1
|
Liu C, Zheng J, Hao J, Kang W, Mao J, Hu C, Ouyang Y, Shen H. Lactylation-related genes serve as potential markers for the diagnosis and immune infiltration in rheumatoid arthritis. Autoimmunity 2025; 58:2474217. [PMID: 40048636 DOI: 10.1080/08916934.2025.2474217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/22/2024] [Accepted: 02/25/2025] [Indexed: 05/13/2025]
Abstract
Lactylation is widely involved in cellular processes and is pivotal in inflammation and immune regulation. However, the expression and clinical significance of lactylation in rheumatoid arthritis (RA) remain unclear. This study aimed to determine the role of lactylation in RA and its association with immune cell infiltration. We initially detected the levels of lactate in the plasma of RA patients and the levels of panlysine lactylation (Pan-Kla) in peripheral blood mononuclear cells (PBMCs). Next, we used differential expression analysis and weighted gene coexpression network analysis (WGCNA) to intersect with lactylation-related genes. We obtained lactylation-related differentially expressed genes (LADEGs) in RA and analyzed their functional enrichment. We subsequently used the CIBERSORT algorithm to analyze immune cell infiltration in RA synovial tissues and its correlation with LADEGs. Finally, key genes of LADEGs were validated in the Pathobiology of Early Arthritis Cohort (PEAC) study and our samples. Our study revealed elevated levels of lactate and lactylation in the peripheral blood of RA patients. IKAROS family zinc finger 1 (IKZF1), lymphocyte cytosolic protein 1 (LCP1), and WASP actin-nucleation promoting factor (WAS) may be potential biomarkers for early diagnosis and assessment of disease activity in RA.
Collapse
Affiliation(s)
- Chunhua Liu
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jianxiong Zheng
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jiayao Hao
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Wenjiao Kang
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jing Mao
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Caiyun Hu
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yuhong Ouyang
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Haili Shen
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
2
|
Chen X, Yuan Y, Zhou F, Li L, Pu J, Zeng Y, Jiang X. Lactylation: From Homeostasis to Pathological Implications and Therapeutic Strategies. MedComm (Beijing) 2025; 6:e70226. [PMID: 40443721 PMCID: PMC12122191 DOI: 10.1002/mco2.70226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 04/16/2025] [Accepted: 04/24/2025] [Indexed: 06/02/2025] Open
Abstract
Lactylation, a recently identified post-translational modification, represents a groundbreaking addition to the epigenetic landscape, revealing its pivotal role in gene regulation and metabolic adaptation. Unlike traditional modifications, lactylation directly links metabolic intermediates, such as lactate, to protein function and cellular behavior. Emerging evidence highlights the critical involvement of lactylation in diverse biological processes, including immune response modulation, cellular differentiation, and tumor progression. However, its regulatory mechanisms, biological implications, and disease associations remain poorly understood. This review systematically explores the enzymatic and nonenzymatic mechanisms underlying protein lactylation, shedding light on the interplay between cellular metabolism and epigenetic control. We comprehensively analyze its biological functions in normal physiology, such as immune homeostasis and tissue repair, and its dysregulation in pathological contexts, including cancer, inflammation, and metabolic disorders. Moreover, we discuss advanced detection technologies and potential therapeutic interventions targeting lactylation pathways. By integrating these insights, this review aims to bridge critical knowledge gaps and propose future directions for research. Highlighting lactylation's multifaceted roles in health and disease, this review provides a timely resource for understanding its clinical implications, particularly as a novel target for precision medicine in metabolic and oncological therapies.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory of Neurological and Psychiatric Disease Research of Yunnan ProvinceThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingChina
| | - Yixiao Yuan
- Department of Medicine, UF Health Cancer CenterUniversity of FloridaGainesvilleFloridaUSA
| | - Fan Zhou
- Department of Hematologythe Second Hospital Affiliated to Kunming Medical UniversityKunmingChina
| | - Lihua Li
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingChina
