1
|
Qi G, Tang H, Hu J, Kang S, Qin S. Potential role of tanycyte-derived neurogenesis in Alzheimer's disease. Neural Regen Res 2025; 20:1599-1612. [PMID: 38934388 PMCID: PMC11688558 DOI: 10.4103/nrr.nrr-d-23-01865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/19/2024] [Accepted: 04/17/2024] [Indexed: 06/28/2024] Open
Abstract
Tanycytes, specialized ependymal cells located in the hypothalamus, play a crucial role in the generation of new neurons that contribute to the neural circuits responsible for regulating the systemic energy balance. The precise coordination of the gene networks controlling neurogenesis in naive and mature tanycytes is essential for maintaining homeostasis in adulthood. However, our understanding of the molecular mechanisms and signaling pathways that govern the proliferation and differentiation of tanycytes into neurons remains limited. This article aims to review the recent advancements in research into the mechanisms and functions of tanycyte-derived neurogenesis. Studies employing lineage-tracing techniques have revealed that the neurogenesis specifically originating from tanycytes in the hypothalamus has a compensatory role in neuronal loss and helps maintain energy homeostasis during metabolic diseases. Intriguingly, metabolic disorders are considered early biomarkers of Alzheimer's disease. Furthermore, the neurogenic potential of tanycytes and the state of newborn neurons derived from tanycytes heavily depend on the maintenance of mild microenvironments, which may be disrupted in Alzheimer's disease due to the impaired blood-brain barrier function. However, the specific alterations and regulatory mechanisms governing tanycyte-derived neurogenesis in Alzheimer's disease remain unclear. Accumulating evidence suggests that tanycyte-derived neurogenesis might be impaired in Alzheimer's disease, exacerbating neurodegeneration. Confirming this hypothesis, however, poses a challenge because of the lack of long-term tracing and nucleus-specific analyses of newborn neurons in the hypothalamus of patients with Alzheimer's disease. Further research into the molecular mechanisms underlying tanycyte-derived neurogenesis holds promise for identifying small molecules capable of restoring tanycyte proliferation in neurodegenerative diseases. This line of investigation could provide valuable insights into potential therapeutic strategies for Alzheimer's disease and related conditions.
Collapse
Affiliation(s)
- Guibo Qi
- Department of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Han Tang
- Department of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jianian Hu
- Department of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Siying Kang
- Department of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Song Qin
- Department of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Nunes TB, Nygard KL, Courchesne MCJ, Whitehead SN, Richardson BS, Regnault TRH. White matter microglia morphological changes with aging in guinea pig offspring born growth restricted. Can J Physiol Pharmacol 2025; 103:193-199. [PMID: 40243505 DOI: 10.1139/cjpp-2024-0275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Fetal growth restriction is implicated in the programming of later-life neurodegeneration. We hypothesized that growth-restricted offspring would show accelerated changes to microglial white matter morphology, relative to controls. Control guinea pig sows were fed ad libitum, while maternal nutrient restriction sows received 70% of control diet switched to 90% from mid-gestation. Offspring were sacrificed at ∼26 days (neonate) or ∼110 days (adult) postpartum. Coronal brain sections from the frontal cortex were subject to IBA1 staining for microglial detection and analyzed by machine learning software. At birth, total body weight of growth-restricted offspring was reduced relative to control (p < 0.0001) with postnatal catch-up growth observed. Microglial density was reduced in the corpus callosum of control (p < 0.05) and growth-restricted (p = 0.13) adults, relative to neonates. Adults from both groups showed greater IBA1-positive area in the cingulum and periventricular white matter (p < 0.05) and increased microglial fractal dimension in the corpus callosum (p < 0.10) and periventricular white matter (p < 0.05), relative to neonates. At the time points studied, we report age-related changes in white matter microglial morphology. However, maternal nutrient restriction leading to fetal growth restriction in guinea pigs does not appear to exacerbate these white matter microglia morphological changes as a marker for later-life neurodegeneration.
Collapse
Affiliation(s)
- Timothy B Nunes
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Karen L Nygard
- Biotron Integrated Microscopy Facility, London, ON, Canada
| | | | - Shawn N Whitehead
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Bryan S Richardson
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
- Department of Obstetrics and Gynecology, Western University, London, ON, Canada
| | - Timothy R H Regnault
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
- Department of Obstetrics and Gynecology, Western University, London, ON, Canada
- Children's Health Research Institute, London, ON, Canada
| |
Collapse
|
3
|
Almasoudi SH, Al-Kuraishy HM, Al-Gareeb AI, Eliwa D, Alexiou A, Papadakis M, Batiha GES. Role of mitogen-activated protein kinase inhibitors in Alzheimer's disease: Rouge of brain kinases. Brain Res Bull 2025; 224:111296. [PMID: 40073950 DOI: 10.1016/j.brainresbull.2025.111296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
Alzheimer's disease (AD) is the chief cause of dementia and related mortality worldwide due to progressive accumulation of amyloid peptide (Aβ) and hyperphosphorylated tau protein. These neuropathological changes lead to cognitive impairment and memory dysfunction. Notably, most Food drug Administration (FDA) approved anti-AD medications such as tacrine and donepezil are engaged with symptomatic relief of cognitive impairment but do not reverse the underlying AD neuropathology. Therefore, searching for new anti-AD is advisable. It has been shown that the inflammatory signaling pathways such as mitogen-activated protein kinases (MAPK) are intricate with the Aβ and tau protein neuropathology in AD. In addition, inhibition of brain MAPK plays a critical role in mitigating cognitive dysfunction in early-onset AD. Though, the fundamental mechanisms for the beneficial effects of MAPK inhibitors were not fully explained. Therefore, this review aims to discuss the potential molecular mechanisms of MAPK inhibitors in AD.
Collapse
Affiliation(s)
- Suad Hamdan Almasoudi
- Department of Biology, College of Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Hayder M Al-Kuraishy
- Department Of Clinical Pharmacology and Medicine, College Of Medicine, Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq.
| | - Ali I Al-Gareeb
- Head of Jabir ibn Hayyan Medical University, P.O.Box13 Kufa, Al-Ameer Qu, Najaf, Iraq.
| | - Duaa Eliwa
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia; AFNP Med, Wien 1030, Austria
| | - Marios Papadakis
- University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, Wuppertal 42283, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira 22511, Egypt.
| |
Collapse
|
4
|
Bottaccioli AG, Bologna M, Bottaccioli F. Rethinking Depression-Beyond Neurotransmitters: An Integrated Psychoneuroendocrineimmunology Framework for Depression's Pathophysiology and Tailored Treatment. Int J Mol Sci 2025; 26:2759. [PMID: 40141399 PMCID: PMC11943243 DOI: 10.3390/ijms26062759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/06/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
It is known that the effectiveness of drug treatment for depression, ammine deficit based, is largely unsatisfactory. In this review, we examine the proposal of a precision therapy has emerged and has received a strong push by the identification of the role of inflammation in depression. However, precision psychiatry risks being caught in the reductionist trap of searching for the molecular switch that resets the whole system and switches off the disease. This is an illusion since the human being is complex and depression is a systemic and variable disorder. In this study, we show the inadequacy of the reductionist paradigm, and, at the same time, illustrate the superiority of the systemic paradigm centered on psychoneuroendocrineimmunology (PNEI). According to the PNEI paradigm, depression is a disease of the whole human being, caused by different sources working together: psychological, biological, and behavioral. This means knowing the biological and psychological history of the subject, identifying relational and biological crisis factors, and building personalized treatments targeting those factors with the tools of medicine and psychology, which are not reducible to the combination of drugs and psychotherapy. Our proposal presents a paradigm shift that is both theoretical and practical, which enables clinicians to assess patients experiencing depression in a unified way and treat them in an integrated manner.
