1
|
Ren Z, Hu Z, Zhou Y, Cai G, Xiang S, Ao Z, Hu W, Li X, Wei L. Platelet-rich plasma inhibits ferroptosis and inflammation to alleviate frozen shoulder via activating the CST1/GPX4 signaling pathway. Arch Biochem Biophys 2025; 769:110429. [PMID: 40274175 DOI: 10.1016/j.abb.2025.110429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/27/2025] [Accepted: 04/17/2025] [Indexed: 04/26/2025]
Abstract
Platelet-rich plasma (PRP) has been shown to be beneficial to frozen shoulder (FS), but the mechanism of PRP's intervention in FS is still incomplete. Ferroptosis and inflammation are important pathological factors of cartilage injury, but their role in FS has not been explored. In vivo, we found that PRP treatment significantly enhanced the joint range of motion and mitigated joint histopathological damage in FS rats. Notably, levels of iron ions, the ferroptosis marker prostaglandin-endoperoxide synthase 2 (PTGS2), reactive oxygen species (ROS), malondialdehyde (MDA), and pro-inflammatory cytokines (IL-6, IL-1β, TNF-α) in the cartilage tissue of PRP-treated rats were significantly reduced. Conversely, levels of superoxide dismutase (SOD) and glutathione (GSH) were markedly increased. In vitro experiments revealed that PRP effectively countered the IL-1β-induced suppression of chondrocyte proliferation while also reducing levels of ferroptosis and inflammation. Furthermore, the CST1/GPX4 pathway was suppressed in the FS environment, while it has the potential to be activated by PRP. Importantly, silencing CST1 negated the therapeutic effects of PRP on IL-1β-treated chondrocytes and FS rats. In summary, we found that PRP alleviated the progression of FS by inhibiting ferroptosis and the inflammatory response by activating the CST1/GPX4 signaling pathway.
Collapse
Affiliation(s)
- Zihao Ren
- Department of Orthopedics, Changsha Traditional Chinese Medicine Hospital (Changsha Eighth Hospital), Changsha, Hunan, 410100, PR China
| | - Zhen Hu
- Department of Orthopedics, Changsha Traditional Chinese Medicine Hospital (Changsha Eighth Hospital), Changsha, Hunan, 410100, PR China
| | - Yun Zhou
- Department of Orthopedics, Changsha Traditional Chinese Medicine Hospital (Changsha Eighth Hospital), Changsha, Hunan, 410100, PR China
| | - Guangqing Cai
- Department of Orthopedics, Changsha Traditional Chinese Medicine Hospital (Changsha Eighth Hospital), Changsha, Hunan, 410100, PR China
| | - Shengwen Xiang
- Department of Orthopedics, Changsha Traditional Chinese Medicine Hospital (Changsha Eighth Hospital), Changsha, Hunan, 410100, PR China
| | - Zhijiang Ao
- Department of Orthopedics, Changsha Traditional Chinese Medicine Hospital (Changsha Eighth Hospital), Changsha, Hunan, 410100, PR China
| | - Weiguo Hu
- Department of Orthopedics, Changsha Traditional Chinese Medicine Hospital (Changsha Eighth Hospital), Changsha, Hunan, 410100, PR China
| | - Xing Li
- Department of Orthopedics, Changsha Traditional Chinese Medicine Hospital (Changsha Eighth Hospital), Changsha, Hunan, 410100, PR China.
| | - Licheng Wei
- Department of Orthopedics, Changsha Traditional Chinese Medicine Hospital (Changsha Eighth Hospital), Changsha, Hunan, 410100, PR China.
| |
Collapse
|
2
|
Zeng M, Niu Y, Huang J, Deng L. Advances in neutrophil extracellular traps and ferroptosis in sepsis-induced cardiomyopathy. Front Immunol 2025; 16:1590313. [PMID: 40356926 PMCID: PMC12066755 DOI: 10.3389/fimmu.2025.1590313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
Sepsis-induced cardiomyopathy is a reversible non-ischemic acute cardiac dysfunction associated with sepsis. It is strongly associated with an abnormal immune response. It emerges as a vital threat to public health owing to its high mortality rate. However, the exact pathogenesis requires further investigation. In recent years, NETosis and ferroptosis, which are novel modes of programmed cell death, have been identified and found to play important roles in sepsis-related organ damage. This article outlines the mechanisms of these two modes of cell death, discusses the role of neutrophil extracellular traps in myocardial injury and the importance of ferroptosis in sepsis-induced cardiomyopathy, and reviews the potential interconnection between these two types of programmed cell death in sepsis-induced cardiomyopathy.
Collapse
Affiliation(s)
| | | | | | - Liehua Deng
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical
University, Zhanjiang, China
| |
Collapse
|
3
|
Huan X, Li J, Chu Z, Zhang H, Cheng L, Lun P, Du X, Chen X, Jiao Q, Jiang H. Dysregulation of Iron Homeostasis Mediated by FTH Increases Ferroptosis Sensitivity in TP53-Mutant Glioblastoma. Neurosci Bull 2025; 41:569-582. [PMID: 39666195 PMCID: PMC11978602 DOI: 10.1007/s12264-024-01322-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/19/2024] [Indexed: 12/13/2024] Open
Abstract
Iron metabolism is a critical factor in tumorigenesis and development. Although TP53 mutations are prevalent in glioblastoma (GBM), the mechanisms by which TP53 regulates iron metabolism remain elusive. We reveal an imbalance iron homeostasis in GBM via TCGA database analysis. TP53 mutations disrupted iron homeostasis in GBM, characterized by elevated total iron levels and reduced ferritin (FTH). The gain-of-function effect triggered by TP53 mutations upregulates itchy E3 ubiquitin-protein ligase (ITCH) protein expression in astrocytes, leading to FTH degradation and an increase in free iron levels. TP53-mut astrocytes were more tolerant to the high iron environment induced by exogenous ferric ammonium citrate (FAC), but the increase in intracellular free iron made them more sensitive to Erastin-induced ferroptosis. Interestingly, we found that Erastin combined with FAC treatment significantly increased ferroptosis. These findings provide new insights for drug development and therapeutic modalities for GBM patients with TP53 mutations from iron metabolism perspectives.
Collapse
Affiliation(s)
- Xuejie Huan
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Jiangang Li
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zhaobin Chu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Hongliang Zhang
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Lei Cheng
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Peng Lun
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
- Qingdao Key Laboratory of Neurorehabilitation, University of Health and Rehabilitation Sciences, Qingdao, 266113, China.
| |
Collapse
|
4
|
Bahraini F, Sayadi M, Safarpour H, Zarban A, Mesbahzadeh B, Sajjadi SM. n-3 polyunsaturated fatty acids enhanced efficacy of cytarabine in iron-overloaded NALM-6 cells via apoptotic and oxidative pathways. Toxicol In Vitro 2025; 103:105976. [PMID: 39613235 DOI: 10.1016/j.tiv.2024.105976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 10/05/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Despite progress in treating acute lymphoblastic leukemia (ALL), the adverse effects of chemotherapy toxicity and iron overload from transfusions continue to affect patients' quality of life. Polyunsaturated fatty acids (PUFAs) exhibit both antitumor and anti-inflammatory properties in leukemia. This study investigated the influence of n-3 PUFA on the efficacy of cytarabine in cells with iron overload. Iron overload was induced in NALM-6 cells using ferric ammonium citrate (FAC) and quantified through atomic absorption spectroscopy (AAS). The impact of n-3 PUFA on NALM-6 cells' response to cytarabine was evaluated using MTT, lactate dehydrogenase (LDH), apoptosis, and cell cycle assays. Additionally, gene expression analyses were performed on apoptotic, anti-apoptotic, and inflammatory genes, along with oxidative stress markers such as reactive oxygen species (ROS) and malondialdehyde (MDA) levels. The administration of n-3 PUFA significantly enhanced the effectiveness of cytarabine in iron-overloaded NALM-6 cells, leading to increased LDH secretion, elevated apoptosis rates, and G1 phase cell cycle arrest. These effects were associated with the upregulation of apoptotic genes such as P53 and caspase-8, the downregulation of the anti-apoptotic gene Bcl2, and a decrease in the inflammatory gene TNF-α. Furthermore, there was a notable increase in ROS and MDA levels. Overall, n-3 PUFA treatment improved cytarabine's efficacy in iron-overloaded NALM-6 cells by activating apoptotic processes and oxidative stress pathways.
