1
|
Chini A, Guha P, Rishi A, Bhat N, Covarrubias A, Martinez V, Devejian L, Nguyen BN, Mandal SS. HDLR-SR-BI Expression and Cholesterol Uptake are Regulated via Indoleamine-2,3-dioxygenase 1 in Macrophages under Inflammation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:11253-11271. [PMID: 40309829 DOI: 10.1021/acs.langmuir.4c03005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Macrophages play crucial roles in inflammation, and their dysfunction is a contributing factor to various human diseases. Maintaining the balance of cholesterol and lipid metabolism is central to macrophage function, and any disruption in this balance increases the risk of conditions such as cardiovascular disease, atherosclerosis, and others. HDLR-SR-BI (SR-BI) is pivotal for reverse cholesterol transport and cholesterol homeostasis. Our studies demonstrate that the expression of SR-BI is reduced along with a decrease in cholesterol uptake in macrophages, both of which are regulated by the activation of NF-κB. Furthermore, we have discovered that indoleamine-2,3-dioxygenase 1 (IDO1), which is a critical player in tryptophan (Trp) catabolism, is crucial to the regulation of SR-BI expression. Inflammation leads to elevated levels of IDO1 and the associated Trp catabolite kynurenine (KYN) in macrophages. Interestingly, knockdown or inhibition of IDO1 results in the downregulation of LPS-induced inflammation, decreased KYN levels, and the restoration of SR-BI expression as well as cholesterol uptake in macrophages. Beyond LPS, stimulation with pro-inflammatory cytokine IFNγ exhibits similar trends in inflammatory response, IDO1 regulation, and cholesterol uptake in macrophages. These observations suggest that IDO1 plays a critical role in SR-BI expression and cholesterol uptake in macrophages under inflammation.
Collapse
Affiliation(s)
- Avisankar Chini
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Prarthana Guha
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Ashcharya Rishi
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Nagashree Bhat
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Angel Covarrubias
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Valeria Martinez
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Lucine Devejian
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Bao Nhi Nguyen
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Subhrangsu S Mandal
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
2
|
Huang R, Pang Q, Zheng L, Lin J, Li H, Wan L, Wang T. Cholesterol metabolism: physiological versus pathological aspects in intracerebral hemorrhage. Neural Regen Res 2025; 20:1015-1030. [PMID: 38989934 PMCID: PMC11438341 DOI: 10.4103/nrr.nrr-d-23-01462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/19/2023] [Accepted: 01/27/2024] [Indexed: 07/12/2024] Open
Abstract
Cholesterol is an important component of plasma membranes and participates in many basic life functions, such as the maintenance of cell membrane stability, the synthesis of steroid hormones, and myelination. Cholesterol plays a key role in the establishment and maintenance of the central nervous system. The brain contains 20% of the whole body's cholesterol, 80% of which is located within myelin. A huge number of processes (e.g., the sterol regulatory element-binding protein pathway and liver X receptor pathway) participate in the regulation of cholesterol metabolism in the brain via mechanisms that include cholesterol biosynthesis, intracellular transport, and efflux. Certain brain injuries or diseases involving crosstalk among the processes above can affect normal cholesterol metabolism to induce detrimental consequences. Therefore, we hypothesized that cholesterol-related molecules and pathways can serve as therapeutic targets for central nervous system diseases. Intracerebral hemorrhage is the most severe hemorrhagic stroke subtype, with high mortality and morbidity. Historical cholesterol levels are associated with the risk of intracerebral hemorrhage. Moreover, secondary pathological changes after intracerebral hemorrhage are associated with cholesterol metabolism dysregulation, such as neuroinflammation, demyelination, and multiple types of programmed cell death. Intracellular cholesterol accumulation in the brain has been found after intracerebral hemorrhage. In this paper, we review normal cholesterol metabolism in the central nervous system, the mechanisms known to participate in the disturbance of cholesterol metabolism after intracerebral hemorrhage, and the links between cholesterol metabolism and cell death. We also review several possible and constructive therapeutic targets identified based on cholesterol metabolism to provide cholesterol-based perspectives and a reference for those interested in the treatment of intracerebral hemorrhage.
Collapse
Affiliation(s)
- Ruoyu Huang
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Qiuyu Pang
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Lexin Zheng
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Jiaxi Lin
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Hanxi Li
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Lingbo Wan
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Tao Wang
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
3
|
Yu Z, Shen Y, Zhang H, Zhang W, Zhang X, Wang Y, Nie C, Zhou J, Gao A, Liang H. Exploring the genetic causal inference between plasma lipidome and hemorrhagic stroke. J Stroke Cerebrovasc Dis 2025; 34:108252. [PMID: 39875008 DOI: 10.1016/j.jstrokecerebrovasdis.2025.108252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 01/16/2025] [Accepted: 01/25/2025] [Indexed: 01/30/2025] Open
Abstract
OBJECTIVES Recent research indicates that the plasma lipidome composition may undergo alterations following hemorrhagic stroke. Nevertheless, the causal inference between plasma lipidome and hemorrhagic stroke remains elusive. MATERIALS AND METHODS Exposure data were achieved from a recent Genome-wide Association Study (GWAS) study of 179 lipid species involving 7174 individuals, while the outcome data were obtained from the FinnGen consortium (R10), including intracerebral hemorrhage (ICH), subarachnoid hemorrhage (SAH), and non-traumatic intracranial hemorrhage (nITH). Two-sample bidirectional Mendelian randomization (MR) analyses were used to assess the causal inference between lipidome and hemorrhagic stroke, and inverse variance weighted served as the main method. Genetic correlations between lipidome and hemorrhagic stroke were assessed using linkage disequilibrium score regression (LDSC). RESULTS After the false discovery rate (FDR) correction, Phosphatidylcholine (O-18:2_20:4) was identified as a substantial risk factor for ICH (OR,1.199; 95 % CI, 1.073-1.341; PFDR = 0.073). Alternatively, Phosphatidylinositol (16:0_18:1) was a relevant protective factor (OR, 0.773; 95 % CI, 0.666-0.896; PFDR = 0.069). Furthermore, the Sterol ester (27:1/20:3) (OR, 1.138; 95 % CI, 1.024-1.264; PFDR = 0.086) was identified as the prominent risk factor for SAH. Finally, Sterol ester (27:1/20:4) (OR, 1.073; 95 % CI, 1.026-1.121; PFDR = 0.030) and Phosphatidylinositol (16:0_18:1) levels (OR, 0.794; 95 % CI, 0.709-0.889; PFDR = 0.007) was identified as risk and protective factors for nITH, respectively. CONCLUSIONS The causal relationship between plasma lipidome and hemorrhagic stroke is evident. Studying the plasma lipidome offers promising preventive strategies and potential therapeutic approaches for hemorrhagic stroke.
Collapse
Affiliation(s)
- Zhao Yu
- NHC Key Laboratory of Cell Transplantation, Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Yingjie Shen
- NHC Key Laboratory of Cell Transplantation, Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Haopeng Zhang
- NHC Key Laboratory of Cell Transplantation, Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Wei Zhang
- NHC Key Laboratory of Cell Transplantation, Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Xi Zhang
- NHC Key Laboratory of Cell Transplantation, Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Yaolou Wang
- NHC Key Laboratory of Cell Transplantation, Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Chenyi Nie
- School of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China.
| | - Jiaxin Zhou
- School of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China.
| | - Aili Gao
- School of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China.
| | - Hongsheng Liang
- NHC Key Laboratory of Cell Transplantation, Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
4
|
Daya T, Breytenbach A, Gu L, Kaur M. Cholesterol metabolism in pancreatic cancer and associated therapeutic strategies. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159578. [PMID: 39542394 DOI: 10.1016/j.bbalip.2024.159578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/31/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Pancreatic cancer remains one of the most lethal cancers due to late diagnosis and high chemoresistance. Despite recent progression in the development of chemotherapies, immunotherapies, and potential nanoparticles-based approaches, the success rate of therapeutic response is limited which is further compounded by cancer drug resistance. Understanding of emerging biological and molecular pathways causative of pancreatic cancer's aggressive and chemoresistance is vital to improve the effectiveness of existing therapeutics and to develop new therapies. One such under-investigated and relatively less explored area of research is documenting the effect that lipids, specifically cholesterol, and its metabolism, impose on pancreatic cancer. Dysregulated cholesterol metabolism has a profound role in supporting cellular proliferation, survival, and promoting chemoresistance and this has been well established in various other cancers. Thus, we aimed to provide an in-depth review focusing on the significance of cholesterol metabolism in pancreatic cancer and relevant genes at play, molecular processes contributing to cellular cholesterol homeostasis, and current research efforts to develop new cholesterol-targeting therapeutics. We highlight the caveats, weigh in different experimental therapeutic strategies, and provide possible suggestions for future research highlighting cholesterol's importance as a therapeutic target against pancreatic cancer resistance and cancer progression.
