1
|
Artemenko Y, Niu G, Arnold ME, Roberts KE, Fernandez BN, Flores T, McClave HD, Paestella M, Borleis J, Devreotes PN. A negative feedback loop between small GTPase Rap1 and mammalian tumor suppressor homologue KrsB regulates cell-substrate adhesion in Dictyostelium. Mol Biol Cell 2025; 36:ar43. [PMID: 39937679 PMCID: PMC12005108 DOI: 10.1091/mbc.e24-11-0507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/27/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025] Open
Abstract
Cell adhesion to the substrate influences a variety of cell behaviors and its proper regulation is essential for migration, although details of the molecular pathways regulating cell adhesion during migration are lacking. Rap1 is a small GTPase that regulates adhesion in mammalian cells, as well as in Dictyostelium discoideum social amoeba, which is an established model for studying directed cell migration. In Dictyostelium, Rap1 controls adhesion via its effects on adhesion mediator talin and Ser/Thr kinase Phg2, which inhibits myosin II function. Kinase responsive to stress B (KrsB), a homologue of mammalian tumor suppressor MST1/2 and Drosophila Hippo, also regulates cell adhesion and migration, although the molecular mechanism of KrsB action is not understood. Because KrsB has been shown to interact with active Rap1 by mass spectroscopy, we investigated the genetic interaction between Rap1 and KrsB. Cells lacking KrsB have increased adhesion to the substrate, which leads to reduced movement. Expression of constitutively active Rap1 G12V increased cell spreading and adhesion even in the absence of KrsB, suggesting that Rap1 does not require KrsB to mediate cell adhesion. In contrast, KrsB activation requires Rap1 since dominant-negative Rap1 S17N impaired KrsB phosphorylation, which has been previously shown to be necessary for KrsB activity and its function in adhesion. Even though Rap1 did not require KrsB for its function in adhesion, KrsB negatively regulates Rap1 function as seen by increased cortical localization of active Rap1 in KrsB-null cells. Consistently, Rap1 S17N completely reversed the overadhesive phenotype of KrsB-null cells. Furthermore, chemoattractant-induced activation of downstream effectors of Rap1, TalB and Phg2, was increased in the absence of KrsB. Taken together, these findings suggest that Rap1 leads to activation of KrsB, which inhibits Rap1 and its downstream targets, shutting off adhesion. The existence of a negative feedback loop between Rap1 and KrsB may contribute to the dynamic regulation of cell adhesion that is necessary for rapid amoeboid-type migration.
Collapse
Affiliation(s)
- Yulia Artemenko
- Department of Biological Sciences, SUNY Oswego, Oswego, NY 13126
| | - Gengle Niu
- Department of Biological Sciences, SUNY Oswego, Oswego, NY 13126
| | - Megan E. Arnold
- Department of Biological Sciences, SUNY Oswego, Oswego, NY 13126
| | | | | | - Tiffany Flores
- Department of Biological Sciences, SUNY Oswego, Oswego, NY 13126
| | | | | | - Jane Borleis
- Department of Cell biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Peter N. Devreotes
- Department of Cell biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
2
|
Mijanović L, Putar D, Mimica L, Klajn S, Filić V, Weber I. The IQGAP-related RasGAP IqgC regulates cell-substratum adhesion in Dictyostelium discoideum. Cell Mol Biol Lett 2025; 30:4. [PMID: 39789437 PMCID: PMC11720917 DOI: 10.1186/s11658-024-00678-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/11/2024] [Indexed: 01/12/2025] Open
Abstract
Proper adhesion of cells to their environment is essential for the normal functioning of single cells and multicellular organisms. To attach to the extracellular matrix (ECM), mammalian cells form integrin adhesion complexes consisting of many proteins that together link the ECM and the actin cytoskeleton. Similar to mammalian cells, the amoeboid cells of the protist Dictyostelium discoideum also use multiprotein adhesion complexes to control their attachment to the underlying surface. However, the exact composition of the multiprotein complexes and the signaling pathways involved in the regulation of adhesion in D. discoideum have not yet been elucidated. Here, we show that the IQGAP-related protein IqgC is important for normal attachment of D. discoideum cells to the substratum. Mutant iqgC-null cells have impaired adhesion, whereas overexpression of IqgC promotes directional migration. A RasGAP C-terminal (RGCt) domain of IqgC is sufficient for its localization in the ventral adhesion focal complexes, while RasGAP activity of a GAP-related domain (GRD) is additionally required for the proper function of IqgC in adhesion. We identify the small GTPase RapA as a novel direct IqgC interactor and show that IqgC participates in a RapA-regulated signaling pathway targeting the adhesion complexes that include talin A, myosin VII, and paxillin B. On the basis of our results, we propose that IqgC is a positive regulator of adhesion, responsible for the strengthening of ventral adhesion structures and for the temporal control of their subsequent degradation.
