1
|
Sarad K, Stefańska M, Kraszewska I, Burda G, Szade K, Błyszczuk P, Dulak J, Jaźwa-Kusior A. Endothelial Nrf2 deficiency promotes atherosclerotic lesion formation by shaping a proinflammatory niche. Life Sci 2025; 375:123725. [PMID: 40404122 DOI: 10.1016/j.lfs.2025.123725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 05/11/2025] [Accepted: 05/15/2025] [Indexed: 05/24/2025]
Abstract
AIMS Dysfunctional endothelium contributes to the initiation and progression of atherosclerosis. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcription factor that regulates the expression of antioxidant and cytoprotective genes. Reduced activity of Nrf2 can contribute to endothelial dysfunction. While the role of endothelial Nrf2 in vascular homeostasis is well supported, several knowledge gaps remain, particularly regarding its cell type-specific contributions and crosstalk mechanisms in vascular disease progression. MATERIALS AND METHODS Atherosclerosis was induced in mice with transcriptionally inactive Nrf2 in cadherin 5 (Cdh5)-expressing cells (Nrf2Cdh5tKO) and appropriate control Nrf2flox/flox mice via adeno-associated viral vector (AAV)-mediated overexpression of murine proprotein convertase subtilisin/kexin type 9 (Pcsk9) in the liver and high-fat diet feeding. In addition to histological analysis, single-cell RNA sequencing (scRNA-seq) was performed to investigate the cellular composition of healthy and atherosclerotic mouse aortas and examine their gene expression characteristics. KEY FINDINGS Loss of Nrf2 transcriptional activity in mice promoted aortic root lesions formation. The scRNA-seq analysis performed on the aortas of Nrf2Cdh5tKO mice revealed a specific transcriptomic profile of endothelial cells (ECs) lacking Nrf2 activity, including altered expression of genes regulating shear stress, inflammation, vascular permeability, and secretion of proatherogenic factors. Additionally, cellular crosstalk analysis revealed significant alterations in the atherosclerotic aortas of Nrf2Cdh5tKO mice, including weakened communication probability between ECs and (myo)fibroblasts and enhanced interactions between ECs and inflammatory macrophages. SIGNIFICANCE Endothelial Nrf2 deficiency promotes atherosclerosis by inducing inflammatory traits in ECs and shifting vascular cell communication dynamics.
Collapse
Affiliation(s)
- Katarzyna Sarad
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Kraków, Poland
| | - Monika Stefańska
- Department of Clinical Immunology, Jagiellonian University Medical College, Kraków, Poland
| | - Izabela Kraszewska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Gabriela Burda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Kraków, Poland
| | - Krzysztof Szade
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Przemysław Błyszczuk
- Department of Clinical Immunology, Jagiellonian University Medical College, Kraków, Poland; Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Agnieszka Jaźwa-Kusior
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
2
|
Qian Y, Jia Y. Identification of Key Efferocytosis-Related Genes and Mechanisms in Diabetic Retinopathy. Mol Biotechnol 2025; 67:2785-2797. [PMID: 39085562 DOI: 10.1007/s12033-024-01239-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 07/09/2024] [Indexed: 08/02/2024]
Abstract
This study aimed to explore the key efferocytosis-related genes in diabetic retinopathy (DR) and their regulatory mechanisms. Public DR-related gene expression datasets, GSE160306 (training) and GSE60436 (validation), were downloaded. Differentially expressed efferocytosis-related genes (DEERGs) were analyzed using differential expression analysis and weighted gene co-expression network analysis. Functional enrichment analysis was conducted. Moreover, efferocytosis-related signature genes were identified using machine learning analysis, and their expression levels and diagnostic value were analyzed. Furthermore, nomograms were constructed; immune cell infiltration was analyzed; and gene set enrichment analysis, transcriptional regulation analysis, and small-molecule drug (SMD) prediction of efferocytosis-related signature genes were performed. In total, 36 DEERGs were identified in DR, and were markedly enriched in multiple functions, such as visual system development. Through further machine learning analysis, two efferocytosis-related signature genes, Ferritin Light Chain (FTL) and Fc Gamma Binding Protein (FCGBP), were identified, and were found to be upregulated in DR samples and showed high diagnostic performance for DR. A nomogram constructed using FTL and FCGBP accurately predicted the risk of DR. Moreover, the level of infiltration of immature B cells was positively correlated with FTL and FCGBP expression levels. Multiple transcription factors (TFs), such as CCCTC-Binding Factor (CTCF) and KLF Transcription Factor 9 (KLF9), were found to interact with both FTL and FCGBP. In addition, FTL can be targeted by miRNAs, such as miR-22-3p, and FCGBP can be targeted by miR-7973. In addition, both FTL and FCGBP can be targeted by SMDs, such as bisphenol A. Key efferocytosis-related genes, such as FTL and FCGBP, may promote DR development. Detecting or targeting FTL and FCGBP may aid in the prevention, diagnosis, and treatment of DR.
Collapse
Affiliation(s)
- Yu Qian
- Department of Ophthalmology, The First People's Hospital of Zhaoqing, 9 Donggang East Road, Zhaoqing, 526060, Guangdong, China.
| | - Yanwen Jia
- Department of Ophthalmology, Changzhou Second People's Hospital Affiliated Nanjing Medical University, Changzhou, 213004, Jiangsu, China
| |
Collapse
|
3
|
Isot I, Kim SH, Demirel-Yalciner T, Migni A, Gioiello A, Galli F, Sozen E, Surh YJ, Ozer NK. Garcinoic acid enhances inflammation resolution against colitis by activating Nrf2 dependent efferocytosis. Free Radic Biol Med 2025; 237:S0891-5849(25)00726-9. [PMID: 40449807 DOI: 10.1016/j.freeradbiomed.2025.05.428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 05/08/2025] [Accepted: 05/29/2025] [Indexed: 06/03/2025]
Abstract
Inflammation resolution represents the most crucial step in the inflammatory response, and its disruption is associated with a variety of disorders. Clearance of apoptotic cells, namely efferocytosis, plays a pivotal role in this process by preventing the transition of apoptotic cell accumulation into necrosis and fibrosis. Garcinoic acid (GA), a plant metabolite and a postbiotics analogue of vitamin E, has been demonstrated to possess anti-inflammatory activity, but mechanistic aspects of this effect remain poorly characterized. In this study, we explored the potential of GA in enhancing efferocytosis and inflammation resolution. In vitro findings using macrophages indicated that GA enhances efferocytosis through the involvement of MerTK, LRP-1, and TIM4, and specialized pro-resolving lipid mediators (SPMs), mainly lipoxin A4 and resolvin E1. As in vivo, GA reduced inflammatory and degenerative symptoms in a mouse model of dextran sodium sulfate (DSS)-induced colitis, which was associated with increased efferocytosis activity in colon. Mechanistically, NRF2 silencing and HO-1 inhibition in macrophages reduced both efferocytosis and SPMs effects of GA, suggesting that the pro-resolving role of this metabolite may depend, at least partially, on Nrf2 activity and stress response effects. Present findings demonstrate a role of GA as efferocytosis enhancer and potential therapeutic agent in non-resolving diseases.
Collapse
Affiliation(s)
- Ibrahim Isot
- Department of Biochemistry, Faculty of Medicine, Marmara University, Istanbul, Türkiye; Institute of Health Sciences, Marmara University, Istanbul, Türkiye
| | - Seong Hoon Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Tugce Demirel-Yalciner
- Department of Biochemistry, Faculty of Medicine, Uskudar University, Istanbul, Türkiye; Metabolic and Inflammatory Diseases Research Center (METIFLAM), Uskudar University, Istanbul, Türkiye
| | - Anna Migni
- Unit of Clinical Biochemistry and Human Nutrition, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Antimo Gioiello
- Laboratory of Medicinal and Advanced Synthetic Chemistry (Lab MASC), Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Francesco Galli
- Unit of Clinical Biochemistry and Human Nutrition, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Erdi Sozen
- Department of Biochemistry, Faculty of Medicine, Marmara University, Istanbul, Türkiye; Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, Istanbul, Türkiye
| | - Young-Joon Surh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Nesrin Kartal Ozer
- Department of Biochemistry, Faculty of Medicine, Uskudar University, Istanbul, Türkiye; Metabolic and Inflammatory Diseases Research Center (METIFLAM), Uskudar University, Istanbul, Türkiye.
| |
Collapse
|
4
|
Wen L, Ye R, Zhai W, Li D, Sun H. Efferocytosis in inflammatory bone disorders. Trends Pharmacol Sci 2025:S0165-6147(25)00067-7. [PMID: 40348687 DOI: 10.1016/j.tips.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/03/2025] [Accepted: 04/15/2025] [Indexed: 05/14/2025]
Abstract
Efferocytosis, the clearance of apoptotic cells (ACs) by phagocytes, is crucial for bone homeostasis and immune balance. This tightly regulated process depends on molecular markers such as phosphatidylserine on ACs and MERTK on phagocytes. In the bone microenvironment, multiple cell types participate in efferocytosis, including osteal macrophages, mesenchymal stem cells, osteoblasts, and osteoclasts, directly influencing bone remodeling and immune responses. Impaired efferocytosis disrupts bone turnover, exacerbates inflammation, and contributes to inflammatory bone diseases. Despite its recognized importance, the precise mechanisms regulating efferocytosis in osteoimmunology remain underexplored, including specific signaling pathways, cell-specific interactions, and therapeutic applications. Recent advances highlight the therapeutic potential of targeting efferocytosis using modalities and biomaterial-based strategies. This review systematically examines the role of efferocytosis in osteoimmunology, discusses key challenges in its therapeutic translation, and explores emerging strategies to optimize efferocytosis-based interventions for inflammatory bone disorders.
Collapse
Affiliation(s)
- Linlin Wen
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, China
| | - Rongrong Ye
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, China
| | - Wenhao Zhai
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, China
| | - Daowei Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, China.
| | - Hongchen Sun
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, China.
| |
Collapse
|
5
|
Kim JW, Tung HC, Yang B, Pant R, Guan X, Feng Y, Xie W. Heme-thiolate monooxygenase cytochrome P450 1B1, an old dog with many new tricks. Pharmacol Rev 2025; 77:100045. [PMID: 40054133 DOI: 10.1016/j.pharmr.2025.100045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 05/12/2025] Open
Abstract
Cytochrome P450 CYP1B1 is a heme-thiolate monooxygenase traditionally recognized for its xenobiotic functions and extrahepatic expressions. Recent studies have suggested that CYP1B1 is also expressed in hepatic stellate cells, immune cells, endothelial cells, and fibroblasts within the tumor microenvironment, as well as tumor cells themselves. CYP1B1 is responsible for the metabolism of a wide range of substrates, including xenobiotics such as drugs, environmental chemicals, and endobiotics such as steroids, retinol, and fatty acids. Consequently, CYP1B1 and its associated exogenous and endogenous metabolites have been critically implicated in the pathogenesis of many diseases. Understanding the mode of action of CYP1B1 in different pathophysiological conditions and developing pharmacological inhibitors that allow for systemic or cell type-specific modulation of CYP1B1 may pave the way for novel therapeutic opportunities. This review highlights the significant role of CYP1B1 in maintaining physiological homeostasis and provides a comprehensive discussion of recent advancements in our understanding of CYP1B1's involvement in the pathogenesis of diseases such as fibrosis, cancer, glaucoma, and metabolic disorders. Finally, the review emphasizes the therapeutic potential of targeting CYP1B1 for drug development, particularly in the treatment and prevention of cancers and liver fibrosis. SIGNIFICANCE STATEMENT: CYP1B1 plays a critical role in various physiological processes. Dysregulation or genetic mutations of the gene encoding this enzyme can lead to health complications and may increase the risk of diseases such as cancer and liver fibrosis. In this review, we summarize recent preclinical and clinical evidence that underscores the potential of CYP1B1 as a therapeutic target.
Collapse
Affiliation(s)
- Jong-Won Kim
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hung-Chun Tung
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bin Yang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rajat Pant
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xiuchen Guan
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Ye Feng
- Department of Endocrinology and Metabolic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wen Xie
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
6
|
Chiu DKC, Zhang X, Cheng BYL, Liu Q, Hayashi K, Yu B, Lee R, Zhang C, An X, Rajadas J, Reticker-Flynn NE, Rankin EB, Engleman EG. Tumor-derived erythropoietin acts as an immunosuppressive switch in cancer immunity. Science 2025; 388:eadr3026. [PMID: 40273234 PMCID: PMC12110762 DOI: 10.1126/science.adr3026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/20/2024] [Accepted: 03/05/2025] [Indexed: 04/26/2025]
Abstract
Successful cancer immunotherapy requires a patient to mount an effective immune response against tumors; however, many cancers evade the body's immune system. To investigate the basis for treatment failure, we examined spontaneous mouse models of hepatocellular carcinoma (HCC) with either an inflamed T cell-rich or a noninflamed T cell-deprived tumor microenvironment (TME). Our studies reveal that erythropoietin (EPO) secreted by tumor cells determines tumor immunotype. Tumor-derived EPO autonomously generates a noninflamed TME by interacting with its cognate receptor EPOR on tumor-associated macrophages (TAMs). EPO signaling prompts TAMs to become immunoregulatory through NRF2-mediated heme depletion. Removing either tumor-derived EPO or EPOR on TAMs leads to an inflamed TME and tumor regression independent of genotype, owing to augmented antitumor T cell immunity. Thus, the EPO/EPOR axis functions as an immunosuppressive switch for antitumor immunity.
