1
|
Bhartiya D, Dutta S, Tripathi A, Tripathi A. Misconceptions Thrive in the Field of Cancer as Technological Advances Continue to Confuse Stem Cell Biology. Stem Cell Rev Rep 2025:10.1007/s12015-025-10880-1. [PMID: 40238074 DOI: 10.1007/s12015-025-10880-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2025] [Indexed: 04/18/2025]
Abstract
Despite the huge thrust on targeted therapies, cancer survival rates have not improved and both cancer incidence and fatalities continue to rise globally. There is no consensus on how cancer initiates and two contrasting views were published in 2024 regarding cancer initiation. Based on the premise that no stem cells exist in tissues like liver, lungs, and pancreas but they are still affected by cancer; it was suggested that somatic cells dedifferentiate and undergo 'paligenosis' to initiate cancer. The second view discussed that tissue-resident, very small embryonic-like stem cells (VSELs) are vulnerable to extrinsic/intrinsic insults and their dysfunctions initiate cancer. The present article examines the underlying technical reasons that have led to these conflicting views. Scientists have struggled to detect quiescent cancer stem cells (CSCs) that survive chemotherapy, and radiotherapy and escape immunotherapy, cause recurrence and eventually therapeutic resistance leading to death. Lineage tracing studies fail to detect quiescent, acyclic stem cells and instead, the role of actively dividing LGR5+ cells was highlighted for tumor initiation, growth, and metastasis. Similarly, technologies like flow cytometry, and single-cell RNAseq, widely used to comprehend cancer biology, provide insights into cell populations present in abundance. Our article reviews why VSELs/CSCs in the pancreas have remained elusive despite employing advanced technologies, and the critique can be generalized to multiple other organs. This understanding is crucial as it will help to develop better therapeutic strategies for cancer, offer early detection when cancer is a weak disease, and pave the path for prevention over treatment.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel (West), Mumbai, 400013, India.
| | - Shruti Dutta
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel (West), Mumbai, 400013, India
| | - Anish Tripathi
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel (West), Mumbai, 400013, India
| | - Ashish Tripathi
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel (West), Mumbai, 400013, India
- TZAR Labs, 23Ikigai Pte Ltd., 30 Cecil Street, #21-08 Prudential Tower, Singapore, 049712, Singapore
| |
Collapse
|
2
|
Lica JJ, Jakóbkiewicz-Banecka J, Hellmann A. In Vitro models of leukemia development: the role of very small leukemic stem-like cells in the cellular transformation cascade. Front Cell Dev Biol 2025; 12:1463807. [PMID: 39830209 PMCID: PMC11740207 DOI: 10.3389/fcell.2024.1463807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/28/2024] [Indexed: 01/22/2025] Open
Abstract
Recent experimental findings indicate that cancer stem cells originate from transformed very small embryonic-like stem cells. This finding represents an essential advancement in uncovering the processes that drive the onset and progression of cancer. In continuously growing cell lines, for the first time, our team's follow-up research on leukemia, lung cancer, and healthy embryonic kidney cells revealed stages that resembles very small precursor stem cells. This review explores the origin of leukemic stem-like cells from very small leukemic stem-like cells establish from transformed very small embryonic-like stem cells. We explore theoretical model of acute myeloid leukemia initiation and progresses through various stages, as well basing the HL60 cell line, present its hierarchical stage development in vitro, highlighting the role of these very small precursor primitive stages. We also discuss the potential implications of further research into these unique cellular stages for advancing leukemia and cancer treatment and prevention.