Collapse
Affiliation(s)
- Anna Giulia Bottaccioli
- Department of Oncohematology, Clinical Psychology Graduated Course, University of Milan, I-20122 Milan, Italy
- Società Italiana di Psiconeuroendocrinoimmunologia, I-00195 Rome, Italy; (M.B.); (F.B.)
| | - Mauro Bologna
- Società Italiana di Psiconeuroendocrinoimmunologia, I-00195 Rome, Italy; (M.B.); (F.B.)
- Department of Medicine, Health, Life and Environment, University of L’Aquila, I-67100 L’Aquila, Italy
| | - Francesco Bottaccioli
- Società Italiana di Psiconeuroendocrinoimmunologia, I-00195 Rome, Italy; (M.B.); (F.B.)
- Post-Graduated Course of Psychoneuroendocrineimmunology, Humanitas University Consortium Rome, I-00193 Rome, Italy
| |
Collapse
|
5
|
Al-Kuraishy HM, Sulaiman GM, Mohammed HA, Mohammed SG, Al-Gareeb AI, Albuhadily AK, Dawood RA, Al Ali A, Abu-Alghayth MH. Amyloid-β and heart failure in Alzheimer's disease: the new vistas. Front Med (Lausanne) 2025; 12:1494101. [PMID: 39967593 PMCID: PMC11832649 DOI: 10.3389/fmed.2025.1494101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/17/2025] [Indexed: 02/20/2025] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and represents 75% of all dementia types. AD neuropathology is due to the progressive deposition of extracellular amyloid-beta (Aβ) peptide and intracellular hyperphosphorylated tau protein. The accumulated Aβ forms amyloid plaques, while the hyperphosphorylated tau protein forms neurofibrillary tangles (NFTs). Both amyloid plaques and NFTs are hallmarks of AD neuropathology. The fundamental mechanism involved in the pathogenesis of AD is still elusive, although Aβ is the more conceivable theory. Aβ-induced neurodegeneration and associated neuroinflammation, oxidative stress, endoplasmic reticulum stress (ER), and mitochondrial dysfunction contribute to the development of cognitive impairment and dementia. Of note, Aβ is not only originated from the brain but also produced peripherally and, via the blood-brain barrier (BBB), can accumulate in the brain and result in the development of AD. It has been shown that cardiometabolic conditions such as obesity, type 2 diabetes (T2D), and heart failure (HF) are regarded as possible risk factors for the development of AD and other types of dementia, such as vascular dementia. HF-induced chronic cerebral hypoperfusion, oxidative stress, and inflammation can induce the development and progression of AD. Interestingly, AD is regarded as a systemic disease that causes systemic inflammation and oxidative stress, which in turn affects peripheral organs, including the heart. Aβ through deranged BBB can be transported into the systemic circulation from the brain and accumulated in the heart, leading to the development of HF. These findings suggest a close relationship between AD and HF. However, the exact mechanism of AD-induced HF is not fully elucidated. Therefore, this review aims to discuss the link between AD and the risk of HF regarding the potential role of Aβ in the pathogenesis of HF.
Collapse
Affiliation(s)
- Hayder M. Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | | | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim, Saudi Arabia
| | - Sohaib G. Mohammed
- Department of Pathological Analysis, College of Applied Science, Samarra University, Saladin, Iraq
| | | | - Ali K. Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Retaj A. Dawood
- Department of Biology, College of Science, Al-Mustaqbal University, Hilla, Iraq
| | - Amer Al Ali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| | - Mohammed H. Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| |
Collapse
|
6
|
Li JZ, Ramalingam N, Li S. Targeting epigenetic mechanisms in amyloid-β-mediated Alzheimer's pathophysiology: unveiling therapeutic potential. Neural Regen Res 2025; 20:54-66. [PMID: 38767476 PMCID: PMC11246147 DOI: 10.4103/nrr.nrr-d-23-01827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/03/2024] [Accepted: 02/07/2024] [Indexed: 05/22/2024] Open
Abstract
Alzheimer's disease is a prominent chronic neurodegenerative condition characterized by a gradual decline in memory leading to dementia. Growing evidence suggests that Alzheimer's disease is associated with accumulating various amyloid-β oligomers in the brain, influenced by complex genetic and environmental factors. The memory and cognitive deficits observed during the prodromal and mild cognitive impairment phases of Alzheimer's disease are believed to primarily result from synaptic dysfunction. Throughout life, environmental factors can lead to enduring changes in gene expression and the emergence of brain disorders. These changes, known as epigenetic modifications, also play a crucial role in regulating the formation of synapses and their adaptability in response to neuronal activity. In this context, we highlight recent advances in understanding the roles played by key components of the epigenetic machinery, specifically DNA methylation, histone modification, and microRNAs, in the development of Alzheimer's disease, synaptic function, and activity-dependent synaptic plasticity. Moreover, we explore various strategies, including enriched environments, exposure to non-invasive brain stimulation, and the use of pharmacological agents, aimed at improving synaptic function and enhancing long-term potentiation, a process integral to epigenetic mechanisms. Lastly, we deliberate on the development of effective epigenetic agents and safe therapeutic approaches for managing Alzheimer's disease. We suggest that addressing Alzheimer's disease may require distinct tailored epigenetic drugs targeting different disease stages or pathways rather than relying on a single drug.