Collapse
Affiliation(s)
| | - Mahtab Sayadi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Hossein Safarpour
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Asghar Zarban
- Clinical Biochemistry Department, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran.
| | - Behzad Mesbahzadeh
- Department of Physiology, School of Allied Medical Sciences, Birjand University of Medical Sciences, Birjand, Iran.
| | - Seyed Mehdi Sajjadi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
5
|
Schimmer S, Sridhar V, Satan Z, Grebe A, Saad M, Wagner B, Kahlert N, Werner T, Richter D, Dittmer U, Sutter K, Littwitz-Salomon E. Iron improves the antiviral activity of NK cells. Front Immunol 2025; 15:1526197. [PMID: 39877355 PMCID: PMC11772171 DOI: 10.3389/fimmu.2024.1526197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025] Open
Abstract
Natural killer (NK) cells are innate immune cells that play a crucial role as a first line of defense against viral infections and tumor development. Iron is an essential nutrient for immune cells, but it can also pose biochemical risks such as the production of reactive oxygen species. The importance of iron for the NK cell function has gained increasing recognition. We have previously shown that NK cells require iron to efficiently eliminate virus-infected target cells; however, the impact of nutritional iron deficiency on NK cell function and the therapeutic benefits of iron supplementation remain unclear. Here, we demonstrate that diet-related low iron levels lead to increased retroviral loads due to functional NK cell impairment, while iron supplementation enhances NK cell proliferation, as well as their cytotoxic efficacy. Notably, iron-treated NK cells exhibited significant metabolic changes, including mitochondrial reorganization. Interestingly, although iron supplementation decreased the NK cell's cytokine production, it significantly improved NK cell degranulation and the expression of cytotoxicity-associated proteins. These findings highlight the critical role of iron in maintaining NK cell immunity and suggest that iron supplementation may hold therapeutic potential for supporting the treatment of viral infections and immunodeficiency disorders.
Collapse
Affiliation(s)
- Simone Schimmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Vaasudevan Sridhar
- Institute for the Research on HIV and AIDS-associated Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Zelal Satan
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anton Grebe
- Institute for the Research on HIV and AIDS-associated Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mohamed Saad
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bernd Wagner
- Department of Clinical Chemistry, University Hospital Essen, Essen, Germany
| | - Nele Kahlert
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for the Research on HIV and AIDS-associated Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tanja Werner
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dana Richter
- Institute for the Research on HIV and AIDS-associated Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for the Research on HIV and AIDS-associated Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Elisabeth Littwitz-Salomon
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for the Research on HIV and AIDS-associated Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
6
|
Prasadam I, Schrobback K, Kranz-Rudolph B, Fischer N, Sonar Y, Sun AR, Secondes E, Klein T, Crawford R, Subramaniam VN, Rishi G. Effects of iron overload in human joint tissue explant cultures and animal models. J Mol Med (Berl) 2025; 103:73-86. [PMID: 39531048 DOI: 10.1007/s00109-024-02495-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Osteoarthritis (OA) is a prevalent degenerative joint disease affecting over 530 million individuals worldwide. Recent studies suggest a potential link between iron overload, a condition characterised by the excessive accumulation of iron in the body, and the onset of OA. Iron is essential for various biological processes, and any disruption in its homeostasis can trigger significant health effects, including OA. This study aimed to elucidate the effects of excess iron on joint tissue and the underlying mechanisms associated with excess iron and OA development. Human articular cartilage (n = 6) and synovium (n = 4) were collected from patients who underwent total knee arthroplasty. Cartilage and synovium explants were incubated with a gradually increasing concentration of ferric ammonium citrate for 3 days respectively. The effects of iron homeostasis in tissue explants were analysed using a Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). To further study the effects of iron excess on OA initiation and development, male 3-week-old Hfe-/- and 5-week-old Tfr2-/- mice, animal models of hereditary haemochromatosis were established. Littermate wild-type mice were fed a high-iron diet to induce dietary overload. All animals were sacrificed at 8 weeks of age, and knee joints were harvested for histological analysis. The LA-ICP-MS analysis unveiled changes in the elemental composition related to iron metabolism, which included alterations in FTH1, FPN1, and HAMP within iron(III)-treated cartilage explants. While chondrocyte viability remained stable under different iron concentrations, ex vivo treatment with a high concentration of Fe3+ increased the catabolic gene expression of MMP13. Similar alterations were observed in the synovium, with added increases in GAG content and inflammation markers. In vivo studies further supported the role of iron overload in OA development as evidenced by spontaneous OA symptoms, proteoglycan loss, increased Mankin scores, synovial thickening, and enhanced immunohistochemical expression of MMP13, ADAMTS5, and P21 in Hfe-/-, Tfr2-/-, and diet-induced iron overload mouse models. Our findings elucidate the specific pathways through which excess iron accelerates OA progression and highlights potential targets for therapeutic intervention aimed at modulating iron levels to mitigate OA symptoms. KEY MESSAGES: Iron overload alters joint iron metabolism, increasing OA markers in cartilage and synovium. High iron levels in mice accelerate OA, highlighting genetic and dietary impacts. Excess iron prompts chondrocyte iron storage response, signalling potential OA pathways. Iron dysregulation linked to increased cartilage degradation and synovial inflammation. Our findings support targeted therapies for OA based on iron modulation strategies.
Collapse
Affiliation(s)
- Indira Prasadam
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia.
| | - Karsten Schrobback
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Bastian Kranz-Rudolph
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Nadine Fischer
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Yogita Sonar
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Antonia RuJia Sun
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Eriza Secondes
- Hepatogenomics Research Group, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia
| | - Travis Klein
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Ross Crawford
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
- Orthopedic Department, The Prince Charles Hospital, Brisbane, QLD, 4032, Australia
| | - V Nathan Subramaniam
- Hepatogenomics Research Group, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Qld, 4059, Australia
| | - Gautam Rishi
- Hepatogenomics Research Group, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Qld, 4059, Australia
| |
Collapse
|
7
|
Yang J, Chen D, He Q, Chen B, Pan Z, Zhang G, Li M, Li S, Xiao J, Wang H, Chen P, An Z. Arctiin alleviates knee osteoarthritis by suppressing chondrocyte oxidative stress induced by accumulated iron via AKT/NRF2/HO-1 signaling pathway. Sci Rep 2024; 14:31935. [PMID: 39738432 PMCID: PMC11685860 DOI: 10.1038/s41598-024-83383-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 12/13/2024] [Indexed: 01/02/2025] Open
Abstract
Iron overload (IO) was considered to be a risk factor for cartilage degradation in knee osteoarthritis (KOA) advancement. However, few drugs were found to improve cartilage degeneration by alleviating multiple cell death induced by the impaired iron level of the knee joints. We aimed to elucidate that Arctiin (ARC) plays a role in managing KOA caused by accumulated iron levels by restoring chondrocyte apoptosis and ferroptosis. Single-cell RNA sequencing analysis was used to discover the disparities in chondrocytes between KOA patients and non-KOA individuals. CCK-8 assay was performed to detect chondrocyte viability. Annexin V-FITC/PI staining determined the cell apoptosis rate. The fluorescence density reflected the iron content, ROS, lipid-ROS, and mitochondrial membrane potential. Q-RTPCR and Western Blotting were used to detect the expression levels of genes and proteins expression. Micro-CT and Safranin O-Fast Green staining were used to detect the phenotype of the knee joints. ARC increased cell viability and inhibited chondrocyte apoptosis. Further, ARC acts as an anti-ferroptosis effect by reducing the intracellular iron, ROS, and lipid-ROS content and restoring mitochondrial damage. Based on the results of scRNA-seq, we found that ARC can play a role by activating AKT/NRF2/HO-1 signaling pathway. In vivo, ARC can significantly improve the severity of KOA caused by IO. ARC alleviates oxidative stress in chondrocytes via the AKT/NRF2/HO-1 signaling pathway, suggesting the potential application of ARC in KOA.
Collapse
Affiliation(s)
- Junzheng Yang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Department of Orthopaedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, P. R. China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Delong Chen
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, P. R. China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Qi He
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, P. R. China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Baihao Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Department of Orthopaedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, P. R. China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Zhaofeng Pan
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, P. R. China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Gangyu Zhang
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Miao Li
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, P. R. China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Shaocong Li
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, P. R. China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Jiacong Xiao
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, P. R. China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Haibin Wang
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, P. R. China.
| | - Peng Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Department of Orthopaedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China.
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, P. R. China.
| | - Zhantian An
- Xinjiang Production and Construction Corps 13th division Red Star Hospital, Xinjiang Autonomous Region, 19 Qianjin East Road, Yizhou District, Xinjiang, P.R. China.