Collapse
Affiliation(s)
- Tasvi Daya
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, 2050 Johannesburg, South Africa
| | - Andrea Breytenbach
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, 2050 Johannesburg, South Africa
| | - Liang Gu
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, 2050 Johannesburg, South Africa
| | - Mandeep Kaur
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, 2050 Johannesburg, South Africa.
| |
Collapse
|
5
|
Dabravolski SA, Orekhov NA, Glanz VY, Sukhorukov VN, Pleshko EM, Orekhov AN. Role of ABCA1 in Atherosclerosis: Novel Mutations and Potential Plant-derived Therapies. Curr Med Chem 2025; 32:2069-2092. [PMID: 38529605 DOI: 10.2174/0109298673291917240315113845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/27/2024]
Abstract
ATP-binding cassette transporter A1 (ABCA1) is one of the key proteins regulating cholesterol homeostasis and playing a crucial role in atherosclerosis development. ABCA1 regulates the rate-limiting step of reverse cholesterol transport, facilitates the efflux of surplus intracellular cholesterol and phospholipids, and suppresses inflammation through several signalling pathways. At the same time, many mutations and Single Nucleotide Polymorphisms (SNPs) have been identified in the ABCA1 gene, which affects its biological function and is associated with several hereditary diseases (such as familial hypo-alpha-lipoproteinaemia and Tangier disease) and increased risk of cardiovascular diseases (CVDs). This review summarises recently identified mutations and SNPs in their connection to atherosclerosis and associated CVDs. Also, we discuss the recently described application of various plant-derived compounds to modulate ABCA1 expression in different in vitro and in vivo models. Herein, we present a comprehensive overview of the association of ABCA1 mutations and SNPs with CVDs and as a pharmacological target for different natural-derived compounds and highlight the potential application of these phytochemicals for treating atherosclerosis through modulation of ABCA1 expression.
Collapse
Affiliation(s)
- Siarhei A Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, P.O. Box 78, Karmiel, 2161002, Israel
| | - Nikolay A Orekhov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow, 125315, Russia
| | - Victor Y Glanz
- Petrovsky Russian National Center of Surgery, 2 Abrikosovsky Lane, 119991, Moscow, Russia
| | - Vasily N Sukhorukov
- Petrovsky Russian National Center of Surgery, 2 Abrikosovsky Lane, 119991, Moscow, Russia
| | - Elizaveta M Pleshko
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow, 125315, Russia
| | - Alexander N Orekhov
- Petrovsky Russian National Center of Surgery, 2 Abrikosovsky Lane, 119991, Moscow, Russia
| |
Collapse
|
6
|
Lobato S, Salomón-Soto VM, Espinosa-Méndez CM, Herrera-Moreno MN, García-Solano B, Pérez-González E, Comba-Marcó-del-Pont F, Montesano-Villamil M, Mora-Ramírez MA, Mancilla-Simbro C, Álvarez-Valenzuela R. Molecular Pathways Linking High-Fat Diet and PM 2.5 Exposure to Metabolically Abnormal Obesity: A Systematic Review and Meta-Analysis. Biomolecules 2024; 14:1607. [PMID: 39766314 PMCID: PMC11674716 DOI: 10.3390/biom14121607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Obesity, influenced by environmental pollutants, can lead to complex metabolic disruptions. This systematic review and meta-analysis examined the molecular mechanisms underlying metabolically abnormal obesity caused by exposure to a high-fat diet (HFD) and fine particulate matter (PM2.5). Following the PRISMA guidelines, articles from 2019 to 2024 were gathered from Scopus, Web of Science, and PubMed, and a random-effects meta-analysis was performed, along with subgroup analyses and pathway enrichment analyses. This study was registered in the Open Science Framework. Thirty-three articles, mainly case-control studies and murine models, were reviewed, and they revealed that combined exposure to HFD and PM2.5 resulted in the greatest weight gain (82.835 g, p = 0.048), alongside increases in high-density lipoproteins, insulin, and the superoxide dismutase. HFD enriched pathways linked to adipocytokine signaling in brown adipose tissue, while PM2.5 impacted genes associated with fat formation. Both exposures downregulated protein metabolism pathways in white adipose tissue and activated stress-response pathways in cardiac tissue. Peroxisome proliferator-activated receptor and AMP-activated protein kinase signaling pathways in the liver were enriched, influencing non-alcoholic fatty liver disease. These findings highlight that combined exposure to HFD and PM2.5 amplifies body weight gain, oxidative stress, and metabolic dysfunction, suggesting a synergistic interaction with significant implications for metabolic health.
Collapse
Affiliation(s)
- Sagrario Lobato
- Departamento de Investigación en Salud, Servicios de Salud del Estado de Puebla, 603 North 6th Street, Centro Colony, Puebla 72000, Mexico;
- Clínica de Medicina Familiar con Especialidades y Quirófano ISSSTE, 27 North Street 603, Santa Maria la Rivera Colony, Puebla 72045, Mexico
- Educación Superior, Centro de Estudios, “Justo Sierra”, Surutato, Badiraguato 80600, Mexico; (V.M.S.-S.); (M.N.H.-M.); (C.M.-S.); (R.Á.-V.)
| | - Víctor Manuel Salomón-Soto
- Educación Superior, Centro de Estudios, “Justo Sierra”, Surutato, Badiraguato 80600, Mexico; (V.M.S.-S.); (M.N.H.-M.); (C.M.-S.); (R.Á.-V.)
| | - Claudia Magaly Espinosa-Méndez
- Facultad de Cultura Física, Benemérita Universidad Autónoma de Puebla, San Claudio Avenue and 22nd South Boulevard, Ciudad Universitaria Colony, Puebla 72560, Mexico;
| | - María Nancy Herrera-Moreno
- Educación Superior, Centro de Estudios, “Justo Sierra”, Surutato, Badiraguato 80600, Mexico; (V.M.S.-S.); (M.N.H.-M.); (C.M.-S.); (R.Á.-V.)
- Departamento de Medio Ambiente, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa, Instituto Politécnico Nacional, Juan de Dios Bátiz Boulevard 250, San Joachin Colony, Guasave 81049, Mexico
| | - Beatriz García-Solano
- Facultad de Enfermería, Benemérita Universidad Autónoma de Puebla, 25th Avenue West 1304, Los Volcanes Colony, Puebla 74167, Mexico
| | - Ernestina Pérez-González
- Educación Superior, Centro de Estudios, “Justo Sierra”, Surutato, Badiraguato 80600, Mexico; (V.M.S.-S.); (M.N.H.-M.); (C.M.-S.); (R.Á.-V.)
- Departamento de Medio Ambiente, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa, Instituto Politécnico Nacional, Juan de Dios Bátiz Boulevard 250, San Joachin Colony, Guasave 81049, Mexico
| | - Facundo Comba-Marcó-del-Pont
- Facultad de Cultura Física, Benemérita Universidad Autónoma de Puebla, San Claudio Avenue and 22nd South Boulevard, Ciudad Universitaria Colony, Puebla 72560, Mexico;
| | - Mireya Montesano-Villamil
- Subsecretaría de Servicios de Salud Zona B, Servicios de Salud del Estado de Puebla, 603 North 6th Street, Centro Colony, Puebla 72000, Mexico;
| | - Marco Antonio Mora-Ramírez
- Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, San Claudio Avenue 1814, Ciudad Universitaria Colony, Puebla 72560, Mexico;
| | - Claudia Mancilla-Simbro
- Educación Superior, Centro de Estudios, “Justo Sierra”, Surutato, Badiraguato 80600, Mexico; (V.M.S.-S.); (M.N.H.-M.); (C.M.-S.); (R.Á.-V.)
- HybridLab, Fisiología y Biología Molecular de Células Excitables, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Prolongation of 14th South Street 6301, Ciudad Universitaria Colony, Puebla 72560, Mexico
| | - Ramiro Álvarez-Valenzuela
- Educación Superior, Centro de Estudios, “Justo Sierra”, Surutato, Badiraguato 80600, Mexico; (V.M.S.-S.); (M.N.H.-M.); (C.M.-S.); (R.Á.-V.)
| |
Collapse
|
7
|
Cai C, Shen J. The roles of migrasomes in immunity, barriers, and diseases. Acta Biomater 2024; 189:88-102. [PMID: 39284502 DOI: 10.1016/j.actbio.2024.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/01/2024] [Accepted: 09/10/2024] [Indexed: 10/14/2024]
Abstract
Migrasomes are recently identified extracellular vesicles and organelles formed in conjunction with cell migration. They are situated at the rear of migrating cells, exhibit a circular or elliptical membrane-enclosed structure, and function as a new organelle. Migrasomes selectively sort intercellular components, mediating a cell migration-dependent release mechanism known as migracytosis and modulating cell-cell communication. Accumulated evidence clarifies migrasome formation processes and indicates their diverse functional roles. Migrasomes may also be potentially correlated with the occurrence, progression, and prognosis of certain diseases. Migrasomes' involvement in physiological and pathological processes highlights their potential for expanding our understanding of biological procedures and as a target in clinical therapy. However, the precise mechanisms and full extent of their involvement in immunity, barriers, and diseases remain unclear. This review aimed to provide a comprehensive overview of the roles of migrasomes in human immunity and barriers, in addition to providing insights into their impact on human diseases. STATEMENT OF SIGNIFICANCE: Migrasomes, newly identified extracellular vesicles and organelles, form during cell migration and are located at the rear of migrating cells. These circular or elliptical structures mediate migracytosis, selectively sorting intercellular components and modulating cell-cell communication. Evidence suggests diverse functional roles for migrasomes, including potential links to disease occurrence, progression, and prognosis. Their involvement in physiological and pathological processes highlights their significance in understanding biological procedures and potential clinical therapies. However, their exact mechanisms in immunity, barriers, and diseases remain unclear. This review provides an overview of migrasomes' roles in human immunity and barriers, and their impact on diseases.