Collapse
Affiliation(s)
- Lucija Mijanović
- Department of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Darija Putar
- Department of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Lucija Mimica
- Department of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Sabina Klajn
- Department of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Vedrana Filić
- Department of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Igor Weber
- Department of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia.
| |
Collapse
|
3
|
Wang J, An Z, Wu Z, Zhou W, Sun P, Wu P, Dang S, Xue R, Bai X, Du Y, Chen R, Wang W, Huang P, Lam SM, Ai Y, Liu S, Shui G, Zhang Z, Liu Z, Huang J, Fang X, He K. Spatial organization of PI3K-PI(3,4,5)P 3-AKT signaling by focal adhesions. Mol Cell 2024; 84:4401-4418.e9. [PMID: 39488211 DOI: 10.1016/j.molcel.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/17/2024] [Accepted: 10/08/2024] [Indexed: 11/04/2024]
Abstract
The class I phosphatidylinositol 3-kinase (PI3K)-AKT signaling pathway is a key regulator of cell survival, growth, and proliferation and is among the most frequently mutated pathways in cancer. However, where and how PI3K-AKT signaling is spatially activated and organized in mammalian cells remains poorly understood. Here, we identify focal adhesions (FAs) as subcellular signaling hubs organizing the activation of PI3K-PI(3,4,5)P3-AKT signaling in human cancer cells containing p110α mutations under basal conditions. We find that class IA PI3Ks are preferentially recruited to FAs for activation, resulting in localized production of PI(3,4,5)P3 around FAs. As the effector protein of PI(3,4,5)P3, AKT1 molecules are dynamically recruited around FAs for activation. The spatial recruitment/activation of the PI3K-PI(3,4,5)P3-AKT cascade is regulated by activated FA kinase (FAK). Furthermore, combined inhibition of p110α and FAK results in a more potent inhibitory effect on cancer cells. Thus, our results unveil a growth-factor independent, compartmentalized organization mechanism for PI3K-PI(3,4,5)P3-AKT signaling.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengyang An
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongsheng Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhou
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Pengyu Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Piyu Wu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Song Dang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui Xue
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Xue Bai
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yongtao Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongmei Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenxu Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Pei Huang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Lipidall Technologies Company Limited, Changzhou, Jiangsu 213000, China
| | - Youwei Ai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zheng Liu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Xiaohong Fang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Kangmin He
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Caillier A, Oleksyn D, Fowell DJ, Miller J, Oakes PW. T cells use focal adhesions to pull themselves through confined environments. J Cell Biol 2024; 223:e202310067. [PMID: 38889096 PMCID: PMC11187980 DOI: 10.1083/jcb.202310067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/16/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
Immune cells are highly dynamic and able to migrate through environments with diverse biochemical and mechanical compositions. Their migration has classically been defined as amoeboid under the assumption that it is integrin independent. Here, we show that activated primary Th1 T cells require both confinement and extracellular matrix proteins to migrate efficiently. This migration is mediated through small and dynamic focal adhesions that are composed of the same proteins associated with canonical mesenchymal cell focal adhesions, such as integrins, talin, and vinculin. These focal adhesions, furthermore, localize to sites of contractile traction stresses, enabling T cells to pull themselves through confined spaces. Finally, we show that Th1 T cells preferentially follow tracks of other T cells, suggesting that these adhesions modify the extracellular matrix to provide additional environmental guidance cues. These results demonstrate not only that the boundaries between amoeboid and mesenchymal migration modes are ambiguous, but that integrin-mediated focal adhesions play a key role in T cell motility.
