengli Street, Xingqing District, Yinchuan, 750001, Ningxia, China
| | - Kai Zhang
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Jinping Li
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, No. 804, Shengli Street, Xingqing District, Yinchuan, 750001, Ningxia, China.
| |
Collapse
|
3
|
Vishnubalaji R, Alajez NM. Disrupted Lipid Metabolism, Cytokine Signaling, and Dormancy: Hallmarks of Doxorubicin-Resistant Triple-Negative Breast Cancer Models. Cancers (Basel) 2024; 16:4273. [PMID: 39766172 PMCID: PMC11674486 DOI: 10.3390/cancers16244273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/30/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Chemoresistance in triple-negative breast cancer (TNBC) presents a significant clinical hurdle, limiting the efficacy of treatments like doxorubicin. This study aimed to explore the molecular changes associated with doxorubicin resistance and identify potential therapeutic targets to overcome this resistance, thereby improving treatment outcomes for TNBC patients. METHODS Doxorubicin-resistant (DoxR) TNBC models (MDA-MB-231 and BT-549) were generated by exposing cells to increasing concentrations of doxorubicin. RNA sequencing (RNA-Seq) was performed using the Illumina platform, followed by bioinformatics analysis with CLC Genomics Workbench and iDEP. Functional assays assessed proliferation, sphere formation, migration, and cell cycle changes. Protein expression and phosphorylation were confirmed via Western blotting. Pathway and network analyses were conducted using Ingenuity Pathway Analysis (IPA) and STRING, while survival analysis was performed using Kaplan-Meier Plotter database. RESULTS DoxR cells exhibited reduced proliferation, sphere formation, and migration, but showed enhanced tolerance to doxorubicin. Increased CHK2 and p53 phosphorylation indicated cellular dormancy as a resistance mechanism. RNA-Seq analysis revealed upregulation of cytokine signaling and stress-response pathways, while cholesterol and lipid biosynthesis were suppressed. Activation of the IL1β cytokine network was prominent in DoxR cells, and CRISPR-Cas9 screens data identified dependencies on genes involved in rRNA biogenesis and metabolism. A 27-gene signature associated with doxorubicin resistance was linked to worse clinical outcomes in a large breast cancer cohort (HR = 1.76, FDR p < 2.0 × 10-13). CONCLUSIONS This study uncovers potential therapeutic strategies for overcoming TNBC resistance, including dormancy reversal and targeting onco-ribosomal pathways and cytokine signaling networks, to improve the efficacy of doxorubicin-based treatments.
Collapse
Affiliation(s)
- Radhakrishnan Vishnubalaji
- Translational Oncology Research Center (TORC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar;
| | - Nehad M. Alajez
- Translational Oncology Research Center (TORC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar;
- College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| |
Collapse
|
4
|
Basso J, Matos AM, Ghavami S, Fortuna A, Vitorino R, Vitorino C. Are we better together? Addressing a combined treatment of pitavastatin and temozolomide for brain cancer. Eur J Pharmacol 2024; 985:177087. [PMID: 39491742 DOI: 10.1016/j.ejphar.2024.177087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Pitavastatin is commonly prescribed to treat hypercholesterolemia through the regulation of cholesterol biosynthesis. Interestingly, it has also demonstrated a great potential for treating brain tumors, although the detailed cytotoxic mechanism, particularly in glioblastoma, remains incompletely understood. This work explores the activity of pitavastatin in 2D and 3D glioblastoma models, in an attempt to provide a more representative and robust overview of its anticancer potential in glioblastoma. The results show that not only is pitavastatin 10-1000 times-fold more effective in reducing tumoral metabolic activity than temozolomide, but also demonstrate a synergistic activity with this alkylating drug. In addition, low micromolar concentrations of this statin strongly impair the growth and the invasion ability of multicellular tumor spheroids. The obtained qRT-PCR and proteomics data highlight the modulation of cell death via apoptosis (BAX/BCL2, CASP9) and autophagy (BECN1, BNIP3, BNIP3L and LC3B), as well as an epithelial to mesenchymal transition blockage (HTRA1, SERPINE1, WNT5A, ALDH3B1 and EPHA2) and remodeling of the extracellular matrix (VCAN, SERPINE1 and TGFBI). Overall, these results lay the foundation for further investigations on the potential combinatory clinical treatment with temozolomide.
Collapse
Affiliation(s)
- João Basso
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Ana Miguel Matos
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Chemical Engineering and Renewable Resources for Sustainability, CERES, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB, R3E 0J9, Canada; Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB, R3E 0V9, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Ana Fortuna
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Rui Vitorino
- Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal; UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
5
|
Brignola C, Pecoraro A, Danisi C, Iaccarino N, Di Porzio A, Romano F, Carotenuto P, Russo G, Russo A. uL3 Regulates Redox Metabolism and Ferroptosis Sensitivity of p53-Deleted Colorectal Cancer Cells. Antioxidants (Basel) 2024; 13:757. [PMID: 39061826 PMCID: PMC11274089 DOI: 10.3390/antiox13070757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Despite advancements in therapeutic strategies, the development of drug resistance and metastasis remains a serious concern for the efficacy of chemotherapy against colorectal cancer (CRC). We have previously demonstrated that low expression of ribosomal protein uL3 positively correlates with chemoresistance in CRC patients. Here, we demonstrated that the loss of uL3 increased the metastatic capacity of CRC cells in chick embryos. Metabolomic analysis revealed large perturbations in amino acid and glutathione metabolism in resistant uL3-silenced CRC cells, indicating that uL3 silencing dramatically triggered redox metabolic reprogramming. RNA-Seq data revealed a notable dysregulation of 108 genes related to ferroptosis in CRC patients. Solute Carrier Family 7 Member 11 (SLC7A11) is one of the most dysregulated genes; its mRNA stability is negatively regulated by uL3, and its expression is inversely correlated with uL3 levels. Inhibition of SLC7A11 with erastin impaired resistant uL3-silenced CRC cell survival by inducing ferroptosis. Of interest, the combined treatment erastin plus uL3 enhanced the chemotherapeutic sensitivity of uL3-silenced CRC cells to erastin. The antimetastatic potential of the combined strategy was evaluated in chick embryos. Overall, our study sheds light on uL3-mediated chemoresistance and provides evidence of a novel therapeutic approach, erastin plus uL3, to induce ferroptosis, establishing individualized therapy by examining p53, uL3 and SLC7A11 profiles in tumors.