Collapse
Affiliation(s)
- Changsheng Cai
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai 200127, China
| | - Jun Shen
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai 200127, China.
| |
Collapse
|
8
|
Gogichaeva KK, Ogneva IV. Administration of Essential Phospholipids Prevents Drosophila Melanogaster Oocytes from Responding to Change in Gravity. Cells 2024; 13:1593. [PMID: 39329774 PMCID: PMC11430006 DOI: 10.3390/cells13181593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/12/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024] Open
Abstract
The aim of this study was to prevent initial changes in Drosophila melanogaster oocytes under simulated weightlessness and hypergravity at the 2 g level. Phospholipids with polyunsaturated fatty acids in the tail groups (essential phospholipids) at a concentration of 500 mg/kg of nutrient medium were used as a protective agent. Cell stiffness was determined using atomic force microscopy, the change in the oocytes' area was assessed as a mark of deformation, and the contents of cholesterol and neutral lipids were determined using fluorescence microscopy. The results indicate that the administration of essential phospholipids leads to a decrease in the cholesterol content in the oocytes' membranes by 13% (p < 0.05). The stiffness of oocytes from flies that received essential phospholipids was 14% higher (p < 0.05) and did not change during 6 h of simulated weightlessness or hypergravity, and neither did the area, which indicates their resistance to deformation. Moreover, the exposure to simulated weightlessness and hypergravity of oocytes from flies that received a standard nutrient medium led to a more intense loss of cholesterol from cell membranes after 30 min by 13% and 18% (p < 0.05), respectively, compared to the control, but essential phospholipids prevented this effect.
Collapse
Affiliation(s)
- Ksenia K. Gogichaeva
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76 a, Khoroshevskoyoe Shosse, 123007 Moscow, Russia;
| | - Irina V. Ogneva
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76 a, Khoroshevskoyoe Shosse, 123007 Moscow, Russia;
- Medical and Biological Physics Department, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Street, 119991 Moscow, Russia
| |
Collapse
|
9
|
Lauridsen AR, Skorda A, Winther NI, Bay ML, Kallunki T. Why make it if you can take it: review on extracellular cholesterol uptake and its importance in breast and ovarian cancers. J Exp Clin Cancer Res 2024; 43:254. [PMID: 39243069 PMCID: PMC11378638 DOI: 10.1186/s13046-024-03172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024] Open
Abstract
Cholesterol homeostasis is essential for healthy mammalian cells and dysregulation of cholesterol metabolism contributes to the pathogenesis of various diseases including cancer. Cancer cells are dependent on cholesterol. Malignant progression is associated with high cellular demand for cholesterol, and extracellular cholesterol uptake is often elevated in cancer cell to meet its metabolic needs. Tumors take up cholesterol from the blood stream through their vasculature. Breast cancer grows in, and ovarian cancer metastasizes into fatty tissue that provides them with an additional source of cholesterol. High levels of extracellular cholesterol are beneficial for tumors whose cancer cells master the uptake of extracellular cholesterol. In this review we concentrate on cholesterol uptake mechanisms, receptor-mediated endocytosis and macropinocytosis, and how these are utilized and manipulated by cancer cells to overcome their possible intrinsic or pharmacological limitations in cholesterol synthesis. We focus especially on the involvement of lysosomes in cholesterol uptake. Identifying the vulnerabilities of cholesterol metabolism and manipulating them could provide novel efficient therapeutic strategies for treatment of cancers that manifest dependency for extracellular cholesterol.
Collapse
Affiliation(s)
- Anna Røssberg Lauridsen
- Cancer Invasion and Resistance, Danish Cancer Institute, Strandboulevarden 49, Copenhagen, 2100, Denmark
| | - Aikaterini Skorda
- Cancer Invasion and Resistance, Danish Cancer Institute, Strandboulevarden 49, Copenhagen, 2100, Denmark
| | - Nuggi Ingholt Winther
- Cancer Invasion and Resistance, Danish Cancer Institute, Strandboulevarden 49, Copenhagen, 2100, Denmark
| | - Marie Lund Bay
- Cancer Invasion and Resistance, Danish Cancer Institute, Strandboulevarden 49, Copenhagen, 2100, Denmark.
| | - Tuula Kallunki
- Cancer Invasion and Resistance, Danish Cancer Institute, Strandboulevarden 49, Copenhagen, 2100, Denmark.
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
10
|
Larrazabal C, Hermosilla C, Taubert A, Silva LMR. Besnoitia besnoiti tachyzoite replication in bovine primary endothelial cells relies on host Niemann-Pick type C protein 1 for cholesterol acquisition. Front Vet Sci 2024; 11:1454855. [PMID: 39183751 PMCID: PMC11341383 DOI: 10.3389/fvets.2024.1454855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
Besnoitia besnoiti is a cyst-forming apicomplexan parasite and the causal agent of bovine besnoitiosis. During early phase of infection, tachyzoites replicate within host endothelial cells in a host cell cholesterol-dependent process. By applying U18666A treatments, we here evaluated the role of Niemann-Pick type C protein 1 (NPC1) in both, intracellular B. besnoiti replication and host cellular cholesterol distribution. Additionally, B. besnoiti-driven changes in NPC1 gene transcription were studied by qPCR. Overall, U18666A treatments significantly reduced B. besnoiti proliferation and induced cholesterol accumulation in host cytoplasmic dense vesicles. However, NPC1 gene transcription was not affected by B. besnoiti infection.
Collapse
Affiliation(s)
- Camilo Larrazabal
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
- Department of Veterinary Sciences and Public Health, Universidad Católica de Temuco, Temuco, Chile
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Liliana M. R. Silva
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Caparica, Almada, Portugal
- MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Universidade de Évora, Évora, Portugal
| |
Collapse
|
11
|
Biswas B, Shah D, Cox-Vázquez SJ, Vázquez RJ. Sensing cholesterol-induced rigidity in model membranes with time-resolved fluorescence spectroscopy and microscopy. J Mater Chem B 2024; 12:6570-6576. [PMID: 38899544 DOI: 10.1039/d4tb00872c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Here, we report the characterization of cholesterol levels on membrane fluidity with a twisted intramolecular charge transfer (TICT) membrane dye, namely DI-8-ANEPPS, using fluorescence lifetime techniques such as time-correlated single photon counting (TCSPC) and fluorescence lifetime imaging microscopy (FLIM). The characterized liposomes comprised a 3 : 1 ratio of POPC and POPG, respectively, 1% DI-8-ANEPPS, and increasing cholesterol levels from 0% to 50%. Fluorescence lifetime characterization revealed that increasing the cholesterol levels from 0% to 50% increases the fluorescence lifetime of DI-8-ANEPPS from 2.36 ns to 3.65 ns, a 55% increment. Such lengthening in the fluorescence lifetime is concomitant with reduced Stokes shifts and higher quantum yield, revealing that localized excitation (LE) dominates over TICT states with increased cholesterol levels. Fluorescence anisotropy measurements revealed a less isotropic environment in the membrane upon increasing cholesterol levels, suggesting a shift from liquid-disorder (Lα) to liquid-order (LO) upon adding cholesterol. Local electrostatic and dipole characterization experiments revealed that changes in the zeta-potential (ζ-potential) and transmembrane dipole potential (Ψd) induced by changes in cholesterol levels or the POPC : POPG ratio play a minimal role in the fluorescence lifetime outcome of DI-8-ANEPPS. Instead, these results indicate that the cholesterol's effect in restricting the degree of movement of DI-8-ANEPPS dominates its photophysics over the cholesterol effect on the local dipole strength. We envision that time-resolved spectroscopy and microscopy, coupled with TICT dyes, could be a convenient tool in exploring the complex interplay between membrane lipids, sterols, and proteins and provide novel insights into membrane fluidity, organization, and function.