Collapse
Affiliation(s)
- Alexia Caillier
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - David Oleksyn
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Deborah J. Fowell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jim Miller
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Patrick W. Oakes
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
5
|
Fierro Morales JC, Redfearn C, Titus MA, Roh-Johnson M. Reduced PaxillinB localization to cell-substrate adhesions promotes cell migration in Dictyostelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585764. [PMID: 38562712 PMCID: PMC10983970 DOI: 10.1101/2024.03.19.585764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Many cells adhere to extracellular matrix for efficient cell migration. This adhesion is mediated by focal adhesions, a protein complex linking the extracellular matrix to the intracellular cytoskeleton. Focal adhesions have been studied extensively in mesenchymal cells, but recent research in physiological contexts and amoeboid cells suggest focal adhesion regulation differs from the mesenchymal focal adhesion paradigm. We used Dictyostelium discoideum to uncover new mechanisms of focal adhesion regulation, as Dictyostelium are amoeboid cells that form focal adhesion-like structures for migration. We show that PaxillinB, the Dictyostelium homologue of Paxillin, localizes to dynamic focal adhesion-like structures during Dictyostelium migration. Unexpectedly, reduced PaxillinB recruitment to these structures increases Dictyostelium cell migration. Quantitative analysis of focal adhesion size and dynamics show that lack of PaxillinB recruitment to focal adhesions does not alter focal adhesion size, but rather increases focal adhesion turnover. These findings are in direct contrast to Paxillin function at focal adhesions during mesenchymal migration, challenging the established focal adhesion model.
Collapse
Affiliation(s)
| | - Chandler Redfearn
- Department of Kinesiology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Margaret A Titus
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Minna Roh-Johnson
- Department of Biochemistry, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Kinesiology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Franzkoch R, Anand A, Breitsprecher L, Psathaki OE, Barisch C. Resolving exit strategies of mycobacteria in Dictyostelium discoideum by combining high-pressure freezing with 3D-correlative light and electron microscopy. Mol Microbiol 2024; 121:593-604. [PMID: 38063129 DOI: 10.1111/mmi.15205] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 03/12/2024]
Abstract
The infection course of Mycobacterium tuberculosis is highly dynamic and comprises sequential stages that require damaging and crossing of several membranes to enable the translocation of the bacteria into the cytosol or their escape from the host. Many important breakthroughs such as the restriction of mycobacteria by the autophagy pathway and the recruitment of sophisticated host repair machineries to the Mycobacterium-containing vacuole have been gained in the Dictyostelium discoideum/M. marinum system. Despite the availability of well-established light and advanced electron microscopy techniques in this system, a correlative approach integrating both methods with near-native ultrastructural preservation is currently lacking. This is most likely due to the low ability of D. discoideum to adhere to surfaces, which results in cell loss even after fixation. To address this problem, we improved the adhesion of cells and developed a straightforward and convenient workflow for 3D-correlative light and electron microscopy. This approach includes high-pressure freezing, which is an excellent technique for preserving membranes. Thus, our method allows to monitor the ultrastructural aspects of vacuole escape which is of central importance for the survival and dissemination of bacterial pathogens.
Collapse
Affiliation(s)
- Rico Franzkoch
- iBiOs-integrated Bioimaging Facility, University of Osnabrück, Osnabrück, Germany
- Center of Cellular Nanoanalytics, Osnabrück, Germany
- Division of Microbiology, Department of Biology, University of Osnabrück, Osnabrück, Germany
| | - Aby Anand
- Center of Cellular Nanoanalytics, Osnabrück, Germany
- Division of Molecular Infection Biology, Department of Biology, University of Osnabrück, Osnabrück, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Division of Host-Microbe Interactome, Research Center Borstel - Leibniz Lung Center (FZB), Borstel, Germany
- Department of Biology, University of Hamburg, Hamburg, Germany
| | - Leonhard Breitsprecher
- iBiOs-integrated Bioimaging Facility, University of Osnabrück, Osnabrück, Germany
- Center of Cellular Nanoanalytics, Osnabrück, Germany
- Division of Microbiology, Department of Biology, University of Osnabrück, Osnabrück, Germany
| | - Olympia E Psathaki
- iBiOs-integrated Bioimaging Facility, University of Osnabrück, Osnabrück, Germany
- Center of Cellular Nanoanalytics, Osnabrück, Germany
| | - Caroline Barisch
- Center of Cellular Nanoanalytics, Osnabrück, Germany
- Division of Molecular Infection Biology, Department of Biology, University of Osnabrück, Osnabrück, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Division of Host-Microbe Interactome, Research Center Borstel - Leibniz Lung Center (FZB), Borstel, Germany
- Department of Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
7
|
Song J, Evans EJ, Dallon JC. Differential cell motion: A mathematical model of anterior posterior sorting. Biophys J 2023; 122:4160-4175. [PMID: 37752701 PMCID: PMC10645555 DOI: 10.1016/j.bpj.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/17/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023] Open
Abstract
Here, we investigate how a subpopulation of cells can move through an aggregate of cells. Using a stochastic force-based model of Dictyostelium discoideum when the population is forming a slug, we simulate different strategies for prestalk cells to reliably move to the front of the slug while omitting interaction with the substrate thus ignoring the overall motion of the slug. Of the mechanisms that we simulated, prestalk cells being more directed is the best strategy followed by increased asymmetric motive forces for prestalk cells. The lifetime of the cell adhesion molecules, while not enough to produce differential motion, did modulate the results of the strategies employed. Finally, understanding and simulating the appropriate boundary conditions are essential to correctly predict the motion.