Collapse
Affiliation(s)
| | - Xiangyue Zhang
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | | | - Qiang Liu
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, Stanford, CA, USA
| | - Kazukuni Hayashi
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Bo Yu
- ImmunEdge Inc. Mountain View, California 94043, USA
| | - Ryan Lee
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Catherine Zhang
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, New York, NY, 10065, USA
| | - Jayakumar Rajadas
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, Stanford, CA, USA
| | - Nathan E Reticker-Flynn
- Department of Otolaryngology - Head and Neck Surgery, Stanford University, Stanford, CA 94305, USA
| | - Erinn B Rankin
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
- Stanford Cancer Institute, Stanford University, Palo Alto, CA 94305, USA
| | - Edgar G Engleman
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
- Stanford Cancer Institute, Stanford University, Palo Alto, CA 94305, USA
- Lead contact
| |
Collapse
|
7
|
Chalmers JD, Metersky M, Aliberti S, Morgan L, Fucile S, Lauterio M, McDonald PP. Neutrophilic inflammation in bronchiectasis. Eur Respir Rev 2025; 34:240179. [PMID: 40174958 PMCID: PMC11962982 DOI: 10.1183/16000617.0179-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/11/2025] [Indexed: 04/04/2025] Open
Abstract
Noncystic fibrosis bronchiectasis, hereafter referred to as bronchiectasis, is a chronic, progressive lung disease that can affect people of all ages. Patients with clinically significant bronchiectasis have chronic cough and sputum production, as well as recurrent respiratory infections, fatigue and impaired health-related quality of life. The pathophysiology of bronchiectasis has been described as a vicious vortex of chronic inflammation, recurring airway infection, impaired mucociliary clearance and progressive lung damage that promotes the development and progression of the disease. This review describes the pivotal role of neutrophil-driven inflammation in the pathogenesis and progression of bronchiectasis. Delayed neutrophil apoptosis and increased necrosis enhance dysregulated inflammation in bronchiectasis and failure to resolve this contributes to chronic, sustained inflammation. The excessive release of neutrophil serine proteases, such as neutrophil elastase, cathepsin G and proteinase 3, promotes a protease-antiprotease imbalance that correlates with increased inflammation in bronchiectasis and contributes to disease progression. While there are currently no licensed therapies to treat bronchiectasis, this review will explore the evolving evidence for neutrophilic inflammation as a novel treatment target with meaningful clinical benefits.
Collapse
Affiliation(s)
- James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - Mark Metersky
- University of Connecticut School of Medicine, Farmington, CT, USA
| | - Stefano Aliberti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Respiratory Unit, Milan, Italy
| | - Lucy Morgan
- Department of Respiratory Medicine, Concord Clinical School, University of Sydney, Sydney, Australia
| | | | | | | |
Collapse
|
8
|
Barber HM, Robbins CG, Cutler Z, Brown RI, Werkman I, Kucenas S. Radial astroglia cooperate with microglia to clear neuronal cell bodies during zebrafish optic tectum development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643334. [PMID: 40161638 PMCID: PMC11952540 DOI: 10.1101/2025.03.14.643334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The clearance of dead cells by phagocytes is an essential component of neural development in many organisms. Microglia are the main phagocytes in the central nervous system (CNS), but the extent of participation by other glial cells remains unclear, especially under homeostatic conditions. During zebrafish optic tectum (OT) development, we observed radial astroglia forming dynamic, spherical projections from their basal processes. These projections, which we call scyllate heads, coincide with a wave of neuronal cell death in the OT. We show that scyllate heads surround the majority of dying neurons soon after phosphatidylserine exposure. However, unlike traditional phagosomes, scyllate heads persist for many hours and are rarely acidified or internalized. Instead, microglia invade scyllate heads and remove their contents for terminal degradation. Our study reveals an active role for radial astroglia in homeostatic cell clearance and cooperation between microglia and radial astroglia during zebrafish OT development. Highlights Optic tectum astroglia form large, dynamic projections called scyllate headsScyllate heads surround the majority of dying neurons during a wave of apoptosisScyllate heads are intermediate containers of dying cells rather than phagosomesMicroglia invade scyllate heads to remove their contents for terminal degradation.
Collapse
|
9
|
Lamari F, Rossignol F, Mitchell GA. Glycerophospholipids: Roles in Cell Trafficking and Associated Inborn Errors. J Inherit Metab Dis 2025; 48:e70019. [PMID: 40101691 PMCID: PMC11919462 DOI: 10.1002/jimd.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/20/2025]
Abstract
Glycerophospholipids (GPLs) are the main lipid components of cellular membranes. They are implicated in membrane structure, vesicle trafficking, neurotransmission, and cell signalling. GPL molecules are amphiphilic, organized around the three carbons of glycerol. Positions sn-1 and sn-2 are each esterified to a fatty acid (FA). At position sn-3, a phosphate group is linked, which in turn can bind a polar head group, the most prevalent classes being phosphatidic acid (PA, phosphate alone as head group), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), and cardiolipin (CL). Pathways of GPL biosynthesis span several cell compartments (endoplasmic reticulum (ER), Golgi mitochondria). Particularly important are mitochondria-associated membranes (MAMs), where the ER and mitochondrial outer membrane are in proximity. After synthesis, GPLs continuously undergo remodelling by FA hydrolysis and re-esterification. Esterification with different FAs alters membrane properties. Many steps in GPL synthesis and remodelling can be mediated by more than one enzyme, suggesting complexity that requires further exploration. The 38 known GPL-related inborn errors are clinically diverse. 23 (61%) have neurologic features, sometimes progressive and severe, particularly developmental delay/encephalopathy in 16 (42%) and spastic paraplegia in 12 (32%). Photoreceptor/neuroretinal disease occurs in 14 (37%). Three present skeletal dysplasias (8%). Most GPL inborn errors have been diagnosed by broad molecular testing. Lipidomics holds promise for diagnostic testing and for the discovery of functionally relevant metabolite profiles for monitoring natural history and treatment response.
Collapse
Affiliation(s)
- Foudil Lamari
- Metabolic Biochemistry, Neurometabolic and Neurodegenerative Unit – DMU BioGeMH Hôpital Pitié‐Salpêtrière, AP‐HP. Sorbonne UniversitéParisFrance
- Brain Institute ‐ Institut du Cerveau ‐ ICM, Inserm U1127, Hôpital Pitié‐SalpêtrièreParisFrance
| | - Francis Rossignol
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of HealthBethesdaMarylandUSA
- Division of Medical Genetics and Genomics, Department of PediatricsCHU Sainte Justine and Université de MontréalMontréalCanada
| | - Grant A. Mitchell
- Division of Medical Genetics and Genomics, Department of PediatricsCHU Sainte Justine and Université de MontréalMontréalCanada
| |
Collapse
|
10
|
Liu YQ, Li ZZ, Han YL, Wang QB. The role of efferocytosis in inflammatory bowel disease. Front Immunol 2025; 16:1524058. [PMID: 40040696 PMCID: PMC11876057 DOI: 10.3389/fimmu.2025.1524058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/16/2025] [Indexed: 03/06/2025] Open
Abstract
Efferocytosis is the process by which various phagocytes clear apoptotic cells. In recent years, an increasing body of evidence has emphasized the importance of efferocytosis in maintaining internal homeostasis. Intestinal macrophages play a crucial role in modulating intestinal inflammation and promoting tissue repair. Inflammatory bowel disease (IBD) is a chronic, progressive, and relapsing condition, primarily marked by the presence of ulcers in the digestive tract. The exact mechanisms underlying IBD are not yet fully understood, and current treatment approaches mainly aim at repairing the damaged intestinal mucosa and reducing inflammatory responses to ease symptoms.This article provides new perspectives on IBD treatment and clinical management by examining the expression of macrophage efferocytosis-related molecules, the effects of efferocytosis on IBD development, the various roles of macrophage efferocytosis in IBD, and treatment strategies for IBD that focus on efferocytosis.
Collapse
Affiliation(s)
- Yi-Qian Liu
- Institute of Acupuncture and Moxibustion, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Zhan-Zhan Li
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yong-Li Han
- Acupuncture Department, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Qing-Bo Wang
- Acupuncture Department, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
11
|
Hashim NT, Babiker R, Chaitanya NCSK, Mohammed R, Priya SP, Padmanabhan V, Ahmed A, Dasnadi SP, Islam MS, Gismalla BG, Rahman MM. New Insights in Natural Bioactive Compounds for Periodontal Disease: Advanced Molecular Mechanisms and Therapeutic Potential. Molecules 2025; 30:807. [PMID: 40005119 PMCID: PMC11858609 DOI: 10.3390/molecules30040807] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/18/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Periodontal disease is a chronic inflammatory condition that destroys the tooth-supporting structures due to the host's immune response to microbial biofilms. Traditional periodontal treatments, such as scaling and root planing, pharmacological interventions, and surgical procedures, have significant limitations, including difficulty accessing deep periodontal pockets, biofilm recolonization, and the development of antibiotic resistance. In light of these challenges, natural bioactive compounds derived from plants, herbs, and other natural sources offer a promising alternative due to their anti-inflammatory, antioxidant, antimicrobial, and tissue-regenerative properties. This review focuses on the molecular mechanisms through which bioactive compounds, such as curcumin, resveratrol, epigallocatechin gallate (EGCG), baicalin, carvacrol, berberine, essential oils, and Gum Arabic, exert therapeutic effects in periodontal disease. Bioactive compounds inhibit critical inflammatory pathways like NF-κB, JAK/STAT, and MAPK while activating protective pathways such as Nrf2/ARE, reducing cytokine production and oxidative stress. They also inhibit the activity of matrix metalloproteinases (MMPs), preventing tissue degradation and promoting healing. In addition, these compounds have demonstrated the potential to disrupt bacterial biofilms by interfering with quorum sensing, targeting bacterial cell membranes, and enhancing antibiotic efficacy.Bioactive compounds also modulate the immune system by shifting the balance from pro-inflammatory to anti-inflammatory responses and promoting efferocytosis, which helps resolve inflammation and supports tissue regeneration. However, despite the promising potential of these compounds, challenges related to their poor bioavailability, stability in the oral cavity, and the absence of large-scale clinical trials need to be addressed. Future strategies should prioritize the development of advanced delivery systems like nanoparticles and hydrogels to enhance bioavailability and sustain release, alongside long-term studies to assess the effects of these compounds in human populations. Furthermore, combining bioactive compounds with traditional treatments could provide synergistic benefits in managing periodontal disease. This review aims to explore the therapeutic potential of natural bioactive compounds in managing periodontal disease, emphasizing their molecular mechanisms of action and offering insights into their integration with conventional therapies for a more comprehensive approach to periodontal health.
Collapse
Affiliation(s)
- Nada Tawfig Hashim
- Department of Periodontics, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| | - Rasha Babiker
- Department of Physiology, RAK College of Medical Sciences, RAK Medical & Health Science University, Ras-AlKhaimah 11127, United Arab Emirates;
| | - Nallan C. S. K. Chaitanya
- Department of Oral Medicine and Radiology, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| | - Riham Mohammed
- Department Oral Surgery, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| | - Sivan Padma Priya
- Oral Pathology Department, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| | - Vivek Padmanabhan
- Department of Pediatric and Preventive Dentistry, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| | - Ayman Ahmed
- Department of Periodontology and Implantology, Nile University, Khartoum 1847, Sudan;
| | - Shahista Parveen Dasnadi
- Department of Orthodontics, RAK College of Dental, RAK Medical & Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| | - Md Sofiqul Islam
- Department of Operative Dentistry, RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| | - Bakri Gobara Gismalla
- Department of Oral Rehabilitation, Faculty of Dentistry, University of Khartoum, Khartoum 11115, Sudan;
| | - Muhammed Mustahsen Rahman
- Department of Periodontics, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| |
Collapse
|
12
|
Bavarsad SB, Shahryarhesami S, Karami N, Naseri N, Tajbakhsh A, Gheibihayat SM. Efferocytosis and infertility: Implications for diagnosis and therapy. J Reprod Immunol 2025; 167:104413. [PMID: 39631138 DOI: 10.1016/j.jri.2024.104413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/15/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Recent research has shed light on the intricate connection between efferocytosis and infertility, revealing its dysregulation as a contributing factor in various reproductive diseases. Despite the multifaceted nature of infertility etiology, the impact of insufficient clearance of apoptotic cells on fertility has emerged as a focal point. Notably, the removal of apoptotic cells through phagocytosis in the female reproductive system has been a subject of extensive investigation in the field of infertility. Additionally, special functions performed by immune system cell types, such as macrophages and Sertoli cells, in the male reproductive system underscore their significance in spermatogenesis and the efferocytosis of apoptotic germ cells. Dysregulation of efferocytosis emerges as a critical factor contributing to reproductive challenges, such as low pregnancy rates, miscarriages, and implantation failures. Moreover, defective efferocytosis can lead to compromised implantation, recurrent miscarriages, and unsuccessful assisted reproductive procedures. This review article aims to provide a comprehensive overview of efferocytosis in the context of infertility. Molecular mechanisms underlying efferocytosis, its relevance in both female and male infertility, and its implications in various reproductive diseases are elucidated. The elucidation of the intricate relationship between efferocytosis and infertility not only facilitates diagnosis but also paves the way for targeted therapeutic interventions.