Collapse
Affiliation(s)
- Bidisha Biswas
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | - Dhari Shah
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | - Sarah J Cox-Vázquez
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | | |
Collapse
|
12
|
Vanpouille C, Brichacek B, Pushkarsky T, Dubrovsky L, Fitzgerald W, Mukhamedova N, Garcia‐Hernandez S, Matthies D, Popratiloff A, Sviridov D, Margolis L, Bukrinsky M. HIV-1 Nef is carried on the surface of extracellular vesicles. J Extracell Vesicles 2024; 13:e12478. [PMID: 39016173 PMCID: PMC11252832 DOI: 10.1002/jev2.12478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/11/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Extracellular vesicles (EVs) serve as pivotal mediators of intercellular communication in both health and disease, delivering biologically active molecules from vesicle-producing cells to recipient cells. In the context of HIV infection, EVs have been shown to carry the viral protein Nef, a key pathogenic factor associated with HIV-related co-morbidities. Despite this recognition, the specific localisation of Nef within the vesicles has remained elusive. This study addresses this critical knowledge gap by investigating Nef-containing EVs. Less than 1% of the total released Nef was associated with EVs; most Nef existed as free protein released by damaged cells. Nevertheless, activity of EV-associated Nef in downregulating the major cholesterol transporter ABCA1, a critical aspect linked to the pathogenic effects of Nef, was comparable to that of free Nef present in the supernatant. Through a series of biochemical and microscopic assays, we demonstrate that the majority of EV-associated Nef molecules are localised on the external surface of the vesicles. This distinctive distribution prompts the consideration of Nef-containing EVs as potential targets for immunotherapeutic interventions aimed at preventing or treating HIV-associated co-morbidities. In conclusion, our results shed light on the localisation and functional activity of Nef within EVs, providing valuable insights for the development of targeted immunotherapies to mitigate the impact of HIV-associated co-morbidities.
Collapse
Affiliation(s)
- Christophe Vanpouille
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
| | - Beda Brichacek
- Department of Microbiology, Immunology and Tropical MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
| | - Tatiana Pushkarsky
- Department of Microbiology, Immunology and Tropical MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
| | - Larisa Dubrovsky
- Department of Microbiology, Immunology and Tropical MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
| | - Wendy Fitzgerald
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
| | | | - Sofia Garcia‐Hernandez
- Nanofabrication and Imaging CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Doreen Matthies
- Unit on Structural Biology, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
| | - Anastas Popratiloff
- Nanofabrication and Imaging CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Dmitri Sviridov
- Baker Heart and Diabetes InstituteMelbourneVICAustralia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
| | - Leonid Margolis
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
- Faculty of Natural Sciences and MedicineIlia State UniversityTbilisiRepublic of Georgia
| | - Michael Bukrinsky
- Department of Microbiology, Immunology and Tropical MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
13
|
Lauritsen L, Szomek M, Hornum M, Reinholdt P, Kongsted J, Nielsen P, Brewer JR, Wüstner D. Ratiometric fluorescence nanoscopy and lifetime imaging of novel Nile Red analogs for analysis of membrane packing in living cells. Sci Rep 2024; 14:13748. [PMID: 38877068 PMCID: PMC11178856 DOI: 10.1038/s41598-024-64180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
Subcellular membranes have complex lipid and protein compositions, which give rise to organelle-specific membrane packing, fluidity, and permeability. Due to its exquisite solvent sensitivity, the lipophilic fluorescence dye Nile Red has been used extensively to study membrane packing and polarity. Further improvement of Nile Red can be achieved by introducing electron-donating or withdrawing functional groups. Here, we compare the potential of derivatives of Nile Red with such functional substitutions for super-resolution fluorescence microscopy of lipid packing in model membranes and living cells. All studied Nile Red derivatives exhibit cholesterol-dependent fluorescence changes in model membranes, as shown by spectrally resolved stimulated emission depletion (STED) microscopy. STED imaging of Nile Red probes in cells reveals lower membrane packing in fibroblasts from healthy subjects compared to those from patients suffering from Niemann Pick type C1 (NPC1) disease, a lysosomal storage disorder with accumulation of cholesterol and sphingolipids in late endosomes and lysosomes. We also find small but consistent changes in the fluorescence lifetime of the Nile Red derivatives in NPC1 cells, suggesting altered hydrogen-bonding capacity in their membranes. All Nile Red derivatives are essentially non-fluorescent in water but increase their brightness in membranes, allowing for their use in MINFLUX single molecule tracking experiments. Our study uncovers the potential of Nile Red probes with functional substitutions for nanoscopic membrane imaging.
Collapse
Affiliation(s)
- Line Lauritsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Maria Szomek
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Mick Hornum
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Poul Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Jonathan R Brewer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| |
Collapse
|
14
|
Zhang K, Zhu Z, Jia R, Wang NA, Shi M, Wang Y, Xiang S, Zhang Q, Xu L. CD151-enriched migrasomes mediate hepatocellular carcinoma invasion by conditioning cancer cells and promoting angiogenesis. J Exp Clin Cancer Res 2024; 43:160. [PMID: 38840183 PMCID: PMC11155183 DOI: 10.1186/s13046-024-03082-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND The tetraspanin family plays a pivotal role in the genesis of migrasomes, and Tetraspanin CD151 is also implicated in neovascularization within tumorous contexts. Nevertheless, research pertaining to the involvement of CD151 in hepatocellular carcinoma (HCC) neovascularization and its association with migrasomes remains inadequate. METHODS To investigate the correlation between CD151 and migrasome marker TSPAN4 in liver cancer, we conducted database analysis using clinical data from HCC patients. Expression levels of CD151 were assessed in HCC tissues and correlated with patient survival outcomes. In vitro experiments were performed using HCC cell lines to evaluate the impact of CD151 expression on migrasome formation and cellular invasiveness. Cell lines with altered CD151 expression levels were utilized to study migrasome generation and in vitro invasion capabilities. Additionally, migrasome function was explored through cellular aggregation assays and phagocytosis studies. Subsequent VEGF level analysis and tissue chip experiments further confirmed the role of CD151 in mediating migrasome involvement in angiogenesis and cellular signal transduction. RESULTS Our study revealed a significant correlation between CD151 expression and migrasome marker TSPAN4 in liver cancer, based on database analysis of clinical samples. High expression levels of CD151 were closely associated with poor survival outcomes in HCC patients. Experimentally, decreased CD151 expression led to reduced migrasome generation and diminished in vitro invasion capabilities, resulting in attenuated in vivo metastatic potential. Migrasomes were demonstrated to facilitate cellular aggregation and phagocytosis, thereby promoting cellular invasiveness. Furthermore, VEGF-enriched migrasomes were implicated in signaling and angiogenesis, accelerating HCC progression. CONCLUSIONS In summary, our findings support the notion that elevated CD151 expression promotes migrasome formation, and migrasomes play a pivotal role in the invasiveness and angiogenesis of liver cancer cells, thereby facilitating HCC progression. This finding implies that migrasomes generated by elevated CD151 expression may constitute a promising high-priority target for anti-angiogenic therapy in HCC, offering crucial insights for the in-depth exploration of migrasome function and a renewed comprehension of the mechanism underlying liver cancer metastasis.
Collapse
Affiliation(s)
- Kangnan Zhang
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China
| | - Zhenhua Zhu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200001, China
| | - Rongrong Jia
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - N A Wang
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Min Shi
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yugang Wang
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Shihao Xiang
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China.
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| | - Qinghui Zhang
- Department of Clinical laboratory, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| | - Ling Xu
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China.
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| |
Collapse
|
15
|
Radkohl A, Schusterbauer V, Bernauer L, Rechberger GN, Wolinski H, Schittmayer M, Birner-Gruenberger R, Thallinger GG, Leitner E, Baeck M, Pichler H, Emmerstorfer-Augustin A. Human Sterols Are Overproduced, Stored and Excreted in Yeasts. Int J Mol Sci 2024; 25:781. [PMID: 38255855 PMCID: PMC10815178 DOI: 10.3390/ijms25020781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Sterols exert a profound influence on numerous cellular processes, playing a crucial role in both health and disease. However, comprehending the effects of sterol dysfunction on cellular physiology is challenging. Consequently, numerous processes affected by impaired sterol biosynthesis still elude our complete understanding. In this study, we made use of yeast strains that produce cholesterol instead of ergosterol and investigated the cellular response mechanisms on the transcriptome as well as the lipid level. The exchange of ergosterol for cholesterol caused the downregulation of phosphatidylethanolamine and phosphatidylserine and upregulation of phosphatidylinositol and phosphatidylcholine biosynthesis. Additionally, a shift towards polyunsaturated fatty acids was observed. While the sphingolipid levels dropped, the total amounts of sterols and triacylglycerol increased, which resulted in 1.7-fold enlarged lipid droplets in cholesterol-producing yeast cells. In addition to internal storage, cholesterol and its precursors were excreted into the culture supernatant, most likely by the action of ABC transporters Snq2, Pdr12 and Pdr15. Overall, our results demonstrate that, similarly to mammalian cells, the production of non-native sterols and sterol precursors causes lipotoxicity in K. phaffii, mainly due to upregulated sterol biosynthesis, and they highlight the different survival and stress response mechanisms on multiple, integrative levels.