Collapse
Affiliation(s)
- Chiara Brignola
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano, 49, 80131 Naples, Italy; (C.B.); (A.P.); (C.D.); (N.I.); (A.D.P.); (F.R.); (G.R.)
| | - Annalisa Pecoraro
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano, 49, 80131 Naples, Italy; (C.B.); (A.P.); (C.D.); (N.I.); (A.D.P.); (F.R.); (G.R.)
| | - Camilla Danisi
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano, 49, 80131 Naples, Italy; (C.B.); (A.P.); (C.D.); (N.I.); (A.D.P.); (F.R.); (G.R.)
| | - Nunzia Iaccarino
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano, 49, 80131 Naples, Italy; (C.B.); (A.P.); (C.D.); (N.I.); (A.D.P.); (F.R.); (G.R.)
| | - Anna Di Porzio
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano, 49, 80131 Naples, Italy; (C.B.); (A.P.); (C.D.); (N.I.); (A.D.P.); (F.R.); (G.R.)
| | - Francesca Romano
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano, 49, 80131 Naples, Italy; (C.B.); (A.P.); (C.D.); (N.I.); (A.D.P.); (F.R.); (G.R.)
| | - Pietro Carotenuto
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei, 34, 80078 Naples, Italy;
- Medical Genetics, Department of Translational Medical Science, University of Naples “Federico II”, Corso Umberto I, 40, 80138 Naples, Italy
| | - Giulia Russo
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano, 49, 80131 Naples, Italy; (C.B.); (A.P.); (C.D.); (N.I.); (A.D.P.); (F.R.); (G.R.)
| | - Annapina Russo
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano, 49, 80131 Naples, Italy; (C.B.); (A.P.); (C.D.); (N.I.); (A.D.P.); (F.R.); (G.R.)
| |
Collapse
|
6
|
Cerda‐Troncoso C, Grünenwald F, Arias‐Muñoz E, Cavieres VA, Caceres‐Verschae A, Hernández S, Gaete‐Ramírez B, Álvarez‐Astudillo F, Acuña RA, Ostrowski M, Burgos PV, Varas‐Godoy M. Chemo-small extracellular vesicles released in cisplatin-resistance ovarian cancer cells are regulated by the lysosomal function. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e157. [PMID: 38947172 PMCID: PMC11212338 DOI: 10.1002/jex2.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 04/03/2024] [Accepted: 04/29/2024] [Indexed: 07/02/2024]
Abstract
Chemoresistance is a common problem in ovarian cancer (OvCa) treatment, where resistant cells, in response to chemotherapy, secrete small extracellular vesicles (sEVs), known as chemo-sEVs, that transfer resistance to recipient cells. sEVs are formed as intraluminal vesicles (ILVs) within multivesicular endosomes (MVEs), whose trafficking is regulated by Ras-associated binding (RAB) GTPases that mediate sEVs secretion or lysosomal degradation. A decrease in lysosomal function can promote sEVs secretion, but the relationship between MVEs trafficking pathways and sEVs secretion in OvCa chemoresistance is unclear. Here, we show that A2780cis cisplatin (CCDP) resistant OvCa cells had an increased number of MVEs and ILVs structures, higher levels of Endosomal Sorting Complex Required for Transport (ESCRTs) machinery components, and RAB27A compared to A2780 CDDP-sensitive OvCa cells. CDDP promoted the secretion of chemo-sEVs in A2780cis cells, enriched in DNA damage response proteins. A2780cis cells exhibited poor lysosomal function with reduced levels of RAB7, essential in MVEs-Lysosomal trafficking. The silencing of RAB27A in A2780cis cells prevents the Chemo-EVs secretion, reduces its chemoresistance and restores lysosomal function and levels of RAB7, switching them into an A2780-like cellular phenotype. Enhancing lysosomal function with rapamycin reduced chemo-sEVs secretion. Our results suggest that adjusting the balance between secretory MVEs and lysosomal MVEs trafficking could be a promising strategy for overcoming CDDP chemoresistance in OvCa.