- The Affiliated Redstar Hospital of Shihezi University School of Medicine, Xinjiang Autonomous Region, 19 Qianjin East Road, Yizhou District, Xinjiang, P.R. China.
| |
Collapse
|
8
|
Garavaglia B, Nasca A, Mitola S, Ingrassia R. WDR45-dependent impairment of cell cycle in fibroblasts of patients with beta propeller protein-associated neurodegeneration (BPAN). BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119842. [PMID: 39265886 DOI: 10.1016/j.bbamcr.2024.119842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
De novo mutations in the WDR45 gene have been found in patients affected by Neurodegeneration with Brain Iron Accumulation type 5 (NBIA5 or BPAN), with Non-Transferrin Bound Iron (NTBI) accumulation in the basal ganglia and WDR45-dependent impairment of autophagy. Here we show the downregulation of TFEB and cell cycle impairment in BPAN primary fibroblasts. Noteworthy, TFEB overexpression rescued this impairment, depicting a novel WDR45-dependent cell cycle phenotype.
Collapse
Affiliation(s)
- Barbara Garavaglia
- Medical Genetics and Neurogenetics Unit - Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Alessia Nasca
- Medical Genetics and Neurogenetics Unit - Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Stefania Mitola
- Section of Biotechnologies, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Rosaria Ingrassia
- Section of Biotechnologies, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
9
|
Sheng W, Liao S, Wang D, Liu P, Zeng H. The role of ferroptosis in osteoarthritis: Progress and prospects. Biochem Biophys Res Commun 2024; 733:150683. [PMID: 39293333 DOI: 10.1016/j.bbrc.2024.150683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
Osteoarthritis (OA) is the most prevalent degenerative joint disease, marked by cartilage degeneration, synovitis, and subchondral bone changes. The absence of effective drugs and treatments to decelerate OA's progression highlights a significant gap in clinical practice. Ferroptosis, an iron-dependent cell death driven by lipid peroxidation, has emerged as a research focus in osteoarthritic chondrocytes. This form of cell death is characterized by imbalances in iron and increased lipid peroxidation within osteoarthritic chondrocytes. Key antioxidant mechanisms, such as Glutathione Peroxidase 4 (GPX4) and the Nuclear Factor Erythroid 2-Related Factor 2 (NRF2) pathway, are vital in countering ferroptosis in osteoarthritic chondrocytes. This review collates recent findings on ferroptosis in osteoarthritic chondrocytes, emphasizing iron regulation, lipid peroxidation, and antioxidative responses. It also explores emerging therapeutics aimed at mitigating OA by targeting ferroptosis in chondrocytes.
Collapse
Affiliation(s)
- Weibei Sheng
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Shuai Liao
- West China Tianfu Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Deli Wang
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Peng Liu
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Hui Zeng
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, China; Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guang dong, China.
| |
Collapse
|
10
|
Yin J, Xu X, Guo Y, Sun C, Yang Y, Liu H, Yu P, Wu T, Song X. Repair and regeneration: ferroptosis in the process of remodeling and fibrosis in impaired organs. Cell Death Discov 2024; 10:424. [PMID: 39358326 PMCID: PMC11447141 DOI: 10.1038/s41420-024-02181-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/01/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024] Open
Abstract
As common clinical-pathological processes, wound healing and tissue remodelling following injury or stimulation are essential topics in medical research. Promoting the effective healing of prolonged wounds, improving tissue repair and regeneration, and preventing fibrosis are important and challenging issues in clinical practice. Ferroptosis, which is characterized by iron overload and lipid peroxidation, is a nontraditional form of regulated cell death. Emerging evidence indicates that dysregulated metabolic pathways and impaired iron homeostasis play important roles in various healing and regeneration processes via ferroptosis. Thus, we review the intrinsic mechanisms of tissue repair and remodeling via ferroptosis in different organs and systems under various conditions, including the inflammatory response in skin wounds, remodeling of joints and cartilage, and fibrosis in multiple organs. Additionally, we summarize the common underlying mechanisms, key molecules, and targeted drugs for ferroptosis in repair and regeneration. Finally, we discuss the potential of therapeutic agents, small molecules, and novel materials emerging for targeting ferroptosis to promote wound healing and tissue repair and attenuate fibrosis.
Collapse
Affiliation(s)
- Jiali Yin
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Xinjun Xu
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Ying Guo
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Caiyu Sun
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Yujuan Yang
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Huifang Liu
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
- Second Clinical Medicine College, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Pengyi Yu
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Tong Wu
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China.
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China.
| | - Xicheng Song
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China.
| |
Collapse
|
11
|
Rezqaoui A, Boumlah S, El Hessni A, El Brouzi MY, El Hamzaoui A, Ibouzine-Dine L, Benkirane S, Adnani M, Mesfioui A. Evaluating the Protective Effects of Melatonin Against Chronic Iron Administration in Male Wistar Rats: a Comparative Analysis of Affective, Cognitive, and Oxidative Stress with EDTA Chelator. Biol Trace Elem Res 2024; 202:4531-4546. [PMID: 38146034 DOI: 10.1007/s12011-023-04006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/06/2023] [Indexed: 12/27/2023]
Abstract
Iron is the dominant metal in the brain and is distributed widely. However, it can lead to various neuropathological and neurobehavioral abnormalities as well as oxidative stress. On the other hand, melatonin, a pineal hormone, is known for its neuroprotective properties, as well as its ability to act as a natural chelator against oxidative stress. It has also been used as an antidepressant and anxiolytic. The study investigated the potential of melatonin and EDTA treatment to prevent anxiety, depressive behavior, and memory impairment in male rats induced by chronic iron administration, and its connection to oxidative stress regulation in the hippocampus and prefrontal cortex. The rats were divided into six groups and intraperitoneally injected for 8 weeks with NaCl solution (control), iron sulfate (1 mg/kg), melatonin (4 mg/kg), EDTA (4 mg/kg), 1 mg/kg of iron + 4 mg/kg of melatonin, or 1 mg/kg of iron + 4 mg/kg of EDTA. In this study, we performed a neurobehavioral assessment and biochemical determinations of oxidative stress levels in the hippocampus and prefrontal cortex of each animal. The results indicate that chronic exposure to iron sulfate induced anxiety-like depressive behavior, and cognitive impairment also increased the levels of lipid peroxidation and nitric oxide, and reduced the activity of catalase in the hippocampus and prefrontal cortex in male Wistar rats, suggesting the induction of oxidative stress. In contrast, these alterations were reversed by melatonin better than EDTA. The results of this study show that melatonin protects against the neurobehavioral changes caused by iron, which may be associated with decreasing oxidative stress in the hippocampus and prefrontal cortex.
Collapse
Affiliation(s)
- Ayoub Rezqaoui
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, B.P 242, Kenitra, Morocco.
| | - Soufiane Boumlah
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, B.P 242, Kenitra, Morocco
| | - Aboubaker El Hessni
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, B.P 242, Kenitra, Morocco
| | - Mohamed Yassine El Brouzi
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, B.P 242, Kenitra, Morocco
| | - Abdelghafour El Hamzaoui
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, B.P 242, Kenitra, Morocco
| | - Laila Ibouzine-Dine
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, B.P 242, Kenitra, Morocco
| | - Samir Benkirane
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, B.P 242, Kenitra, Morocco
| | - Manal Adnani
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, B.P 242, Kenitra, Morocco
| | - Abdelhalem Mesfioui
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, B.P 242, Kenitra, Morocco
| |
Collapse
|
12
|
Karim A, Qaisar R, Suresh S, Jagal J, Rawas-Qalaji M. Nanoparticle-delivered quercetin exhibits enhanced efficacy in eliminating iron-overloaded senescent chondrocytes. Nanomedicine (Lond) 2024; 19:2159-2170. [PMID: 39229808 PMCID: PMC11485748 DOI: 10.1080/17435889.2024.2393074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024] Open
Abstract
Aim: The therapeutic potential of senolytic drugs in osteoarthritis (OA) is poorly known. Quercetin, a senolytic agent exhibits promising potential to treat OA, having limited bioavailability. We investigated the effects of Quercetin-loaded nanoparticles (Q-NP) with enhanced bioavailability in human chondrocytes mimicking OA phenotype.Materials & methods: The C-20/A4 chondrocytes were exposed to ferric ammonium citrate to induce OA phenotype, followed by treatment with free Quercetin/Q-NP for 24 and 48-h. Q-NP were synthesized by nanoprecipitation method. Following treatment chondrocytes were assessed for drug cellular bioavailability, viability, cell cycle, apoptosis, oxidative stress and expression of key senescence markers.Results: Q-NP exhibited 120.1 ± 1.2 nm particle size, 81 ± 2.4% encapsulation efficiency, increased cellular bioavailability and selective apoptosis of senescent chondrocytes compared with free Quercetin. Q-NP treatment also induced oxidative stress and reduced the expressions of senescence markers, including TRB3, p16, p62 and p21 suggesting their ability to eliminate senescent cells. Last, Q-NP arrested the cell cycle in the sub-G0 phase, potentially creating a beneficial environment for tissue repair.Conclusion: Q-NP propose a promising delivery system for treating OA by eliminating senescent chondrocytes through apoptosis. Furthermore, their enhanced cellular bioavailability and capacity to modify cell cycle and senescent pathways warrant further investigations.