Collapse
Affiliation(s)
| | - Soroosh Shahryarhesami
- Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, Heidelberg 69120, Germany.
| | - Noorodin Karami
- Genetics Department, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Nasim Naseri
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Yazd Cardiovascular Research Center, Non-Communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
13
|
Liu Z, Li Y, Ren Y, Chen J, Weng S, Zhou Z, Luo P, Chen Q, Xu H, Ba Y, Zuo A, Liu S, Zhang Y, Pan T, Han X. Efferocytosis: The Janus-Faced Gatekeeper of Aging and Tumor Fate. Aging Cell 2025; 24:e14467. [PMID: 39748782 PMCID: PMC11822654 DOI: 10.1111/acel.14467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/30/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
From embryogenesis to aging, billions of cells perish daily in mammals. The multistep process by which phagocytes engulf these deceased cells without eliciting an inflammatory response is called efferocytosis. Despite significant insights into the fundamental mechanisms of efferocytosis, its implications in disorders such as aging and cancer remain elusive. Upon summarizing and analyzing existing studies on efferocytosis, it becomes evident that efferocytosis is our friend in resolving inflammation, yet it transforms into our foe by facilitating tumor development and metastasis. This review illuminates recent discoveries regarding the emerging mechanisms of efferocytosis in clearing apoptotic cells, explores its connections with aging, examines its influence on tumor development and metastasis, and identifies the regulatory factors of efferocytosis within the tumor microenvironment. A comprehensive understanding of these efferocytosis facets offers insights into crucial physiological and pathophysiological processes, paving the way for innovative therapeutic approaches to combat aging and cancer.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Interventional Institute of Zhengzhou UniversityZhengzhouHenanChina
- Interventional Treatment and Clinical Research Center of Henan ProvinceZhengzhouHenanChina
- Institute of Basic Medical SciencesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yan Li
- Medical School of Zhengzhou UniversityZhengzhouHenanChina
| | - Yuqing Ren
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Jingqi Chen
- Medical School of Zhengzhou UniversityZhengzhouHenanChina
| | - Siyuan Weng
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Zhaokai Zhou
- Department of UrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Peng Luo
- The Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Quan Chen
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Hui Xu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Yuhao Ba
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Anning Zuo
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Shutong Liu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Yuyuan Zhang
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Teng Pan
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College)ShenzhenGuangdongChina
| | - Xinwei Han
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Interventional Institute of Zhengzhou UniversityZhengzhouHenanChina
- Interventional Treatment and Clinical Research Center of Henan ProvinceZhengzhouHenanChina
| |
Collapse
|
14
|
Zhang Z, Mo Y, Xu S, Jiang L, Peng Y, ZhuGe Y, Su Z, Xiang Q, Zeng R, Zhang G. A Low-Modulus Phosphatidylserine-Exposing Microvesicle Alleviates Skin Inflammation via Persistent Blockade of M1 Macrophage Polarization. Int J Mol Sci 2025; 26:394. [PMID: 39796248 PMCID: PMC11720988 DOI: 10.3390/ijms26010394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/30/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Inflammatory skin diseases comprise a group of skin conditions characterized by damage to skin function due to overactive immune responses. These disorders not only impair the barrier function of the skin but also deteriorate the quality of life and increase the risk of psychiatric issues. Here, a low-modulus phosphatidylserine-exposing microvesicle (deformed PSV, D-PSV) was produced, characterized, and evaluated for its potential therapeutic function against skin diseases. Compared to conventional PSVs (C-PSVs), D-PSVs exhibited a more robust and longer-lasting inhibitory effect on the inflammatory response triggered by lipopolysaccharides and interferon-γ in a primary bone marrow-derived macrophage model. Transcriptome analysis indicated that the inhibitory effect of D-PSVs was mainly achieved by modulating inflammation-related signaling pathways, leading to a reduction in the expressions of pro-inflammatory genes. In an imiquimod-induced psoriatic dermatitis mouse model, topical application of D-PSVs effectively mitigated inflammation in the skin microenvironment and reduced lesion severity. These improvements were attributed to the superior skin permeability and more persistent adhesion of D-PSVs to macrophages compared with C-PSVs. In summary, this macrophage-targeted microvesicle offers a promising non-invasive approach to managing inflammatory skin diseases by persistently inhibiting M1 macrophage polarization and restoring immune microenvironment balance.
Collapse
Affiliation(s)
- Zihao Zhang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou 510632, China; (Z.Z.); (Y.M.); (S.X.); (L.J.); (Y.Z.); (Z.S.); (Q.X.)
| | - Yidi Mo
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou 510632, China; (Z.Z.); (Y.M.); (S.X.); (L.J.); (Y.Z.); (Z.S.); (Q.X.)
| | - Shengxia Xu
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou 510632, China; (Z.Z.); (Y.M.); (S.X.); (L.J.); (Y.Z.); (Z.S.); (Q.X.)
| | - Lei Jiang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou 510632, China; (Z.Z.); (Y.M.); (S.X.); (L.J.); (Y.Z.); (Z.S.); (Q.X.)
| | - Yuanshu Peng
- Department of Material Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China;
| | - Yani ZhuGe
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou 510632, China; (Z.Z.); (Y.M.); (S.X.); (L.J.); (Y.Z.); (Z.S.); (Q.X.)
| | - Zhijian Su
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou 510632, China; (Z.Z.); (Y.M.); (S.X.); (L.J.); (Y.Z.); (Z.S.); (Q.X.)
| | - Qi Xiang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou 510632, China; (Z.Z.); (Y.M.); (S.X.); (L.J.); (Y.Z.); (Z.S.); (Q.X.)
| | - Rong Zeng
- Department of Material Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China;
| | - Guanglin Zhang
- Department of Material Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China;
- College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
| |
Collapse
|
15
|
Liu WT, Li CQ, Fu AN, Yang HT, Xie YX, Yao H, Yi GH. Therapeutic implication of targeting mitochondrial drugs designed for efferocytosis dysfunction. J Drug Target 2024; 32:1169-1185. [PMID: 39099434 DOI: 10.1080/1061186x.2024.2386620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
Efferocytosis refers to the process by which phagocytes remove apoptotic cells and related apoptotic products. It is essential for the growth and development of the body, the repair of damaged or inflamed tissues, and the balance of the immune system. Damaged efferocytosis will cause a variety of chronic inflammation and immune system diseases. Many studies show that efferocytosis is a process mediated by mitochondria. Mitochondrial metabolism, mitochondrial dynamics, and communication between mitochondria and other organelles can all affect phagocytes' clearance of apoptotic cells. Therefore, targeting mitochondria to modulate phagocyte efferocytosis is an anticipated strategy to prevent and treat chronic inflammatory diseases and autoimmune diseases. In this review, we introduced the mechanism of efferocytosis and the pivoted role of mitochondria in efferocytosis. In addition, we focused on the therapeutic implication of drugs targeting mitochondria in diseases related to efferocytosis dysfunction.
Collapse
Affiliation(s)
- Wan-Ting Liu
- Institute of Pharmacy and Pharmacology, Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Chao-Quan Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Ao-Ni Fu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Hao-Tian Yang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Yu-Xin Xie
- Institute of Pharmacy and Pharmacology, Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Hui Yao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Guang-Hui Yi
- Institute of Pharmacy and Pharmacology, Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| |
Collapse
|
16
|
Perin EC, Borow KM, Henry TD, Jenkins M, Rutman O, Hayes J, James CW, Rose E, Skali H, Itescu S, Greenberg B. Mesenchymal precursor cells reduce mortality and major morbidity in ischaemic heart failure with inflammation: DREAM-HF. Eur J Heart Fail 2024. [PMID: 39593178 DOI: 10.1002/ejhf.3522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/28/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
AIMS Progressive heart failure with reduced ejection fraction (HFrEF) is adversely affected by alterations in the myocardial balance between bone marrow-derived pro-inflammatory cardiac macrophages and embryo-derived reparative cardiac resident macrophages. Mesenchymal precursor cells (MPCs) may restore this balance and improve clinical outcomes when inflammation is present. The purpose was to (i) identify risk factors for cardiovascular death (CVD) in control patients with HFrEF in the DREAM-HF trial, and (ii) determine if MPCs improve major clinical outcomes (CVD, myocardial infarction [MI], stroke) in high-risk patients with ischaemic HFrEF and inflammation. METHODS AND RESULTS Cause-specific regression analyses were used to identify CVD risk factors in DREAM-HF control patients. Aalen-Johansen cumulative incidence curves were used to examine CVD, 2-point major adverse cardiovascular events (MACE) (MI or stroke), and 3-point MACE (CVD or MI or stroke) by treatment group in ischaemic vs non-ischaemic HFrEF and in patients with or without baseline inflammation. In control DREAM-HF patients, factors portending the greatest risk for CVD were inflammation (baseline plasma high-sensitivity C-reactive protein ≥2 mg/L; p = 0.003) and ischaemic HFrEF aetiology (p = 0.097), with increased CVD risk of 61% and 38%, respectively. Over 30-month mean follow-up, MPCs reduced 2-point and 3-point MACE by 88% (p = 0.005) and 52% (p = 0.018), respectively, in patients with ischaemic HFrEF and inflammation compared to controls. CONCLUSION Ischaemic aetiology and inflammation were identified as major risk factors for MACE in control DREAM-HF patients. A single intramyocardial MPC administration produced the most significant, sustained reduction in 2-point and 3-point MACE in patients with ischaemic HFrEF and inflammation.
Collapse
Affiliation(s)
- Emerson C Perin
- Center for Clinical Research, The Texas Heart Institute, Houston, TX, USA
| | | | - Timothy D Henry
- Department of Cardiology, The Carl and Edyth Lindner Center for Research and Education, The Christ Hospital, Cincinnati, OH, USA
| | | | | | | | | | | | - Hicham Skali
- Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Barry Greenberg
- Division of Cardiology, University of California, San Diego, CA, USA
| |
Collapse
|
17
|
Li W, Huang Y, Liu J, Zhou Y, Sun H, Fan Y, Liu F. Defective macrophage efferocytosis in advanced atherosclerotic plaque and mitochondrial therapy. Life Sci 2024; 359:123204. [PMID: 39491771 DOI: 10.1016/j.lfs.2024.123204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/02/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease primarily affecting large and medium-sized arterial vessels, characterized by lipoprotein disorders, intimal thickening, smooth muscle cell proliferation, and the formation of vulnerable plaques. Macrophages (MΦs) play a vital role in the inflammatory response throughout all stages of atherosclerotic development and are considered significant therapeutic targets. In early lesions, macrophage efferocytosis rapidly eliminates harmful cells. However, impaired efferocytosis in advanced plaques perpetuates the inflammatory microenvironment of AS. Defective efferocytosis has emerged as a key factor in atherosclerotic pathogenesis and the progression to severe cardiovascular disease. Herein, this review probes into investigate the potential mechanisms at the cellular, molecular, and organelle levels underlying defective macrophage efferocytosis in advanced lesion plaques. In the inflammatory microenvironments of AS with interactions among diverse inflammatory immune cells, impaired macrophage efferocytosis is strongly linked to multiple factors, such as a lower absolute number of phagocytes, the aberrant expression of crucial molecules, and impaired mitochondrial energy provision in phagocytes. Thus, focusing on molecular targets to enhance macrophage efferocytosis or targeting mitochondrial therapy to restore macrophage metabolism homeostasis has emerged as a potential strategy to mitigate the progression of advanced atherosclerotic plaque, providing various treatment options.
Collapse
Affiliation(s)
- Wanling Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Yaqing Huang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Jun Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yue Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Hongyu Sun
- The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Yonghong Fan
- The General Hospital of Western Theater Command, Chengdu 610083, China.
| | - Feila Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
| |
Collapse
|
18
|
Satheesan L, Kittur PM, Alhussien MN, Karanwal S, A P M, Alex R, Kamboj A, Dang AK. Comparative Profiling of Milk Somatic Cells Proteomes Revealed Key Players in Mammary Immune Mechanisms During Mastitis in Tropical Sahiwal (Bos indicus) Cows. Proteomics Clin Appl 2024; 18:e202400054. [PMID: 39313943 DOI: 10.1002/prca.202400054] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024]
Abstract
PURPOSE Bovine mastitis poses a significant economic burden on the dairy industry worldwide. This pioneering proteomic study conducted a comparative profiling of milk somatic cell (SC) proteins contributing to mammary immune defense during subclinical and clinical mastitis (CM) in Sahiwal (Bos indicus) cows. EXPERIMENTAL DESIGN Based on California mastitis test (CMT) scores, milk SC counts, differential leukocyte counts (DLCs), and bacteriological culture results, quarter milk SC samples were categorized into healthy (H), subclinical mastitis (SCM), and CM groups. Comparative proteome profiling of milk SCs was done using a label-free liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) proteomic approach. RESULTS The identified upregulated proteins in mastitis groups such as Vanin 2, Thioredoxin reductase-like selenoprotein T, Ceramidase, Lymphocyte antigen 75, Misshapen-like kinase 1 (MINK1), Thrombospondin 1, Macrophage scavenger receptor 1, Leupaxin, and Lipoamide acyltransferase, involved in immune responses. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed immune functions and pathways like antigen processing, complement cascades, extracellular matrix receptor interaction, efferocytosis, leukocyte migration, chemokine, peroxisome proliferator-activated receptors (PPARs), and transforming growth factor (TGF)-beta signaling. CONCLUSIONS AND CLINICAL RELEVANCE These findings provide essential information on proteomic profiling in milk SCs and contribute valuable insights into immune-related proteins regulated during mastitis in dairy cows. Further, validated proteins (Vanin 2, MINK1, and Thrombospondin 1) offer potential inflammatory biomarkers for early mastitis detection in dairy cows.