Collapse
Affiliation(s)
- Cristóbal Cerda‐Troncoso
- Organelle Phagy Lab, CEBICEMFacultad de Medicina y CienciaUniversidad San SebastiánSantiagoChile
- Cancer Cell Biology Lab, CEBICEM, Facultad de Medicina y CienciaUniversidad San SebastiánSantiagoChile
- Centro Ciencia & VidaFundación Ciencia & VidaSantiagoChile
| | - Felipe Grünenwald
- Cancer Cell Biology Lab, CEBICEM, Facultad de Medicina y CienciaUniversidad San SebastiánSantiagoChile
| | - Eloísa Arias‐Muñoz
- Organelle Phagy Lab, CEBICEMFacultad de Medicina y CienciaUniversidad San SebastiánSantiagoChile
| | - Viviana A. Cavieres
- Organelle Phagy Lab, CEBICEMFacultad de Medicina y CienciaUniversidad San SebastiánSantiagoChile
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y CienciaUniversidad San SebastiánSantiagoChile
| | - Albano Caceres‐Verschae
- Cancer Cell Biology Lab, CEBICEM, Facultad de Medicina y CienciaUniversidad San SebastiánSantiagoChile
| | - Sergio Hernández
- Organelle Phagy Lab, CEBICEMFacultad de Medicina y CienciaUniversidad San SebastiánSantiagoChile
| | - Belén Gaete‐Ramírez
- Cancer Cell Biology Lab, CEBICEM, Facultad de Medicina y CienciaUniversidad San SebastiánSantiagoChile
| | | | - Rodrigo A. Acuña
- Centro de Medicina Regenerativa, Facultad de MedicinaClínica Alemana Universidad del DesarrolloSantiagoChile
| | - Matias Ostrowski
- Facultad de Medicina, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS)Universidad de Buenos Aires (UBA)Buenos AiresArgentina
| | - Patricia V. Burgos
- Organelle Phagy Lab, CEBICEMFacultad de Medicina y CienciaUniversidad San SebastiánSantiagoChile
- Centro Ciencia & VidaFundación Ciencia & VidaSantiagoChile
| | - Manuel Varas‐Godoy
- Cancer Cell Biology Lab, CEBICEM, Facultad de Medicina y CienciaUniversidad San SebastiánSantiagoChile
- Centro Ciencia & VidaFundación Ciencia & VidaSantiagoChile
- Advanced Center for Chronic DiseasesSantiagoChile
| |
Collapse
|
7
|
Gao M, Liu T, Hu K, Chen S, Wang S, Gan D, Li Z, Lin X. Ribosomal Dysregulation in Metastatic Laryngeal Squamous Cell Carcinoma: Proteomic Insights and CX-5461's Therapeutic Promise. TOXICS 2024; 12:363. [PMID: 38787142 PMCID: PMC11126056 DOI: 10.3390/toxics12050363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
One of the main barriers to the successful treatment of laryngeal squamous cell carcinoma (LSCC) is postoperative progression, primarily due to tumor cell metastasis. To systematically investigate the molecular characteristics and potential mechanisms underlying the metastasis in laryngeal cancer, we carried out a TMT-based proteomic analysis of both cancerous and adjacent non-cancerous tissues from 10 LSCC patients with lymph node metastasis (LNM) and 10 without. A total of 5545 proteins were quantified across all samples. We identified 57 proteins that were downregulated in LSCC with LNM, which were enriched in cell adhesion pathways, and 69 upregulated proteins predominantly enriched in protein production pathways. Importantly, our data revealed a strong correlation between increased ribosomal activity and the presence of LNM, as 18 ribosomal subunit proteins were found to be upregulated, with RPS10 and RPL24 being the most significantly overexpressed. The potential of ribosomal proteins, including RPS10 and RPL24, as biomarkers for LSCC with LNM was confirmed in external validation samples (six with LNM and six without LNM) using Western blotting and immunohistochemistry. Furthermore, we have confirmed that the RNA polymerase I inhibitor CX-5461, which impedes ribosome biogenesis in LSCC, also decreases the expression of RPS10, RPL24, and RPS26. In vitro experiments have revealed that CX-5461 moderately reduces cell viability, while it significantly inhibits the invasion and migration of LSCC cells. It can enhance the expression of the epithelial marker CDH1 and suppress the expression of the mesenchymal markers CDH2, VIM, and FN at a dose that does not affect cell viability. Our study broadens the scope of the proteomic data on laryngeal cancer and suggests that ribosome targeting could be a supplementary therapeutic strategy for metastatic LSCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaohuang Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (M.G.); (T.L.); (K.H.); (S.C.); (S.W.); (D.G.); (Z.L.)
| |
Collapse
|
8
|
Suo L, Liang X, Zhang W, Gao M, Ma T, Hu D, Song Y, Gao Z. Potential prognostic biomarkers of hepatocellular carcinoma based on 4D label-free quantitative proteomics analysis pilot investigation. Int J Biol Markers 2024; 39:59-69. [PMID: 37956648 DOI: 10.1177/03936155231212925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
BACKGROUND Hepatocellular carcinoma carries a poor prognosis and poses a serious threat to global health. Currently, there are few potential prognostic biomarkers available for the prognosis of hepatocellular carcinoma. METHODS This pilot study used 4D label-free quantitative proteomics to compare the proteomes of hepatocellular carcinoma and adjacent non-tumor tissue. A total of 66,075 peptides, 6363 identified proteins, and 772 differentially expressed proteins were identified in specimens from three hepatocellular carcinoma patients. Through functional enrichment analysis of differentially expressed proteins by Gene Ontology, KEGG pathway, and protein domain, we identified proteins with similar functions. RESULTS Twelve differentially expressed proteins (RPL17, RPL27, RPL27A, RPS5, RPS16, RSL1D1, DDX18, RRP12, TARS2, YARS2, MARS2, and NARS1) were selected for identification and validation by parallel reaction monitoring. Subsequent Western blotting confirmed overexpression of RPL27, RPS16, and TARS2 in hepatocellular carcinoma compared to non-tumor tissue in 16 pairs of clinical samples. Analysis of The Cancer Genome Atlas datasets associated the increased expression of these proteins with poor prognosis. Tissue microarray revealed a negative association between high expression of RPL27 and TARS2 and the prognosis of hepatocellular carcinoma patients, although RPS16 was not significant. CONCLUSIONS These data suggest that RPL27 and TARS2 play an important role in hepatocellular carcinoma progression and may be potential prognostic biomarkers of overall survival in hepatocellular carcinoma patients.
Collapse
Affiliation(s)
- Lida Suo
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Xiangnan Liang
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Weibin Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Mingwei Gao
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Taiheng Ma
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Daosheng Hu
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yilin Song
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Zhenming Gao
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
9
|
Huang YM, Hsu TY, Liu CY, Hsieh YC, Lai KY, Yang YW, Lo KY. Exploring the multifaceted impact of lanthanides on physiological pathways in human breast cancer cells. Toxicology 2024; 502:153731. [PMID: 38253231 DOI: 10.1016/j.tox.2024.153731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
Lanthanum (La) and cerium (Ce), rare earth elements with physical properties similar to calcium (Ca), are generally considered non-toxic when used appropriately. However, their ions possess anti-tumor capabilities. This investigation explores the potential applications and mechanisms of LaCl3 or CeCl3 treatment in triple-negative breast cancer (TNBC) cell lines. TNBC, characterized by the absence of estrogen receptor (ERα), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2) expression, is prone to early metastasis and resistant to hormone therapy. Our results demonstrate that La/Ce treatment reduces cell growth, and when combined with cisplatin, it synergistically inhibits cell growth and the PI3K/AKT pathway. La and Ce induce oxidative stress by disrupting mitochondrial function, leading to protein oxidation. Additionally, they interfere with protein homeostasis and induce nucleolar stress. Furthermore, disturbance in F-actin web formation impairs cell migration. This study delves into the mechanism by which calcium-like elements La and Ce inhibit breast cancer cell growth, shedding light on their interference in mitochondrial function, protein homeostasis, and cytoskeleton assembly.