Collapse
Affiliation(s)
- Astrid Radkohl
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Veronika Schusterbauer
- Bisy GmbH, 8200 Hofstaetten an der Raab, Austria
- Institute of Biomedical Informatics, Graz University of Technology, 8010 Graz, Austria
| | - Lukas Bernauer
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Gerald N. Rechberger
- Department of Molecular Biosciences, University of Graz, NAWI Graz, 8010 Graz, Austria
| | - Heimo Wolinski
- Department of Molecular Biosciences, University of Graz, NAWI Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Matthias Schittmayer
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, 1040 Vienna, Austria (R.B.-G.)
| | - Ruth Birner-Gruenberger
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, 1040 Vienna, Austria (R.B.-G.)
| | - Gerhard G. Thallinger
- Institute of Biomedical Informatics, Graz University of Technology, 8010 Graz, Austria
| | - Erich Leitner
- Institute of Analytical Chemistry and Food Chemistry, University of Graz, NAWI Graz, 8010 Graz, Austria;
| | - Melanie Baeck
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, 8010 Graz, Austria
| | - Harald Pichler
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Acib—Austrian Centre of Industrial Biotechnology, 8010 Graz, Austria
| | - Anita Emmerstorfer-Augustin
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Acib—Austrian Centre of Industrial Biotechnology, 8010 Graz, Austria
| |
Collapse
|
16
|
Khattib A, Shmet M, Ashkar R, Hayek T, Khatib S. Novel bioactive lipids enhanced HDL-mediated cholesterol efflux from macrophages through the ABCA1 receptor pathway. Chem Phys Lipids 2024; 258:105367. [PMID: 38103770 DOI: 10.1016/j.chemphyslip.2023.105367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/13/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
High-density lipoprotein (HDL) has traditionally been acknowledged as "good cholesterol" owing to its significant association with a decreased risk of atherosclerosis. This association is primarily attributed to HDL's direct involvement in cholesterol efflux capacity, which plays a pivotal role in reverse cholesterol transport. A novel active compound from Nannochloropsis microalgae termed lyso-DGTS, a lipid that contains EPA fatty acids, was previously isolated and found to increase paraoxonase 1 activity and enhance HDL-mediated cholesterol efflux and HDL-induced endothelial nitric oxide release. Here, the effect of different lyso-DGTS derivatives and analogs on HDL-mediated cholesterol efflux from macrophages was examined, and the mechanism was explored. Structure-activity relationships were established to characterize the essential lipid moieties responsible for HDL-mediated cholesterol efflux from macrophages. Lyso-DGTS, 1-carboxy-N-N-N-trimethyl-3-oleamidopropan-1-aminium, and lyso-platelet-activating factor increased HDL-mediated cholesterol efflux from macrophages dose-dependently, mainly via the ABCA1-mediated cholesterol efflux pathway. The effect of lyso-DGTS derivatives and analogs on the surface polarity of HDL was examined using the Laurdan generalized polarization (GP) assay. A reverse Pearson linear regression was obtained between Laurdan GP values and HDL-mediated cholesterol efflux. Because the incorporation of bioactive lipids into the surface phospholipid layer of HDL leads to a decrease in Laurdan GP, these bioactive lipids may induce lower phospholipid ordering and greater free space on the HDL particle surface, thereby enhancing apolipoprotein A1 binding to the ABCA1 receptor and improving ABCA1 cholesterol-mediated efflux. Our findings suggest a beneficial effect of lyso-DGTS and its bioactive lipid derivatives on increasing HDL-mediated cholesterol efflux activity from macrophages, which may impact atherosclerosis attenuation.
Collapse
Affiliation(s)
- Ali Khattib
- Natural Products and Analytical Chemistry Laboratory, MIGAL - Galilee Research Institute, Kiryat Shemona, Israel; Department of Biotechnology, Tel-Hai College, Israel; The Rappaport Family Institute for Research in the Medical Sciences and Rambam Medical Center, Haifa, Israel
| | - Manar Shmet
- Natural Products and Analytical Chemistry Laboratory, MIGAL - Galilee Research Institute, Kiryat Shemona, Israel; Department of Biotechnology, Tel-Hai College, Israel
| | - Rasha Ashkar
- Natural Products and Analytical Chemistry Laboratory, MIGAL - Galilee Research Institute, Kiryat Shemona, Israel; Department of Biotechnology, Tel-Hai College, Israel
| | - Tony Hayek
- The Rappaport Family Institute for Research in the Medical Sciences and Rambam Medical Center, Haifa, Israel
| | - Soliman Khatib
- Natural Products and Analytical Chemistry Laboratory, MIGAL - Galilee Research Institute, Kiryat Shemona, Israel; Department of Biotechnology, Tel-Hai College, Israel.
| |
Collapse
|
17
|
Kumar R, Chhillar N, Gupta DS, Kaur G, Singhal S, Chauhan T. Cholesterol Homeostasis, Mechanisms of Molecular Pathways, and Cardiac Health: A Current Outlook. Curr Probl Cardiol 2024; 49:102081. [PMID: 37716543 DOI: 10.1016/j.cpcardiol.2023.102081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
The metabolism of lipoproteins, which regulate the transit of the lipid to and from tissues, is crucial to maintaining cholesterol homeostasis. Cardiac remodeling is referred to as a set of molecular, cellular, and interstitial changes that, following injury, affect the size, shape, function, mass, and geometry of the heart. Acetyl coenzyme A (acetyl CoA), which can be made from glucose, amino acids, or fatty acids, is the precursor for the synthesis of cholesterol. In this article, the authors explain concepts behind cardiac remodeling, its clinical ramifications, and the pathophysiological roles played by numerous various components, such as cell death, neurohormonal activation, oxidative stress, contractile proteins, energy metabolism, collagen, calcium transport, inflammation, and geometry. The levels of cholesterol are traditionally regulated by 2 biological mechanisms at the transcriptional stage. First, the SREBP transcription factor family regulates the transcription of crucial rate-limiting cholesterogenic and lipogenic proteins, which in turn limits cholesterol production. Immune cells become activated, differentiated, and divided, during an immune response with the objective of eradicating the danger signal. In addition to creating ATP, which is used as energy, this process relies on metabolic reprogramming of both catabolic and anabolic pathways to create metabolites that play a crucial role in regulating the response. Because of changes in signal transduction, malfunction of the sarcoplasmic reticulum and sarcolemma, impairment of calcium handling, increases in cardiac fibrosis, and progressive loss of cardiomyocytes, oxidative stress appears to be the primary mechanism that causes the transition from cardiac hypertrophy to heart failure. De novo cholesterol production, intestinal cholesterol absorption, and biliary cholesterol output are consequently crucial processes in cholesterol homeostasis. In the article's final section, the pharmacological management of cardiac remodeling is explored. The route of treatment is explained in different steps: including, promising, and potential strategies. This chapter offers a brief overview of the history of the study of cholesterol absorption as well as the different potential therapeutic targets.
Collapse
Affiliation(s)
| | - Neelam Chhillar
- Deparetment of Biochemistry, School of Medicine, DY Patil University, Navi Mumbai, India
| | - Dhruv Sanjay Gupta
- Department of Pharmacology, SPP School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Ginpreet Kaur
- Department of Pharmacology, SPP School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Shailey Singhal
- Cluster of Applied Sciences, University of Petroleum and Energy Studies, Dehradun, India
| | - Tanya Chauhan
- Division of Forensic Biology, National Forensic Sciences University, Delhi Campus (LNJN NICFS) Delhi, India
| |
Collapse
|
18
|
Wüstner D, Dupont Juhl A, Egebjerg JM, Werner S, McNally J, Schneider G. Kinetic modelling of sterol transport between plasma membrane and endo-lysosomes based on quantitative fluorescence and X-ray imaging data. Front Cell Dev Biol 2023; 11:1144936. [PMID: 38020900 PMCID: PMC10644255 DOI: 10.3389/fcell.2023.1144936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Niemann Pick type C1 and C2 (NPC1 and NPC2) are two sterol-binding proteins which, together, orchestrate cholesterol transport through late endosomes and lysosomes (LE/LYSs). NPC2 can facilitate sterol exchange between model membranes severalfold, but how this is connected to its function in cells is poorly understood. Using fluorescent analogs of cholesterol and quantitative fluorescence microscopy, we have recently measured the transport kinetics of sterol between plasma membrane (PM), recycling endosomes (REs) and LE/LYSs in control and NPC2 deficient fibroblasts. Here, we use kinetic modeling of this data to determine rate constants for sterol transport between intracellular compartments. Our model predicts that sterol is trapped in intraluminal vesicles (ILVs) of LE/LYSs in the absence of NPC2, causing delayed sterol export from LE/LYSs in NPC2 deficient fibroblasts. Using soft X-ray tomography, we confirm, that LE/LYSs of NPC2 deficient cells but not of control cells contain enlarged, carbon-rich intraluminal vesicular structures, supporting our model prediction of lipid accumulation in ILVs. By including sterol export via exocytosis of ILVs as exosomes and by release of vesicles-ectosomes-from the PM, we can reconcile measured sterol efflux kinetics and show that both pathways can be reciprocally regulated by the intraluminal sterol transfer activity of NPC2 inside LE/LYSs. Our results thereby connect the in vitro function of NPC2 as sterol transfer protein between membranes with its in vivo function.