Collapse
Affiliation(s)
- Jan Jakub Lica
- Department Medical Biology and Genetics, Faculty of Biology, University of Gdansk, Gdansk, Poland
- Department Health Science; Powiśle University, Gdańsk, Poland
| | | | - Andrzej Hellmann
- Department of Hematology and Transplantology, Faculty of Medicine, Medical University of Gdansk, Gdańsk, Poland
| |
Collapse
|
3
|
Krętowska-Grunwald A, Sawicka-Żukowska M, Starosz A, Krawczuk-Rybak M, Moniuszko M, Grubczak K. Selected stem cell populations in pediatric acute lymphoblastic leukemia. Front Immunol 2024; 15:1446687. [PMID: 39386216 PMCID: PMC11461207 DOI: 10.3389/fimmu.2024.1446687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Acute lymphoblastic leukemia is characterized by a disturbed maturation of hematopoietic stem cells (HSCs) resulting in development of a malignant clone. Despite relatively positive outcome, there are still instances of disease relapse occurring due to ineffective disease eradication or primary leukemic clone alterations. Unclear significance of stem cells in the course of ALL led us to investigate and establish crucial changes in two stem cell populations - very small embryonic-like stem cells (VSELs) and HSCs during the induction phase of treatment. Methods In a retrospective study selected stem cells in peripheral blood and bone marrow of 60 pediatric ALL subjects and 48 healthy controls were subjected to flow cytometric analysis at 4 different time points. Results Both VSELs and HSCs were elevated at the moment of ALL diagnosis compared to healthy controls, but profoundly decline until day 15. Further observations revealed an increase in HSCs with a concomitant depletion of VSELs until week 12. ALL patients with high HSCs showed positive correlation with bone marrow blasts at diagnosis. Patients with lower VSELs or HSCs at diagnosis had slightly improved response to applied therapy. We observed higher initial bone marrow lymphoblast values in patients with lower VSELs or higher HSCs in the high-risk group. The significance of VSELs in predicting treatment outcome can be illustrated by lower day 15 MRD level of patients with lower VSELs at diagnosis. Discussion We found HSCs and VSELs to be valid participants in pediatric ALL with possible contribution in the neoplastic process and prediction of initial treatment outcome.
Collapse
Affiliation(s)
- Anna Krętowska-Grunwald
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
- Department of Pediatric Oncology and Hematology, Medical University of Bialystok, Bialystok, Poland
| | | | - Aleksandra Starosz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| | - Maryna Krawczuk-Rybak
- Department of Pediatric Oncology and Hematology, Medical University of Bialystok, Bialystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
- Clinical Department of Allergic and Internal Diseases, Medical University of Bialystok, Bialystok, Poland
| | - Kamil Grubczak
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
4
|
Mahmoud H, Badawy M, Mohammed SAN, El Shahawy M. Locally injected bone marrow-derived mesenchymal stem cells reverts the histopathological changes in the tongue of carbimazole-induced hypothyroidism of male rats. Arch Oral Biol 2024; 165:106010. [PMID: 38795432 DOI: 10.1016/j.archoralbio.2024.106010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
OBJECTIVE To decipher the role of locally injected bone marrow mesenchymal stem cells (BM-MSCs) in the tongue of hypothyroid rats. DESIGN A total 24 male Wister rats were utilized and allocated into 3 groups (n = 8). As for the control group, rats received distilled water via oral gavage. In the hypothyroid group, rats administered carbimazole 5 mg/ 250 g/ day for 6 successive weeks, for hypothyroidism induction. The BM-MSC treated hypothyroid group (BM-MSC group); hypothyroid rats received local injection of 0.5 million BM-MSCs in tongue. Six weeks after BM-MSC injection, tongue samples were processed for Hematoxylin and eosin (H and E) staining, Ki67-immunohistochemistry and histomorphometric analysis. RESULTS The hypothyroid group revealed degenerative alterations in the lingual papillae, and apparent thinning of the inferior lingual epithelium compared to their controls. Tongues of the BM-MSC group depicted restoration of the normal tongue histology. The Ki67 immunoreaction was apparently decreased in the lingual epithelium of hypothyroid group compared to their controls, however the BM-MSC group regained Ki67 immunostaining. CONCLUSION Our data suggest that administration of BM-MSCs rescued the degenerative changes in the lingual mucosa and one of the possible underlying mechanisms could be the restoration of cellular proliferation in the lingual epithelium.