Collapse
Affiliation(s)
- Yi-Ming Huang
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan, ROC
| | - Tsu-Yu Hsu
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan, ROC
| | - Ching-Yu Liu
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan, ROC
| | - Yu-Chen Hsieh
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan, ROC
| | - Kuan-Yun Lai
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan, ROC
| | - Ya-Wen Yang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan, ROC.
| | - Kai-Yin Lo
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan, ROC.
| |
Collapse
|
10
|
Yu X, Xu C, Zou Y, Liu W, Xie Y, Wu C. A prognostic metabolism-related gene signature associated with the tumor immune microenvironment in neuroblastoma. Am J Cancer Res 2024; 14:253-273. [PMID: 38323276 PMCID: PMC10839309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
Neuroblastoma (NB) is the most prevalent malignant solid tumor in children. Tumor metabolism, including lipid, amino acid, and glucose metabolism, is intricately linked to the genesis and progression of tumors. This study aimed to establish a prognostic gene signature for NB patients, based on metabolism-related genes, and to investigate a treatment approach that could enhance the survival rate of high-risk NB patients. From the NB dataset GSE49710, we identified metabolism-related gene markers utilizing the "limma" R package and univariate Cox analysis combined with least absolute shrinkage and selection operator (LASSO) regression analysis. We explored the correlation between these gene markers and the overall survival of NB patients. Gene set enrichment analysis (GSEA) and single-sample GSEA algorithms were used to assess the differences in metabolism and immune status. Furthermore, we examined the association between metabolic subgroups and drug responsiveness. Concurrently, data downloaded from TARGET and MTAB were used for external verification. Using multicolor immunofluorescence and immunohistochemistry, we investigated the relationship between the lipid metabolism-related gene ELOVL6 with both the International Neuroblastoma Staging System classification of NB and survival rate. Finally, we explored the effect of high ELOVL6 expression on the immune microenvironment in NB using flow cytometry. We identified an eight-gene signature comprising metabolism-related genes in NB: ELOVL6, OSBPL9, RPL27A, HSD17B3, ACHE, AKR1C1, PIK3R1, and EPHX2. This panel effectively predicted disease-free survival, and was validated using an internal dataset from GSE49710 and two external datasets from the TARGET and MTAB databases. Moreover, our findings confirmed that ELOVL6 fosters an immunosuppressive microenvironment and contributes to the malignant progression in NB. The eight-gene signature is significant in predicting the prognosis of NB, effectively classifying patients into high- and low-risk groups. This classification may guide the development of innovative treatment strategies for these patients. Notably, the signature gene ELOVL6 markedly encourages an immunosuppressive microenvironment and malignant progression in NB.
Collapse
Affiliation(s)
- Xin Yu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Tianjin’s Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Immunology and BiotherapyTianjin, China
| | - Chao Xu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Tianjin’s Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Immunology and BiotherapyTianjin, China
- National Clinical Research Center for Cancer, Tianjin Cancer Hospital Airport HospitalTianjin, China
| | - Yiping Zou
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Tianjin’s Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Immunology and BiotherapyTianjin, China
| | - Weishuai Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Tianjin’s Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Immunology and BiotherapyTianjin, China
| | - Yongjie Xie
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Tianjin’s Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Immunology and BiotherapyTianjin, China
| | - Chao Wu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Tianjin’s Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Immunology and BiotherapyTianjin, China
| |
Collapse
|
11
|
Jeanmard N, Bissanum R, Sriplung H, Charoenlappanit S, Roytrakul S, Navakanitworakul R. Proteomic profiling of urinary extracellular vesicles differentiates breast cancer patients from healthy women. PLoS One 2023; 18:e0291574. [PMID: 37922300 PMCID: PMC10624262 DOI: 10.1371/journal.pone.0291574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/31/2023] [Indexed: 11/05/2023] Open
Abstract
Urinary extracellular vesicles (uEVs) reflect the biological conditions of the producing cells. The protein profiling of uEVs allow us to better understand cancer progression in several cancers such as bladder cancer, prostate cancer and kidney cancer but has not been reported in breast cancer. We have, herein, aimed at quantifying the concentration and at generating the proteomic profile of uEVs in patients with breast cancer (BC) as compared to that of healthy controls (CT). Urine samples were collected from 29 CT and 47 patients with BC. uEVs were isolated by using differential ultracentrifugation, and were then characterized by Western blotting and transmission electron microscopy. Moreover, a nanoparticle tracking analysis was used in order to measure the concentration and the size distribution of urine particles and uEVs. The proteomic profiling of the uEVs was facilitated through LC-MS/MS. The uEV concentration was not significantly different between the assessed groups. The undertaken proteomic analysis revealed 15,473 and 11,278 proteins in the BC patients' group and the CT group, respectively. Furthermore, a heat map analysis revealed a differential protein expression, while a principal component analysis highlighted two clusters. The volcano plot indicated 259 differentially expressed proteins (DEPs; 155 up- and 104 down-regulated proteins) in patients with BC compared with CT. The up-regulated proteins from BC-derived uEVs were enriched in pathways related to cancer progression (i.e., cell proliferation, cell survival, cell cycle, cell migration, carbohydrate metabolism, and angiogenesis). Moreover, we verified the expression of the upregulated DEPs using UALCAN for web-based validation. Remarkably, the results indicated that 6 of 155 up-regulated proteins (POSTN, ATAD2, BCAS4, GSK3β, HK1, and Ki-67) were overexpressed in BC compared with normal samples. Since these six proteins often act as markers of cell proliferation and progression, they may be potential biomarkers for BC screening and diagnosis. However, this requires validation in larger cohorts.