Collapse
Affiliation(s)
- Jennie Z. Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Nagendran Ramalingam
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Shaomin Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Singh A, Sharma A, Singh K, Kaur K, Mohana P, Prajapati J, Kaur U, Goswami D, Arora S, Chadha R, Singh Bedi PM. Development of coumarin-inspired bifunctional hybrids as a new class of anti-Alzheimer's agents with potent in vivo efficacy. RSC Med Chem 2024:d4md00782d. [PMID: 39790122 PMCID: PMC11707525 DOI: 10.1039/d4md00782d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/08/2024] [Indexed: 01/12/2025] Open
Abstract
Considering the multifactorial and complex nature of Alzheimer's disease and the requirement of an optimum multifunctional anti-Alzheimer's agent, a series of triazole tethered coumarin-eugenol hybrid molecules was designed as potential multifunctional anti-Alzheimer's agents using donepezil and a template. The designed hybrid molecules were synthesized via a click chemistry approach and preliminarily screened for cholinesterase and Aβ1-42 aggregation inhibition. Among them, AS15 emerged as a selective inhibitor of AChE (IC50 = 0.047 μM) over butyrylcholinesterase (BuChE: IC50 ≥ 10 μM) with desired Aβ1-42 aggregation inhibition (72.21% at 50 μM) properties. In addition, AS15 showed protective effects against DNA damage caused by hydroxyl radicals originating from H2O2. Molecular docking and simulation studies confirmed the favorable interactions of AChE and the Aβ1-42 monomer desired for their inhibition. AS15 exhibited an LD50 value of 300 mg kg-1 and showed significant improvements in memory and learning behavior in scopolamine-induced cognition impairment mouse-based animal models (Y-maze test and Morris water maze test) for behavioral analysis. Overall outcomes suggest AS15 as a potential preclinical multifunctional candidate for the management of Alzheimer's disease, and it serves as a promising lead for further development of potent and safer multifunctional anti-Alzheimer's agents.
Collapse
Affiliation(s)
- Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Aman Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Karanvir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Pallvi Mohana
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Jignesh Prajapati
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujrat University Ahmedabad Gujrat 380009 India
| | - Uttam Kaur
- University School of Business Management, Chandigarh University Gharuan 140413 India
| | - Dweipayan Goswami
- Department of Microbiology & Biotechnology, University School of Sciences, Gujrat University Ahmedabad Gujrat 380009 India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Renu Chadha
- University Institute of Pharmaceutical Sciences, Punjab University Chandigarh 160014 India
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University Amritsar Punjab 143005 India
- Drug and Pollution testing Laboratory, Guru Nanak Dev University Amritsar Punjab 143005 India
| |
Collapse
|
8
|
Alhenaky A, Alhazmi S, Alamri SH, Alkhatabi HA, Alharthi A, Alsaleem MA, Abdelnour SA, Hassan SM. Exosomal MicroRNAs in Alzheimer's Disease: Unveiling Their Role and Pioneering Tools for Diagnosis and Treatment. J Clin Med 2024; 13:6960. [PMID: 39598105 PMCID: PMC11594708 DOI: 10.3390/jcm13226960] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder that presents a significant health concern, often leading to substantial cognitive decline among older adults. A prominent feature of AD is progressive dementia, which eventually disrupts daily functioning and the ability to live independently. A major challenge in addressing AD is its prolonged pre-symptomatic phase, which makes early detection difficult. Moreover, the disease's complexity and the inefficiency of current diagnostic methods impede the development of targeted therapies. Therefore, there is an urgent need to enhance diagnostic methodologies for detection and treating AD even before clinical symptoms appear. Exosomes are nanoscale biovesicles secreted by cells, including nerve cells, into biofluids. These exosomes play essential roles in the central nervous system (CNS) by facilitating neuronal communication and thus influencing major physiological and pathological processes. Exosomal cargo, particularly microRNAs (miRNAs), are critical mediators in this cellular communication, and their dysregulation affects various pathological pathways related to neurodegenerative diseases, including AD. This review discusses the significant roles of exosomal miRNAs in the pathological mechanisms related to AD, focusing on the promising use of exosomal miRNAs as diagnostic biomarkers and targeted therapeutic interventions for this devastating disease.
Collapse
Affiliation(s)
- Alhanof Alhenaky
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 80200, Saudi Arabia
| | - Safiah Alhazmi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 80200, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 80200, Saudi Arabia
| | - Sultan H. Alamri
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 80200, Saudi Arabia
- Department of Family Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Heba A. Alkhatabi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia
- Hematology Research Unit (HRU), King Fahd Medical Research Center, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Amani Alharthi
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Mansour A. Alsaleem
- Unit of Scientific Research, Applied College, Qassim University, Buraydah 52571, Saudi Arabia
| | - Sameh A. Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Sabah M. Hassan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 80200, Saudi Arabia
- Princess Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo 11517, Egypt
| |
Collapse
|
9
|
Stoccoro A, Coppedè F. Exposure to Metals, Pesticides, and Air Pollutants: Focus on Resulting DNA Methylation Changes in Neurodegenerative Diseases. Biomolecules 2024; 14:1366. [PMID: 39595543 PMCID: PMC11591912 DOI: 10.3390/biom14111366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Individuals affected by neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), are dramatically increasing worldwide. Thus, several efforts are being made to develop strategies for stopping or slowing the spread of these illnesses. Although causative genetic variants linked to the onset of these diseases are known, they can explain only a small portion of cases. The etiopathology underlying the neurodegenerative process in most of the patients is likely due to the interplay between predisposing genetic variants and environmental factors. Epigenetic mechanisms, including DNA methylation, are central candidates in translating the effects of environmental factors in genome modulation, and they play a critical role in the etiology of AD, PD, and ALS. Among the main environmental exposures that have been linked to an increased risk for these diseases, accumulating evidence points to the role of heavy metals, pesticides, and air pollutants. These compounds could trigger neurodegeneration through different mechanisms, mainly neuroinflammation and the induction of oxidative stress. However, increasing evidence suggests that they are also capable of inducing epigenetic alterations in neurons. In this article, we review the available literature linking exposure to metals, pesticides, and air pollutants to DNA methylation changes relevant to neurodegeneration.
Collapse
Affiliation(s)
- Andrea Stoccoro
- Laboratory of Medical Genetics, Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
| | - Fabio Coppedè
- Laboratory of Medical Genetics, Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
- Interdepartmental Research Center of Biology and Pathology of Aging, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
10
|
Phillips WT, Schwartz JG. Nasal lymphatic obstruction of CSF drainage as a possible cause of Alzheimer's disease and dementia. Front Aging Neurosci 2024; 16:1482255. [PMID: 39497786 PMCID: PMC11532075 DOI: 10.3389/fnagi.2024.1482255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/09/2024] [Indexed: 11/07/2024] Open
Abstract
Alzheimer's disease, the most common form of dementia among older adults, slowly destroys memory and thinking skills. In recent years, scientists have made tremendous progress in understanding Alzheimer's disease, still, they do not yet fully understand what causes the disease. This article proposes a novel etiology for Alzheimer's disease. Our hypothesis developed from a review of nuclear medicine scans, in which the authors observed a significant increase in nasal turbinate vasodilation and blood pooling in patients with hypertension, sleep apnea, diabetes and/or obesity, all risk factors for Alzheimer's disease. The authors propose that nasal turbinate vasodilation and resultant blood pooling lead to the obstruction of normal nasal lymphatic clearance of cerebrospinal fluid and its waste products from the brain. The nasal turbinate vasodilation, due to increased parasympathetic activity, occurs alongside the well-established increased sympathetic activity of the cardiovascular system as seen in patients with hypertension. The increased parasympathetic activity is likely due to an autonomic imbalance secondary to the increase in worldwide consumption of highly processed food associated with dysregulation of the glucose regulatory system. The authors' hypothesis offers a novel mechanism and a new paradigm for the etiology of Alzheimer's disease and helps explain the rapid worldwide rise in the disease and other dementias which are expected to double in the next 20 years. This new paradigm provides compelling evidence for the modulation of the parasympathetic nervous system as a novel treatment strategy for Alzheimer's disease and other degenerative brain diseases, specifically targeting nasal turbinate lymphatic flow.