Collapse
Affiliation(s)
- Asima Karim
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Iron Biology Research Group, Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Rizwan Qaisar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Cardiovascular Research Group, Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Space Medicine Research Group, Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Savitha Suresh
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Jayalakshmi Jagal
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Mutasem Rawas-Qalaji
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| |
Collapse
|
13
|
Lai Y, Gao FF, Ge RT, Liu R, Ma S, Liu X. Metal ions overloading and cell death. Cell Biol Toxicol 2024; 40:72. [PMID: 39162885 PMCID: PMC11335907 DOI: 10.1007/s10565-024-09910-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
Cell death maintains cell morphology and homeostasis during development by removing damaged or obsolete cells. The concentration of metal ions whithin cells is regulated by various intracellular transporters and repositories to maintain dynamic balance. External or internal stimuli might increase the concentration of metal ions, which results in ions overloading. Abnormal accumulation of large amounts of metal ions can lead to disruption of various signaling in the cell, which in turn can produce toxic effects and lead to the occurrence of different types of cell deaths. In order to further study the occurrence and development of metal ions overloading induced cell death, this paper reviewed the regulation of Ca2+, Fe3+, Cu2+ and Zn2+ metal ions, and the internal mechanism of cell death induced by overloading. Furthermore, we found that different metal ions possess a synergistic and competitive relationship in the regulation of cell death. And the enhanced level of oxidative stress was present in all the processes of cell death due to metal ions overloading, which possibly due to the combination of factors. Therefore, this review offers a theoretical foundation for the investigation of the toxic effects of metal ions, and presents innovative insights for targeted regulation and therapeutic intervention. HIGHLIGHTS: • Metal ions overloading disrupts homeostasis, which in turn affects the regulation of cell death. • Metal ions overloading can cause cell death via reactive oxygen species (ROS). • Different metal ions have synergistic and competitive relationships for regulating cell death.
Collapse
Affiliation(s)
- Yun Lai
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Fen Fen Gao
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Ruo Ting Ge
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Rui Liu
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Shumei Ma
- School of Public Health, Wenzhou Medical University, Wenzhou, China.
| | - Xiaodong Liu
- School of Public Health, Wenzhou Medical University, Wenzhou, China.
- South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou Medical University, Wenzhou, China.
- Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
14
|
Zhuo D, Xiao W, Tang Y, Jiang S, Geng C, Xie J, Ma X, Zhang Q, Tang K, Yu Y, Bai L, Zou H, Liu J, Wang J. Iron metabolism and arthritis: Exploring connections and therapeutic avenues. Chin Med J (Engl) 2024; 137:1651-1662. [PMID: 38867424 PMCID: PMC11268821 DOI: 10.1097/cm9.0000000000003169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Indexed: 06/14/2024] Open
Abstract
ABSTRACT Iron is indispensable for the viablility of nearly all living organisms, and it is imperative for cells, tissues, and organisms to acquire this essential metal sufficiently and maintain its metabolic stability for survival. Disruption of iron homeostasis can lead to the development of various diseases. There is a robust connection between iron metabolism and infection, immunity, inflammation, and aging, suggesting that disorders in iron metabolism may contribute to the pathogenesis of arthritis. Numerous studies have focused on the significant role of iron metabolism in the development of arthritis and its potential for targeted drug therapy. Targeting iron metabolism offers a promising approach for individualized treatment of arthritis. Therefore, this review aimed to investigate the mechanisms by which the body maintains iron metabolism and the impacts of iron and iron metabolism disorders on arthritis. Furthermore, this review aimed to identify potential therapeutic targets and active substances related to iron metabolism, which could provide promising research directions in this field.
Collapse
Affiliation(s)
- Dachun Zhuo
- Department of Rheumatology, Shanghai Pudong Hospital, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200000, China
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200000, China
| | - Wenze Xiao
- Department of Rheumatology, Shanghai Pudong Hospital, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200000, China
| | - Yulong Tang
- Department of Rheumatology, Shanghai Pudong Hospital, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200000, China
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200000, China
| | - Shuai Jiang
- Department of Vascular Surgery, Shanghai Pudong Hospital, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Chengchun Geng
- Department of Rheumatology, Shanghai Pudong Hospital, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200000, China
- Department of Anthropology and Human Genetics, School of Life Sciences,Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 200000, China
| | - Jiangnan Xie
- Department of Rheumatology, Shanghai Pudong Hospital, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200000, China
- Department of Anthropology and Human Genetics, School of Life Sciences,Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 200000, China
| | - Xiaobei Ma
- Department of Rheumatology, Shanghai Pudong Hospital, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200000, China
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200000, China
| | - Qing Zhang
- Department of Rheumatology, Shanghai Pudong Hospital, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200000, China
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200000, China
| | - Kunhai Tang
- Department of Rheumatology, Shanghai Pudong Hospital, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200000, China
| | - Yuexin Yu
- Department of Rheumatology, Shanghai Pudong Hospital, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200000, China
| | - Lu Bai
- Department of Rheumatology, Shanghai Pudong Hospital, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200000, China
| | - Hejian Zou
- Division of Rheumatology, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200000, China
- Institute of Rheumatology, Immunology and Allergy, Allergy and Disease Research Center, Fudan University, Shanghai 200000, China
| | - Jing Liu
- Department of Rheumatology, Shanghai Pudong Hospital, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200000, China
| | - Jiucun Wang
- Division of Rheumatology, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200000, China
- Institute of Rheumatology, Immunology and Allergy, Allergy and Disease Research Center, Fudan University, Shanghai 200000, China
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
15
|
Chen BY, Pathak JL, Lin HY, Guo WQ, Chen WJ, Luo G, Wang LJ, Sun XF, Ding Y, Li J, Diekwisch TGH, Liu C. Inflammation Triggers Chondrocyte Ferroptosis in TMJOA via HIF-1α/TFRC. J Dent Res 2024; 103:712-722. [PMID: 38766865 DOI: 10.1177/00220345241242389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Inflammation and loss of articular cartilage are considered the major cause of temporomandibular joint osteoarthritis (TMJOA), a painful condition of the temporomandibular joint (TMJ). To determine the cause of TMJ osteoarthritis in these patients, synovial fluid of TMJOA patients was compared prior to and after hyaluronic lavage, revealing substantially elevated levels of interleukin (IL) 1β, reactive oxidative stress (ROS), and an overload of Fe3+ and Fe2+ prior to lavage, indicative of ferroptosis as a mode of chondrocyte cell death. To ask whether prolonged inflammatory conditions resulted in ferroptosis-like transformation in vitro, we subjected TMJ chondrocytes to IL-1β treatment, resulting in a shift in messenger RNA sequencing gene ontologies related to iron homeostasis and oxidative stress-related cell death. Exposure to rat unilateral anterior crossbite conditions resulted in reduced COL2A1 expression, fewer chondrocytes, glutathione peroxidase 4 (GPX4) downregulation, and 4-hydroxynonenal (4-HNE) upregulation, an effect that was reversed after intra-articular injections of the ferroptosis inhibitor ferrostatin 1 (Fer-1). Our study demonstrated that ferroptosis conditions affected mitochondrial structure and function, while the inhibitor Fer-1 restored mitochondrial structure and the inhibition of hypoxia-inducible factor 1α (HIF-1α) or the transferrin receptor 1 (TFRC) rescued IL-1β-induced loss of mitochondrial membrane potential. Inhibition of HIF-1α downregulated IL-1β-induced TFRC expression, while inhibition of TFRC did not downregulate IL-1β-induced HIF-1α expression in chondrocytes. Moreover, inhibition of HIF-1α or TFRC downregulated the IL-1β-induced MMP13 expression in chondrocytes, while inhibition of HIF-1α or TFRC rescued IL-1β-inhibited COL2A1 expression in chondrocytes. Furthermore, upregulation of TFRC promoted Fe2+ entry into chondrocytes, inducing the Fenton reaction and lipid peroxidation, which in turn caused ferroptosis, a disruption in chondrocyte functions, and an exacerbation of condylar cartilage degeneration. Together, these findings illustrate the far-reaching effects of chondrocyte ferroptosis in TMJOA as a mechanism causing chondrocyte death through iron overload, oxidative stress, and articular cartilage degeneration and a potential major cause of TMJOA.