Collapse
Affiliation(s)
- Hebatallah Mahmoud
- Department of Oral Biology, Faculty of Dentistry, Assuit University, Assuit 71515, Egypt
| | - Mohamed Badawy
- Department of Oral Biology, Faculty of Dentistry, Assuit University, Assuit 71515, Egypt
| | | | - Maha El Shahawy
- Department of Oral Biology, Faculty of Dentistry, Misr Aswan Road, Minia University, Minia 61511, Egypt.
| |
Collapse
|
5
|
Montenegro F, Giannuzzi F, Picerno A, Cicirelli A, Stea ED, Di Leo V, Sallustio F. How Stem and Progenitor Cells Can Affect Renal Diseases. Cells 2024; 13:1460. [PMID: 39273032 PMCID: PMC11393889 DOI: 10.3390/cells13171460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Stem and progenitor cells have been observed to contribute to regenerative processes in acute renal failure and chronic kidney disease. Recent research has delved into the intricate mechanisms by which stem and progenitor cells exert their influence on kidney diseases. Understanding how these cells integrate with the existing renal architecture and their response to injury could pave the way for innovative treatment strategies aimed at promoting kidney repair and regeneration. Overall, the role of stem and progenitor cells in kidney diseases is multifaceted, with their ability to contribute to tissue regeneration, immune modulation, and the maintenance of renal homeostasis. Here, we review the studies that we have available today about the involvement of stem and progenitor cells both in regenerative therapies and in the causes of renal diseases, as well as in natural healing mechanisms, taking into account the main kidney disorders, such as IgA nephropathy, lupus nephritis, diabetic nephropathy, C3 glomerulopathy, focal segmental glomerulosclerosis, idiopathic membranous nephropathy, anti-glomerular basement membrane glomerulonephritis, and ANCA-associated crescentic glomerulonephritis. Moreover, based on the comprehensive data available in the framework of the specific kidney diseases on stem cells and renal progenitors, we hypothesize a possible role of adult renal progenitors in exacerbating or recovering the illness.
Collapse
Affiliation(s)
- Francesca Montenegro
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (F.M.); (F.G.); (A.P.); (A.C.); (V.D.L.)
| | - Francesca Giannuzzi
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (F.M.); (F.G.); (A.P.); (A.C.); (V.D.L.)
| | - Angela Picerno
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (F.M.); (F.G.); (A.P.); (A.C.); (V.D.L.)
| | - Antonella Cicirelli
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (F.M.); (F.G.); (A.P.); (A.C.); (V.D.L.)
| | - Emma Diletta Stea
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Vincenzo Di Leo
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (F.M.); (F.G.); (A.P.); (A.C.); (V.D.L.)
| | - Fabio Sallustio
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy;
| |
Collapse
|
6
|
Bhartiya D, Raouf S, Pansare K, Tripathi A, Tripathi A. Initiation of Cancer: The Journey From Mutations in Somatic Cells to Epigenetic Changes in Tissue-resident VSELs. Stem Cell Rev Rep 2024; 20:857-880. [PMID: 38457060 DOI: 10.1007/s12015-024-10694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2024] [Indexed: 03/09/2024]
Abstract
Multiple theories exist to explain cancer initiation, although a consensus on this is crucial for developing effective therapies. 'Somatic mutation theory' suggests that mutations in somatic cells during DNA repair initiates cancer but this concept has several attached paradoxes. Research efforts to identify quiescent cancer stem cells (CSCs) that survive therapy and result in metastasis and recurrence have remained futile. In solid cancers, CSCs are suggested to appear during epithelial-mesenchymal transition by the dedifferentiation and reprogramming of epithelial cells. Pluripotent and quiescent very small embryonic-like stem cells (VSELs) exist in multiple tissues but remain elusive owing to their small size and scarce nature. VSELs are developmentally connected to primordial germ cells, undergo rare, asymmetrical cell divisions and are responsible for the regular turnover of cells to maintain tissue homeostasis throughout life. VSELs are directly vulnerable to extrinsic endocrine insults because they express gonadal and gonadotropin hormone receptors. VSELs undergo epigenetic changes due to endocrine insults and transform into CSCs. CSCs exhibit genomic instability and develop mutations due to errors during DNA replication while undergoing excessive proliferation and clonal expansion to form spheroids. Thus tissue-resident VSELs offer a connection between extrinsic insults and variations in cancer incidence reported in various body tissues. To conclude, cancer is indeed a stem cell disease with mutations occurring as a consequence. In addition to immunotherapy, targeting mutations, and Lgr5 + organoids for developing new therapeutics, targeting CSCs (epigenetically altered VSELs) by improving their niche and epigenetic status could serve as a promising strategy to treat cancer.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel, 400013, Mumbai, India.