Collapse
|
11
|
Huang X, Yuan S, Ling Y, Tan S, Cheng H, Xu A, Lyu J. Association of birthweight and risk of incident dementia: a prospective cohort study. GeroScience 2024; 46:3845-3859. [PMID: 38436791 PMCID: PMC11226576 DOI: 10.1007/s11357-024-01105-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
Given the epidemiological studies investigating the relationship between birthweight and dementia are limited. Our study aimed to explore the association between birthweight and the risk of dementia, cognitive function, and brain structure. We included 275,648 participants from the UK Biobank, categorizing birthweight into quartiles (Q1 ≤ 2.95 kg; Q2 > 2.95 kg, ≤ 3.32 kg; Q3 > 3.32 kg, ≤ 3.66 kg; Q4 > 3.66 kg), with Q3 as the reference. Cox regression models and restricted cubic splines estimated the relationship between birthweight and the risk of all causes of dementia (ACD), Alzheimer's disease (AD), and vascular dementia (VD). Multivariable linear regression models assessed the relationship between birthweight, cognitive function, and MRI biomarkers. Over a median follow-up of 13.0 years, 3103 incident dementia cases were recorded. In the fully adjusted model, compared to Q3 (> 3.32 kg, ≤ 3.66 kg), lower birthweight in Q1 (≤ 2.95 kg) was significantly associated with increased risk of ACD (HR = 1.18, 95%CI 1.06-1.30, P = 0.001) and VD (HR = 1.32, 95%CI 1.07-1.62, P = 0.010), but no significant association with AD was found. Continuous birthweight showed a U-shaped nonlinear association with dementia. Lower birthweight was associated with worse performance in cognitive tasks, including reaction time, fluid intelligence, numeric, and prospective memory. Additionally, certain brain structure indices were identified, including brain atrophy and reductions in area, thickness, and volume of regional subcortical areas. Our study emphasizes the association between lower birthweight and increased dementia risk, correlating cognitive function and MRI biomarkers of brain structure, suggesting that in utero or early-life exposures might impact cognitive health in adulthood.
Collapse
Affiliation(s)
- Xiaxuan Huang
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Shiqi Yuan
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yitong Ling
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Shanyuan Tan
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Hongtao Cheng
- School of Nursing, Jinan University, Guangzhou, 510630, China
| | - Anding Xu
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| | - Jun Lyu
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, 510630, China.
| |
Collapse
|
12
|
Masters H, Wang S, Tu C, Nguyen Q, Sha Y, Karikomi MK, Fung PSR, Tran B, Martel C, Kwang N, Neel M, Jaime OG, Espericueta V, Johnson BA, Kessenbrock K, Nie Q, Monuki ES. Sequential emergence and contraction of epithelial subtypes in the prenatal human choroid plexus revealed by a stem cell model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598747. [PMID: 38948782 PMCID: PMC11212933 DOI: 10.1101/2024.06.12.598747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Despite the major roles of choroid plexus epithelial cells (CPECs) in brain homeostasis and repair, their developmental lineage and diversity remain undefined. In simplified differentiations from human pluripotent stem cells, derived CPECs (dCPECs) displayed canonical properties and dynamic multiciliated phenotypes that interacted with Aβ uptake. Single dCPEC transcriptomes over time correlated well with human organoid and fetal CPECs, while pseudotemporal and cell cycle analyses highlighted the direct CPEC origin from neuroepithelial cells. In addition, time series analyses defined metabolic (type 1) and ciliogenic dCPECs (type 2) at early timepoints, followed by type 1 diversification into anabolic-secretory (type 1a) and catabolic-absorptive subtypes (type 1b) as type 2 cells contracted. These temporal patterns were then confirmed in independent derivations and mapped to prenatal stages using human tissues. In addition to defining the prenatal lineage of human CPECs, these findings suggest new dynamic models of ChP support for the developing human brain.
Collapse
|
13
|
Lee YJ, Kim J, Kwon YH. Long-Term Effects of Maternal Fat Consumption on the Brain Transcriptome of Obesogenic Diet-Fed Young Adult Mice Offspring. J Nutr 2024; 154:1532-1539. [PMID: 38484978 DOI: 10.1016/j.tjnut.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/17/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Substantial evidence has demonstrated that maternal high-fat (HF) consumption during gestation and lactation plays as a risk factor for neurodevelopmental alterations and subsequent neurological disorders. OBJECTIVE We investigated the regulatory mechanisms of maternal fat consumption on brain development and function in offspring at different ages. METHODS Mouse dams were fed either a control diet [low-fat (LF)] or an HF diet for 3 wk before mating and throughout pregnancy and lactation. Offspring were killed at postnatal day (PD) 21 (LF21 and HF21), and the rest were fed an HF diet for 12 wk until the killing at PD 105 (LF105 and HF105). The expression levels of genes and proteins in the brains of offspring were analyzed by microarray and immunoblotting, respectively. RESULTS Maternal dietary fat content, offspring age, and their interaction affected the expression levels of 1215, 10,453, and 2105 genes, respectively. The 67 differentially expressed genes (DEGs) between the HF21 and LF21 groups were enriched in several Gene Ontology terms related to nervous system development. Among 45 DEGs of the HF105/LF105 comparison, several genes associated with neurotransmitter action are detected. In addition, we observed increased activation of the AMP-dependent protein kinase-cAMP response element binding protein signaling pathway in HF105/LF105 comparison. However, maternal fat content did not change the protein levels of amyloid-β and tau hyperphosphorylation, the markers of neuropathogenesis. CONCLUSIONS Maternal HF feeding altered the expression of genes involved in the development and neurotransmitter system in the brains of PD 21 and HF diet-fed PD 105 offspring, respectively. Especially, the absence of overlap between DEGs at each comparison highlights the dynamic nature of alterations in gene expression in offspring of dams fed an HF diet. Further investigation on older adult offspring is necessary to elucidate the effects of maternal fat intake on the brain pathophysiology of offspring.