Collapse
Affiliation(s)
- B Y Chen
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - J L Pathak
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - H Y Lin
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - W Q Guo
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - W J Chen
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - G Luo
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - L J Wang
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - X F Sun
- Department of Obstetrics and Gynecology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Y Ding
- School of Medicine and Dentistry University of Rochester, Rochester, NY, USA
| | - J Li
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - T G H Diekwisch
- School of Medicine and Dentistry University of Rochester, Rochester, NY, USA
| | - C Liu
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Fan F, Yang C, Piao E, Shi J, Zhang J. Mechanisms of chondrocyte regulated cell death in osteoarthritis: Focus on ROS-triggered ferroptosis, parthanatos, and oxeiptosis. Biochem Biophys Res Commun 2024; 705:149733. [PMID: 38442446 DOI: 10.1016/j.bbrc.2024.149733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
Osteoarthritis (OA) is a common chronic inflammatory degenerative disease. Since chondrocytes are the only type of cells in cartilage, their survival is critical for maintaining cartilage morphology. This review offers a comprehensive analysis of how reactive oxygen species (ROS), including superoxide anions, hydrogen peroxide, hydroxyl radicals, nitric oxide, and their derivatives, affect cartilage homeostasis and trigger several novel modes of regulated cell death, including ferroptosis, parthanatos, and oxeiptosis, which may play roles in chondrocyte death and OA development. Moreover, we discuss potential therapeutic strategies to alleviate OA by scavenging ROS and provide new insight into the research and treatment of the role of regulated cell death in OA.
Collapse
Affiliation(s)
- Fangyang Fan
- Orthopedics Department, The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Cheng Yang
- Orthopedics Department, The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Enran Piao
- Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Jia Shi
- Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China.
| | - Juntao Zhang
- Orthopedics Department, The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
17
|
Ao X, Jiang T, Li Y, Lai W, Lian Z, Wang L, Huang M, Zhang Z. n-3 polyunsaturated fatty acids delay intervertebral disc degeneration by inhibiting nuclear receptor coactivator 4-mediated iron overload. iScience 2024; 27:108721. [PMID: 38303704 PMCID: PMC10830877 DOI: 10.1016/j.isci.2023.108721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/24/2023] [Accepted: 12/11/2023] [Indexed: 02/03/2024] Open
Abstract
n-3 polyunsaturated fatty acids (PUFAs) are closely related to the progression of numerous chronic inflammatory diseases, but the role of n-3 PUFAs in the intervertebral disc degeneration (IVDD) remains unclear. In this study, male C57BL/6 wildtype mice (WT group, n = 30) and fat-1 transgenic mice (TG group, n = 30) were randomly selected to construct the IVDD model. The results demonstrated that the optimized composition of PUFAs in the TG mice had a significant impact on delaying IVDD and cellular senescence of intervertebral disc (IVD). Mechanismly, n-3 PUFAs inhibited IVD senescence by alleviating NCOA4-mediated iron overload. NCOA4 overexpression promoted iron overload and weakened the pro-proliferation and anti-senescence effect of DHA on the IVD cells. Furthermore, this study futher revealed n-3 PUFAs downregulated NCOA4 expression by inactiviting the LGR5/β-catenin signaling pathway. This study provides an important theoretical basis for preventing and treating IVDD and low back pain.
Collapse
Affiliation(s)
- Xiang Ao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Tao Jiang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Yuan Li
- Department of Spine Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, P.R. China
- Academy of Orthopaedics·Guangdong Province, Guangzhou, Guangdong, P.R. China
| | - Weiyi Lai
- Department of Spine Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, P.R. China
- Academy of Orthopaedics·Guangdong Province, Guangzhou, Guangdong, P.R. China
| | - Zhengnan Lian
- Department of Spine Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, P.R. China
- Academy of Orthopaedics·Guangdong Province, Guangzhou, Guangdong, P.R. China
| | - Liang Wang
- Department of Spine Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, P.R. China
- Academy of Orthopaedics·Guangdong Province, Guangzhou, Guangdong, P.R. China
| | - Minjun Huang
- Department of Spine Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, P.R. China
- Academy of Orthopaedics·Guangdong Province, Guangzhou, Guangdong, P.R. China
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
18
|
Liu J, Zhou H, Chen J, Zuo Q, Liu F. Baicalin inhibits IL-1β-induced ferroptosis in human osteoarthritis chondrocytes by activating Nrf-2 signaling pathway. J Orthop Surg Res 2024; 19:23. [PMID: 38166985 PMCID: PMC10763085 DOI: 10.1186/s13018-023-04483-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/16/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a common degenerative disease involving articular cartilage, in which ferroptosis of chondrocytes plays an important role. Baicalin (BAI) exerts regulatory effects in a wide range of orthopedic diseases including OA, but its effect on ferroptosis of chondrocytes (CHs) is still unclear. The purpose of this study was to determine the effect of BAI on ferroptosis in human OA chondrocytes (OACs), and to explore its possible mechanism. METHODS CHs were treated with IL-1β (10 ng/mL) to simulate inflammation in vitro. Immunofluorescence, quantitative RT-PCR, Western blotting and cell viability assay were performed to evaluate the impacts of BAI on Fe2+ level, mitochondrial dysfunction, ferroptosis-related proteins, oxidative stress and cytotoxicity in CHs. Additionally, siRNA was made use of to knock out nuclear factor E2-related factor 2 (Nrf2) to analyze the role played by Nrf2 in BAI-induced CH ferroptosis. RESULTS BAI eliminated IL-1β-induced Fe2+ accumulation, changes in mitochondrial membrane potential and ferroptosis-related protein GPX4, SLC7A11, P53 and ACSL4 levels, as well as reactive oxygen species (ROS), lipid peroxidation (LPO) and malondialdehyde (MDA) accumulation in CHs. Besides, BAI reversed IL-1β-induced decrease of Collagen II and increase of MMP13 in CHs. Meanwhile, BAI attenuated IL-1β-induced CH toxicity and promoted Nrf2 antioxidant system activation. When Nrf2 was knocked down by siRNA, the effects of BAI on IL-1β-induced ferroptosis-related proteins and antioxidant stress in CHs were significantly weakened. CONCLUSIONS This study demonstrates that IL-1β can induce CH ferroptosis. BAI is able to inhibit IL-1β-induced CH ferroptosis and ECM degradation, and the specific mechanism may be that it can inhibit IL-1β-induced CH ferroptosis by activating Nrf2 antioxidant system to attenuate the accumulation of intracellular ROS and lipid ROS.
Collapse
Affiliation(s)
- Jiuxiang Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Hao Zhou
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Jiangqi Chen
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Qiang Zuo
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China.
| | - Feng Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
19
|
An F, Zhang J, Gao P, Xiao Z, Chang W, Song J, Wang Y, Ma H, Zhang R, Chen Z, Yan C. New insight of the pathogenesis in osteoarthritis: the intricate interplay of ferroptosis and autophagy mediated by mitophagy/chaperone-mediated autophagy. Front Cell Dev Biol 2023; 11:1297024. [PMID: 38143922 PMCID: PMC10748422 DOI: 10.3389/fcell.2023.1297024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
Ferroptosis, characterized by iron accumulation and lipid peroxidation, is a form of iron-driven cell death. Mitophagy is a type of selective autophagy, where degradation of damaged mitochondria is the key mechanism for maintaining mitochondrial homeostasis. Additionally, Chaperone-mediated autophagy (CMA) is a biological process that transports individual cytoplasmic proteins to lysosomes for degradation through companion molecules such as heat shock proteins. Research has demonstrated the involvement of ferroptosis, mitophagy, and CMA in the pathological progression of Osteoarthritis (OA). Furthermore, research has indicated a significant correlation between alterations in the expression of reactive oxygen species (ROS), adenosine monophosphate (AMP)-activated protein kinase (AMPK), and hypoxia-inducible factors (HIFs) and the occurrence of OA, particularly in relation to ferroptosis and mitophagy. In light of these findings, our study aims to assess the regulatory functions of ferroptosis and mitophagy/CMA in the pathogenesis of OA. Additionally, we propose a mechanism of crosstalk between ferroptosis and mitophagy, while also examining potential pharmacological interventions for targeted therapy in OA. Ultimately, our research endeavors to offer novel insights and directions for the prevention and treatment of OA.