Collapse
Affiliation(s)
- Lija Satheesan
- Lactation and Immuno-Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Karnal, Haryana, India
| | - Priyanka M Kittur
- Lactation and Immuno-Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Karnal, Haryana, India
| | - Mohanned Naif Alhussien
- Reproductive Biotechnology, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Seema Karanwal
- Animal Genomics Laboratory, Animal Biotechnology, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Karnal, Haryana, India
| | - Madhusoodan A P
- Lactation and Immuno-Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Karnal, Haryana, India
| | - Rani Alex
- Molecular Genetics Laboratory, Animal Genetics and Breeding Division, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Karnal, Haryana, India
| | - Aarti Kamboj
- Lactation and Immuno-Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Karnal, Haryana, India
| | - Ajay Kumar Dang
- Lactation and Immuno-Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
19
|
Herb M, Schatz V, Hadrian K, Hos D, Holoborodko B, Jantsch J, Brigo N. Macrophage variants in laboratory research: most are well done, but some are RAW. Front Cell Infect Microbiol 2024; 14:1457323. [PMID: 39445217 PMCID: PMC11496307 DOI: 10.3389/fcimb.2024.1457323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024] Open
Abstract
Macrophages play a pivotal role in the innate immune response. While their most characteristic function is phagocytosis, it is important not to solely characterize macrophages by this activity. Their crucial roles in body development, homeostasis, repair, and immune responses against pathogens necessitate a broader understanding. Macrophages exhibit remarkable plasticity, allowing them to modify their functional characteristics in response to the tissue microenvironment (tissue type, presence of pathogens or inflammation, and specific signals from neighboring cells) swiftly. While there is no single defined "macrophage" entity, there is a diverse array of macrophage types because macrophage ontogeny involves the differentiation of progenitor cells into tissue-resident macrophages, as well as the recruitment and differentiation of circulating monocytes in response to tissue-specific cues. In addition, macrophages continuously sense and respond to environmental cues and tissue conditions, adjusting their functional and metabolic states accordingly. Consequently, it is of paramount importance to comprehend the heterogeneous origins and functions of macrophages employed in in vitro studies, as each available in vitro macrophage model is associated with specific sets of strengths and limitations. This review centers its attention on a comprehensive comparison between immortalized mouse macrophage cell lines and primary mouse macrophages. It provides a detailed analysis of the strengths and weaknesses inherent in these in vitro models. Finally, it explores the subtle distinctions between diverse macrophage cell lines, offering insights into numerous factors beyond the model type that can profoundly influence macrophage function.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Valentin Schatz
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Karina Hadrian
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Hos
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Bohdan Holoborodko
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, Regensburg, Germany
| | - Jonathan Jantsch
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Natascha Brigo
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
20
|
Batoon L, Hawse JR, McCauley LK, Weivoda MM, Roca H. Efferocytosis and Bone Dynamics. Curr Osteoporos Rep 2024; 22:471-482. [PMID: 38914730 DOI: 10.1007/s11914-024-00878-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE OF REVIEW This review summarizes the recently published scientific evidence regarding the role of efferocytosis in bone dynamics and skeletal health. RECENT FINDINGS Several types of efferocytes have been identified within the skeleton, with macrophages being the most extensively studied. Efferocytosis is not merely a 'clean-up' process vital for maintaining skeletal homeostasis; it also plays a crucial role in promoting resolution pathways and orchestrating bone dynamics, such as osteoblast-osteoclast coupling during bone remodeling. Impaired efferocytosis has been associated with aging-related bone loss and various skeletal pathologies, including osteoporosis, osteoarthritis, rheumatoid arthritis, and metastatic bone diseases. Accordingly, emerging evidence suggests that targeting efferocytic mechanisms has the potential to alleviate these conditions. While efferocytosis remains underexplored in the skeleton, recent discoveries have shed light on its pivotal role in bone dynamics, with important implications for skeletal health and pathology. However, there are several knowledge gaps and persisting technical limitations that must be addressed to fully unveil the contributions of efferocytosis in bone.
Collapse
Affiliation(s)
- Lena Batoon
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA.
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Laurie K McCauley
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, 48109-1078, USA
- Department of Pathology, Medical School, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Megan M Weivoda
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Hernan Roca
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, 48109-1078, USA.
| |
Collapse
|
21
|
Frietze KK, Anumukonda K, Padula L, Strbo N, Goldstein N. Directed protein engineering identifies a human TIM-4 blocking antibody that enhances anti-tumor response to checkpoint inhibition in murine colon carcinoma. Antib Ther 2024; 7:324-334. [PMID: 39678260 PMCID: PMC11638112 DOI: 10.1093/abt/tbae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/09/2024] [Accepted: 09/20/2024] [Indexed: 12/17/2024] Open
Abstract
Background T-cell immunoglobulin and mucin domain containing molecule-4 (TIM-4) is a scavenger receptor best known for its role in recognizing dying cells. TIM-4 orchestrates phagocytosis allowing for cellular clearance of apoptotic cells, termed efferocytosis. It was previously shown that TIM-4 directly interacts with AMPKα1, activating the autophagy pathway, leading to degradation of ingested tumors, and effectively reducing antigen presentation. Methods This study sought to identify a novel human TIM-4 antibody that can prevent phagocytosis of tumor cells thereby allowing for more antigen presentation resulting in anti-tumor immunological response. Using phage display panning directed against human TIM-4, we engineered a novel human TIM-4 antibody (SKWX301). Combination of in vitro phagocytosis assays and cell viability assays were used to test functionality of SKWX301. To examine the effect of SKWX301 in mouse models, we employed a syngeneic mouse model. CT26 cells were subcutaneously injected into BALB/c mice and tumor growth and mouse survival were analyzed. Results SKWX301 can prevent human macrophage phagocytosis of cancer cells in vitro. Combination of low dose SKWX301 and anti-PD1 antibody significantly inhibited tumor growth and increased overall survival in mice. This demonstrates that SKWX301 is effective in both human in vitro models and mouse in vivo models. Conclusion Our study has demonstrated a rapid antibody discovery approach and identified a novel human TIM-4 antibody that can serve as a therapeutic for antitumor immunity to improve cancer therapy.
Collapse
Affiliation(s)
- Karla K Frietze
- SkunkWorx Bio. 675 US-1 North Brunswick New Jersey, 08902, United States
| | - Kamala Anumukonda
- SkunkWorx Bio. 675 US-1 North Brunswick New Jersey, 08902, United States
| | - Laura Padula
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 16000 NW 10th Ave Miami, FL 33136, United States
| | - Natasha Strbo
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 16000 NW 10th Ave Miami, FL 33136, United States
| | - Neil Goldstein
- SkunkWorx Bio. 675 US-1 North Brunswick New Jersey, 08902, United States
| |
Collapse
|
22
|
Cantorán-Castillo A, Beltrán-Salinas B, Antúnez-Treviño JM, Martínez-Pedraza R, Franco-Márquez R, Guzmán-García MA, Cerda-Flores RM, Perales-Pérez RV, Zakian C, Ancer-Rodriguez J, Márquez-Méndez M. Preventing bisphosphonate induced osteonecrosis of the jaw with a polyguanidine conjugate (GuaDex): A promising new approach. Bone 2024; 187:117211. [PMID: 39053792 DOI: 10.1016/j.bone.2024.117211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Osteonecrosis of the jaw (ONJ) is a relatively rare side effect after prolonged use of bisphosphonates, which are drugs used to treat bone resorption in osteoporosis and certain cancers. This study introduces a novel ONJ model in rats by combining exposure to bisphosphonates, oral surgery, and bacterial inoculation. Potential ONJ preventive effects of polyguanidine (GuaDex) or antibiotics were evaluated. The study consisted of twenty-four male Wistar rats were divided into four groups. Groups 1 to 3 were given weekly doses of i.v. Zoledronic acid (ZA), four weeks before and two weeks after an osteotomy procedure on their left mandibular first molar. Group 4 was a negative control. Streptococcus gordonii bacteria were introduced into the osteotomy pulp chamber and via the food for seven days. On day eight, the rats were given different treatments. Group 1 was given a GuaDex injection into the osteotomy socket, Group 2 was given an intramuscular (i.m.) injection of clindamycin, Group 3 (positive control) was given an i.m. injection of saline, and Group 4 was given an i.m. injection of saline. Blood samples were taken two weeks after the osteotomy procedure, after which the rats were euthanized. Bone healing, bone mineral density, histology, and blood status were analyzed. The results showed that Group 1 (GuaDex) had no ONJ, extensive ongoing bone regeneration, active healing activity, vascularization, and no presence of bacteria. Group 2 (clindamycin) showed early stages of ONJ, avascular areas, and bacteria. Group 3 showed stages of ONJ, inflammatory infiltrates, defective healing, and bacterial presence, and Group 4 had normal healing activity and no bacterial presence. Conclusion: ZA treatment and bacterial inoculation after tooth extraction inhibited bone remodeling/healing and induced ONJ characteristic lesions in the rats. Only GuaDex apparently prevented ONJ development, stimulated bone remodeling, and provided an antimicrobial effect.
Collapse
Affiliation(s)
- Arquímedes Cantorán-Castillo
- Faculty of Dentistry, Autonomous University of Nuevo Leon, Dr. Eduardo Aguirre Pequeno, Mitras Centro, 64460 Monterrey, NL, Mexico
| | - Belinda Beltrán-Salinas
- Faculty of Dentistry, Autonomous University of Nuevo Leon, Dr. Eduardo Aguirre Pequeno, Mitras Centro, 64460 Monterrey, NL, Mexico
| | - Jorge M Antúnez-Treviño
- Faculty of Dentistry, Autonomous University of Nuevo Leon, Dr. Eduardo Aguirre Pequeno, Mitras Centro, 64460 Monterrey, NL, Mexico
| | - Ricardo Martínez-Pedraza
- Faculty of Dentistry, Autonomous University of Nuevo Leon, Dr. Eduardo Aguirre Pequeno, Mitras Centro, 64460 Monterrey, NL, Mexico
| | - Rodolfo Franco-Márquez
- Department of Pathology and Cytopathology, Hospital Universitario, Autonomous University of Nuevo León, Av. Dr. J. Eleuterio Gonzalez S/N, Mitras Centro, 64460 Monterrey, NL, Mexico
| | - Mario A Guzmán-García
- Faculty of Veterinary Medicine and Zootechnics, Autonomous University of Nuevo Leon, 66054 Gral. Escobedo, NL, Mexico
| | - Ricardo M Cerda-Flores
- Center for Research and Development on Health Science, Autonomous University of Nuevo Leon, Dr. J. Eluterio Gonzalez/Dr. Carlos Canseco, Mitras Centro, 64460 Monterrey, NL, Mexico
| | - Raúl V Perales-Pérez
- Odontología Avanzada Laser, Calle Juarez 109 Sur, Centro, 67500 Montemorelos, NL, Mexico
| | - Christian Zakian
- Kevork Instruments, Palacio de Justicia #888, Col. Anahuac, 66450 San Nicolas De Los Garza, NL, Mexico
| | - Jesús Ancer-Rodriguez
- Center for Research and Development on Health Science, Autonomous University of Nuevo Leon, Dr. J. Eluterio Gonzalez/Dr. Carlos Canseco, Mitras Centro, 64460 Monterrey, NL, Mexico
| | - Marcela Márquez-Méndez
- Center for Research and Development on Health Science, Autonomous University of Nuevo Leon, Dr. J. Eluterio Gonzalez/Dr. Carlos Canseco, Mitras Centro, 64460 Monterrey, NL, Mexico.
| |
Collapse
|
23
|
Scafidi A, Lind-Holm Mogensen F, Campus E, Pailas A, Neumann K, Legrave N, Bernardin F, Pereira SL, Antony PM, Nicot N, Mittelbronn M, Grünewald A, Nazarov PV, Poli A, Van Dyck E, Michelucci A. Metformin impacts the differentiation of mouse bone marrow cells into macrophages affecting tumour immunity. Heliyon 2024; 10:e37792. [PMID: 39315158 PMCID: PMC11417223 DOI: 10.1016/j.heliyon.2024.e37792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Background Epidemiological studies suggest that metformin reduces the risk of developing several types of cancer, including gliomas, and improves the overall survival in cancer patients. Nevertheless, while the effect of metformin on cancer cells has been extensively studied, its impact on other components of the tumour microenvironment, such as macrophages, is less understood. Results Metformin-treated mouse bone marrow cells differentiate into spindle-shaped macrophages exhibiting increased phagocytic activity and tumour cell cytotoxicity coupled with modulated expression of co-stimulatory molecules displaying reduced sensitivity to inflammatory cues compared with untreated cells. Transcriptional analyses of metformin-treated mouse bone marrow-derived macrophages show decreased expression levels of pro-tumour genes, including Tgfbi and Il1β, related to enhanced mTOR/HIF1α signalling and metabolic rewiring towards glycolysis. Significance Our study provides novel insights into the immunomodulatory properties of metformin in macrophages and its potential application in preventing tumour onset and in cancer immunotherapy.