Collapse
Affiliation(s)
- Youn Ji Lee
- Department of Food and Nutrition, Seoul National University, Seoul, Korea
| | - Juhae Kim
- Department of Food and Nutrition, Seoul National University, Seoul, Korea; Research Institute of Human Ecology, Seoul National University, Seoul, Korea
| | - Young Hye Kwon
- Department of Food and Nutrition, Seoul National University, Seoul, Korea; Research Institute of Human Ecology, Seoul National University, Seoul, Korea.
| |
Collapse
|
14
|
Cevik SE, Skaar DA, Jima DD, Liu AJ, Østbye T, Whitson HE, Jirtle RL, Hoyo C, Planchart A. DNA methylation of imprint control regions associated with Alzheimer's disease in non-Hispanic Blacks and non-Hispanic Whites. Clin Epigenetics 2024; 16:58. [PMID: 38658973 PMCID: PMC11043040 DOI: 10.1186/s13148-024-01672-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/13/2024] [Indexed: 04/26/2024] Open
Abstract
Alzheimer's disease (AD) prevalence is twice as high in non-Hispanic Blacks (NHBs) as in non-Hispanic Whites (NHWs). The objective of this study was to determine whether aberrant methylation at imprint control regions (ICRs) is associated with AD. Differentially methylated regions (DMRs) were bioinformatically identified from whole-genome bisulfite sequenced DNA derived from brain tissue of 9 AD (5 NHBs and 4 NHWs) and 8 controls (4 NHBs and 4 NHWs). We identified DMRs located within 120 regions defined as candidate ICRs in the human imprintome ( https://genome.ucsc.edu/s/imprintome/hg38.AD.Brain_track ). Eighty-one ICRs were differentially methylated in NHB-AD, and 27 ICRs were differentially methylated in NHW-AD, with two regions common to both populations that are proximal to the inflammasome gene, NLRP1, and a known imprinted gene, MEST/MESTIT1. These findings indicate that early developmental alterations in DNA methylation of regions regulating genomic imprinting may contribute to AD risk and that this epigenetic risk differs between NHBs and NHWs.
Collapse
Affiliation(s)
- Sebnem E Cevik
- Toxicology Program, North Carolina State University, Raleigh, NC, USA
| | - David A Skaar
- Toxicology Program, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Dereje D Jima
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Andy J Liu
- Department of Neurology, School of Medicine, Duke University, Durham, NC, USA
| | - Truls Østbye
- Department of Family Medicine and Community Health, Duke University, Durham, NC, USA
| | - Heather E Whitson
- Department of Medicine, School of Medicine, Duke University, Durham, NC, USA
- Duke Center for the Study of Aging and Human Development, Durham, NC, USA
- Duke/UNC Alzheimer's Disease Research Center (ADRC), Durham, NC, USA
| | - Randy L Jirtle
- Toxicology Program, North Carolina State University, Raleigh, NC, USA.
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
| | - Cathrine Hoyo
- Toxicology Program, North Carolina State University, Raleigh, NC, USA.
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
| | - Antonio Planchart
- Toxicology Program, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
15
|
Arleo A, Bareš M, Bernard JA, Bogoian HR, Bruchhage MMK, Bryant P, Carlson ES, Chan CCH, Chen LK, Chung CP, Dotson VM, Filip P, Guell X, Habas C, Jacobs HIL, Kakei S, Lee TMC, Leggio M, Misiura M, Mitoma H, Olivito G, Ramanoël S, Rezaee Z, Samstag CL, Schmahmann JD, Sekiyama K, Wong CHY, Yamashita M, Manto M. Consensus Paper: Cerebellum and Ageing. CEREBELLUM (LONDON, ENGLAND) 2024; 23:802-832. [PMID: 37428408 PMCID: PMC10776824 DOI: 10.1007/s12311-023-01577-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/11/2023]
Abstract
Given the key roles of the cerebellum in motor, cognitive, and affective operations and given the decline of brain functions with aging, cerebellar circuitry is attracting the attention of the scientific community. The cerebellum plays a key role in timing aspects of both motor and cognitive operations, including for complex tasks such as spatial navigation. Anatomically, the cerebellum is connected with the basal ganglia via disynaptic loops, and it receives inputs from nearly every region in the cerebral cortex. The current leading hypothesis is that the cerebellum builds internal models and facilitates automatic behaviors through multiple interactions with the cerebral cortex, basal ganglia and spinal cord. The cerebellum undergoes structural and functional changes with aging, being involved in mobility frailty and related cognitive impairment as observed in the physio-cognitive decline syndrome (PCDS) affecting older, functionally-preserved adults who show slowness and/or weakness. Reductions in cerebellar volume accompany aging and are at least correlated with cognitive decline. There is a strongly negative correlation between cerebellar volume and age in cross-sectional studies, often mirrored by a reduced performance in motor tasks. Still, predictive motor timing scores remain stable over various age groups despite marked cerebellar atrophy. The cerebello-frontal network could play a significant role in processing speed and impaired cerebellar function due to aging might be compensated by increasing frontal activity to optimize processing speed in the elderly. For cognitive operations, decreased functional connectivity of the default mode network (DMN) is correlated with lower performances. Neuroimaging studies highlight that the cerebellum might be involved in the cognitive decline occurring in Alzheimer's disease (AD), independently of contributions of the cerebral cortex. Grey matter volume loss in AD is distinct from that seen in normal aging, occurring initially in cerebellar posterior lobe regions, and is associated with neuronal, synaptic and beta-amyloid neuropathology. Regarding depression, structural imaging studies have identified a relationship between depressive symptoms and cerebellar gray matter volume. In particular, major depressive disorder (MDD) and higher depressive symptom burden are associated with smaller gray matter volumes in the total cerebellum as well as the posterior cerebellum, vermis, and posterior Crus I. From the genetic/epigenetic standpoint, prominent DNA methylation changes in the cerebellum with aging are both in the form of hypo- and hyper-methylation, and the presumably increased/decreased expression of certain genes might impact on motor coordination. Training influences motor skills and lifelong practice might contribute to structural maintenance of the cerebellum in old age, reducing loss of grey matter volume and therefore contributing to the maintenance of cerebellar reserve. Non-invasive cerebellar stimulation techniques are increasingly being applied to enhance cerebellar functions related to motor, cognitive, and affective operations. They might enhance cerebellar reserve in the elderly. In conclusion, macroscopic and microscopic changes occur in the cerebellum during the lifespan, with changes in structural and functional connectivity with both the cerebral cortex and basal ganglia. With the aging of the population and the impact of aging on quality of life, the panel of experts considers that there is a huge need to clarify how the effects of aging on the cerebellar circuitry modify specific motor, cognitive, and affective operations both in normal subjects and in brain disorders such as AD or MDD, with the goal of preventing symptoms or improving the motor, cognitive, and affective symptoms.