| | - Jun Pu
- Key Laboratory of Neurological and Psychiatric Disease Research of Yunnan ProvinceThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingChina
| | - Yong Zeng
- Key Laboratory of Neurological and Psychiatric Disease Research of Yunnan ProvinceThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Xiulin Jiang
- Department of Medicine, UF Health Cancer CenterUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
3
|
Chang Z. NCAPD3 contributes to lung cancer progression through modulated lactate-induced histone lactylation and MEK/ERK/LDHA axis. Cancer Cell Int 2025; 25:189. [PMID: 40410796 PMCID: PMC12102810 DOI: 10.1186/s12935-025-03814-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 05/08/2025] [Indexed: 05/25/2025] Open
Abstract
Lung cancer (LC) is one of the most common malignant tumors globally. Non-SMC condensin II complex subunit D3 (NCAPD3) has been involved in the progression of many kinds of tumors. However, the effects of NCAPD3 in LC remain unclear. NCAPD3 expression was investigated by the Ualcan database and using Western blot. The effect of NCAPD3 on prognosis was explored via the Kaplan-Meier plotter database. Cell viability, colony formation, apoptosis, and Transwell assays, and in vivo tumorigenesis were performed to reveal the biological roles of NCAPD3. Glycolysis was assessed via measurement of glucose consumption, extracellular acidification rate (ECAR), lactate production, and ATP levels. The deeper mechanisms of NCAPD3 were investigated by Western blot and rescue experiments. Upregulation of NCAPD3 levels in LC tissues was found in Ualcan and significantly associated with poor prognosis. The expression of NCAPD3 was up-regulated in LC cell lines compared to BEAS-2B cells. Knockdown and overexpression experiments suggested that proliferation, apoptosis, migration, invasion, and glycolysis were regulated by NCAPD3 via the MEK/ERK/LDHA pathway. Additionally, NCAPD3 knockdown inhibited tumor growth in vivo. Mechanistically, NCAPD3 overexpression-mediated activation of the MEK/ERK/LDHA pathway and proliferation, Glucose uptake, and glycolysis were attenuated by MEK inhibitor U0126. Also, histone lactylation helps in tumorigenesis by promoting NCAPD3 expression. Taken together, our results revealed that histone lactylation of NCAPD3 promoted proliferation, migration, invasion, and glycolysis through modulating the MEK/ERK/LDHA signaling pathway in LC, which highlights a novel understanding of NCAPD3 in LC.
Collapse
Affiliation(s)
- Zhibo Chang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, Hangzhou, 310009, China.
| |
Collapse
|
4
|
Liu G, Song Y, Yin S, Zhang B, Han P. Machine learning using scRNA-seq Combined with bulk-seq to identify lactylation-related hub genes in carotid arteriosclerosis. Sci Rep 2025; 15:17794. [PMID: 40404675 PMCID: PMC12098907 DOI: 10.1038/s41598-025-00834-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 04/30/2025] [Indexed: 05/24/2025] Open
Abstract
Atherosclerosis is a chronic inflammatory disease, this study aims to investigate the immune landscape in carotid atherosclerotic plaque formation and explore diagnostic biomarkers of lactylation-associated genes, so as to gain new insights into underlying molecular mechanisms and provide new perspectives for disease detection and treatment. Single cell transcriptome data and Bulk transcriptome data of carotid atherosclerosis samples were obtained from the Gene Expression Omnibus (GEO). Eleven cell types were identified by scRNA-seq data. Lactylation scores were significantly higher in γδT cells than in cells of other subtypes, but lower in plasma cells than in cells of other subtypes. The scores of malignant related pathways were significantly increased in cells with high lactylation scores. scRNA-seq combined with bulk-seq identified differentially expressed lactylation genes in carotid atherosclerosis. A diagnostic model was constructed by combining 10 machine learning algorithms and 101 algorithms, SOD1, DDX42 and PDLIM1 as core genes. Further analysis revealed that the expression levels of core genes were significantly correlated with immune cell infiltration, and their regulatory networks were constructed. Clinical samples verified that the expression of core gene in unstable plaque was significantly lower than that in stable plaque, suggesting that it has protective effect on atherosclerosis. By combining scRNA-seq and Bulk transcriptome data in this study, three lactylation-associated genes SOD1, DDX42 and PDLIM1 were identified in carotid atherosclerosis samples, providing targets for the diagnosis and treatment of carotid atherosclerosis samples.