Collapse
Affiliation(s)
- Andrea Scafidi
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Frida Lind-Holm Mogensen
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Eleonora Campus
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Alexandros Pailas
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
- DNA Repair and Chemoresistance, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| | - Katrin Neumann
- DNA Repair and Chemoresistance, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| | - Nathalie Legrave
- Metabolomics Platform, Department of Cancer Research, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - François Bernardin
- Metabolomics Platform, Department of Cancer Research, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Sandro L. Pereira
- Molecular and Functional Neurobiology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Paul M.A. Antony
- Bioimaging Platform, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Nathalie Nicot
- LuxGen Genome Center, Luxembourg Institute of Health & Laboratoire National de Santé, L-3555 Dudelange, Luxembourg
| | - Michel Mittelbronn
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
- Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
- Luxembourg Center of Neuropathology, Laboratoire National de Santé, L-3555 Dudelange, Luxembourg
- National Center of Pathology, Laboratoire National de Santé, L-3555 Dudelange, Luxembourg
| | - Anne Grünewald
- Molecular and Functional Neurobiology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Petr V. Nazarov
- Bioinformatics and AI unit, Department of Medical Informatics, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
- Multiomics Data Science Group, Department of Cancer Research, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Aurélie Poli
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| | - Eric Van Dyck
- DNA Repair and Chemoresistance, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| | - Alessandro Michelucci
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| |
Collapse
|
24
|
Abd-Elkareem M, Alnasser SM, Meshal A, Abdullah RI, Ali AU. The effect of Norethisterone acetate on the uterus of albino rats: histological, histochemical and ultrastructure study. BMC Vet Res 2024; 20:384. [PMID: 39210341 PMCID: PMC11360500 DOI: 10.1186/s12917-024-04219-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Norethisterone acetate (NETA), also known as norethindrone acetate is a progestogens medication that is widely used in birth control pills, menopausal hormone therapy, and for the treatment of gynecological disorders as abnormal uterine bleeding and endometriosis. There is a lack of detailed histological information regarding the effects of NETA on the uterine structure. So, the present study focuses on the uterine histological, histochemical and ultrastructure changes following the exposure to NETA in the albino rats. To do this aim, fourteen adult female albino rats were used. They were randomly divided into two equally groups: Control group and NETA treated group. Albino rats of control group were administered daily food, water and orally distilled water only, while rats of NETA treated group were administered daily orally 20 µg of NETA dissolved in 2 ml distilled water, food, and water. The experiment was continued for three weeks. RESULTS The findings of the present work indicated that the use of NETA has negative effects on the endometrial epithelium (proliferation, autophagy and apoptosis), glands (necrotic, apoptotic or pseudosecretory glands) and stromal and myometrial reactions (granulocytes, connective tissue remodeling, apoptosis, myocytes hypertrophy). CONCLUSION This work revealed that NETA has desynchronized progestogenic effect on the uterine tissues of the albino rat and thereby prevent implantation and pregnancy.
Collapse
Affiliation(s)
- Mahmoud Abd-Elkareem
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim, 51452, Saudi Arabia
| | - Alotaibi Meshal
- Pharmacy practice, College of pharmacy, University of Hafr Albatin, Hafr Albatin, Saudi Arabia
| | - Raghda Ismail Abdullah
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, New Valley University, El Kharga, Egypt
| | - Ahmed U Ali
- Department of Pharmaceutics, Faculty of Pharmacy, Merit University, Sohag, Egypt
| |
Collapse
|
25
|
Shen X, Zheng W, Du X, Chen Y, Song X, Yang L, Yuan Q. The role of C5aR1-mediated hepatic macrophage efferocytosis in NASH. Sci Rep 2024; 14:17232. [PMID: 39060563 PMCID: PMC11282180 DOI: 10.1038/s41598-024-68207-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the first major chronic liver disease in developed countries. 10-20% of NAFLD patients will progress to non-alcoholic steatohepatitis (NASH), and up to 25% of NASH patients may develop cirrhosis within 10 years. Therefore, it is critical to find key targets that may treat this disease. Here, we identified C5aR1 as a highly-expressed gene in NASH mouse model through analyzing Gene Expression Omnibus (GEO) database and confirmed its higher expression in livers of NASH patients than that of NAFL patients. Meanwhile, we verified its positive correlation with patients' serum alanine transaminase (ALT) and aspartate transaminase (AST) levels. In vivo and in vitro experiments revealed that knocking down C5aR1 in liver significantly reduced liver weight ratio and serum ALT and AST levels and attenuated inflammatory cell infiltration and cell apoptosis in the liver of NASH mice as well as enhanced the efferocytotic ability of liver macrophages, suggesting that C5aR1 may play a crucial role in the efferocytosis of liver macrophages. Furthermore, we also found that the expression levels of nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein 3 (NLRP3), caspase-1, IL-1β and other inflammation-related factors in the liver were significantly reduced. Our work demonstrates a potential mechanism of how C5aR1 deficiency protects against diet-induced NASH by coordinating the regulation of inflammatory factors and affecting hepatic macrophage efferocytosis.
Collapse
Affiliation(s)
- Xuan Shen
- Department of Basic Medicine, Jiangsu Vocational College of Medicine, Yancheng, 224005, Jiangsu, China
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, 154000, Heilongjiang, China
| | - Wenxing Zheng
- Department of Endocrinology, The First Huaian Hospital Affiliated to Nanjing Medical University, Huai'an, 223300, Jiangsu, China
| | - Xinna Du
- Department of Basic Medicine, Jiangsu Vocational College of Medicine, Yancheng, 224005, Jiangsu, China
| | - Yuping Chen
- Department of Basic Medicine, Jiangsu Vocational College of Medicine, Yancheng, 224005, Jiangsu, China
| | - Xianping Song
- Department of Basic Medicine, Jiangsu Vocational College of Medicine, Yancheng, 224005, Jiangsu, China
| | - Liucai Yang
- Department of Basic Medicine, Jiangsu Vocational College of Medicine, Yancheng, 224005, Jiangsu, China.
| | - Qi Yuan
- Department of Endocrinology, The First Huaian Hospital Affiliated to Nanjing Medical University, Huai'an, 223300, Jiangsu, China.
| |
Collapse
|
26
|
Leiferman KM, Gleich GJ. The true extent of eosinophil involvement in disease is unrecognized: the secret life of dead eosinophils. J Leukoc Biol 2024; 116:271-287. [PMID: 38922831 DOI: 10.1093/jleuko/qiae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/21/2024] [Accepted: 01/29/2024] [Indexed: 06/28/2024] Open
Abstract
Eosinophil-mediated pathophysiology is tissue destructive and tissue altering with proinflammatory, prothrombotic, and profibrotic effects. The distinctive morphology of an eosinophil reveals a cytoplasm chockfull of unique granules, and the granule proteins have numerous toxic effects on cells, tissues, and organs. Eosinophils are not found in most human tissues, and eosinophil involvement in diseased tissues generally is identified by cell infiltration on histopathologic examination. However, eosinophils characteristically lose their structural integrity and deposit granules and granule proteins at sites of inflammation. Hence, their participation in tissue damage may be underrecognized or entirely overlooked. The eosinophil major basic protein 1 is a toxic granule protein and, when deposited, persists in tissues. Major basic protein 1 deposition can be regarded as a footprint of eosinophil activity. Analyses of numerous eosinophil-related diseases have demonstrated clear-cut evidence of major basic protein 1 deposition in affected tissues where eosinophils were not recognized by hematoxylin and eosin tissue staining and light microscopy. Eosinophil granule protein deposition, as exemplified by localization of major basic protein 1, especially when disproportionately greater than cellular infiltration, emerges as a biomarker of hidden eosinophil-related pathophysiology. Consequently, current assessments of recognized eosinophils may vastly underestimate their role in disease.
Collapse
Affiliation(s)
- Kristin M Leiferman
- Department of Dermatology, University of Utah Health, Helix Building, 1st Floor South, 30 North Mario Capecchi Drive, Salt Lake City, UT, 84112United States
| | - Gerald J Gleich
- Department of Dermatology, University of Utah Health, Helix Building, 1st Floor South, 30 North Mario Capecchi Drive, Salt Lake City, UT, 84112United States
- Department of Internal Medicine, University of Utah Health, Helix Building, 3rd Floor North, 30 North Mario Capechhi Drive, Salt Lake City, UT, 84112United States
| |
Collapse
|
27
|
Brahadeeswaran S, Tamizhselvi R. Consequence of alcohol intoxication-mediated efferocytosis impairment. Front Immunol 2024; 15:1386658. [PMID: 39104537 PMCID: PMC11298354 DOI: 10.3389/fimmu.2024.1386658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Alcohol ingestion is a widespread habituation that evolved along with a growing population, altering physiological conditions through immunomodulatory function. There is much research that has reported that consumption of alcohol at low and heavy levels causes different biological impacts, including cellular injury, leading to systemic dysfunction and increased inflammatory markers. In the fate of professional phagocytic cells, efferocytosis is an inevitable mechanism activated by the apoptotic cells, thus eliminating them and preventing the accumulation of cell corpses/debris in the microenvironment. Subsequently, it promotes the tissue repair mechanism and maintains cellular homeostasis. Unfortunately, defective efferocytosis is widely found in several inflammatory and age-related diseases such as atherosclerosis, autoimmune diseases, lung injury, fatty liver disease, and neurodegenerative diseases. Alcohol abuse is one of the factors that provoke an immune response that increases the rate of morbidity and mortality in parallel in systemic disease patients. Information regarding the emergence of immunomodulation during alcoholic pathogenesis and its association with efferocytosis impairment remain elusive. Hence, here in this review, we discussed the mechanism of efferocytosis, the role of defective efferocytosis in inflammatory diseases, and the role of alcohol on efferocytosis impairment.
Collapse
Affiliation(s)
| | - Ramasamy Tamizhselvi
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
28
|
Ramírez-Valle F, Maranville JC, Roy S, Plenge RM. Sequential immunotherapy: towards cures for autoimmunity. Nat Rev Drug Discov 2024; 23:501-524. [PMID: 38839912 DOI: 10.1038/s41573-024-00959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 06/07/2024]
Abstract
Despite major progress in the treatment of autoimmune diseases in the past two decades, most therapies do not cure disease and can be associated with increased risk of infection through broad suppression of the immune system. However, advances in understanding the causes of autoimmune disease and clinical data from novel therapeutic modalities such as chimeric antigen receptor T cell therapies provide evidence that it may be possible to re-establish immune homeostasis and, potentially, prolong remission or even cure autoimmune diseases. Here, we propose a 'sequential immunotherapy' framework for immune system modulation to help achieve this ambitious goal. This framework encompasses three steps: controlling inflammation; resetting the immune system through elimination of pathogenic immune memory cells; and promoting and maintaining immune homeostasis via immune regulatory agents and tissue repair. We discuss existing drugs and those in development for each of the three steps. We also highlight the importance of causal human biology in identifying and prioritizing novel immunotherapeutic strategies as well as informing their application in specific patient subsets, enabling precision medicine approaches that have the potential to transform clinical care.
Collapse
|
29
|
Anyona SB, Cheng Q, Wasena SA, Osata SW, Guo Y, Raballah E, Hurwitz I, Onyango CO, Ouma C, Seidenberg PD, McMahon BH, Lambert CG, Schneider KA, Perkins DJ. Entire expressed peripheral blood transcriptome in pediatric severe malarial anemia. Nat Commun 2024; 15:5037. [PMID: 38866743 PMCID: PMC11169501 DOI: 10.1038/s41467-024-48259-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 04/25/2024] [Indexed: 06/14/2024] Open
Abstract
This study on severe malarial anemia (SMA: Hb < 6.0 g/dL), a leading global cause of childhood morbidity and mortality, compares the entire expressed whole blood host transcriptome between Kenyan children (3-48 mos.) with non-SMA (Hb ≥ 6.0 g/dL, n = 39) and SMA (n = 18). Differential expression analyses reveal 1403 up-regulated and 279 down-regulated transcripts in SMA, signifying impairments in host inflammasome activation, cell death, and innate immune and cellular stress responses. Immune cell profiling shows decreased memory responses, antigen presentation, and immediate pathogen clearance, suggesting an immature/improperly regulated immune response in SMA. Module repertoire analysis of blood-specific gene signatures identifies up-regulation of erythroid genes, enhanced neutrophil activation, and impaired inflammatory responses in SMA. Enrichment analyses converge on disruptions in cellular homeostasis and regulatory pathways for the ubiquitin-proteasome system, autophagy, and heme metabolism. Pathway analyses highlight activation in response to hypoxic conditions [Hypoxia Inducible Factor (HIF)-1 target and Reactive Oxygen Species (ROS) signaling] as a central theme in SMA. These signaling pathways are also top-ranking in protein abundance measures and a Ugandan SMA cohort with available transcriptomic data. Targeted RNA-Seq validation shows strong concordance with our entire expressed transcriptome data. These findings identify key molecular themes in SMA pathogenesis, offering potential targets for new malaria therapies.
Collapse
Affiliation(s)
- Samuel B Anyona
- Department of Medical Biochemistry, School of Medicine, Maseno University, Maseno, 40105, Kenya.
- University of New Mexico-Kenya Global Health Programs, Kisumu and Siaya, 40100, Kenya.
| | - Qiuying Cheng
- Department of Internal Medicine, Center for Global Health, University of New Mexico, Albuquerque, NM, 87131-0001, USA
| | - Sharley A Wasena
- University of New Mexico-Kenya Global Health Programs, Kisumu and Siaya, 40100, Kenya
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, 40105, Kenya
| | - Shamim W Osata
- University of New Mexico-Kenya Global Health Programs, Kisumu and Siaya, 40100, Kenya
| | - Yan Guo
- Department of Public Health Sciences, University of Miami, Miami, 33136, USA
| | - Evans Raballah
- University of New Mexico-Kenya Global Health Programs, Kisumu and Siaya, 40100, Kenya
- Department of Medical Laboratory Sciences, School of Public Health, Biomedical Sciences and Technology, Masinde Muliro University of Science and Technology, Kakamega, 50100, Kenya
| | - Ivy Hurwitz
- Department of Internal Medicine, Center for Global Health, University of New Mexico, Albuquerque, NM, 87131-0001, USA
| | - Clinton O Onyango
- University of New Mexico-Kenya Global Health Programs, Kisumu and Siaya, 40100, Kenya
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, 40105, Kenya
| | - Collins Ouma
- University of New Mexico-Kenya Global Health Programs, Kisumu and Siaya, 40100, Kenya
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, 40105, Kenya
| | - Philip D Seidenberg
- Department of Emergency Medicine, School of Medicine, University of New Mexico, Albuquerque, NM, 87131-0001, USA
| | - Benjamin H McMahon
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Christophe G Lambert
- Department of Internal Medicine, Division of Translational Informatics, University of New Mexico, Albuquerque, NM, 87131-0001, USA
| | - Kristan A Schneider
- Department of Internal Medicine, Division of Translational Informatics, University of New Mexico, Albuquerque, NM, 87131-0001, USA
- Department Applied Computer and Bio-Sciences, University of Applied Sciences Mittweida, Mittweida, 09648, Germany
| | - Douglas J Perkins
- University of New Mexico-Kenya Global Health Programs, Kisumu and Siaya, 40100, Kenya.