Collapse
Affiliation(s)
- Angelo Arleo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Martin Bareš
- First Department of Neurology, Faculty of Medicine, Masaryk University and St. Anne's Teaching Hospital, Brno, Czech Republic
- Department of Neurology, School of Medicine, University of Minnesota, Minneapolis, USA
| | - Jessica A Bernard
- Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX, 77843, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Hannah R Bogoian
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Muriel M K Bruchhage
- Department of Psychology, Stavanger University, Institute of Social Sciences, Kjell Arholms Gate 41, 4021, Stavanger, Norway
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Centre for Neuroimaging Sciences, Box 89, De Crespigny Park, London, PO, SE5 8AF, UK
- Rhode Island Hospital, Department for Diagnostic Imaging, 1 Hoppin St, Providence, RI, 02903, USA
- Department of Paediatrics, Warren Alpert Medical School of Brown University, 222 Richmond St, Providence, RI, 02903, USA
| | - Patrick Bryant
- Freie Universität Berlin, Fachbereich Mathematik und Informatik, Arnimallee 12, 14195, Berlin, Germany
| | - Erik S Carlson
- Department of Psychiatry and Behavioural Sciences, University of Washington, Seattle, WA, USA
- Geriatric Research, Education and Clinical Center, Veteran's Affairs Medical Center, Puget Sound, Seattle, WA, USA
| | - Chetwyn C H Chan
- Department of Psychology, The Education University of Hong Kong, New Territories, Tai Po, Hong Kong, China
| | - Liang-Kung Chen
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
- Center for Geriatric and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan
- Taipei Municipal Gan-Dau Hospital (managed by Taipei Veterans General Hospital), Taipei, Taiwan
| | - Chih-Ping Chung
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Vonetta M Dotson
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Gerontology Institute, Georgia State University, Atlanta, GA, USA
| | - Pavel Filip
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| | - Xavier Guell
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Laboratory for Neuroanatomy and Cerebellar Neurobiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Christophe Habas
- CHNO Des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, 75012, Paris, France
- Université Versailles St Quentin en Yvelines, Paris, France
| | - Heidi I L Jacobs
- School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, PO BOX 616, 6200, MD, Maastricht, The Netherlands
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, PO BOX 616, 6200, MD, Maastricht, The Netherlands
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Tatia M C Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Laboratory of Neuropsychology and Human Neuroscience, Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Ataxia Laboratory, I.R.C.C.S. Santa Lucia Foundation, Rome, Italy
| | - Maria Misiura
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Hiroshi Mitoma
- Department of Medical Education, Tokyo Medical University, Tokyo, Japan
| | - Giusy Olivito
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Ataxia Laboratory, I.R.C.C.S. Santa Lucia Foundation, Rome, Italy
| | - Stephen Ramanoël
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
- Université Côte d'Azur, LAMHESS, Nice, France
| | - Zeynab Rezaee
- Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, NIH, Bethesda, USA
| | - Colby L Samstag
- Department of Psychiatry and Behavioural Sciences, University of Washington, Seattle, WA, USA
- Geriatric Research, Education and Clinical Center, Veteran's Affairs Medical Center, Puget Sound, Seattle, WA, USA
| | - Jeremy D Schmahmann
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Laboratory for Neuroanatomy and Cerebellar Neurobiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ataxia Center, Cognitive Behavioural neurology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kaoru Sekiyama
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Japan
| | - Clive H Y Wong
- Department of Psychology, The Education University of Hong Kong, New Territories, Tai Po, Hong Kong, China
| | - Masatoshi Yamashita
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
| | - Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, Charleroi, Belgium.
- Service des Neurosciences, University of Mons, Mons, Belgium.
| |
Collapse
|
16
|
Yadav VK, Choudhary N, Gacem A, Verma RK, Abul Hasan M, Tarique Imam M, Almalki ZS, Yadav KK, Park HK, Ghosh T, Kumar P, Patel A, Kalasariya H, Jeon BH, Ali AlMubarak H. Deeper insight into ferroptosis: association with Alzheimer's, Parkinson's disease, and brain tumors and their possible treatment by nanomaterials induced ferroptosis. Redox Rep 2023; 28:2269331. [PMID: 38010378 PMCID: PMC11001282 DOI: 10.1080/13510002.2023.2269331] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Ferroptosis is an emerging and novel type of iron-dependent programmed cell death which is mainly caused by the excessive deposition of free intracellular iron in the brain cells. This deposited free iron exerts a ferroptosis pathway, resulting in lipid peroxidation (LiPr). There are mainly three ferroptosis pathways viz. iron metabolism-mediated cysteine/glutamate, and LiPr-mediated. Iron is required by the brain as a redox metal for several physiological activities. Due to the iron homeostasis balance disruption, the brain gets adversely affected which further causes neurodegenerative diseases (NDDs) like Parkinson's and Alzheimer's disease, strokes, and brain tumors like glioblastoma (GBS), and glioma. Nanotechnology has played an important role in the prevention and treatment of these NDDs. A synergistic effect of nanomaterials and ferroptosis could prove to be an effective and efficient approach in the field of nanomedicine. In the current review, the authors have highlighted all the latest research in the field of ferroptosis, specifically emphasizing on the role of major molecular key players and various mechanisms involved in the ferroptosis pathway. Moreover, here the authors have also addressed the correlation of ferroptosis with the pathophysiology of NDDs and theragnostic effect of ferroptosis and nanomaterials for the prevention and treatment of NDDs.
Collapse
Affiliation(s)
- Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Nisha Choudhary
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda, Algeria
| | - Rakesh Kumar Verma
- Department of Biosciences, School of Liberal Arts & Sciences, Mody University of Science and Technology, Sikar, India
| | - Mohd Abul Hasan
- Civil Engineering Department, College of Engineering, King Khalid University, Abha, Kingdom of Saudi Arabia (KSA)
| | - Mohammad Tarique Imam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Ziyad Saeed Almalki
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Bhopal, India
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Nasiriyah, Iraq
| | - Hyun-Kyung Park
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Tathagata Ghosh
- Department of Arts, School of Liberal Arts & Sciences, Mody University of Science and Technology, Sikar, India
| | - Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Haresh Kalasariya
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hassan Ali AlMubarak
- Division of Radiology, Department of Medicine, College of Medicine and Surgery, King Khalid University (KKU), Abha, Kingdom of Saudi Arabia
| |
Collapse
|
17
|
Raia T, Armeli F, Cavallaro RA, Ferraguti G, Businaro R, Lucarelli M, Fuso A. Perinatal S-Adenosylmethionine Supplementation Represses PSEN1 Expression by the Cellular Epigenetic Memory of CpG and Non-CpG Methylation in Adult TgCRD8 Mice. Int J Mol Sci 2023; 24:11675. [PMID: 37511434 PMCID: PMC10380323 DOI: 10.3390/ijms241411675] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
DNA methylation, the main epigenetic modification regulating gene expression, plays a role in the pathophysiology of neurodegeneration. Previous evidence indicates that 5'-flanking hypomethylation of PSEN1, a gene involved in the amyloidogenic pathway in Alzheimer's disease (AD), boosts the AD-like phenotype in transgenic TgCRND8 mice. Supplementation with S-adenosylmethionine (SAM), the methyl donor in the DNA methylation reactions, reverts the pathological phenotype. Several studies indicate that epigenetic signatures, driving the shift between normal and diseased aging, can be acquired during the first stages of life, even in utero, and manifest phenotypically later on in life. Therefore, we decided to test whether SAM supplementation during the perinatal period (i.e., supplementing the mothers from mating to weaning) could exert a protective role towards AD-like symptom manifestation. We therefore compared the effect of post-weaning vs. perinatal SAM treatment in TgCRND8 mice by assessing PSEN1 methylation and expression and the development of amyloid plaques. We found that short-term perinatal supplementation was as effective as the longer post-weaning supplementation in repressing PSEN1 expression and amyloid deposition in adult mice. These results highlight the importance of epigenetic memory and methyl donor availability during early life to promote healthy aging and stress the functional role of non-CpG methylation.