Collapse
Affiliation(s)
- Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jie Zhang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Peng Gao
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhipan Xiao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Weirong Chang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jiayi Song
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yujie Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Haizhen Ma
- Teaching Department of Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Rui Zhang
- Teaching Department of Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhendong Chen
- Teaching Department of Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Chunlu Yan
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
20
|
Xu Y, Yang Z, Dai T, Xue X, Xia D, Feng Z, Huang J, Chen X, Sun S, Zhou J, Dai Y, Zong J, Li S, Meng Q. Characteristics and time points to inhibit ferroptosis in human osteoarthritis. Sci Rep 2023; 13:21592. [PMID: 38062071 PMCID: PMC10703773 DOI: 10.1038/s41598-023-49089-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
Ferroptosis is a form of cell death that is triggered by iron-dependent lipid peroxidation and is closely associated with osteoarthritis. The primary interventions for inhibiting ferroptosis in osteoarthritis are anti-lipid peroxidation and iron chelation. The objective of our study is to investigate the characteristics of ferroptosis in osteoarthritis and identify the optimal time points for inhibiting ferroptosis to alleviate disease progression. Ferroptosis-related alterations and markers of OA were analyzed in paired intact and damaged cartilages from OA patients by immunofluorescence, qRT-PCR, mitochondrial membrane potential and immunohistochemistry. We also compared Ferroptosis-related alterations in cartilage of mild, moderate, and severe OA (according to the modified Mankin score). In addition, we compared the effect of Fer-1 on ferroptosis and the protection of chondrocytes by detecting markers of both ferroptosis and OA by immunofluorescence, CCK8 and qRT-PCR. Ferroptosis-related alterations (GPX4 downregulation, ACSL4 upregulation, MDA, LPO accumulation, Mitochondrial membrane potential decreased) in the damaged area cartilage were more severe than those in the intact area and increased with the progression of OA. Compared with mild OA group, the activity of chondrocytes treated with Fer-1 (a ferroptosis inhibitor) was increased, mitochondrial function was improved, and ferroptosis was reduced (GPX4 upregulation, SLC7A11 upregulation, ACSL4 downregulation,), and promoted the expression of COL2A1 and inhibited the expression of MMP13. However, these changes were not observed in moderate and severe OA chondrocytes. Ferroptosis occurs in a region-specific manner and is exacerbated with the progression of human OA cartilage degeneration. Inhibition of ferroptosis might had a therapeutic effect on chondrocytes with mild OA but had no significant therapeutic effect on chondrocytes with moderate to severe OA.
Collapse
Affiliation(s)
- Yangyang Xu
- Guizhou Medical University, Guiyang City, Guizhou Province, China
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Zhenyu Yang
- Jinan University, Guangzhou, Guangdong Province, China
- Xuzhou New Health Hospital, North Hospital of Xuzhou Cancer Hospital, Xuzhou City, Jiangsu Province, China
| | - Tianming Dai
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Xiang Xue
- Jinan University, Guangzhou, Guangdong Province, China
| | - Dong Xia
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Zhencheng Feng
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Jian Huang
- Jinan University, Guangzhou, Guangdong Province, China
| | | | - Shengjie Sun
- Jinan University, Guangzhou, Guangdong Province, China
| | - Jing Zhou
- Department of Ultrasound Medicine, First People's Hospital of Xuzhou City, Xuzhou City, Jiangsu Province, China
| | - Yunmeng Dai
- Guizhou Medical University, Guiyang City, Guizhou Province, China
| | - Jiaqi Zong
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Siming Li
- Guizhou Medical University, Guiyang City, Guizhou Province, China.
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China.
| | - Qingqi Meng
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
21
|
Leal AF, Inci OK, Seyrantepe V, Rintz E, Celik B, Ago Y, León D, Suarez DA, Alméciga-Díaz CJ, Tomatsu S. Molecular Trojan Horses for treating lysosomal storage diseases. Mol Genet Metab 2023; 140:107648. [PMID: 37598508 DOI: 10.1016/j.ymgme.2023.107648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 08/22/2023]
Abstract
Lysosomal storage diseases (LSDs) are caused by monogenic mutations in genes encoding for proteins related to the lysosomal function. Lysosome plays critical roles in molecule degradation and cell signaling through interplay with many other cell organelles, such as mitochondria, endoplasmic reticulum, and peroxisomes. Even though several strategies (i.e., protein replacement and gene therapy) have been attempted for LSDs with promising results, there are still some challenges when hard-to-treat tissues such as bone (i.e., cartilages, ligaments, meniscus, etc.), the central nervous system (mostly neurons), and the eye (i.e., cornea, retina) are affected. Consistently, searching for novel strategies to reach those tissues remains a priority. Molecular Trojan Horses have been well-recognized as a potential alternative in several pathological scenarios for drug delivery, including LSDs. Even though molecular Trojan Horses refer to genetically engineered proteins to overcome the blood-brain barrier, such strategy can be extended to strategies able to transport and deliver drugs to specific tissues or cells using cell-penetrating peptides, monoclonal antibodies, vesicles, extracellular vesicles, and patient-derived cells. Only some of those platforms have been attempted in LSDs. In this paper, we review the most recent efforts to develop molecular Trojan Horses and discuss how this strategy could be implemented to enhance the current efficacy of strategies such as protein replacement and gene therapy in the context of LSDs.
Collapse
Affiliation(s)
- Andrés Felipe Leal
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia; Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Orhan Kerim Inci
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430 Izmir, Turkey
| | - Volkan Seyrantepe
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430 Izmir, Turkey
| | - Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Betul Celik
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Yasuhiko Ago
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Daniel León
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Diego A Suarez
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Carlos Javier Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland; Faculty of Arts and Sciences, University of Delaware, Newark, DE, USA; Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Zhang X, Hou L, Guo Z, Wang G, Xu J, Zheng Z, Sun K, Guo F. Lipid peroxidation in osteoarthritis: focusing on 4-hydroxynonenal, malondialdehyde, and ferroptosis. Cell Death Discov 2023; 9:320. [PMID: 37644030 PMCID: PMC10465515 DOI: 10.1038/s41420-023-01613-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
Osteoarthritis (OA) is a multifactorial and increasingly prevalent degenerative disease that affects the whole joint. The pathogenesis of OA is poorly understood and there is a lack of therapeutic interventions to reverse the pathological process of this disease. Accumulating studies have shown that the overproduction of reactive oxygen species (ROS) and ROS-induced lipid peroxidation are involved in the pathogenesis of OA. 4-Hydroxy-2-nonenal (4-HNE) and malondialdehyde (MDA) have received considerable attention for their role in cartilage degeneration and subchondral bone remodeling during OA development. Ferroptosis is a form of cell death characterized by a lack of control of membrane lipid peroxidation and recent studies have suggested that chondrocyte ferroptosis contributes to OA progression. In this review, we aim to discuss lipid peroxidation-derived 4-HNE and MDA in the progression of OA. In addition, the therapeutic potential for OA by controlling the accumulation of lipid peroxidation and inhibiting chondrocyte ferroptosis are discussed.
Collapse
Affiliation(s)
- Xiong Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Liangcai Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhou Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Genchun Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jingting Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zehang Zheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Kai Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
23
|
Cao S, Wei Y, Xu H, Weng J, Qi T, Yu F, Liu S, Xiong A, Liu P, Zeng H. Crosstalk between ferroptosis and chondrocytes in osteoarthritis: a systematic review of in vivo and in vitro studies. Front Immunol 2023; 14:1202436. [PMID: 37520558 PMCID: PMC10376718 DOI: 10.3389/fimmu.2023.1202436] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Purpose Recent scientific reports have revealed a close association between ferroptosis and the occurrence and development of osteoarthritis (OA). Nevertheless, the precise mechanisms by which ferroptosis influences OA and how to hobble OA progression by inhibiting chondrocyte ferroptosis have not yet been fully elucidated. This study aims to conduct a comprehensive systematic review (SR) to address these gaps. Methods Following the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020, we conducted a comprehensive search of the Embase, Ovid, ProQuest, PubMed, Scopus, the Cochrane Library, and Web of Science databases to identify relevant studies that investigate the association between ferroptosis and chondrocytes in OA. Our search included studies published from the inception of these databases until January 31st, 2023. Only studies that met the predetermined quality criteria were included in this SR. Results In this comprehensive SR, a total of 21 studies that met the specified criteria were considered suitable and included in the current updated synthesis. The mechanisms underlying chondrocyte ferroptosis and its association with OA progression involve various biological phenomena, including mitochondrial dysfunction, dysregulated iron metabolism, oxidative stress, and crucial signaling pathways. Conclusion Ferroptosis in chondrocytes has opened an entirely new chapter for the investigation of OA, and targeted regulation of it is springing up as an attractive and promising therapeutic tactic for OA. Systematic review registration https://inplasy.com/inplasy-2023-3-0044/, identifier INPLASY202330044.