- Department of Internal Medicine, Center for Global Health, University of New Mexico, Albuquerque, NM, 87131-0001, USA.
| |
Collapse
|
30
|
Tkachenko A. Hemocompatibility studies in nanotoxicology: Hemolysis or eryptosis? (A review). Toxicol In Vitro 2024; 98:105814. [PMID: 38582230 DOI: 10.1016/j.tiv.2024.105814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/13/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Hemocompatibility evaluation is an important step in nanotoxicological studies. It is generally accepted that nanomaterials promote lysis of erythrocytes, blood clotting, alter phagocytosis, and upregulate pro-inflammatory cytokines. However, there are no standardized guidelines for testing nanomaterials hemocompatibility despite the fact that nanomaterials enter the bloodstream and interact with blood cells. In this review, the current knowledge on the ability of nanomaterials to induce distinct cell death modalities of erythrocytes is highlighted primarily focusing on hemolysis and eryptosis. This review aims to summarize the molecular mechanisms underlying erythrotoxicity of nanomaterials and critically compare the sensitivity and efficiency of hemolysis or eryptosis assays for nanomaterials blood compatibility testing. The list of eryptosis-inducing nanomaterials is growing, but it is still difficult to generalize how physico-chemical properties of nanoparticles affect eryptosis degree and molecular mechanisms involved. Thus, another aim of this review is to raise the awareness of eryptosis as a nanotoxicological tool to encourage the corresponding studies. It is worthwhile to consider adding eryptosis to in vitro nanomaterials hemocompatibility testing protocols and guidelines.
Collapse
Affiliation(s)
- Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 25250 Vestec, Czech Republic.
| |
Collapse
|
31
|
Xing J, Wang K, Xu YC, Pei ZJ, Yu QX, Liu XY, Dong YL, Li SF, Chen Y, Zhao YJ, Yao F, Ding J, Hu W, Zhou RP. Efferocytosis: Unveiling its potential in autoimmune disease and treatment strategies. Autoimmun Rev 2024; 23:103578. [PMID: 39004157 DOI: 10.1016/j.autrev.2024.103578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024]
Abstract
Efferocytosis is a crucial process whereby phagocytes engulf and eliminate apoptotic cells (ACs). This intricate process can be categorized into four steps: (1) ACs release "find me" signals to attract phagocytes, (2) phagocytosis is directed by "eat me" signals emitted by ACs, (3) phagocytes engulf and internalize ACs, and (4) degradation of ACs occurs. Maintaining immune homeostasis heavily relies on the efficient clearance of ACs, which eliminates self-antigens and facilitates the generation of anti-inflammatory and immunosuppressive signals that maintain immune tolerance. However, any disruptions occurring at any of the efferocytosis steps during apoptosis can lead to a diminished efficacy in removing apoptotic cells. Factors contributing to this inefficiency encompass dysregulation in the release and recognition of "find me" or "eat me" signals, defects in phagocyte surface receptors, bridging molecules, and other signaling pathways. The inadequate clearance of ACs can result in their rupture and subsequent release of self-antigens, thereby promoting immune responses and precipitating the onset of autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes, and multiple sclerosis. A comprehensive understanding of the efferocytosis process and its implications can provide valuable insights for developing novel therapeutic strategies that target this process to prevent or treat autoimmune diseases.
Collapse
Affiliation(s)
- Jing Xing
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ke Wang
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yu-Cai Xu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ze-Jun Pei
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qiu-Xia Yu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xing-Yu Liu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ya-Lu Dong
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Shu-Fang Li
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yong Chen
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Ying-Jie Zhao
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Feng Yao
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Jie Ding
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Wei Hu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China.
| | - Ren-Peng Zhou
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
32
|
Cunningham KT, Maizels RM. We are what we eat: macrophages and efferocytosis. Trends Parasitol 2024; 40:446-448. [PMID: 38772757 DOI: 10.1016/j.pt.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024]
Abstract
Liebold et al. recently revealed how the identity of dying cells drives distinct changes to the macrophages which engulf and clear them, a process known as efferocytosis. During infection with the helminth Schistosoma mansoni, liver macrophages recapitulate these phenotypes, mediated by Axl/MerTK receptors and regulating egg burdens.
Collapse
Affiliation(s)
- Kyle T Cunningham
- School of Infection and Immunity, University of Glasgow, Glasgow, UK.
| | - Rick M Maizels
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| |
Collapse
|
33
|
Bishop CR, Yan K, Nguyen W, Rawle DJ, Tang B, Larcher T, Suhrbier A. Microplastics dysregulate innate immunity in the SARS-CoV-2 infected lung. Front Immunol 2024; 15:1382655. [PMID: 38803494 PMCID: PMC11128561 DOI: 10.3389/fimmu.2024.1382655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Global microplastic (MP) pollution is now well recognized, with humans and animals consuming and inhaling MPs on a daily basis, with a growing body of concern surrounding the potential impacts on human health. Methods Using a mouse model of mild COVID-19, we describe herein the effects of azide-free 1 μm polystyrene MP beads, co-delivered into lungs with a SARS-CoV-2 omicron BA.5 inoculum. The effect of MPs on the host response to SARS-CoV-2 infection was analysed using histopathology and RNA-Seq at 2 and 6 days post-infection (dpi). Results Although infection reduced clearance of MPs from the lung, virus titres and viral RNA levels were not significantly affected by MPs, and overt MP-associated clinical or histopathological changes were not observed. However, RNA-Seq of infected lungs revealed that MP exposure suppressed innate immune responses at 2 dpi and increased pro-inflammatory signatures at 6 dpi. The cytokine profile at 6 dpi showed a significant correlation with the 'cytokine release syndrome' signature observed in some COVID-19 patients. Discussion The findings are consistent with the recent finding that MPs can inhibit phagocytosis of apoptotic cells via binding of Tim4. They also add to a growing body of literature suggesting that MPs can dysregulate inflammatory processes in specific disease settings.
Collapse
Affiliation(s)
- Cameron R. Bishop
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Kexin Yan
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Wilson Nguyen
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Daniel J. Rawle
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Bing Tang
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Thibaut Larcher
- Institut National de Recherche Agronomique, Unité Mixte de Recherche, Oniris, Nantes, France
| | - Andreas Suhrbier
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Australian Infectious Disease Research Centre, Global Virus Network (GVN) Center of Excellence, Brisbane, QLD, Australia
| |
Collapse
|
34
|
Chakraborty A, Kamat SS. Lysophosphatidylserine: A Signaling Lipid with Implications in Human Diseases. Chem Rev 2024; 124:5470-5504. [PMID: 38607675 DOI: 10.1021/acs.chemrev.3c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Lysophosphatidylserine (lyso-PS) has emerged as yet another important signaling lysophospholipid in mammals, and deregulation in its metabolism has been directly linked to an array of human autoimmune and neurological disorders. It has an indispensable role in several biological processes in humans, and therefore, cellular concentrations of lyso-PS are tightly regulated to ensure optimal signaling and functioning in physiological settings. Given its biological importance, the past two decades have seen an explosion in the available literature toward our understanding of diverse aspects of lyso-PS metabolism and signaling and its association with human diseases. In this Review, we aim to comprehensively summarize different aspects of lyso-PS, such as its structure, biodistribution, chemical synthesis, and SAR studies with some synthetic analogs. From a biochemical perspective, we provide an exhaustive coverage of the diverse biological activities modulated by lyso-PSs, such as its metabolism and the receptors that respond to them in humans. We also briefly discuss the human diseases associated with aberrant lyso-PS metabolism and signaling and posit some future directions that may advance our understanding of lyso-PS-mediated mammalian physiology.
Collapse
Affiliation(s)
- Arnab Chakraborty
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| |
Collapse
|
35
|
Jang S, Jeon M, Mun SJ, Kim SH. Clinical characteristics and risk factors for septic shock in patients with pyometra: A retrospective multicenter cohort study. J Infect Public Health 2024; 17:862-867. [PMID: 38554592 DOI: 10.1016/j.jiph.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/11/2024] [Accepted: 03/17/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Pyometra is a disease characterized by the collection of pus in the uterus. The clinical characteristics and etiology of pyometra have not been sufficiently described. In this study, we investigated the clinical characteristics, epidemiology, outcomes, and risk factors of septic shock in patients with pyometra. METHODS Patients with pyometra admitted to one of four university-affiliated hospitals between January 2010 to August 2022 were enrolled. Pyometra cases associated with peripartum infection and surgical site infection were excluded. Clinical characteristics and outcomes of pyometra were described, and pyometra patients with or without septic shock were compared. RESULTS A total of 192 patients was included. Twenty-eight-day all-cause mortality was 5.0%, and the 1-year recurrence rate was 6.3%. Median patient age was 77.5 years. The two most common symptoms were abdominal pain (49.0%) and vaginal discharge (47.9%). Escherichia coli (40.1%), Klebsiella pneumoniae (16.7%), and Streptococcus spp.(16.0%) were the pathogens most frequently isolated by conventional culture; those isolated from polymerase chain reaction were Mycoplasma hominis (48.0%), and Ureaplasma spp. (32.0%). In multivariable analysis, fever, uterine perforation, and dementia were associated with increased incidence of septic shock, while vaginal discharge was associated with a lower incidence of septic shock. CONCLUSIONS Our findings suggest that pyometra is a unique gynecological infectious syndrome in post-menopausal individuals. The most common associated pathogens are similar to those involved in urinary tract infections rather than those of sexually transmitted diseases. Decreased cognitive function could delay early diagnosis of pyometra and lead to septic shock and higher mortality.
Collapse
Affiliation(s)
- Sukbin Jang
- Division of Infectious Diseases, Department of Medicine, Dankook University School of Medicine, Cheonan, Republic of Korea
| | - Minji Jeon
- Division of Infectious Diseases, Department of Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Republic of Korea
| | - Seok Jun Mun
- Division of Infectious Diseases, Department of Internal Medicine, Inje University Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea.
| | - Si-Ho Kim
- Division of Infectious Diseases, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea.
| |
Collapse
|
36
|
Dash SP, Gupta S, Sarangi PP. Monocytes and macrophages: Origin, homing, differentiation, and functionality during inflammation. Heliyon 2024; 10:e29686. [PMID: 38681642 PMCID: PMC11046129 DOI: 10.1016/j.heliyon.2024.e29686] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024] Open
Abstract
Monocytes and macrophages are essential components of innate immune system and have versatile roles in homeostasis and immunity. These phenotypically distinguishable mononuclear phagocytes play distinct roles in different stages, contributing to the pathophysiology in various forms making them a potentially attractive therapeutic target in inflammatory conditions. Several pieces of evidence have supported the role of different cell surface receptors expressed on these cells and their downstream signaling molecules in initiating and perpetuating the inflammatory response. In this review, we discuss the current understanding of the monocyte and macrophage biology in inflammation, highlighting the role of chemoattractants, inflammasomes, and integrins in the function of monocytes and macrophages during events of inflammation. This review also covers the recent therapeutic interventions targeting these mononuclear phagocytes at the cellular and molecular levels.
Collapse
Affiliation(s)
- Shiba Prasad Dash
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Saloni Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Pranita P. Sarangi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
37
|
Mann V, Sundaresan A, Shishodia S. Overnutrition and Lipotoxicity: Impaired Efferocytosis and Chronic Inflammation as Precursors to Multifaceted Disease Pathogenesis. BIOLOGY 2024; 13:241. [PMID: 38666853 PMCID: PMC11048223 DOI: 10.3390/biology13040241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
Overnutrition, driven by the consumption of high-fat, high-sugar diets, has reached epidemic proportions and poses a significant global health challenge. Prolonged overnutrition leads to the deposition of excessive lipids in adipose and non-adipose tissues, a condition known as lipotoxicity. The intricate interplay between overnutrition-induced lipotoxicity and the immune system plays a pivotal role in the pathogenesis of various diseases. This review aims to elucidate the consequences of impaired efferocytosis, caused by lipotoxicity-poisoned macrophages, leading to chronic inflammation and the subsequent development of severe infectious diseases, autoimmunity, and cancer, as well as chronic pulmonary and cardiovascular diseases. Chronic overnutrition promotes adipose tissue expansion which induces cellular stress and inflammatory responses, contributing to insulin resistance, dyslipidemia, and metabolic syndrome. Moreover, sustained exposure to lipotoxicity impairs the efferocytic capacity of macrophages, compromising their ability to efficiently engulf and remove dead cells. The unresolved chronic inflammation perpetuates a pro-inflammatory microenvironment, exacerbating tissue damage and promoting the development of various diseases. The interaction between overnutrition, lipotoxicity, and impaired efferocytosis highlights a critical pathway through which chronic inflammation emerges, facilitating the development of severe infectious diseases, autoimmunity, cancer, and chronic pulmonary and cardiovascular diseases. Understanding these intricate connections sheds light on potential therapeutic avenues to mitigate the detrimental effects of overnutrition and lipotoxicity on immune function and tissue homeostasis, thereby paving the way for novel interventions aimed at reducing the burden of these multifaceted diseases on global health.