Collapse
Affiliation(s)
- Tiziana Raia
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Federica Armeli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | | | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, 00161 Rome, Italy
| | - Andrea Fuso
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
18
|
Babić Leko M, Langer Horvat L, Španić Popovački E, Zubčić K, Hof PR, Šimić G. Metals in Alzheimer's Disease. Biomedicines 2023; 11:1161. [PMID: 37189779 PMCID: PMC10136077 DOI: 10.3390/biomedicines11041161] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
The role of metals in the pathogenesis of Alzheimer's disease (AD) is still debated. Although previous research has linked changes in essential metal homeostasis and exposure to environmental heavy metals to the pathogenesis of AD, more research is needed to determine the relationship between metals and AD. In this review, we included human studies that (1) compared the metal concentrations between AD patients and healthy controls, (2) correlated concentrations of AD cerebrospinal fluid (CSF) biomarkers with metal concentrations, and (3) used Mendelian randomization (MR) to assess the potential metal contributions to AD risk. Although many studies have examined various metals in dementia patients, understanding the dynamics of metals in these patients remains difficult due to considerable inconsistencies among the results of individual studies. The most consistent findings were for Zn and Cu, with most studies observing a decrease in Zn levels and an increase in Cu levels in AD patients. However, several studies found no such relation. Because few studies have compared metal levels with biomarker levels in the CSF of AD patients, more research of this type is required. Given that MR is revolutionizing epidemiologic research, additional MR studies that include participants from diverse ethnic backgrounds to assess the causal relationship between metals and AD risk are critical.
Collapse
Affiliation(s)
- Mirjana Babić Leko
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Lea Langer Horvat
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Ena Španić Popovački
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Klara Zubčić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Patrick R. Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute and Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| |
Collapse
|
19
|
Bottaccioli AG, Bottaccioli F. Come gli stati psichici si traducono in molecole biologiche e come questo cambia la medicina e la psicologia. PSICOTERAPIA E SCIENZE UMANE 2023. [DOI: 10.3280/pu2023-001012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Nell'aprile del 2022 abbiamo pubblicato, su invito di una rivista internazionale di biologia molecolare, un'ampia review che riporta le principali evidenze scientifiche sul tema delle relazioni tra vita psichica e biologia, traendone alcune conclusioni di carattere generale sulla psicologia e la medicina (Bottaccioli, Bologna & Bottaccioli, 2022). Il presente articolo riprende alcuni dei passaggi fondamentali presentati in quella review e si collega a un precedente articolo pubblicato sul n. 4/2014 di Psicoterapia e Scienze Umane (Bottaccioli, 2014b), di cui rappresenta un aggiornamento. Dalla pubblicazione di quell'articolo le evidenze sperimentali e cliniche sull'influenza della psiche sui sistemi biologici si sono moltiplicate. Al tempo stesso, conosciamo meglio le vie e i meccanismi con cui gli stati psichici si traducono in biologia.
Collapse
|
20
|
Stefanova NA, Kolosova NG. The Rat Brain Transcriptome: From Infancy to Aging and Sporadic Alzheimer's Disease-like Pathology. Int J Mol Sci 2023; 24:ijms24021462. [PMID: 36674977 PMCID: PMC9865438 DOI: 10.3390/ijms24021462] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
It has been suggested that functional traits of the adult brain-all of which are established early in life-may affect the brain's susceptibility to Alzheimer's disease (AD). Results of our previous studies on senescence-accelerated OXYS rats, a model of sporadic AD, support this hypothesis. Here, to elucidate the molecular genetic nature of the aberrations revealed during brain maturation, we analyzed transcriptomes (RNA-seq data) of the prefrontal cortex (PFC) and hippocampus of OXYS rats and Wistar (control) rats in the period of brain maturation critical for OXYS rats (ages P3 and P10; P: postnatal day). We found more than 1000 differentially expressed genes in both brain structures; functional analysis indicated reduced efficiency of the formation of neuronal contacts, presumably explained mainly by deficits of mitochondrial functions. Next, we compared differentially expressed genes in the rat PFC and hippocampus from infancy to the progressive stage of AD-like pathology (five ages in total). Three genes (Thoc3, Exosc8, and Smpd4) showed overexpression in both brain regions of OXYS rats throughout the lifespan. Thus, reduced efficiency of the formation of neural networks in the brain of OXYS rats in infancy likely contributes to the development of their AD-like pathology.
Collapse
|
21
|
Minné D, Marnewick JL, Engel-Hills P. Early Chronic Stress Induced Changes within the Locus Coeruleus in Sporadic Alzheimer's Disease. Curr Alzheimer Res 2023; 20:301-317. [PMID: 37872793 DOI: 10.2174/1567205020666230811092956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 10/25/2023]
Abstract
Chronic exposure to stress throughout the lifespan has been the focus of many studies on Alzheimer's disease (AD) because of the similarities between the biological mechanisms involved in chronic stress and the pathophysiology of AD. In fact, the earliest abnormality associated with the disease is the presence of phosphorylated tau protein in locus coeruleus neurons, a brain structure highly responsive to stress and perceived threat. Here, we introduce allostatic load as a useful concept for understanding many of the complex, interacting neuropathological changes involved in the AD degenerative process. In response to chronic stress, aberrant tau proteins that begin to accumulate within the locus coeruleus decades prior to symptom onset appear to represent a primary pathological event in the AD cascade, triggering a wide range of interacting brain changes involving neuronal excitotoxicity, endocrine alterations, inflammation, oxidative stress, and amyloid plaque exacerbation. While it is acknowledged that stress will not necessarily be the major precipitating factor in all cases, early tau-induced changes within the locus coeruleus-norepinephrine pathway suggests that a therapeutic window might exist for preventative measures aimed at managing stress and restoring balance within the HPA axis.