| | | | - Kshama Pansare
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel, 400013, Mumbai, India
| | - Anish Tripathi
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel, 400013, Mumbai, India
| | - Ashish Tripathi
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel, 400013, Mumbai, India
- 23Ikigai Pte Ltd, 30 Cecil Street, #21-08 Prudentsial Tower, Singapore, 049712, Singapore
| |
Collapse
|
7
|
Zhang J, Suo M, Wang J, Liu X, Huang H, Wang K, Liu X, Sun T, Li Z, Liu J. Standardisation is the key to the sustained, rapid and healthy development of stem cell-based therapy. Clin Transl Med 2024; 14:e1646. [PMID: 38572666 PMCID: PMC10993161 DOI: 10.1002/ctm2.1646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/20/2024] [Accepted: 03/17/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Stem cell-based therapy (SCT) is an important component of regenerative therapy that brings hope to many patients. After decades of development, SCT has made significant progress in the research of various diseases, and the market size has also expanded significantly. The transition of SCT from small-scale, customized experiments to routine clinical practice requires the assistance of standards. Many countries and international organizations around the world have developed corresponding SCT standards, which have effectively promoted the further development of the SCT industry. METHODS We conducted a comprehensive literature review to introduce the clinical application progress of SCT and focus on the development status of SCT standardization. RESULTS We first briefly introduced the types and characteristics of stem cells, and summarized the current clinical application and market development of SCT. Subsequently, we focused on the development status of SCT-related standards as of now from three levels: the International Organization for Standardization (ISO), important international organizations, and national organizations. Finally, we provided perspectives and conclusions on the significance and challenges of SCT standardization. CONCLUSIONS Standardization plays an important role in the sustained, rapid and healthy development of SCT.
Collapse
Affiliation(s)
- Jing Zhang
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
| | - Moran Suo
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
| | - Jinzuo Wang
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
| | - Xin Liu
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
| | - Huagui Huang
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
| | - Kaizhong Wang
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
| | - Xiangyan Liu
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
| | - Tianze Sun
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
| | - Zhonghai Li
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
- Stem Cell Clinical Research CenterNational Joint Engineering LaboratoryFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Dalian Innovation Institute of Stem Cell and Precision MedicineDalianLiaoning ProvinceChina
| | - Jing Liu
- Stem Cell Clinical Research CenterNational Joint Engineering LaboratoryFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Dalian Innovation Institute of Stem Cell and Precision MedicineDalianLiaoning ProvinceChina
| |
Collapse
|
8
|