Collapse
Affiliation(s)
- Daniel Wüstner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Alice Dupont Juhl
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Jacob Marcus Egebjerg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Stephan Werner
- Department of X-Ray Microscopy, Helmholtz-Zentrum Berlin, Berlin, Germany
| | - James McNally
- Department of X-Ray Microscopy, Helmholtz-Zentrum Berlin, Berlin, Germany
| | - Gerd Schneider
- Department of X-Ray Microscopy, Helmholtz-Zentrum Berlin, Berlin, Germany
| |
Collapse
|
19
|
Zhang X, Yao L, Meng Y, Li B, Yang Y, Gao F. Migrasome: a new functional extracellular vesicle. Cell Death Discov 2023; 9:381. [PMID: 37852963 PMCID: PMC10584828 DOI: 10.1038/s41420-023-01673-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/20/2023] Open
Abstract
Migrasome is a novel cellular organelle produced during cell migration, and its biogenesis depends on the migration process. It is generated in a variety of cells such as immune cells, metastatic tumor cells, other special functional cells like podocytes and cells in developing organisms. It plays important roles in various fields especially in the information exchange between cells. The discovery of migrasome, as an important supplement to the extracellular vesicle system, provides new mechanisms and targets for comprehending various biological or pathological processes. In this article, we will review the discovery, structure, distribution, detection, biogenesis, and removal of migrasomes and mainly focus on summarizing its biological functions in cell-to-cell communication, homeostatic maintenance, embryonic development and multiple diseases. This review also creates prospects for the possible research directions and clinical applications of migrasomes in the future.
Collapse
Affiliation(s)
- Xide Zhang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 200433, Shanghai, P. R. China
| | - Liuhuan Yao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 200433, Shanghai, P. R. China
| | - Yuanyuan Meng
- Naval Medical University, Department of Traditional Chinese Medicine, Affiliated Hospital 1, 200433, Shanghai, P. R. China
| | - Bailong Li
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 200433, Shanghai, P. R. China.
| | - Yanyong Yang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 200433, Shanghai, P. R. China.
| | - Fu Gao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 200433, Shanghai, P. R. China.
| |
Collapse
|
20
|
Ricco N, Kron SJ. Statins in Cancer Prevention and Therapy. Cancers (Basel) 2023; 15:3948. [PMID: 37568764 PMCID: PMC10417177 DOI: 10.3390/cancers15153948] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Statins, a class of HMG-CoA reductase inhibitors best known for their cholesterol-reducing and cardiovascular protective activity, have also demonstrated promise in cancer prevention and treatment. This review focuses on their potential applications in head and neck cancer (HNC), a common malignancy for which established treatment often fails despite incurring debilitating adverse effects. Preclinical and clinical studies have suggested that statins may enhance HNC sensitivity to radiation and other conventional therapies while protecting normal tissue, but the underlying mechanisms remain poorly defined, likely involving both cholesterol-dependent and -independent effects on diverse cancer-related pathways. This review brings together recent discoveries concerning the anticancer activity of statins relevant to HNC, highlighting their anti-inflammatory activity and impacts on DNA-damage response. We also explore molecular targets and mechanisms and discuss the potential to integrate statins into conventional HNC treatment regimens to improve patient outcomes.
Collapse
Affiliation(s)
- Natalia Ricco
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Barcelona, Spain;
| | - Stephen J. Kron
- Department of Molecular Genetics and Cell Biology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
21
|
Talvio K, Wagner VA, Minkeviciene R, Kirkwood JS, Kulinich AO, Umemori J, Bhatia A, Hur M, Käkelä R, Ethell IM, Castrén ML. An iPSC-derived astrocyte model of fragile X syndrome exhibits dysregulated cholesterol homeostasis. Commun Biol 2023; 6:789. [PMID: 37516746 PMCID: PMC10387075 DOI: 10.1038/s42003-023-05147-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 07/14/2023] [Indexed: 07/31/2023] Open
Abstract
Cholesterol is an essential membrane structural component and steroid hormone precursor, and is involved in numerous signaling processes. Astrocytes regulate brain cholesterol homeostasis and they supply cholesterol to the needs of neurons. ATP-binding cassette transporter A1 (ABCA1) is the main cholesterol efflux transporter in astrocytes. Here we show dysregulated cholesterol homeostasis in astrocytes generated from human induced pluripotent stem cells (iPSCs) derived from males with fragile X syndrome (FXS), which is the most common cause of inherited intellectual disability. ABCA1 levels are reduced in FXS human and mouse astrocytes when compared with controls. Accumulation of cholesterol associates with increased desmosterol and polyunsaturated phospholipids in the lipidome of FXS mouse astrocytes. Abnormal astrocytic responses to cytokine exposure together with altered anti-inflammatory and cytokine profiles of human FXS astrocyte secretome suggest contribution of inflammatory factors to altered cholesterol homeostasis. Our results demonstrate changes of astrocytic lipid metabolism, which can critically regulate membrane properties and affect cholesterol transport in FXS astrocytes, providing target for therapy in FXS.
Collapse
Affiliation(s)
- Karo Talvio
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Victoria A Wagner
- Division of Biomedical Sciences, and Neuroscience Graduate Program, School of Medicine, University of California Riverside, Riverside, CA, USA
| | - Rimante Minkeviciene
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jay S Kirkwood
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA, USA
| | - Anna O Kulinich
- Division of Biomedical Sciences, and Neuroscience Graduate Program, School of Medicine, University of California Riverside, Riverside, CA, USA
| | - Juzoh Umemori
- Gene and Cell Technology, A.I.Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Anil Bhatia
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA, USA
| | - Manhoi Hur
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA, USA
| | - Reijo Käkelä
- Helsinki University Lipidomics Unit, HiLIPID, Helsinki Institute of Life Science, HiLIFE, Biocenter Finland (Metabolomics), and Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Iryna M Ethell
- Division of Biomedical Sciences, and Neuroscience Graduate Program, School of Medicine, University of California Riverside, Riverside, CA, USA
| | - Maija L Castrén
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
22
|
Steck TL, Lange Y. Is reverse cholesterol transport regulated by active cholesterol? J Lipid Res 2023; 64:100385. [PMID: 37169287 PMCID: PMC10279919 DOI: 10.1016/j.jlr.2023.100385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023] Open
Abstract
This review considers the hypothesis that a small portion of plasma membrane cholesterol regulates reverse cholesterol transport in coordination with overall cellular homeostasis. It appears that almost all of the plasma membrane cholesterol is held in stoichiometric complexes with bilayer phospholipids. The minor fraction of cholesterol that exceeds the complexation capacity of the phospholipids is called active cholesterol. It has an elevated chemical activity and circulates among the organelles. It also moves down its chemical activity gradient to plasma HDL, facilitated by the activity of ABCA1, ABCG1, and SR-BI. ABCA1 initiates this process by perturbing the organization of the plasma membrane bilayer, thereby priming its phospholipids for translocation to apoA-I to form nascent HDL. The active excess sterol and that activated by ABCA1 itself follow the phospholipids to the nascent HDL. ABCG1 similarly rearranges the bilayer and sends additional active cholesterol to nascent HDL, while SR-BI simply facilitates the equilibration of the active sterol between plasma membranes and plasma proteins. Active cholesterol also flows downhill to cytoplasmic membranes where it serves both as a feedback signal to homeostatic ER proteins and as the substrate for the synthesis of mitochondrial 27-hydroxycholesterol (27HC). 27HC binds the LXR and promotes the expression of the aforementioned transport proteins. 27HC-LXR also activates ABCA1 by competitively displacing its inhibitor, unliganded LXR. § Considerable indirect evidence suggests that active cholesterol serves as both a substrate and a feedback signal for reverse cholesterol transport. Direct tests of this novel hypothesis are proposed.