Collapse
Affiliation(s)
- Siyang Cao
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yihao Wei
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Huihui Xu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jian Weng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Tiantian Qi
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Fei Yu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Su Liu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Ao Xiong
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Peng Liu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Hui Zeng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
24
|
Ranade A, Khan AA, Gul MT, Suresh S, Qaisar R, Ahmad F, Karim A. Suppression of endoplasmic reticulum stress reverses hindlimb unloading-induced hepatic cellular processes in mice. Biochim Biophys Acta Gen Subj 2023:130422. [PMID: 37406741 DOI: 10.1016/j.bbagen.2023.130422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND The Hindlimb unloaded mouse, an animal model of simulated microgravity demonstrates significant metabolic and hepatic derangements. However, cellular and molecular mechanisms driving liver dysfunction in Hindlimb unloaded mice are poorly characterized. METHODS We investigated the possible contribution of dysregulated protein homeostasis by endoplasmic reticulum, endoplasmic reticulum stress, to liver dysfunction during HU. C57BL/6j male mice were grouped into ground-based controls or Hindlimb unloaded groups treated daily with vehicle or 4-phenylbutyrate (4-PBA), a potent inhibitor of endoplasmic reticulum stress. Following three weeks of HU, mice were sacrificed, and liver tissues were dissected for further analysis. RESULTS Hindlimb unloaded was associated with hepatic atrophy and elevated endoplasmic reticulum stress, which was restored by 4-PBA treatment. The Gene Ontology analysis revealed the downregulation of genes primarily involved in liver metabolic and Wingless-related integration site (WNT) signaling pathways, while those related to cytochrome P450, and liver fibrosis were upregulated. The Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed downregulation of several genes involved in metabolic pathways following treatment with 4-PBA, induced by HU. CONCLUSIONS We report several differential and uniquely expressed genes associated with microgravity-induced elevated ER stress and liver injury. Our data has translational potential in unraveling novel molecular targets for pharmaceutical therapies of liver diseases. GENERAL SIGNIFICANCE Our novel findings show a pathogenic role for elevated ER stress in liver injury in microgravity conditions.
Collapse
Affiliation(s)
- Anu Ranade
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Amir Ali Khan
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Muhammad Tehsil Gul
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Savitha Suresh
- Iron Biology Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Rizwan Qaisar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Firdos Ahmad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates
| | - Asima Karim
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Iron Biology Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
25
|
Kulkarni N, Gadde R, Betharia S. Dithiolethiones D3T and ACDT Protect Against Iron Overload-Induced Cytotoxicity and Serve as Ferroptosis Inhibitors in U-87 MG Cells. Neurochem Res 2023:10.1007/s11064-023-03927-7. [PMID: 37061657 DOI: 10.1007/s11064-023-03927-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/17/2023]
Abstract
Iron overload-induced oxidative stress is implicated in various neurodegenerative disorders. Given the numerous adverse effects associated with current iron chelators, natural antioxidants are being explored as alternative therapeutic options. Dithiolethiones found in cruciferous vegetables have emerged as promising candidates against a wide range of toxicants owing to their lipophilic and cytoprotective properties. Here, we test the dithiolethiones 3H-1,2-dithiole-3-thione (D3T) and 5-amino-3-thioxo-3H-(1,2) dithiole-4-carboxylic acid ethyl ester (ACDT) against ferric ammonium citrate (FAC)-induced toxicity in U-87 MG astrocytoma cells. Exposure to 15 mM FAC for 24 h resulted in 54% cell death. A 24-h pretreatment with 50 μM D3T and ACDT prevented this cytotoxicity. Both dithiolethiones exhibited antioxidant effects by activating the nuclear factor erythroid 2-related factor-2 (Nrf2) transcription factor and upregulating levels of intracellular glutathione (GSH). This resulted in the successful inhibition of FAC-induced reactive oxygen species, lipid peroxidation, and cell death. Additionally, D3T and ACDT upregulated expression of the Nrf2-mediated iron storage protein ferritin which consequently reduced the total labile iron pool. A 24-h pretreatment with D3T and ACDT also prevented cell death induced by the ferroptosis inducer erastin by upregulating the transmembrane cystine/glutamate antiporter (xCT) expression. The resulting increase in intracellular GSH and alleviation of lipid peroxidation was comparable to that caused by ferrostatin-1, a specific ferroptosis inhibitor. Collectively, our findings demonstrate that dithiolethiones may show promise as potential therapeutic options for the treatment of iron overload disorders.
Collapse
Affiliation(s)
- Neha Kulkarni
- Department of Pharmaceutical Sciences, School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, 179 Longwood Avenue, Boston, MA, 02115, USA
| | - Rajitha Gadde
- Department of Pharmaceutical Sciences, School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, 179 Longwood Avenue, Boston, MA, 02115, USA
| | - Swati Betharia
- Department of Pharmaceutical Sciences, School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, 179 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
26
|
Lee YH, Kuk MU, So MK, Song ES, Lee H, Ahn SK, Kwon HW, Park JT, Park SC. Targeting Mitochondrial Oxidative Stress as a Strategy to Treat Aging and Age-Related Diseases. Antioxidants (Basel) 2023; 12:antiox12040934. [PMID: 37107309 PMCID: PMC10136354 DOI: 10.3390/antiox12040934] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Mitochondria are one of the organelles undergoing rapid alteration during the senescence process. Senescent cells show an increase in mitochondrial size, which is attributed to the accumulation of defective mitochondria, which causes mitochondrial oxidative stress. Defective mitochondria are also targets of mitochondrial oxidative stress, and the vicious cycle between defective mitochondria and mitochondrial oxidative stress contributes to the onset and development of aging and age-related diseases. Based on the findings, strategies to reduce mitochondrial oxidative stress have been suggested for the effective treatment of aging and age-related diseases. In this article, we discuss mitochondrial alterations and the consequent increase in mitochondrial oxidative stress. Then, the causal role of mitochondrial oxidative stress on aging is investigated by examining how aging and age-related diseases are exacerbated by induced stress. Furthermore, we assess the importance of targeting mitochondrial oxidative stress for the regulation of aging and suggest different therapeutic strategies to reduce mitochondrial oxidative stress. Therefore, this review will not only shed light on a new perspective on the role of mitochondrial oxidative stress in aging but also provide effective therapeutic strategies for the treatment of aging and age-related diseases through the regulation of mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Yun Haeng Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Myeong Uk Kuk
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Moon Kyoung So
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Eun Seon Song
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Haneur Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Soon Kil Ahn
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Hyung Wook Kwon
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea
| | - Joon Tae Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea
| | - Sang Chul Park
- The Future Life & Society Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
27
|
Zhang J, Liu L, Wei J, Wu X, Luo J, Wei H, Ning L, He Y. High expression level of the FTH1 gene is associated with poor prognosis in children with non-M3 acute myeloid leukemia. Front Oncol 2023; 12:1068094. [PMID: 36818670 PMCID: PMC9928996 DOI: 10.3389/fonc.2022.1068094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/29/2022] [Indexed: 02/04/2023] Open
Abstract
Acute myelogenous leukemia (AML) is a disease that severely affects the physical health of children. Thus, we aimed to identify biomarkers associated with AML prognosis in children. Using transcriptomics on an mRNA dataset from 27 children with non-M3 AML, we selected genes from among those with the top 5000 median absolute deviation (MAD) values for subsequent analysis which showed that two modules were associated with AML risk groups. Thus, enrichment analysis was performed using genes from these modules. A one-way Cox analysis was performed on a dataset of 149 non-M3 AML patients downloaded from the TCGA. This identified four genes as significant: FTH1, RCC2, ABHD17B, and IRAK1. Through survival analysis, FTH1 was identified as a key gene associated with AML prognosis. We verified the proliferative and regulatory effects of ferroptosis on MOLM-13 and THP-1 cells using Liproxstatin-1 and Erastin respectively by CCK-8 and flow cytometry assays. Furthermore, we assayed expression levels of FTH1 in MOLM-13 and THP-1 cells after induction and inhibition of ferroptosis by real-time quantitative PCR, which showed that upregulated FTH1 expression promoted proliferation and inhibited apoptosis in leukemia cells. In conclusion, high expression of FTH1 promoted proliferation and inhibited apoptosis of leukemic cells through the ferroptosis pathway and is thus a potential risk factor that affects the prognosis of non-M3 AML in children.