Santa Cruz-Pavlovich FJ, Bolaños-Chang AJ, Del Rio-Murillo XI, Aranda-Preciado GA, Razura-Ruiz EM, Santos A, Navarro-Partida J. Beyond Vision: An Overview of Regenerative Medicine and Its Current Applications in Ophthalmological Care. Cells 2024; 13:179. [PMID: 38247870 PMCID: PMC10814238 DOI: 10.3390/cells13020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Regenerative medicine (RM) has emerged as a promising and revolutionary solution to address a range of unmet needs in healthcare, including ophthalmology. Moreover, RM takes advantage of the body's innate ability to repair and replace pathologically affected tissues. On the other hand, despite its immense promise, RM faces challenges such as ethical concerns, host-related immune responses, and the need for additional scientific validation, among others. The primary aim of this review is to present a high-level overview of current strategies in the domain of RM (cell therapy, exosomes, scaffolds, in vivo reprogramming, organoids, and interspecies chimerism), centering around the field of ophthalmology. A search conducted on clinicaltrials.gov unveiled a total of at least 209 interventional trials related to RM within the ophthalmological field. Among these trials, there were numerous early-phase studies, including phase I, I/II, II, II/III, and III trials. Many of these studies demonstrate potential in addressing previously challenging and degenerative eye conditions, spanning from posterior segment pathologies like Age-related Macular Degeneration and Retinitis Pigmentosa to anterior structure diseases such as Dry Eye Disease and Limbal Stem Cell Deficiency. Notably, these therapeutic approaches offer tailored solutions specific to the underlying causes of each pathology, thus allowing for the hopeful possibility of bringing forth a treatment for ocular diseases that previously seemed incurable and significantly enhancing patients' quality of life. As advancements in research and technology continue to unfold, future objectives should focus on ensuring the safety and prolonged viability of transplanted cells, devising efficient delivery techniques, etc.
Collapse
Affiliation(s)
- Francisco J. Santa Cruz-Pavlovich
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Andres J. Bolaños-Chang
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Ximena I. Del Rio-Murillo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | | | - Esmeralda M. Razura-Ruiz
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Jose Navarro-Partida
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| |
Collapse
|
9
|
Chehelgerdi M, Behdarvand Dehkordi F, Chehelgerdi M, Kabiri H, Salehian-Dehkordi H, Abdolvand M, Salmanizadeh S, Rashidi M, Niazmand A, Ahmadi S, Feizbakhshan S, Kabiri S, Vatandoost N, Ranjbarnejad T. Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy. Mol Cancer 2023; 22:189. [PMID: 38017433 PMCID: PMC10683363 DOI: 10.1186/s12943-023-01873-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/27/2023] [Indexed: 11/30/2023] Open
Abstract
The advent of iPSCs has brought about a significant transformation in stem cell research, opening up promising avenues for advancing cancer treatment. The formation of cancer is a multifaceted process influenced by genetic, epigenetic, and environmental factors. iPSCs offer a distinctive platform for investigating the origin of cancer, paving the way for novel approaches to cancer treatment, drug testing, and tailored medical interventions. This review article will provide an overview of the science behind iPSCs, the current limitations and challenges in iPSC-based cancer therapy, the ethical and social implications, and the comparative analysis with other stem cell types for cancer treatment. The article will also discuss the applications of iPSCs in tumorigenesis, the future of iPSCs in tumorigenesis research, and highlight successful case studies utilizing iPSCs in tumorigenesis research. The conclusion will summarize the advancements made in iPSC-based tumorigenesis research and the importance of continued investment in iPSC research to unlock the full potential of these cells.