Collapse
Affiliation(s)
- Joy Song
- Department of Mathematics, Brigham Young University, Provo, Utah
| | - Emily J Evans
- Department of Mathematics, Brigham Young University, Provo, Utah
| | - J C Dallon
- Department of Mathematics, Brigham Young University, Provo, Utah.
| |
Collapse
|
8
|
Samaržija I, Konjevoda P. Extracellular Matrix- and Integrin Adhesion Complexes-Related Genes in the Prognosis of Prostate Cancer Patients' Progression-Free Survival. Biomedicines 2023; 11:2006. [PMID: 37509645 PMCID: PMC10377098 DOI: 10.3390/biomedicines11072006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Prostate cancer is a heterogeneous disease, and one of the main obstacles in its management is the inability to foresee its course. Therefore, novel biomarkers are needed that will guide the treatment options. The extracellular matrix (ECM) is an important part of the tumor microenvironment that largely influences cell behavior. ECM components are ligands for integrin receptors which are involved in every step of tumor progression. An underlying characteristic of integrin activation and ligation is the formation of integrin adhesion complexes (IACs), intracellular structures that carry information conveyed by integrins. By using The Cancer Genome Atlas data, we show that the expression of ECM- and IACs-related genes is changed in prostate cancer. Moreover, machine learning methods revealed that they are a source of biomarkers for progression-free survival of patients that are stratified according to the Gleason score. Namely, low expression of FMOD and high expression of PTPN2 genes are associated with worse survival of patients with a Gleason score lower than 9. The FMOD gene encodes protein that may play a role in the assembly of the ECM and the PTPN2 gene product is a protein tyrosine phosphatase activated by integrins. Our results suggest potential biomarkers of prostate cancer progression.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Paško Konjevoda
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
9
|
Adiba S, Forget M, De Monte S. Evolving social behaviour through selection of single-cell adhesion in Dictyostelium discoideum. iScience 2022; 25:105006. [PMID: 36105585 PMCID: PMC9464967 DOI: 10.1016/j.isci.2022.105006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/09/2022] [Accepted: 08/19/2022] [Indexed: 11/30/2022] Open
Abstract
The social amoeba Dictyostelium discoideum commonly forms chimeric fruiting bodies. Genetic variants that produce a higher proportion of spores are predicted to undercut multicellular organization unless cooperators assort positively. Cell adhesion is considered a primary factor driving such assortment, but evolution of adhesion has not been experimentally connected to changes in social performance. We modified by experimental evolution the efficiency of individual cells in attaching to a surface. Surprisingly, evolution appears to have produced social cooperators irrespective of whether stronger or weaker adhesion was selected. Quantification of reproductive success, cell-cell adhesion, and developmental patterns, however, revealed two distinct social behaviors, as captured when the classical metric for social success is generalized by considering clonal spore production. Our work shows that cell mechanical interactions can constrain the evolution of development and sociality in chimeras and that elucidation of proximate mechanisms is necessary to understand the ultimate emergence of multicellular organization. Cooperative behavior evolved as a pleiotropic effect of selection for surface adhesion Multicellular development of evolved lines with the ancestor follows two different paths A metric of social behavior including clonal development differentiates these two paths
Collapse
Affiliation(s)
- Sandrine Adiba
- Institut de Biologie de l’ENS (IBENS), Département de biologie, Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- Corresponding author
| | - Mathieu Forget
- Institut de Biologie de l’ENS (IBENS), Département de biologie, Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Silvia De Monte
- Institut de Biologie de l’ENS (IBENS), Département de biologie, Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|