Collapse
Affiliation(s)
- Nilobon Jeanmard
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Rassanee Bissanum
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Hutcha Sriplung
- Department of Epidemiology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Sawanya Charoenlappanit
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Raphatphorn Navakanitworakul
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
12
|
Bowley TY, Merkley SD, Lagutina IV, Ortiz MC, Lee M, Tawfik B, Marchetti D. Targeting Translation and the Cell Cycle Inversely Affects CTC Metabolism but Not Metastasis. Cancers (Basel) 2023; 15:5263. [PMID: 37958436 PMCID: PMC10650766 DOI: 10.3390/cancers15215263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Melanoma brain metastasis (MBM) is significantly associated with poor prognosis and is diagnosed in 80% of patients at autopsy. Circulating tumor cells (CTCs) are "seeds" of metastasis and the smallest functional units of cancer. Our multilevel approach has previously identified a CTC RPL/RPS gene signature directly linked to MBM onset. We hypothesized that targeting ribogenesis prevents MBM/metastasis in CTC-derived xenografts. We treated parallel cohorts of MBM mice with FDA-approved protein translation inhibitor omacetaxine with or without CDK4/CDK6 inhibitor palbociclib, and monitored metastatic development and cell proliferation. Necropsies and IVIS imaging showed decreased MBM/extracranial metastasis in drug-treated mice, and RNA-Seq on mouse-blood-derived CTCs revealed downregulation of four RPL/RPS genes. However, mitochondrial stress tests and RT-qPCR showed that omacetaxine and palbociclib inversely affected glycolytic metabolism, demonstrating that dual targeting of cell translation/proliferation is critical to suppress plasticity in metastasis-competent CTCs. Equally relevant, we provide the first-ever functional metabolic characterization of patient-derived circulating neoplastic cells/CTCs.
Collapse
Affiliation(s)
- Tetiana Y. Bowley
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (T.Y.B.); (S.D.M.); (M.C.O.); (M.L.)
| | - Seth D. Merkley
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (T.Y.B.); (S.D.M.); (M.C.O.); (M.L.)
| | - Irina V. Lagutina
- Animal Models Shared Resource, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87120, USA;
| | - Mireya C. Ortiz
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (T.Y.B.); (S.D.M.); (M.C.O.); (M.L.)
| | - Margaret Lee
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (T.Y.B.); (S.D.M.); (M.C.O.); (M.L.)
| | - Bernard Tawfik
- Division of Hematology and Oncology, Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87120, USA;
| | - Dario Marchetti
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (T.Y.B.); (S.D.M.); (M.C.O.); (M.L.)
| |
Collapse
|
13
|
Zhang Y, Ye Y, Xu A, Luo Y, Sun Y, Zhang W, Ji L. Prognosis stratification of patients with breast invasive carcinoma based on cysteine metabolism-disulfidptosis affinity. J Cancer Res Clin Oncol 2023; 149:11979-11994. [PMID: 37422541 DOI: 10.1007/s00432-023-05028-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023]
Abstract
PURPOSE The rise of female breast cancer has created a significant global public health issue that requires effective solutions. Disulfidptosis, a recently identified form of cell death characterized by an excessive accumulation of disulfides, has unique initiatory and regulatory mechanisms. The formation of disulfide bonds is a metabolic event typically associated with cysteines. This study aims to explore the potential of the affinity between cysteine metabolism and disulfidptosis in risk stratification for breast invasive carcinoma (BRCA). METHODS We used correlation analysis to decipher co-relation genes between cysteine metabolism and disulfidptosis (CMDCRGs). Both LASSO regression analysis and multivariate Cox regression analysis were employed to construct the prognostic signature. Additionally, we conducted investigations concerning subtype identification, functional enhancement, mutation landscape, immune infiltration, drug prioritization, and single-cell analysis. RESULTS We developed and validated a six-gene prognostic signature as an independent prognostic predictor for BRCA. The prognostic nomogram, based on risk score, demonstrated a favorable capability in predicting survival outcomes. We identified distinct gene mutations, functional enhancements, and immune infiltration patterns between the two risk groups. Four clusters of drugs were predicted as potentially effective for patients in the low-risk group. We identified seven cell clusters within the tumor microenvironment of breast cancer, and RPL27A was found to be widely expressed in this environment. CONCLUSION Multidimensional analyses confirmed the clinical utility of the cysteine metabolism-disulfidptosis affinity-based signature in risk stratification and guiding personalized treatment for patients with BRCA.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Breast Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, 510000, China
| | - Yinghui Ye
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Anping Xu
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Yulou Luo
- Department of Breast Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830000, China
| | - Yutian Sun
- Department of Medical Oncology, School of Medicine, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Wei Zhang
- Department of Breast Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, 510000, China.
| | - Ling Ji
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, 518000, China.
| |
Collapse
|
14
|
Jayathirtha M, Jayaweera T, Whitham D, Petre BA, Neagu AN, Darie CC. Two-Dimensional Polyacrylamide Gel Electrophoresis Coupled with Nanoliquid Chromatography-Tandem Mass Spectrometry-Based Identification of Differentially Expressed Proteins and Tumorigenic Pathways in the MCF7 Breast Cancer Cell Line Transfected for Jumping Translocation Breakpoint Protein Overexpression. Int J Mol Sci 2023; 24:14714. [PMID: 37834160 PMCID: PMC10572688 DOI: 10.3390/ijms241914714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The identification of new genes/proteins involved in breast cancer (BC) occurrence is widely used to discover novel biomarkers and understand the molecular mechanisms of BC initiation and progression. The jumping translocation breakpoint (JTB) gene may act both as a tumor suppressor or oncogene in various types of tumors, including BC. Thus, the JTB protein could have the potential to be used as a biomarker in BC, but its neoplastic mechanisms still remain unknown or controversial. We previously analyzed the interacting partners of JTBhigh protein extracted from transfected MCF7 BC cell line using SDS-PAGE complemented with in-solution digestion, respectively. The previous results suggested the JTB contributed to the development of a more aggressive phenotype and behavior for the MCF7 BC cell line through synergistic upregulation of epithelial-mesenchymal transition (EMT), mitotic spindle, and fatty acid metabolism-related pathways. In this work, we aim to complement the previously reported JTB proteomics-based experiments by investigating differentially expressed proteins (DEPs) and tumorigenic pathways associated with JTB overexpression using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). Statistically different gel spots were picked for protein digestion, followed by nanoliquid chromatography-tandem mass spectrometry (nLC-MS/MS) analysis. We identified six DEPs related to the JTBhigh condition vs. control that emphasize a pro-tumorigenic (PT) role. Twenty-one proteins, which are known to be usually overexpressed in cancer cells, emphasize an anti-tumorigenic (AT) role when low expression occurs. According to our previous results, proteins that have a PT role are mainly involved in the activation of the EMT process. Interestingly, JTB overexpression has been correlated here with a plethora of significant upregulated and downregulated proteins that sustain JTB tumor suppressive functions. Our present and previous results sustain the necessity of the complementary use of different proteomics-based methods (SDS-PAGE, 2D-PAGE, and in-solution digestion) followed by tandem mass spectrometry to avoid their limitations, with each method leading to the delineation of specific clusters of DEPs that may be merged for a better understanding of molecular pathways and neoplastic mechanisms related to the JTB's role in BC initiation and progression.