Collapse
Affiliation(s)
- Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fereshteh Behdarvand Dehkordi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Hamidreza Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Mohammad Abdolvand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Sharareh Salmanizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar-Jereeb Street, Isfahan, 81746-73441, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anoosha Niazmand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saba Ahmadi
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Sara Feizbakhshan
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saber Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Nasimeh Vatandoost
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tayebeh Ranjbarnejad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
10
|
Lahlil R, Aries A, Scrofani M, Zanetti C, Hennequin D, Drénou B. Stem Cell Responsiveness to Imatinib in Chronic Myeloid Leukemia. Int J Mol Sci 2023; 24:16671. [PMID: 38068992 PMCID: PMC10706348 DOI: 10.3390/ijms242316671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a clonal myeloproliferative disease characterized by the presence of the BCR-ABL fusion gene, which results from the Philadelphia chromosome. Since the introduction of tyrosine kinase inhibitors (TKI) such as imatinib mesylate (IM), the clinical outcomes for patients with CML have improved significantly. However, IM resistance remains the major clinical challenge for many patients, underlining the need to develop new drugs for the treatment of CML. The basis of CML cell resistance to this drug is unclear, but the appearance of additional genetic alterations in leukemic stem cells (LSCs) is the most common cause of patient relapse. However, several groups have identified a rare subpopulation of CD34+ stem cells in adult patients that is present mainly in the bone marrow and is more immature and pluripotent; these cells are also known as very small embryonic-like stem cells (VSELs). The uncontrolled proliferation and a compromised differentiation possibly initiate their transformation to leukemic VSELs (LVSELs). Their nature and possible involvement in carcinogenesis suggest that they cannot be completely eradicated with IM treatment. In this study, we demonstrated that cells from CML patients with the VSELs phenotype (LVSELs) similarly harbor the fusion protein BCR-ABL and are less sensitive to apoptosis than leukemic HSCs after IM treatment. Thus, IM induces apoptosis and reduces the proliferation and mRNA expression of Ki67 more efficiently in LHSCs than in leukemic LVSELs. Finally, we found that the expression levels of some miRNAs are affected in LVSELs. In addition to the tumor suppressor miR-451, both miR-126 and miR-21, known to be responsible for LSC leukemia-initiating capacity, quiescence, and growth, appear to be involved in IM insensitivity of LVSELs CML cell population. Targeting IM-resistant CML leukemic stem cells by acting via the miRNA pathways may represent a promising therapeutic option.
Collapse
MESH Headings
- Adult
- Humans
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/metabolism
- Drug Resistance, Neoplasm/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- MicroRNAs/metabolism
- Apoptosis
- Stem Cells/metabolism
- Neoplastic Stem Cells/metabolism
Collapse
Affiliation(s)
- Rachid Lahlil
- Institut de Recherche en Hématologie et Transplantation (IRHT), Hôpital du Hasenrain, 87 Avenue d’Altkirch, 68100 Mulhouse, France; (A.A.); (B.D.)
| | - Anne Aries
- Institut de Recherche en Hématologie et Transplantation (IRHT), Hôpital du Hasenrain, 87 Avenue d’Altkirch, 68100 Mulhouse, France; (A.A.); (B.D.)
| | - Maurice Scrofani
- Institut de Recherche en Hématologie et Transplantation (IRHT), Hôpital du Hasenrain, 87 Avenue d’Altkirch, 68100 Mulhouse, France; (A.A.); (B.D.)
| | - Céline Zanetti
- Institut de Recherche en Hématologie et Transplantation (IRHT), Hôpital du Hasenrain, 87 Avenue d’Altkirch, 68100 Mulhouse, France; (A.A.); (B.D.)
| | - Desline Hennequin
- Institut de Recherche en Hématologie et Transplantation (IRHT), Hôpital du Hasenrain, 87 Avenue d’Altkirch, 68100 Mulhouse, France; (A.A.); (B.D.)
| | - Bernard Drénou
- Institut de Recherche en Hématologie et Transplantation (IRHT), Hôpital du Hasenrain, 87 Avenue d’Altkirch, 68100 Mulhouse, France; (A.A.); (B.D.)