Collapse
Affiliation(s)
- Donné Minné
- Applied Microbial & Health Biotechnology Institute, Cape Peninsula University of Technology, Cape Town, 7535, South Africa
- Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Cape Town, 7535, South Africa
| | - Jeanine L Marnewick
- Applied Microbial & Health Biotechnology Institute, Cape Peninsula University of Technology, Cape Town, 7535, South Africa
| | - Penelope Engel-Hills
- Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Cape Town, 7535, South Africa
| |
Collapse
|
22
|
Xiong YM, Li YY, Lv L, Chen XY, Li XH, Qin ZF. Postnatal exposure to low-dose tetrabromobisphenol A increases the susceptibility of mammal testes to chemical-induced spermatogenic stress in adulthood. ENVIRONMENT INTERNATIONAL 2023; 171:107683. [PMID: 36512917 DOI: 10.1016/j.envint.2022.107683] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
There is increasing data showing that some environmental chemicals can increase susceptibility to follow-up stress or injuries, possibly thereby contributing to certain clinical and subclinical diseases. Previous studies reported that tetrabromobisphenol A (TBBPA), one of the most used brominated flame retardants, exerted little male reproductive toxicity in terms of conventional endpoints but affected testis development and thereby caused testicular alterations at the molecular and cellular levels. Here, we aimed to reveal whether developmental exposure to TBBPA can increase testicular susceptibility to follow-up stress in adulthood. For this purpose, newborn mice were exposed to 50 or 500 μg/kg/d TBBPA for 56 days to confirm adverse effects on testes, followed by a single intraperitoneal injection of 3 mg/kg busulfan (BSF) to induce spermatogenic stress. Four weeks after BSF injection, TBBPA-treated mice exhibited severe pathological alterations, including reduced testis weight, damaged testicular histological structure, declined sperm count, apoptosis of spermatogenic cells, while no remarkable damage was observed in mice without historical exposure to TBBPA. These results demonstrate that historical exposure to TBBPA, either 50 or 500 µg/kg/d, increased the susceptibility of mouse testes to BSF-induced spermatogenic stress, resulting in severe adverse reproductive outcomes. Further analysis indicates that TBBPA-caused microtubule and microfilament damage, along with spermatogonia and spermatocyte reduction, could contributed to the increased susceptibility of testes, suggesting that these non-conventional reproductive lesions caused by chemicals should not be ignored. This is the first study to investigate the reproductive hazard of chemicals from the perspective of testicular susceptibility to stress, thereby opening a new avenue to identify environmental chemicals possibly contributing to male infertility and subfertility.
Collapse
Affiliation(s)
- Yi-Ming Xiong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan-Yuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lin Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan-Yue Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing-Hong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhan-Fen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Migliore L, Coppedè F. Gene-environment interactions in Alzheimer disease: the emerging role of epigenetics. Nat Rev Neurol 2022; 18:643-660. [PMID: 36180553 DOI: 10.1038/s41582-022-00714-w] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 12/15/2022]
Abstract
With the exception of a few monogenic forms, Alzheimer disease (AD) has a complex aetiology that is likely to involve multiple susceptibility genes and environmental factors. The role of environmental factors is difficult to determine and, until a few years ago, the molecular mechanisms underlying gene-environment (G × E) interactions in AD were largely unknown. Here, we review evidence that has emerged over the past two decades to explain how environmental factors, such as diet, lifestyle, alcohol, smoking and pollutants, might interact with the human genome. In particular, we discuss how various environmental AD risk factors can induce epigenetic modifications of key AD-related genes and pathways and consider how epigenetic mechanisms could contribute to the effects of oxidative stress on AD onset. Studies on early-life exposures are helping to uncover critical time windows of sensitivity to epigenetic influences from environmental factors, thereby laying the foundations for future primary preventative approaches. We conclude that epigenetic modifications need to be considered when assessing G × E interactions in AD.
Collapse
Affiliation(s)
- Lucia Migliore
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy. .,Department of Laboratory Medicine, Pisa University Hospital, Pisa, Italy.
| | - Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| |
Collapse
|
24
|
Downey J, Lam JC, Li VO, Gozes I. Somatic Mutations and Alzheimer’s Disease. J Alzheimers Dis 2022; 90:475-493. [DOI: 10.3233/jad-220643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer’s disease (AD) represents a global health challenge, with an estimated 55 million people suffering from the non-curable disease across the world. While amyloid-β plaques and tau neurofibrillary tangles in the brain define AD proteinopathy, it has become evident that diverse coding and non-coding regions of the genome may significantly contribute to AD neurodegeneration. The diversity of factors associated with AD pathogenesis, coupled with age-associated damage, suggests that a series of triggering events may be required to initiate AD. Since somatic mutations accumulate with aging, and aging is a major risk factor for AD, there is a great potential for somatic mutational events to drive disease. Indeed, recent data from the Gozes team/laboratories as well as other leading laboratories correlated the accumulation of somatic brain mutations with the progression of tauopathy. In this review, we lay the current perspectives on the principal genetic factors associated with AD and the potential causes, highlighting the contribution of somatic mutations to the pathogenesis of late onset Alzheimer’s disease. The roles that artificial intelligence and big data can play in accelerating the progress of causal somatic mutation markers/biomarkers identification, and the associated drug discovery/repurposing, have been highlighted for future AD and other neurodegenerative studies, with the aim to bring hope for the vulnerable aging population.
Collapse
Affiliation(s)
- Jocelyn Downey
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Jacqueline C.K. Lam
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
- Department of Computer Science and Technology, University of Cambridge, UK
| | - Victor O.K. Li
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Illana Gozes
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
25
|
Zhou C, Ni W, Zhu T, Dong S, Sun P, Hua F. Cellular Reprogramming and Its Potential Application in Alzheimer's Disease. Front Neurosci 2022; 16:884667. [PMID: 35464309 PMCID: PMC9023048 DOI: 10.3389/fnins.2022.884667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) has become the most common age-related dementia in the world and is currently incurable. Although many efforts have been made, the underlying mechanisms of AD remain unclear. Extracellular amyloid-beta deposition, intracellular tau hyperphosphorylation, neuronal death, glial cell activation, white matter damage, blood-brain barrier disruption, and other mechanisms all take part in this complicated disease, making it difficult to find an effective therapy. In the study of therapeutic methods, how to restore functional neurons and integrate myelin becomes the main point. In recent years, with the improvement and maturity of induced pluripotent stem cell technology and direct cell reprogramming technology, it has become possible to induce non-neuronal cells, such as fibroblasts or glial cells, directly into neuronal cells in vitro and in vivo. Remarkably, the induced neurons are functional and capable of entering the local neural net. These encouraging results provide a potential new approach for AD therapy. In this review, we summarized the characteristics of AD, the reprogramming technique, and the current research on the application of cellular reprogramming in AD. The existing problems regarding cellular reprogramming and its therapeutic potential for AD were also reviewed.
Collapse
Affiliation(s)
- Chao Zhou
- Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wanyan Ni
- Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Taiyang Zhu
- Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shuyu Dong
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, China
| | - Ping Sun
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Fang Hua
- Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|