Collapse
Affiliation(s)
- Theodore L Steck
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Yvonne Lange
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
23
|
Jiang Y, Liu X, Ye J, Ma Y, Mao J, Feng D, Wang X. Migrasomes, a new mode of intercellular communication. Cell Commun Signal 2023; 21:105. [PMID: 37158915 PMCID: PMC10165304 DOI: 10.1186/s12964-023-01121-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/30/2023] [Indexed: 05/10/2023] Open
Abstract
Migrasomes are newly discovered extracellular vesicles (EVs) that are formed in migrating cells and mediate intercellular communication. However, their size, biological generation, cargo packaging, transport, and effects on recipient cells by migrasomes are different from those of other EVs. In addition to mediating organ morphogenesis during zebrafish gastrulation, discarding damaged mitochondria, and lateral transport of mRNA and proteins, growing evidence has demonstrated that migrasomes mediate a variety of pathological processes. In this review, we summarize the discovery, mechanisms of formation, isolation, identification, and mediation of cellular communication in migrasomes. We discuss migrasome-mediated disease processes, such as osteoclast differentiation, proliferative vitreoretinopathy, tumor cell metastasis by PD-L1 transport, immune cell chemotaxis to the site of infection by chemokines, angiogenesis promotion via angiogenic factors by immune cells, and leukemic cells chemotaxis to the site of mesenchymal stromal cells. Moreover, as new EVs, we propose the potential of migrasomes for disease diagnosis and treatment. Video Abstract.
Collapse
Affiliation(s)
- Yuyun Jiang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Xi Liu
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Jixian Ye
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Yongbin Ma
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
- Department of Central Laboratory, Jintan Hospital, Jiangsu University, 500 Avenue Jintan, Jintan, 213200, People's Republic of China.
| | - Jiahui Mao
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Dingqi Feng
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Xuefeng Wang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
- Department of Nuclear Medicine and Institute of Digestive Diseases, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
24
|
George M, Lang M, Gali CC, Babalola JA, Tam-Amersdorfer C, Stracke A, Strobl H, Zimmermann R, Panzenboeck U, Wadsack C. Liver X Receptor Activation Attenuates Oxysterol-Induced Inflammatory Responses in Fetoplacental Endothelial Cells. Cells 2023; 12:cells12081186. [PMID: 37190095 DOI: 10.3390/cells12081186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Oxysterols are oxidized cholesterol derivatives whose systemic levels are found elevated in pregnancy disorders such as gestational diabetes mellitus (GDM). Oxysterols act through various cellular receptors and serve as a key metabolic signal, coordinating inflammation. GDM is a condition of low-grade chronic inflammation accompanied by altered inflammatory profiles in the mother, placenta and fetus. Higher levels of two oxysterols, namely 7-ketocholesterol (7-ketoC) and 7β-hydroxycholesterol (7β-OHC), were observed in fetoplacental endothelial cells (fpEC) and cord blood of GDM offspring. In this study, we tested the effects of 7-ketoC and 7β-OHC on inflammation and investigated the underlying mechanisms involved. Primary fpEC in culture treated with 7-ketoC or 7β-OHC, induced the activation of mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NFκB) signaling, which resulted in the expression of pro-inflammatory cytokines (IL-6, IL-8) and intercellular cell adhesion molecule-1 (ICAM-1). Liver-X receptor (LXR) activation is known to repress inflammation. Treatment with LXR synthetic agonist T0901317 dampened oxysterol-induced inflammatory responses. Probucol, an inhibitor of LXR target gene ATP-binding cassette transporter A-1 (ABCA-1), antagonized the protective effects of T0901317, suggesting a potential involvement of ABCA-1 in LXR-mediated repression of inflammatory signaling in fpEC. TLR-4 inhibitor Tak-242 attenuated pro-inflammatory signaling induced by oxysterols downstream of the TLR-4 inflammatory signaling cascade. Taken together, our findings suggest that 7-ketoC and 7β-OHC contribute to placental inflammation through the activation of TLR-4. Pharmacologic activation of LXR in fpEC decelerates its shift to a pro-inflammatory phenotype in the presence of oxysterols.
Collapse
Affiliation(s)
- Meekha George
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria
| | - Magdalena Lang
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Immunology, Medical University of Graz, 8010 Graz, Austria
| | | | | | - Carmen Tam-Amersdorfer
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Immunology, Medical University of Graz, 8010 Graz, Austria
| | - Anika Stracke
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Immunology, Medical University of Graz, 8010 Graz, Austria
| | - Herbert Strobl
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Immunology, Medical University of Graz, 8010 Graz, Austria
| | - Robert Zimmermann
- Institute for Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Ute Panzenboeck
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Immunology, Medical University of Graz, 8010 Graz, Austria
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria
- BioTech-Med, 8010 Graz, Austria
| |
Collapse
|
25
|
Dib S, Loiola RA, Sevin E, Saint-Pol J, Shimizu F, Kanda T, Pahnke J, Gosselet F. TNFα Activates the Liver X Receptor Signaling Pathway and Promotes Cholesterol Efflux from Human Brain Pericytes Independently of ABCA1. Int J Mol Sci 2023; 24:ijms24065992. [PMID: 36983062 PMCID: PMC10056409 DOI: 10.3390/ijms24065992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Neuroinflammation and brain lipid imbalances are observed in Alzheimer's disease (AD). Tumor necrosis factor-α (TNFα) and the liver X receptor (LXR) signaling pathways are involved in both processes. However, limited information is currently available regarding their relationships in human brain pericytes (HBP) of the neurovascular unit. In cultivated HBP, TNFα activates the LXR pathway and increases the expression of one of its target genes, the transporter ATP-binding cassette family A member 1 (ABCA1), while ABCG1 is not expressed. Apolipoprotein E (APOE) synthesis and release are diminished. The cholesterol efflux is promoted, but is not inhibited, when ABCA1 or LXR are blocked. Moreover, as for TNFα, direct LXR activation by the agonist (T0901317) increases ABCA1 expression and the associated cholesterol efflux. However, this process is abolished when LXR/ABCA1 are both inhibited. Neither the other ABC transporters nor the SR-BI are involved in this TNFα-mediated lipid efflux regulation. We also report that inflammation increases ABCB1 expression and function. In conclusion, our data suggest that inflammation increases HBP protection against xenobiotics and triggers an LXR/ABCA1 independent cholesterol release. Understanding the molecular mechanisms regulating this efflux at the level of the neurovascular unit remains fundamental to the characterization of links between neuroinflammation, cholesterol and HBP function in neurodegenerative disorders.
Collapse
Affiliation(s)
- Shiraz Dib
- Blood-Brain Barrier Laboratory (LBHE), UR 2465, University of Artois, F-62300 Lens, France
| | - Rodrigo Azevedo Loiola
- Blood-Brain Barrier Laboratory (LBHE), UR 2465, University of Artois, F-62300 Lens, France
| | - Emmanuel Sevin
- Blood-Brain Barrier Laboratory (LBHE), UR 2465, University of Artois, F-62300 Lens, France
| | - Julien Saint-Pol
- Blood-Brain Barrier Laboratory (LBHE), UR 2465, University of Artois, F-62300 Lens, France
| | - Fumitaka Shimizu
- Department of Neurology and Clinical Neuroscience, Graduate School of Medicine, Yamaguchi University, Ube 755-8505, Japan
| | - Takashi Kanda
- Department of Neurology and Clinical Neuroscience, Graduate School of Medicine, Yamaguchi University, Ube 755-8505, Japan
| | - Jens Pahnke
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo, Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
- Pahnke Lab (Drug Development and Chemical Biology), Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Jelgavas iela 3, 1004 Riga, Latvia
- Department of Neurobiology, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Fabien Gosselet
- Blood-Brain Barrier Laboratory (LBHE), UR 2465, University of Artois, F-62300 Lens, France
| |
Collapse
|
26
|
Lange Y, Tabei SMA, Steck TL. A basic model for the association of ligands with membrane cholesterol: application to cytolysin binding. J Lipid Res 2023; 64:100344. [PMID: 36791915 PMCID: PMC10119614 DOI: 10.1016/j.jlr.2023.100344] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Almost all the cholesterol in cellular membranes is associated with phospholipids in simple stoichiometric complexes. This limits the binding of sterol ligands such as filipin and Perfringolysin O (PFO) to a small fraction of the total. We offer a simple mathematical model that characterizes this complexity. It posits that the cholesterol accessible to ligands has two forms: active cholesterol, which is that not complexed with phospholipids; and extractable cholesterol, that which ligands can capture competitively from the phospholipid complexes. Simulations based on the model match published data for the association of PFO oligomers with liposomes, plasma membranes and the isolated endoplasmic reticulum. The model shows how the binding of a probe greatly underestimates cholesterol abundance when its affinity for the sterol is so weak that it competes poorly with the membrane phospholipids. Two examples are the under-staining of plasma membranes by filipin and the failure of domain D4 of PFO to label their cytoplasmic leaflets. Conversely, the exaggerated staining of endolysosomes suggests that their cholesterol, being uncomplexed, is readily available. The model is also applicable to the association of cholesterol with intrinsic membrane proteins. For example, it supports the hypothesis that the sharp threshold in the regulation of homeostatic ER proteins by cholesterol derives from the cooperativity of their binding to the sterol weakly held by the phospholipid. § Thus, the model explicates the complexity inherent in the binding of ligands like PFO and filipin to the small accessible fraction of membrane cholesterol.