- Laboratoire d’Hématologie, Groupe Hospitalier de la Région de Mulhouse Sud-Alsace, Hôpital E. Muller, 20 Avenue de Dr. Laennec, 68100 Mulhouse, France
| |
Collapse
|
11
|
Karpenko DV. Immune Privileges as a Result of Mutual Regulation of Immune and Stem Systems. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1818-1831. [PMID: 38105201 DOI: 10.1134/s0006297923110123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 12/19/2023]
Abstract
Immune privileges of cancer stem cells is a well-known and widely studied problem, as presence of such cells in tumors is associated with refractoriness, recurrence, and metastasis. Accumulating evidence also suggests presence of immune privileges in non-pathological stem cells in addition to their other defense mechanisms against damaging factors. This similarity between pathological and normal stem cells raises the question of why stem cells have such a potentially dangerous property. Regulation of vital processes of autoimmunity control and regeneration realized through interactions between immune cells, stem cells, and their microenvironment are reviewed in this work as causes of formation of the stem cell immune privilege. Deep mutual integration between regulations of stem and immune cells is noted. Considering diversity and complexity of mutual regulation of stem cells, their microenvironment, and immune system, I suggest the term "stem system".
Collapse
Affiliation(s)
- Dmitriy V Karpenko
- Laboratory of Epigenetic Regulation of Hematopoiesis, National Medical Research Center for Hematology, Moscow, 125167, Russia.
| |
Collapse
|
12
|
Barachini S, Ghelardoni S, Madonna R. Vascular Progenitor Cells: From Cancer to Tissue Repair. J Clin Med 2023; 12:jcm12062399. [PMID: 36983398 PMCID: PMC10059009 DOI: 10.3390/jcm12062399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/12/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Vascular progenitor cells are activated to repair and form a neointima following vascular damage such as hypertension, atherosclerosis, diabetes, trauma, hypoxia, primary cancerous lesions and metastases as well as catheter interventions. They play a key role not only in the resolution of the vascular lesion but also in the adult neovascularization and angiogenesis sprouting (i.e., the growth of new capillaries from pre-existing ones), often associated with carcinogenesis, favoring the formation of metastases, survival and progression of tumors. In this review, we discuss the biology, cellular plasticity and pathophysiology of different vascular progenitor cells, including their origins (sources), stimuli and activated pathways that induce differentiation, isolation and characterization. We focus on their role in tumor-induced vascular injury and discuss their implications in promoting tumor angiogenesis during cancer proliferation and migration.
Collapse
Affiliation(s)
- Serena Barachini
- Laboratory for Cell Therapy, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Sandra Ghelardoni
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, 56126 Pisa, Italy
| | - Rosalinda Madonna
- Department of Pathology, Cardiology Division, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
13
|
A Simplified and Effective Approach for the Isolation of Small Pluripotent Stem Cells Derived from Human Peripheral Blood. Biomedicines 2023; 11:biomedicines11030787. [PMID: 36979766 PMCID: PMC10045871 DOI: 10.3390/biomedicines11030787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Pluripotent stem cells are key players in regenerative medicine. Embryonic pluripotent stem cells, despite their significant advantages, are associated with limitations such as their inadequate availability and the ethical dilemmas in their isolation and clinical use. The discovery of very small embryonic-like (VSEL) stem cells addressed the aforementioned limitations, but their isolation technique remains a challenge due to their small cell size and their efficiency in isolation. Here, we report a simplified and effective approach for the isolation of small pluripotent stem cells derived from human peripheral blood. Our approach results in a high yield of small blood stem cell (SBSC) population, which expresses pluripotent embryonic markers (e.g., Nanog, SSEA-3) and the Yamanaka factors. Further, a fraction of SBSCs also co-express hematopoietic markers (e.g., CD45 and CD90) and/or mesenchymal markers (e.g., CD29, CD105 and PTH1R), suggesting a mixed stem cell population. Finally, quantitative proteomic profiling reveals that SBSCs contain various stem cell markers (CD9, ITGA6, MAPK1, MTHFD1, STAT3, HSPB1, HSPA4), and Transcription reg complex factors (e.g., STAT5B, PDLIM1, ANXA2, ATF6, CAMK1). In conclusion, we present a novel, simplified and effective isolating process that yields an abundant population of small-sized cells with characteristics of pluripotency from human peripheral blood.
Collapse
|