Collapse
Affiliation(s)
| | | | - Shishir Shishodia
- Department of Biology, Texas Southern University, Houston, TX 77004, USA; (V.M.); (A.S.)
| |
Collapse
|
38
|
Yao X, Liu Y, Mao M, Yang L, Zhan Q, Xiao J. Calorie restriction mimetic, resveratrol, attenuates hepatic ischemia and reperfusion injury through enhancing efferocytosis of macrophages via AMPK/STAT3/S1PR1 pathway. J Nutr Biochem 2024; 126:109587. [PMID: 38262562 DOI: 10.1016/j.jnutbio.2024.109587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Calorie restriction (CR) mimetic, resveratrol (RSV), has the capacity of promoting phagocytosis. However, its role in hepatic ischemia and reperfusion injury (HIRI) remains poorly understood. This study aimed to investigate the effect of RSV on alleviating HIRI and explore the underlying mechanisms. RSV was intraperitoneally injected in mice HIRI model, while RSV was co-incubated with culture medium for 24 h in RAW 264.7 cells and kupffer cells. Macrophage efferocytosis was assessed by immunostaining of PI and F4/80. The clearance of apoptotic neutrophils in the liver was determined by immunostaining of Ly6-G and cleaved-caspase-3. HE staining, Suzuki's score, serum levels of ALT, AST, TNF-α and IL-1β were analyzed to evaluate HIRI. The efferocytosis inhibitor, Cytochalasin D, was utilized to investigate the effect of RSV on HIRI. Western blot was employed to measure the levels of AMPKα, phospho-AMPKα, STAT3, phospho-STAT3 and S1PR1. SiSTAT3 and inhibitors targeting AMPK, STAT3 and S1PR1, respectively, were used to confirm the involvement of AMPK/STAT3/S1PR1 pathway in RSV-mediated efferocytosis and HIRI. RSV facilitated the clearance of apoptotic neutrophils and attenuated HIRI, which was impeded by Cytochalasin D. RSV boosted macrophage efferocytosis by up-regulating the levels of phospho-AMPKα, phospho-STAT3 and S1PR1, which was reversed by AMPK, STAT3 and S1PR1 inhibitors, respectively. Inhibition of STAT3 suppressed RSV-induced clearance of apoptotic neutrophils and exacerbated HIRI. CR mimetic, RSV, alleviates HIRI by promoting macrophages efferocytosis through AMPK/STAT3/S1PR1 pathway, providing valuable insights into the mechanisms underlying the protective effects of CR on attenuating HIRI.
Collapse
Affiliation(s)
- Xueya Yao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yingxiang Liu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Menghan Mao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Liqun Yang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
| | - Qionghui Zhan
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
| | - Jie Xiao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
| |
Collapse
|
39
|
Beg MA, Huang M, Vick L, Rao KNS, Zhang J, Chen Y. Targeting mitochondrial dynamics and redox regulation in cardiovascular diseases. Trends Pharmacol Sci 2024; 45:290-303. [PMID: 38458847 PMCID: PMC11837222 DOI: 10.1016/j.tips.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/10/2024]
Abstract
Accumulating evidence highlights the pivotal role of mitochondria in cardiovascular diseases (CVDs). Understanding the molecular mechanisms underlying mitochondrial dysfunction is crucial for developing targeted therapeutics. Recent years have seen substantial advancements in unraveling mitochondrial regulatory pathways in both normal and pathological states and the development of potent drugs. However, specific delivery of drugs into the mitochondria is still a challenge. We present recent findings on regulators of mitochondrial dynamics and reactive oxygen species (ROS), critical factors influencing mitochondrial function in CVDs. We also discuss advancements in drug delivery strategies aimed at overcoming the technical barrier in targeting mitochondria for CVD treatment.
Collapse
Affiliation(s)
| | - Minqi Huang
- HD Biosciences Inc. a WuXi AppTec company, San Diego, CA 92121, USA
| | - Lance Vick
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - K N Shashanka Rao
- Joint Department of Biomedical Engineering, Medical College of Wisconsin & Marquette University, Milwaukee, WI 53226, USA
| | - Jue Zhang
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | - Yiliang Chen
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
40
|
Wu J, Liu S, Banerjee O, Shi H, Xue B, Ding Z. Disturbed flow impairs MerTK-mediated efferocytosis in aortic endothelial cells during atherosclerosis. Theranostics 2024; 14:2427-2441. [PMID: 38646649 PMCID: PMC11024847 DOI: 10.7150/thno.93036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/18/2024] [Indexed: 04/23/2024] Open
Abstract
Background: MER proto-oncogene tyrosine kinase (MerTK) is a key receptor for efferocytosis, a process for the clearance of apoptotic cells. MerTK is mainly expressed in macrophages and immature dendritic cells. There are very limited reports focused on MerTK biology in aortic endothelial cells (ECs). It remains unclear for the role of blood flow patterns in regulating MerTK-mediated efferocytosis in aortic ECs. This study was designed to investigate whether endothelial MerTK and EC efferocytosis respond to blood flow patterns during atherosclerosis. Methods: Big data analytics, RNA-seq and proteomics combined with our in vitro and in vivo studies were applied to reveal the potential molecular mechanisms. Partial carotid artery ligation combined with AAV-PCSK9 and high fat diet were used to set up acute atherosclerosis in 4 weeks. Results: Our data showed that MerTK is sensitive to blood flow patterns and is inhibited by disturbed flow and oscillatory shear stress in primary human aortic ECs (HAECs). The RNA-seq data in HAECs incubated with apoptotic cells showed that d-flow promotes pro-inflammatory pathway and senescence pathway. Our in vivo data of proteomics and immunostaining showed that, compared with WT group, MerTK-/- aggravates atherosclerosis in d-flow areas through upregulation of endothelial dysfunction markers (e.g. IL-1β, NF-κB, TLR4, MAPK signaling, vWF, VCAM-1 and p22phox) and mitochondrial dysfunction. Interestingly, MerTK-/-induces obvious abnormal endothelial thickening accompanied with decreased endothelial efferocytosis, promoting the development of atherosclerosis. Conclusions: Our data suggests that blood flow patterns play an important role in regulating MerTK-mediated efferocytosis in aortic ECs, revealing a new promising therapeutic strategy with EC efferocytosis restoration to against atherosclerosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Zufeng Ding
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| |
Collapse
|
41
|
Stoess C, Choi YK, Onyuru J, Friess H, Hoffman HM, Hartmann D, Feldstein AE. Cell Death in Liver Disease and Liver Surgery. Biomedicines 2024; 12:559. [PMID: 38540172 PMCID: PMC10968531 DOI: 10.3390/biomedicines12030559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 01/03/2025] Open
Abstract
Cell death is crucial for maintaining tissue balance and responding to diseases. However, under pathological conditions, the surge in dying cells results in an overwhelming presence of cell debris and the release of danger signals. In the liver, this gives rise to hepatic inflammation and hepatocellular cell death, which are key factors in various liver diseases caused by viruses, toxins, metabolic issues, or autoimmune factors. Both clinical and in vivo studies strongly affirm that hepatocyte death serves as a catalyst in the progression of liver disease. This advancement is characterized by successive stages of inflammation, fibrosis, and cirrhosis, culminating in a higher risk of tumor development. In this review, we explore pivotal forms of cell death, including apoptosis, pyroptosis, and necroptosis, examining their roles in both acute and chronic liver conditions, including liver cancer. Furthermore, we discuss the significance of cell death in liver surgery and ischemia-reperfusion injury. Our objective is to illuminate the molecular mechanisms governing cell death in liver diseases, as this understanding is crucial for identifying therapeutic opportunities aimed at modulating cell death pathways.
Collapse
Affiliation(s)
- Christian Stoess
- Department of Pediatric Gastroenterology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA; (C.S.)
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Yeon-Kyung Choi
- Department of Pediatric Gastroenterology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA; (C.S.)
- Department of Internal Medicine, School of Medicine, Kyungpook National University Chilgok Hospital, Kyungpook National University, Daegu 41404, Republic of Korea
| | - Janset Onyuru
- Department of Pediatric Allergy, Immunology and Rheumatology, University of California San Diego, La Jolla, CA 92093, USA
| | - Helmut Friess
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Hal M. Hoffman
- Department of Pediatric Allergy, Immunology and Rheumatology, University of California San Diego, La Jolla, CA 92093, USA
| | - Daniel Hartmann
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Ariel E. Feldstein
- Department of Pediatric Gastroenterology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA; (C.S.)
- Novo Nordisk, Global Drug Discovery, Ørestads Boulevard 108, 2300 Copenhagen, Denmark
| |
Collapse
|
42
|
Jamalvandi M, Khayyatzadeh SS, Hayati MJ, Gheibihayat SM. The role of fat-soluble vitamins in efferocytosis. Cell Biochem Funct 2024; 42:e3972. [PMID: 38500392 DOI: 10.1002/cbf.3972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/08/2024] [Accepted: 03/02/2024] [Indexed: 03/20/2024]
Abstract
Cell death and the efficient removal of dead cells are two basic mechanisms that maintain homeostasis in multicellular organisms. efferocytosis, which includes four steps recruitment, recognition, binding and signaling, and engulfment. Effectively and quickly removes apoptotic cells from the body. Any alteration in efferocytosis can lead to several diseases, including autoimmune and inflammatory conditions, atherosclerosis, and cancer. A wide range of dietary components affects apoptosis and, subsequently, efferocytosis. Some vitamins, including fat-soluble vitamins, affect different stages of efferocytosis. Among other things, by affecting macrophages, they are effective in the apoptotic cleansing of cells. Also, polyphenols indirectly intervene in efferocytosis through their effect on apoptosis. Considering that there are limited articles on the effect of nutrition on efferocytosis, in this article we will examine the effect of some dietary components on efferocytosis.
Collapse
Affiliation(s)
- Mona Jamalvandi
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sayyed Saeid Khayyatzadeh
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Javad Hayati
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
43
|
Xu C, Tsihlis G, Chau K, Trinh K, Rogers NM, Julovi SM. Novel Perspectives in Chronic Kidney Disease-Specific Cardiovascular Disease. Int J Mol Sci 2024; 25:2658. [PMID: 38473905 PMCID: PMC10931927 DOI: 10.3390/ijms25052658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Chronic kidney disease (CKD) affects > 10% of the global adult population and significantly increases the risk of cardiovascular disease (CVD), which remains the leading cause of death in this population. The development and progression of CVD-compared to the general population-is premature and accelerated, manifesting as coronary artery disease, heart failure, arrhythmias, and sudden cardiac death. CKD and CV disease combine to cause multimorbid cardiorenal syndrome (CRS) due to contributions from shared risk factors, including systolic hypertension, diabetes mellitus, obesity, and dyslipidemia. Additional neurohormonal activation, innate immunity, and inflammation contribute to progressive cardiac and renal deterioration, reflecting the strong bidirectional interaction between these organ systems. A shared molecular pathophysiology-including inflammation, oxidative stress, senescence, and hemodynamic fluctuations characterise all types of CRS. This review highlights the evolving paradigm and recent advances in our understanding of the molecular biology of CRS, outlining the potential for disease-specific therapies and biomarker disease detection.
Collapse
Affiliation(s)
- Cuicui Xu
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; (C.X.); (K.T.)
| | - George Tsihlis
- Renal and Transplantation Medicine, Westmead Hospital, Westmead, NSW 2145, Australia;
| | - Katrina Chau
- Department of Renal Services, Blacktown Hospital, Blacktown, NSW 2148, Australia;
- Blacktown Clinical School, School of Medicine, Western Sydney University, Sydney, NSW 2148, Australia
| | - Katie Trinh
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; (C.X.); (K.T.)
- Department of Renal Services, Blacktown Hospital, Blacktown, NSW 2148, Australia;
| | - Natasha M. Rogers
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; (C.X.); (K.T.)
- Renal and Transplantation Medicine, Westmead Hospital, Westmead, NSW 2145, Australia;
- Faculty of Medicine and Health, The University of Sydney, Science Rd., Camperdown, NSW 2050, Australia
| | - Sohel M. Julovi
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; (C.X.); (K.T.)
- Faculty of Medicine and Health, The University of Sydney, Science Rd., Camperdown, NSW 2050, Australia
| |
Collapse
|
44
|
Shimi G, Sohouli MH, Ghorbani A, Shakery A, Zand H. The interplay between obesity, immunosenescence, and insulin resistance. Immun Ageing 2024; 21:13. [PMID: 38317257 PMCID: PMC10840211 DOI: 10.1186/s12979-024-00414-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024]
Abstract
Obesity, which is the accumulation of fat in adipose tissue, has adverse impacts on human health. Obesity-related metabolic dysregulation has similarities to the metabolic alterations observed in aging. It has been shown that the adipocytes of obese individuals undergo cellular aging, known as senescence. Senescence can be transmitted to other normal cells through a series of chemical factors referred to as the senescence-associated secretory phenotype (SASP). Most of these factors are pro-inflammatory compounds. The immune system removes these senescent T-cells, but immunosenescence, which is the senescence of immune cells, disrupts the clearance of senescent T-cells. Immunosenescence occurs as a result of aging or indirectly through transmission from senescent tissues. The significant occurrence of senescence in obesity is expected to cause immunosenescence and impairs the immune response to resolve inflammation. The sustained and chronic inflammation disrupts insulin's metabolic actions in metabolic tissues. Therefore, this review focuses on the role of senescent adipocyte cells in obesity-associated immunosenescence and subsequent metabolic dysregulation. Moreover, the article suggests novel therapeutic approaches to improve metabolic syndrome by targeting senescent T-cells or using senotherapeutics.