Collapse
Affiliation(s)
- Madhuri Jayathirtha
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (B.A.P.)
| | - Taniya Jayaweera
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (B.A.P.)
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (B.A.P.)
| | - Brîndușa Alina Petre
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (B.A.P.)
- Laboratory of Biochemistry, Department of Chemistry, “Alexandru Ioan Cuza” University of Iasi, Carol I Bvd., No. 11, 700506 Iasi, Romania
- Center for Fundamental Research and Experimental Development in Translation Medicine—TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Bvd., No. 20A, 700505 Iasi, Romania;
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (B.A.P.)
| |
Collapse
|
15
|
Xing H, Jiang X, Yang C, Tan B, Hu J, Zhang M. High expression of RPL27A predicts poor prognosis in patients with hepatocellular carcinoma. World J Surg Oncol 2023; 21:209. [PMID: 37474947 PMCID: PMC10360225 DOI: 10.1186/s12957-023-03102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common cancers in the digestive system with rapid progression and poor prognosis. Recent studies have shown that RPL27A could be used as a biomarker for a variety of cancers, but its role in HCC is not clear. METHOD We analyzed the expression of RPL27A in the pan-cancer analysis and analyzed the relationship between the expression of RPL27A and the clinical features and prognosis of patients with HCC. We evaluated the expression difference of RPL27A in HCC tissues and paired normal adjacent tissues using immunohistochemistry. Furthermore, we analyzed the co-expression genes of RPL27A and used them to explore the possible mechanism of RPL27A and screen hub genes effecting HCC. In addition, we studied the role of RPL27A in immune infiltration and mutation. RESULTS We found that the expression level of RPL27A increased in a variety of cancers, including HCC. In HCC patients, the high expression of RPL27A was related to progression and poor prognosis as an independent predictor. We also constructed a protein interaction network through co-expression gene analysis of RPL27A and screened 9 hub genes. Enrichment analysis showed that co-expression genes were associated with ribosome pathway, viral replication, nuclear-transcribed mRNA catabolic process, and nonsense-mediated decay. We found that the expression level of RPL27A was closely related to TP53 mutation and immune infiltration in HCC. CONCLUSION RPL27A might become a biomarker in the diagnosis, treatment, and follow-up of patients with HCC.
Collapse
Affiliation(s)
- Huiwu Xing
- Department of Hepatobiliary Surgery, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400010, China
| | - Xiangqi Jiang
- Department of Hepatobiliary Surgery, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400010, China
| | - Chenyu Yang
- Department of Hepatobiliary Surgery, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400010, China
| | - Bingqian Tan
- Department of Hepatobiliary Surgery, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400010, China
| | - Jiqiang Hu
- Department of Hepatobiliary Surgery, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400010, China
| | - Mingman Zhang
- Department of Hepatobiliary Surgery, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400010, China.
| |
Collapse
|
16
|
Brune Z, Li D, Song S, Li DI, Castro I, Rasquinha R, Rice MR, Guo Q, Kampta K, Moss M, Lallo M, Pimenta E, Somerville C, Lapan M, Nelson V, Dos Santos CO, Blanc L, Pruitt K, Barnes BJ. Loss of IRF5 increases ribosome biogenesis leading to alterations in mammary gland architecture and metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538998. [PMID: 37292919 PMCID: PMC10246023 DOI: 10.1101/2023.05.01.538998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Despite the progress made in identifying cellular factors and mechanisms that predict progression and metastasis, breast cancer remains the second leading cause of death for women in the US. Using The Cancer Genome Atlas and mouse models of spontaneous and invasive mammary tumorigenesis, we identified that loss of function of interferon regulatory factor 5 (IRF5) is a predictor of metastasis and survival. Histologic analysis of Irf5 -/- mammary glands revealed expansion of luminal and myoepithelial cells, loss of organized glandular structure, and altered terminal end budding and migration. RNA-seq and ChIP-seq analyses of primary mammary epithelial cells from Irf5 +/+ and Irf5 -/- littermate mice revealed IRF5-mediated transcriptional regulation of proteins involved in ribosomal biogenesis. Using an invasive model of breast cancer lacking Irf5 , we demonstrate that IRF5 re-expression inhibits tumor growth and metastasis via increased trafficking of tumor infiltrating lymphocytes and altered tumor cell protein synthesis. These findings uncover a new function for IRF5 in the regulation of mammary tumorigenesis and metastasis. Highlights Loss of IRF5 is a predictor of metastasis and survival in breast cancer.IRF5 contributes to the regulation of ribosome biogenesis in mammary epithelial cells.Loss of IRF5 function in mammary epithelial cells leads to increased protein translation.