Collapse
Affiliation(s)
- Junlin Zhang
- First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liying Liu
- First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinshuang Wei
- First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaojing Wu
- First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jianming Luo
- First Affiliated Hospital of Guangxi Medical University, Nanning, China
- The Key Laboratory of Children’s Disease Research in Guangxi’s Colleges and Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Hongying Wei
- First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liao Ning
- First Affiliated Hospital of Guangxi Medical University, Nanning, China
- The Key Laboratory of Children’s Disease Research in Guangxi’s Colleges and Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yunyan He
- First Affiliated Hospital of Guangxi Medical University, Nanning, China
- The Key Laboratory of Children’s Disease Research in Guangxi’s Colleges and Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
28
|
Pan Z, He Q, Zeng J, Li S, Li M, Chen B, Yang J, Xiao J, Zeng C, Luo H, Wang H. Naringenin protects against iron overload-induced osteoarthritis by suppressing oxidative stress. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154330. [PMID: 35905566 DOI: 10.1016/j.phymed.2022.154330] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/20/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The traditional Chinese medicine Gusuibu, the rhizome of Rhizoma Drynariae, is used to treat rheumatism and fractures. Naringenin (NAR) is an active ingredient in Gusuibu and has significant anti-inflammatory and antioxidant effects. However, the role of naringenin in iron overload-induced osteoarthritis (IOOA) is unknown. HYPOTHESIS NAR reduces cartilage damage in IOOA. METHODS The effects of NAR on the viability of IOOA chondrocytes and the synthesis ability of type II collagen were evaluated using cell counting kit (CCK8) and toluidine blue assays. To determine the mechanism of action and characteristics of NAR, the intracellular iron ion content, apoptosis rate, and mitochondrial membrane potential (MMP) change, and malondialdehyde (MDA) levels, as well as the degree of reactive oxygen species (ROS) and lipid hydroperoxide (LPO) accumulation in the cells were detected in vitro and verified using western blotting and quantitative real-time PCR (qRT-PCR). To verify the role of NAR in vivo, IOOA mice were established using iron dextran and surgery-induced destabilised medial meniscus. Changes in the articular cartilage and subchondral bone were examined using Safranin O-fast Green staining (S-O), haematoxylin-eosin staining (H&E), and microcomputed tomography (μCT). RESULTS In vitro, NAR attenuated the impairment of cell viability, apoptosis, and MMP caused by ferric ammonium citrate and interleukin-1β co-culture, increased the levels of MDA, reduced the expression of matrix metallopeptidase (MMP)3, MMP13, and Bax, and restored the expression of type II collagen (Col II). NAR showed a slight iron accumulation-reducing effect. NAR alleviated the accumulation of ROS and LPO in IOOA chondrocytes and upregulated antioxidant genes nuclear factor E2-related factor 2 (NRF2) and haem oxygenase 1 (HO-1). When ML385, a specific NRF-2 inhibitor, was added, the protective effect of NAR was significantly inhibited. In vivo, NAR reduced synovitis and attenuated cartilage damage and subchondral bone proliferation in IOOA mice. CONCLUSIONS NAR can reduce oxidative stress through the NRF2-HO-1 pathway, alleviate cartilage damage under iron overload, and has the potential to treat IOOA.
Collapse
Affiliation(s)
- Zhaofeng Pan
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China
| | - Qi He
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China
| | - Jiaxu Zeng
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China
| | - Shaocong Li
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China
| | - Miao Li
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China
| | - Baihao Chen
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China
| | - Junzheng Yang
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China
| | - Jiacong Xiao
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China
| | - Chuning Zeng
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China
| | - Haoran Luo
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China
| | - Haibin Wang
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China; Department of Orthopaedic Surgery, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 16 Jichang Road, Baiyun District, Guangzhou 510405, Guangdong, PR China.
| |
Collapse
|
29
|
Liu L, Luo P, Yang M, Wang J, Hou W, Xu P. The role of oxidative stress in the development of knee osteoarthritis: A comprehensive research review. Front Mol Biosci 2022; 9:1001212. [PMID: 36203877 PMCID: PMC9532006 DOI: 10.3389/fmolb.2022.1001212] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Knee osteoarthritis (KOA) is one of the most common degenerative diseases, and its core feature is the degeneration and damage of articular cartilage. The cartilage degeneration of KOA is due to the destruction of dynamic balance caused by the activation of chondrocytes by various factors, with oxidative stress playing an important role in the pathogenesis of KOA. The overproduction of reactive oxygen species (ROS) is a result of oxidative stress, which is caused by a redox process that goes awry in the inherent antioxidant defence system of the human body. Superoxide dismutase (SOD) inside and outside chondrocytes plays a key role in regulating ROS in cartilage. Additionally, synovitis is a key factor in the development of KOA. In an inflammatory environment, hypoxia in synovial cells leads to mitochondrial damage, which leads to an increase in ROS levels, which further aggravates synovitis. In addition, oxidative stress significantly accelerates the telomere shortening and ageing of chondrocytes, while ageing promotes the development of KOA, damages the regulation of redox of mitochondria in cartilage, and stimulates ROS production to further aggravate KOA. At present, there are many drugs to regulate the level of ROS, but these drugs still need to be developed and verified in animal models of KOA. We discuss mainly how oxidative stress plays a part in the development of KOA. Although the current research has achieved some results, more research is needed.
Collapse
|
30
|
The Role Played by Ferroptosis in Osteoarthritis: Evidence Based on Iron Dyshomeostasis and Lipid Peroxidation. Antioxidants (Basel) 2022; 11:antiox11091668. [PMID: 36139742 PMCID: PMC9495695 DOI: 10.3390/antiox11091668] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 01/17/2023] Open
Abstract
Ferroptosis, a recently discovered regulated cell death modality, is characterised by iron-dependent accumulation of lipid hydroperoxides, which can reach lethal levels but can be specifically reversed by ferroptosis inhibitors. Osteoarthritis (OA), the most common degenerative joint disease, is characterised by a complex pathogenesis involving mechanical overload, increased inflammatory mediator levels, metabolic alterations, and cell senescence and death. Since iron accumulation and oxidative stress are the universal pathological features of OA, the role played by ferroptosis in OA has been extensively explored. Increasing evidence has shown that iron dyshomeostasis and lipid peroxidation are closely associated with OA pathogenesis. Therefore, in this review, we summarize recent evidence by focusing on ferroptotic mechanisms and the role played by ferroptosis in OA pathogenesis from the perspectives of clinical findings, animal models, and cell research. By summarizing recent research advances that characterize the relationship between ferroptosis and OA, we highlight avenues for further research and potential therapeutic targets.
Collapse
|
31
|
Tang Y, Wu J, Xu M, Zhu T, Sun Y, Chen H, Wu L, Chen C. Causal associations of iron status and back pain risk: A Mendelian randomization study. Front Nutr 2022; 9:923590. [PMID: 36034918 PMCID: PMC9399786 DOI: 10.3389/fnut.2022.923590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022] Open
Abstract
Background Observational studies have previously suggested a link between iron status makers and back pain. We conducted a two-sample Mendelian randomization (MR) study to determine the putative causal relationship between systemic iron status and back pain. Materials and methods In this MR study, a genome-wide association study (GWAS) involving 48,972 individuals was used to identify genetic instruments highly associated with systemic iron status. The outcome data (back pain) were derived from the Neale Lab consortium's summary data from the UK Biobank (85,221 cases and 336,650 controls). With the inverse variance weighted (IVW) method as the main analysis, conservative analyses (selecting SNPs with concordant change of iron status biomarkers) and liberal analyses (selecting SNPs with genome-wide significant association with each iron status biomarker) were carried out. For sensitivity analyses, the MR-Egger, MR-Egger intercept, weighted median, weighted mode, and MR based on a Bayesian model averaging approaches were used. The Cochran's Q-test was used to detect heterogeneity. Results Back pain was associated with genetically instrumented serum iron (OR = 1.01; 95% CI = 1.00-1.02, p = 0.01), ferritin (OR = 1.02; 95% CI = 1.00-1.04, p = 0.02), and transferrin saturation (OR = 1.01; 95% CI = 1.00-1.01, p = 0.01). Furthermore, there was no evidence of a link between transferrin and the risk of back pain (OR = 0.99, 95% CI = 0.98-1.00, p = 0.08). The sensitivity analyses and Cochran's Q-test indicated that no pleiotropy or heterogeneity was detected (all p > 0.05). Conclusion We provided potential genetic evidences for the causal associations of iron status with increased incidence of back pain. However, the evidences were weakened due to the low power. Further larger MR studies or RCTs are needed to investigate small effects.
Collapse
Affiliation(s)
- Yidan Tang
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Jiahui Wu
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Mingzhe Xu
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Tao Zhu
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Yalan Sun
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Hai Chen
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Lining Wu
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Chan Chen
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|