Collapse
Affiliation(s)
- Gaoyan Liu
- Department of Vascular Surgery, First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Ye Song
- Department of General Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Shanxue Yin
- Department of Vascular Surgery, First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Bo Zhang
- Department of Vascular Surgery, First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Peng Han
- Department of Vascular Surgery, First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang Province, China.
| |
Collapse
|
5
|
Li H, Ren Q, Shi M, Ma L, Fu P. Lactate metabolism and acute kidney injury. Chin Med J (Engl) 2025; 138:916-924. [PMID: 38802283 PMCID: PMC12037090 DOI: 10.1097/cm9.0000000000003142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Indexed: 05/29/2024] Open
Abstract
ABSTRACT Acute kidney injury (AKI) is a common clinically critical syndrome in hospitalized patients with high morbidity and mortality. At present, the mechanism of AKI has not been fully elucidated, and no therapeutic drugs exist. As known, glycolytic product lactate is a key metabolite in physiological and pathological processes. The kidney is an important gluconeogenic organ, where lactate is the primary substrate of renal gluconeogenesis in physiological conditions. During AKI, altered glycolysis and gluconeogenesis in kidneys significantly disturb the lactate metabolic balance, which exert impacts on the severity and prognosis of AKI. Additionally, lactate-derived posttranslational modification, namely lactylation, is novel to AKI as it could regulate gene transcription of metabolic enzymes involved in glycolysis or Warburg effect. Protein lactylation widely exists in human tissues and may severely affect non-histone functions. Moreover, the strategies of intervening lactate metabolic pathways are expected to bring a new dawn for the treatment of AKI. This review focused on renal lactate metabolism, especially in proximal renal tubules after AKI, and updated recent advances of lactylation modification, which may help to explore potential therapeutic targets against AKI.
Collapse
Affiliation(s)
- Hui Li
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Qian Ren
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Min Shi
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Liang Ma
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Ping Fu
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
6
|
Hou Y, Liu D, Guo Z, Wei C, Cao F, Xu Y, Feng Q, Liu F. Lactate and Lactylation in AKI-to-CKD: Epigenetic Regulation and Therapeutic Opportunities. Cell Prolif 2025:e70034. [PMID: 40207870 DOI: 10.1111/cpr.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/20/2025] [Accepted: 03/21/2025] [Indexed: 04/11/2025] Open
Abstract
Lactate is not only a byproduct of glycolysis, but is also considered an energy source, gluconeogenic precursor, signalling molecule and protein modifier during the process of cellular metabolism. The discovery of lactylation reveals the multifaceted functions of lactate in cellular metabolism and opens new avenues for lactate-related research. Both lactate and lactylation have been implicated in regulating numerous biological processes, including tumour progression, ischemic-hypoxic injury, neurodevelopment and immune-related inflammation. The kidney plays a crucial role in regulating lactate metabolism, influencing lactate levels while also being regulated by lactate. Previous studies have demonstrated the importance of lactate in the pathogenesis of acute kidney injury (AKI) and chronic kidney disease (CKD). This review explores the role of lactate and lactylation in these diseases, comparing the function and metabolic mechanisms of lactate in normal and diseased kidneys from the perspective of lactylation. The key regulatory roles of lactylation in different organs, multiple systems, various pathological states and underlying mechanisms in AKI-to-CKD progression are summarised. Moreover, potential therapeutic targets and future research directions for lactate and lactylation across multiple kidney diseases are identified.