Collapse
|
17
|
Zolotenkova EA, Gopanenko AV, Tupikin AE, Kabilov MR, Malygin AA. Mutation at the Site of Hydroxylation in the Ribosomal Protein uL15 (RPL27a) Causes Specific Changes in the Repertoire of mRNAs Translated in Mammalian Cells. Int J Mol Sci 2023; 24:ijms24076173. [PMID: 37047141 PMCID: PMC10094517 DOI: 10.3390/ijms24076173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
Ribosomal protein uL15 (RPL27a) carries a specific modification, hydroxylation, at the His39 residue, which neighbors the CCA terminus of the E-site-bound tRNA at the mammalian ribosome. Under hypoxia, the level of hydroxylation of this protein decreases. We transiently transfected HEK293T cells with constructs expressing wild-type uL15 or mutated uL15 (His39Ala) incapable of hydroxylation, and demonstrated that ribosomes containing both proteins are competent in translation. By applying RNA-seq to the total cellular and polysome-associated mRNAs, we identified differentially expressed genes (DEGs) in cells containing exogenous uL15 or its mutant form. Analyzing mRNA features of up- and down-regulated DEGs, we found an increase in the level of more abundant mRNAs and shorter CDSs in cells with uL15 mutant for both translated and total cellular mRNAs. The level of longer and rarer mRNAs, on the contrary, decreased. Our data show how ribosome heterogeneity can change the composition of the translatome and transcriptome, depending on the properties of the translated mRNAs.
Collapse
Affiliation(s)
- Elizaveta A Zolotenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Alexander V Gopanenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Alexey E Tupikin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Marsel R Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Alexey A Malygin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
18
|
Bailly C, Vergoten G. Interaction of Camptothecin Anticancer Drugs with Ribosomal Proteins L15 and L11: A Molecular Docking Study. Molecules 2023; 28:molecules28041828. [PMID: 36838813 PMCID: PMC9967338 DOI: 10.3390/molecules28041828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 01/31/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The antitumor drug topotecan (TPT) is a potent inhibitor of topoisomerase I, triggering DNA breaks lethal for proliferating cancer cells. The mechanism is common to camptothecins SN38 (the active metabolite of irinotecan) and belotecan (BLT). Recently, TPT was shown to bind the ribosomal protein L15, inducing an antitumor immune activation independent of topoisomerase I. We have modeled the interaction of four camptothecins with RPL15 derived from the 80S human ribosome. Two potential drug-binding sites were identified at Ile135 and Phe129. SN38 can form robust RPL15 complexes at both sites, whereas BLT essentially gave stable complexes with site Ile135. The empirical energy of interaction (ΔE) for SN38 binding to RPL15 is similar to that determined for TPT binding to the topoisomerase I-DNA complex. Molecular models with the ribosomal protein L11 sensitive to topoisomerase inhibitors show that SN38 can form a robust complex at a single site (Cys25), much more stable than those with TPT and BLT. The main camptothecin structural elements implicated in the ribosomal protein interaction are the lactone moiety, the aromatic system and the 10-hydroxyl group. The study provides guidance to the design of modulators of ribosomal proteins L11 and L15, both considered anticancer targets.
Collapse
Affiliation(s)
- Christian Bailly
- Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, University of Lille, 3 rue du Professeur Laguesse, BP-83, F-59006 Lille, France
- CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, University of Lille, F-59000 Lille, France
- OncoWitan, Consulting Scientific Office, Wasquehal, F-59290 Lille, France
- Correspondence:
| | - Gérard Vergoten
- Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, University of Lille, 3 rue du Professeur Laguesse, BP-83, F-59006 Lille, France
| |
Collapse
|
19
|
Elhamamsy AR, Metge BJ, Alsheikh HA, Shevde LA, Samant RS. Ribosome Biogenesis: A Central Player in Cancer Metastasis and Therapeutic Resistance. Cancer Res 2022; 82:2344-2353. [PMID: 35303060 PMCID: PMC9256764 DOI: 10.1158/0008-5472.can-21-4087] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/01/2022] [Accepted: 03/16/2022] [Indexed: 01/07/2023]
Abstract
Ribosomes are a complex ensemble of rRNA and ribosomal proteins that function as mRNA translation machines. Ribosome biogenesis is a multistep process that begins in the nucleolus and concludes in the cytoplasm. The process is tightly controlled by multiple checkpoint and surveillance pathways. Perturbations in these checkpoints and pathways can lead to hyperactivation of ribosome biogenesis. Emerging evidence suggests that cancer cells harbor a specialized class of ribosomes (onco-ribosomes) that facilitates the oncogenic translation program, modulates cellular functions, and promotes metabolic rewiring. Mutations in ribosomal proteins, rRNA processing, and ribosome assembly factors result in ribosomopathies that are associated with an increased risk of developing malignancies. Recent studies have linked mutations in ribosomal proteins and aberrant ribosomes with poor prognosis, highlighting ribosome-targeted therapy as a promising approach for treating patients with cancer. Here, we summarize various aspects of dysregulation of ribosome biogenesis and the impact of resultant onco-ribosomes on malignant tumor behavior, therapeutic resistance, and clinical outcome. Ribosome biogenesis is a promising therapeutic target, and understanding the important determinants of this process will allow for improved and perhaps selective therapeutic strategies to target ribosome biosynthesis.