Collapse
Affiliation(s)
- Ghazaleh Shimi
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, 1981619573, Iran
| | - Mohammad Hassan Sohouli
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, 1981619573, Iran
| | - Arman Ghorbani
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, 1981619573, Iran
| | - Azam Shakery
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, 1981619573, Iran
| | - Hamid Zand
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, 1981619573, Iran.
| |
Collapse
|
45
|
Amirinejad A, Khayyatzadeh SS, Rezaeivandchali N, Gheibihayat SM. Efferocytosis and Metabolic Syndrome: A Narrative Review. Curr Mol Med 2024; 24:751-757. [PMID: 37431902 DOI: 10.2174/1566524023666230710120438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 07/12/2023]
Abstract
Metabolic syndrome (MetS), which is distinguished by the simultaneous presence of hyperglycemia, dyslipidemia, hypertension, and central obesity, is a critical risk factor for cardiovascular disease (CVDs), mortality, and illness burden. Eliminating about one million cells per second in the human body, apoptosis conserves homeostasis and regulates the life cycle of organisms. In the physiological condition, the apoptotic cells internalize to the phagocytes by a multistep process named efferocytosis. Any impairment in the clearance of these apoptotic cells results in conditions related to chronic inflammation, such as obesity, diabetes, and dyslipidemia. On the other hand, insulin resistance and MetS can disturb the efferocytosis process. Since no study investigated the relationship between efferocytosis and MetS, we decided to explore the different steps of efferocytosis and describe how inefficient dead cell clearance is associated with the progression of MetS.
Collapse
Affiliation(s)
- Ali Amirinejad
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sayyed Saeid Khayyatzadeh
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Noushin Rezaeivandchali
- Department of Biochemistry and Genetics, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
46
|
Mohammad-Rafiei F, Moadab F, Mahmoudi A, Navashenaq JG, Gheibihayat SM. Efferocytosis: a double-edged sword in microbial immunity. Arch Microbiol 2023; 205:370. [PMID: 37925389 DOI: 10.1007/s00203-023-03704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 11/06/2023]
Abstract
Efferocytosis is characterized as the rapid and efficient process by which dying or dead cells are removed. This type of clearance is initiated via "find-me" signals, and then, carries on by "eat-me" and "don't-eat-me" ones. Efferocytosis has a critical role to play in tissue homeostasis and innate immunity. However, some evidence suggests it as a double-edged sword in microbial immunity. In other words, some pathogens have degraded efferocytosis by employing efferocytic mechanisms to bypass innate immune detection and promote infection, despite the function of this process for the control and clearance of pathogens. In this review, the efferocytosis mechanisms from the recognition of dying cells to phagocytic engulfment are initially presented, and then, its diverse roles in inflammation and immunity are highlighted. In this case, much focus is also laid on some bacterial, viral, and parasitic infections caused by Mycobacterium tuberculosis (M. tb), Mycobacterium marinum (M. marinum), Listeria monocytogenes (L. monocytogenes), Chlamydia pneumoniae (CP), Klebsiella pneumoniae (KP), Influenza A virus (IAV), human immunodeficiency virus (HIV), and Leishmania, respectively.
Collapse
Affiliation(s)
- Fatemeh Mohammad-Rafiei
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Moadab
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, USA
| | - Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | | | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
47
|
Lu N, Zhu JF, Lv HF, Zhang HP, Wang PL, Yang JJ, Wang XW. Modulation of oxidized low-density lipoprotein-affected macrophage efferocytosis by mitochondrial calcium uniporter in a murine model. Immunol Lett 2023; 263:14-24. [PMID: 37689315 DOI: 10.1016/j.imlet.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
OBJECTIVE Efferocytosis dysfunction contributes to the progression and rupture of atherosclerotic plaques. Efferocytosis is crucially modulated by intracytoplasmic Ca2+, and mitochondrial calcium uniporter (MCU) complex proteins serve as key channels for regulating Ca2+ concentration. Therefore, it was speculated that MCU may affect the development of atherosclerosis (AS) by regulating efferocytosis. In the present study, we aimed to investigate whether MCU could affect foam cell formation by regulating efferocytosis. METHODS We stimulated primary macrophages (Møs) using oxidized low-density lipoprotein (ox-LDL) to mimic the atherosclerotic microenvironment and treated them with Ru360, an MCU-specific inhibitor, and UNC1062, an inhibitor of efferocytosis. Additionally, we conducted double staining to determine the Mø efferocytosis rate. We measured the expression of MCU complexes and efferocytosis-associated proteins using western blotting (WB) and real-time quantitative polymerase chain reaction (RT-qPCR), respectively. In addition, we separately detected the Ca2+ level in the cytoplasm and mitochondria (MT) using Fluo-4 AM and Rhod-2 methods. We separately determined the reactive oxygen species (ROS) level in cytoplasm and MT using dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescent probing method and Mito-SOXTM superoxide indicator staining. Additionally, we conducted the enzyme-linked immunosorbent assay (ELISA) to detect the production of interleukin-6 (IL-6), interleukin-18 (IL-18), interleukin-1β (IL-1β), and tumor necrosis factor-alpha (TNF-α). Oil Red O staining was performed to measure cytoplasmic lipid levels. RESULTS Ru360 attenuated ox-LDL-induced efferocytosis dysfunction, and attenuated the upregulation of MCU and MCUR1 induced by ox-LDL, and meanwhile attenuated the downregulation of MCUb induced by ox-LDL. Ru360 attenuated the decrease of intracytoplasmic Ca2+ concentration induced by ox- LDL, Ru360 also attenuated the ROS production induced by ox- LDL, attenuated the release of IL-6, IL-18, IL-1β, and TNF-α induced by ox- LDL, and attenuated the increase of intracytoplasmic lipid content induced by ox-LDL. UNC1062 attenuated the effects of Ru360 in reducing inflammatory cytokines and intracytoplasmic lipid content. CONCLUSIONS In this study, we found that MCU inhibition modulated intracytoplasmic Ca2+ concentration, improved impaired Mø efferocytosis, and reduced ROS generation. Macrophage efferocytosis removed apoptotic cells and prevented the release of inflammatory factor and foam cell formation, and this can be a potential new therapeutic target for alleviating atherosclerosis.
Collapse
Affiliation(s)
- Na Lu
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| | - Jun-Fan Zhu
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - He-Fan Lv
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Hai-Peng Zhang
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Peng-le Wang
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jing-Jing Yang
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xian-Wei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
48
|
Onishchenko AI, Prokopiuk VY, Chumachenko VA, Virych PA, Tryfonyuk LY, Kutsevol NV, Tkachenko AS. Hemocompatibility of dextran-graft-polyacrylamide/zinc oxide nanosystems: hemolysis or eryptosis? NANOTECHNOLOGY 2023; 35:035102. [PMID: 37827140 DOI: 10.1088/1361-6528/ad02a3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/11/2023] [Indexed: 10/14/2023]
Abstract
Aim. In this study, blood compatibility of ZnO nanoparticles-polymer nanocomplex (D-PAA/ZnONPs(SO42-)) synthesizedin situinto dextran-graft-polyacrylamide (D-PAA) using zinc sulphate as a precursor was tested using hemolysis, osmotic fragility and eryptosis assays.Materials and methods. Dose-dependent ability to induce eryptosis was assessed following 24 h incubation at concentrations of 0-800 mg l-1analyzing hallmarks of eryptosis (cell shrinkage and phosphatidylserine externalization), as well as reactive oxygen species generation. Hemolysis was detected spectrophotometrically based on hemoglobin release following exposure to the D-PAA/ZnONPs(SO42-) nanocomplex. Osmotic fragility test (OFT) involved detection of hemolysis of red blood cells exposed to 0.2% saline solution following incubation with the D-PAA/ZnONPs(SO42-) nanocomplex. Additional incubation of the nanocomplex in the presence or absence of either ascorbic acid or EGTA was used to reveal the implication of oxidative stress- or Ca2+-mediated mechanisms in D-PAA/ZnONPs(SO42-) nanocomplex-induced erythrotoxicity.Results. Hemocompatibility assessment of the D-PAA/ZnONPs(SO42-) nanocomplex revealed that it induced hemolysis and reduced resistance of erythrocytes to osmotic stress at concentrations of above 400 and 200 mg l-1, respectively. Oxidative stress- or Ca2+-mediated mechanisms were not involved in D-PAA/ZnONPs(SO42-) nanocomplex-induced hemolysis. Strikingly, the D-PAA/ZnONPs(SO42-) nanocomplex did not promote cell membrane scrambling, cell shrinkage and oxidative stress in red blood cells following the direct exposure for 24 h. Thus, the D-PAA/ZnONPs(SO42-) nanocomplex did not induce eryptosisin vitro. Eryptosis is generally considered to occur earlier than hemolysis in response to stress in order to prevent hemolytic cell death. Counterintuitively, our data suggest that hemolysis can be triggered by nanomaterials prior to eryptosis indicating that eryptosis and hemolysis assays should be used in combination for testing blood compatibility of nanomaterials.Conclusions. The D-PAA/ZnONPs(SO42-) nanocomplex has a good hemocompatibility profile at low concentrations. Hemocompatibility testing in nanotoxicology should include both eryptosis and hemolysis assays.
Collapse
Affiliation(s)
- Anatolii I Onishchenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave., 61022 Kharkiv, Ukraine
| | - Volodymyr Yu Prokopiuk
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave., 61022 Kharkiv, Ukraine
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, 23 Pereyaslavskaya st., 61015 Kharkiv, Ukraine
| | - Vasyl A Chumachenko
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 60 Volodymyrska st., 01601 Kyiv, Ukraine
| | - Pavlo A Virych
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 60 Volodymyrska st., 01601 Kyiv, Ukraine
| | - Liliya Y Tryfonyuk
- Institute of Health, National University of Water and Environmental Engineering, 11 Sobornast, 33000 Rivne, Ukraine
| | - Nataliya V Kutsevol
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 60 Volodymyrska st., 01601 Kyiv, Ukraine
| | - Anton S Tkachenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave., 61022 Kharkiv, Ukraine
| |
Collapse
|
49
|
Ubil E, Zahid KR. Structure and functions of Mer, an innate immune checkpoint. Front Immunol 2023; 14:1244170. [PMID: 37936688 PMCID: PMC10626544 DOI: 10.3389/fimmu.2023.1244170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
Immunotherapy is a promising therapeutic tool that promotes the elimination of cancerous cells by a patient's own immune system. However, in the clinical setting, the number of cancer patients benefitting from immunotherapy is limited. Identification and targeting of other immune subsets, such as tumor-associated macrophages, and alternative immune checkpoints, like Mer, may further limit tumor progression and therapy resistance. In this review, we highlight the key roles of macrophage Mer signaling in immune suppression. We also summarize the role of pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes in tumor onset and progression and how Mer structure and activation can be targeted therapeutically to alter activation state. Preclinical and clinical studies focusing on Mer kinase inhibition have demonstrated the potential of targeting this innate immune checkpoint, leading to improved anti-tumor responses and patient outcomes.
Collapse
Affiliation(s)
- Eric Ubil
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | | |
Collapse
|
50
|
Wang J, Zhang Y, Feng X, Du M, Li S, Chang X, Liu P. Tanshinone IIA alleviates atherosclerosis in LDLR -/- mice by regulating efferocytosis of macrophages. Front Pharmacol 2023; 14:1233709. [PMID: 37886125 PMCID: PMC10598641 DOI: 10.3389/fphar.2023.1233709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Background: Tanshinone IIA (TIIA) is the major lipid-soluble active ingredient of the traditional Chinese medicine Salvia miltiorrhiza, which slows down atherosclerosis (AS). However, it remains unclear whether TIIA has the potential to enhance macrophage efferocytosis and thereby improve atherosclerosis. Objective: The focus of this examination was to determine if TIIA could reduce lipid accumulation and treat AS by enhancing efferocytosis. Methods: Firstly, we conducted in vivo experiments using LDLR knockout (LDLR-/-) mice for a period of 24 weeks, using histopathological staining, immunofluorescence and Western blot experiments to validate from the efficacy and mechanism parts, respectively; in addition, we utilized cells to validate our study again in vitro. The specific experimental design scheme is as follows: In vivo, Western diet-fed LDLR-/- mice for 12 weeks were constructed as an AS model, and normal diet-fed LDLR-/- mice were taken as a blank control group. The TIIA group and positive control group (atorvastatin, ATO) were intervened for 12 weeks by intraperitoneal injection (15 mg/kg/d) and gavage (1.3 mg/kg/d), respectively. In vitro, RAW264.7 cells were cultured with ox-LDL (50 ug/mL) or ox-LDL (50 ug/mL) + TIIA (20 uM/L or 40 uM/L). Pathological changes in aortic plaques and foam cell formation in RAW264.7 cells were evaluated using Masson and Oil Red O staining, respectively. Biochemical methods were used to detect lipid levels in mice. The immunofluorescence assay was performed to detect apoptotic cells and efferocytosis-related signal expression at the plaques. RT-qPCR and Western blot were carried out to observe the trend change of efferocytosis-related molecules in both mouse aorta and RAW264.7 cells. We also used the neutral red assay to assess RAW264.7 cells' phagocytic capacity. Results: Compared with the model group, TIIA decreased serum TC, TG, and LDL-C levels (p < 0.01), reduced the relative lumen area of murine aortic lipid-rich plaques (p < 0.01), enhanced the stability of murine aortic plaques (p < 0.01), reduced ox-LDL-induced lipid build-up in RAW264.7 cells (p < 0.01), and upregulated efferocytosis-related molecules expression and enhance the efferocytosis rate of ox-LDL-induced RAW264.7 cells. Conclusion: TIIA might reduce lipid accumulation by enhancing the efferocytosis of macrophages and thus treat AS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ping Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|