Collapse
Affiliation(s)
- Yvonne Lange
- 1Department of Pathology, Rush University Medical Center, Chicago, Il 60612, USA.
| | - S M Ali Tabei
- Department of Physics, University of Northern Iowa, Cedar Falls, Iowa 50614, USA
| | - Theodore L Steck
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Il 60637, USA
| |
Collapse
|
27
|
Gabanella F, Onori A, Pisani C, Fiore M, Ferraguti G, Colizza A, de Vincentiis M, Ceccanti M, Inghilleri M, Corbi N, Passananti C, Di Certo MG. SMN Deficiency Destabilizes ABCA1 Expression in Human Fibroblasts: Novel Insights in Pathophysiology of Spinal Muscular Atrophy. Int J Mol Sci 2023; 24:ijms24032916. [PMID: 36769246 PMCID: PMC9917534 DOI: 10.3390/ijms24032916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The deficiency of survival motor neuron protein (SMN) causes spinal muscular atrophy (SMA), a rare neuromuscular disease that affects different organs. SMN is a key player in RNA metabolism regulation. An intriguing aspect of SMN function is its relationship with plasma membrane-associated proteins. Here, we provide a first demonstration that SMN affects the ATP-binding cassette transporter A1, (ABCA1), a membrane protein critically involved in cholesterol homeostasis. In human fibroblasts, we showed that SMN associates to ABCA1 mRNA, and impacts its subcellular distribution. Consistent with the central role of ABCA1 in the efflux of free cholesterol from cells, we observed a cholesterol accumulation in SMN-depleted human fibroblasts. These results were also confirmed in SMA type I patient-derived fibroblasts. These findings not only validate the intimate connection between SMN and plasma membrane-associated proteins, but also highlight a contribution of dysregulated cholesterol efflux in SMA pathophysiology.
Collapse
Affiliation(s)
- Francesca Gabanella
- CNR-Institute of Biochemistry and Cell Biology, Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
- Correspondence: (F.G.); (M.G.D.C.)
| | - Annalisa Onori
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Cinzia Pisani
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Marco Fiore
- CNR-Institute of Biochemistry and Cell Biology, Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Andrea Colizza
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Marco de Vincentiis
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Marco Ceccanti
- Center for Rare Neuromuscular Diseases, Department of Human Neuroscience, Policlinico Umberto I, Sapienza University of Rome, 00185 Rome, Italy
| | - Maurizio Inghilleri
- Center for Rare Neuromuscular Diseases, Department of Human Neuroscience, Policlinico Umberto I, Sapienza University of Rome, 00185 Rome, Italy
| | - Nicoletta Corbi
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Claudio Passananti
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Maria Grazia Di Certo
- CNR-Institute of Biochemistry and Cell Biology, Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
- Correspondence: (F.G.); (M.G.D.C.)
| |
Collapse
|
28
|
Kostara CE, Bairaktari ET, Tsimihodimos V. Effect of Clinical and Laboratory Parameters on HDL Particle Composition. Int J Mol Sci 2023; 24:ijms24031995. [PMID: 36768319 PMCID: PMC9916693 DOI: 10.3390/ijms24031995] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
The functional status of High-Density Lipoprotein (HDLs) is not dependent on the cholesterol content but is closely related to structural and compositional characteristics. We reported the analysis of HDL lipidome in the healthy population and the influence of serum lipids, age, gender and menopausal status on its composition. Our sample comprised 90 healthy subjects aged between 30 and 77 years. HDL lipidome was investigated by Nuclear Magnetic Resonance (NMR) spectroscopy. Among serum lipids, triglycerides, apoAI, apoB and the ratio HDL-C/apoAI had a significant influence on HDL lipid composition. Aging was associated with significant aberrations, including an increase in triglyceride content, lysophosphatidylcholine, free cholesterol, and a decrease in esterified cholesterol, phospholipids, and sphingomyelin that may contribute to increased cardiovascular risk. Aging was also associated with an atherogenic fatty acid pattern. Changes occurring in the HDL lipidome between the two genders were more pronounced in the decade from 30 to 39 years of age and over 60 years. The postmenopausal group displayed significant pro-atherogenic changes in HDLs compared to the premenopausal group. The influence of serum lipids and intrinsic factors on HDL lipidome could improve our understanding of the remodeling capacity of HDLs directly related to its functionality and antiatherogenic properties, and also in appropriate clinical research study protocol design. These data demonstrate that NMR analysis can easily follow the subtle alterations of lipoprotein composition due to serum lipid parameters.
Collapse
Affiliation(s)
- Christina E. Kostara
- Laboratory of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Eleni T. Bairaktari
- Laboratory of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Vasilis Tsimihodimos
- Department of Internal Medicine, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
- Correspondence: ; Tel.: +30-2651007362
| |
Collapse
|
29
|
Kotlyarov S, Kotlyarova A. The Importance of the Plasma Membrane in Atherogenesis. MEMBRANES 2022; 12:1036. [PMID: 36363591 PMCID: PMC9698587 DOI: 10.3390/membranes12111036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Atherosclerotic cardiovascular diseases are an important medical problem due to their high prevalence, impact on quality of life and prognosis. The pathogenesis of atherosclerosis is an urgent medical and social problem, the solution of which may improve the quality of diagnosis and treatment of patients. Atherosclerosis is a complex chain of events, which proceeds over many years and in which many cells in the bloodstream and the vascular wall are involved. A growing body of evidence suggests that there are complex, closely linked molecular mechanisms that occur in the plasma membranes of cells involved in atherogenesis. Lipid transport, innate immune system receptor function, and hemodynamic regulation are linked to plasma membranes and their biophysical properties. A better understanding of these interrelationships will improve diagnostic quality and treatment efficacy.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacy Management and Economics, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
30
|
Depta L, Whitmarsh-Everiss T, Laraia L. Structure, function and small molecule modulation of intracellular sterol transport proteins. Bioorg Med Chem 2022; 68:116856. [PMID: 35716590 DOI: 10.1016/j.bmc.2022.116856] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 11/02/2022]
Abstract
Intracellular sterol transport proteins (STPs) are crucial for maintaining cellular lipid homeostasis by regulating local sterol pools. Despite structural similarities in their sterol binding domains, STPs have different substrate specificities, intracellular localisation and biological functions. In this review, we highlight recent advances in the determination of STP structures and how this regulates their lipid specificities. Furthermore, we cover the important discoveries relating to the intracellular localisation of STPs, and the organelles between which lipid transport is carried out, giving rise to specific functions in health and disease. Finally, serendipitous and targeted efforts to identify small molecule modulators of STPs, as well as their ability to act as tool compounds and potential therapeutics, will be discussed.
Collapse
Affiliation(s)
- Laura Depta
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs Lyngby, Denmark
| | - Thomas Whitmarsh-Everiss
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs Lyngby, Denmark
| | - Luca Laraia
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
31
|
Different Pathways of Cellular Cholesterol Efflux. Cell Biochem Biophys 2022; 80:471-481. [PMID: 35737216 DOI: 10.1007/s12013-022-01081-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/13/2022] [Indexed: 12/22/2022]
Abstract
Cholesterol efflux is the first and rate-limiting step of reverse cholesterol transport (RCT) from peripheric cells to the liver. The involvement of high-density lipoprotein (HDL) in RCT determines the atheroprotective properties of HDL. Cholesterol efflux from different membrane pools includes both passive and energy-dependent processes. The first type of route consists of cholesterol desorption from the cell membrane into the unstirred layer adjacent to the cell surface and diffusion in the water phase. Moreover, the selective uptake and facilitated diffusion of cholesterol and cholesteryl ester molecules through the hydrophobic tunnel in the scavenger receptor BI molecule does not require energy consumption. The second type of route includes active cholesterol export by the ATP-binding cassette transporters A1 (ABCA1) and G1 (ABCG1). Several cholesterol acceptors specifically bind cholesterol and phospholipid molecules, and cholesterol binding to the albumin molecule, which acts as a shuttle, significantly increases cholesterol movement between acceptors and red blood cells, thus functioning as a sink for cholesterol. Cholesterol and phospholipid molecules effluxed from macrophages by ABCA1 are accepted exclusively by the lipid-free apolipoprotein apoA-I, which is the major protein moiety of HDL, whereas those effluxed by ABCG1 are accepted by HDL. ABCA1- and ABCG1-mediated cholesterol transport, together with cholesterol diffusion, largely determine cholesterol turnover at the physiological level of intracellular cholesterol. However, at cholesterol overload, ABCA1-mediated efflux prevails over other routes. The exchange of apoA-I between lipid-free and lipid-associated states and the synergism of nascent and mature HDL contribute to cholesterol efflux efficiency. Moreover, extracellular cholesterol deposits and microvesicles may be involved in RCT.
Collapse
|