Collapse
Affiliation(s)
- Amr R. Elhamamsy
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Brandon J. Metge
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Heba A. Alsheikh
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lalita A. Shevde
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama.,O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rajeev S. Samant
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama.,O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama.,Birmingham VA Medical Center, Birmingham, Alabama.,Corresponding Author: Rajeev S. Samant, The University of Alabama at Birmingham, WTI 320E, 1824 6th Avenue South, Birmingham, AL 35233. Phone: 205-975-6262; E-mail:
| |
Collapse
|
20
|
Azevedo ALKD, Gomig THB, Giner IS, Batista M, Marchini FK, Lima RS, de Andrade Urban C, Sebastião APM, Cavalli IJ, Ribeiro EMDSF. Comprehensive analysis of the large and small ribosomal proteins in breast cancer: Insights on proteomic and transcriptomic expression patterns, regulation, mutational landscape, and prognostic significance. Comput Biol Chem 2022; 100:107746. [DOI: 10.1016/j.compbiolchem.2022.107746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022]
|
21
|
Liu Z, Altwegg KA, Liu J, Weintraub ST, Chen Y, Lai Z, Sareddy GR, Viswanadhapalli S, Vadlamudi RK. Global Genomic and Proteomic Analysis Identified Critical Pathways Modulated by Proto-Oncogene PELP1 in TNBC. Cancers (Basel) 2022; 14:cancers14040930. [PMID: 35205680 PMCID: PMC8924758 DOI: 10.3390/cancers14040930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The proto-oncogene PELP1 is commonly overexpressed in many cancers including triple negative breast cancer (TNBC). In this study, we utilized global proteomic and RNA-seq approaches to elucidate the molecular mechanisms by which PELP1 contributes to the progression of TNBC. Global quantitative proteome analysis revealed that the oncogenic activities of PELP1 involve regulation of the expression of ribosomal proteins, as well as ribosomal regulatory complexes. RNA-seq studies discovered that PELP1 modulates the functions of c-Myc in TNBC, which is a known regulator of ribosomal proteins. Furthermore, TCGA-TNBC data confirmed PELP1 has high expression in TNBC, and this pattern exhibited a positive correlation with c-Myc and regulators of ribosomal proteins. Collectively, our studies suggest that PELP1 contributes to TNBC progression by modulation of ribosome biogenesis pathways. Abstract The PELP1 oncogene is commonly overexpressed in many cancers, including triple negative breast cancer (TNBC). However, the mechanisms by which PELP1 contributes to TNBC progression are not well understood. To elucidate these mechanisms, we generated CRISPR-Cas9 mediated PELP1 knockout TNBC cell lines, and alterations in the proteome were examined using global data-independent acquisition mass spectrometry (DIA-MS). Further mechanistic studies utilized shRNA knockdown, Western blotting, and RNA-seq approaches. TCGA data sets were utilized for determining the status of PELP1 in TNBC patient tumors and for examining its correlation with ribosomal proteins. Global DIA-MS studies revealed that 127 proteins are upregulated while 220 proteins are downregulated upon PELP1-KO. Bioinformatic analyses suggested that the oncogenic activities of PELP1 involve regulation of expression of ribosomal proteins and ribosomal complexes. RNA-seq studies further suggested PELP1 modulates the functions of transcription factor c-Myc in TNBC. TCGA data confirmed PELP1 has high expression in TNBC patient tumors, and this high expression pattern correlates with c-Myc, a regulator of ribosomal proteins. Collectively, our global approach studies suggest that PELP1 contributes to TNBC progression by modulation of cell cycle, apoptosis, and ribosome biogenesis pathways.
Collapse
Affiliation(s)
- Zexuan Liu
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX 78229, USA; (Z.L.); (K.A.A.); (J.L.); (G.R.S.)
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Kristin A. Altwegg
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX 78229, USA; (Z.L.); (K.A.A.); (J.L.); (G.R.S.)
- Mays Cancer Canter, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Junhao Liu
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX 78229, USA; (Z.L.); (K.A.A.); (J.L.); (G.R.S.)
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Susan T. Weintraub
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX 78229, USA;
| | - Yidong Chen
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (Y.C.); (Z.L.)
- Department of Population Health Sciences, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Zhao Lai
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (Y.C.); (Z.L.)
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Gangadhara R. Sareddy
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX 78229, USA; (Z.L.); (K.A.A.); (J.L.); (G.R.S.)
- Mays Cancer Canter, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX 78229, USA; (Z.L.); (K.A.A.); (J.L.); (G.R.S.)
- Mays Cancer Canter, UT Health San Antonio, San Antonio, TX 78229, USA
- Correspondence: (S.V.); (R.K.V.); Tel.: +1-(210)-567-6244 (S.V.); +1-(210)-567-4921 (R.K.V.)
| | - Ratna K. Vadlamudi
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX 78229, USA; (Z.L.); (K.A.A.); (J.L.); (G.R.S.)
- Mays Cancer Canter, UT Health San Antonio, San Antonio, TX 78229, USA
- Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX 78229, USA
- Correspondence: (S.V.); (R.K.V.); Tel.: +1-(210)-567-6244 (S.V.); +1-(210)-567-4921 (R.K.V.)
| |
Collapse
|
22
|
Liu J, Xiao S, Chen J. Development of an Inflammation-Related lncRNA-miRNA-mRNA Network Based on Competing Endogenous RNA in Breast Cancer at Single-Cell Resolution. Front Cell Dev Biol 2022; 10:839876. [PMID: 35145966 PMCID: PMC8821924 DOI: 10.3389/fcell.2022.839876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
The role and mechanism of inflammation in breast cancer is unclear. This study aims to probe the relationship between inflammation and long non-coding RNAs (lncRNAs) and to stablish an inflammation-related competing endogenous RNA (ceRNA) network in breast cancer. Inflammation-related lncRNAs and target genes were screened based on the data from four single-cell RNA sequencing (scRNA-seq) studies and miRNAs were bioinformatically predicted according to ceRNA hypothesis. A series of in silico analyses were performed to construct an inflammation-related ceRNA network in breast cancer. Consequently, a total of seven inflammation-related lncRNAs were selected, after which LRRC75A-AS1 was identified as the most potential lncRNA in view of its expression and prognostic predictive value in breast cancer. Finally, an inflammation-related ceRNA network in breast cancer at the single cell level was established based on lncRNA LRRC75A-AS1, miR-3127-5p, miR-2114-3p, RPL36 and RPL27A mRNAs. Collectively, the lncRNA LRRC75A-AS1 and the LRRC75A-AS1-based on ceRNA network may exert crucial roles in modulating inflammation response during the initiation and progression of breast cancer.
Collapse
Affiliation(s)
- Jingxing Liu
- Department of Intensive Care Unit, Changxing People's Hospital of Zhejiang, Huzhou, China
| | - Shuyuan Xiao
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Chen
- Department of Oncology, The First Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|