Collapse
Affiliation(s)
- Yi Hou
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Dongwei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
- Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of China, Zhengzhou, Henan Province, China
| | - Zuishuang Guo
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
- Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of China, Zhengzhou, Henan Province, China
| | - Cien Wei
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Fengyu Cao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yue Xu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Qi Feng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
- Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of China, Zhengzhou, Henan Province, China
| | - Fengxun Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
- Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of China, Zhengzhou, Henan Province, China
| |
Collapse
|
7
|
Qian J, Zhou Q. Role of lactylation and immune infiltration in atherosclerosis: novel insights from bioinformatics analyses. Front Genet 2025; 16:1520325. [PMID: 40248193 PMCID: PMC12003320 DOI: 10.3389/fgene.2025.1520325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/13/2025] [Indexed: 04/19/2025] Open
Abstract
Introduction The existing evidence indicates that atherosclerosis (AS) plays a pivotal role in the progression and exacerbation of cardiovascular diseases and their associated complications. Current diagnostic and therapeutic strategies for atherosclerosis are limited in their ability to facilitate early detection and personalized treatment. This study employs a systems biology approach to investigate the role of lactylation-related genes (LRGs) in the pathogenesis of atherosclerosis, while considering the well-established correlation between inflammatory responses and atherosclerosis development. Methods In this study, we utilized datasets obtained from the Gene Expression Omnibus (GEO) as well as data from previous studies on lactylation-related genes (LRGs). Following this, we identified 17 lactylation related genes associate with atherosclerosis (AS-LRGs) from the GSE100927 dataset. Subsequently, we employed the validation dataset (GSE43292) to assess these 17 AS-LRGs, resulting in the identification of 12 more reliable candidate genes. These genes were further analyzed for functional enrichment through Gene Ontology (GO) annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and gene set enrichment analysis (GSEA). To elucidate the potential utility of AS-LRGs in diagnosing high-risk plaques, we assessed their expression in both early and late stages of atherosclerosis, as well as in high- and low-risk plaques. We then constructed interaction networks to elucidate the potential regulatory relationships among LRGs, miRNAs, transcription factors, and drugs. Finally, we utilized the single sample Gene Set Enrichment Analysis (ssGSEA) method to investigate immune infiltration in AS and evaluate the levels of immune cell infiltration. Results We identified 12 lactylation-related genes that are more reliably associated with atherosclerosis: five upregulated genes (LSP1, IKZF1, MNDA, RCC2, and WAS) and seven downregulated genes (CSRP2, PPP1CB, CSRP1, HEXIM1, CALD1, PDLIM1, and RANBP2). Discussion This study elucidates the pivotal role of lactylation in atherosclerosis (AS) and establishes a robust foundation for future research into targeted therapies and clinical applications of the identified biomarkers.
Collapse
Affiliation(s)
| | - Qing Zhou
- Department of Cardiothoracic surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
8
|
Liu G, Hong T, Liu X, Lin X, Yao P, Chen X, Zhang Y, Sarica K, Hong X. Predictive role of lactylation-related gene signature in the prognosis and immunotherapy response in bladder cancer. Arch Ital Urol Androl 2025; 97:13516. [PMID: 39968644 DOI: 10.4081/aiua.2025.13516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
OBJECTIVE Lactylation is a type of chemical modification involving the introduction of lactyl groups to a molecule which can affect the interactions between tumor cells and their microenvironment. This study aims to evaluate the possible role of lactylation-related gene signature in the prediction of both prognosis and immunotherapy response in bladder cancer (BLCA). METHODS Lactylation-related genes were obtained from the published work and two subtypes (cluster A and B) were identified through unsupervised clustering. The differences including clinical features, differentially expressed genes (DEGs), pathways, and immune cell infiltration between these two clusters were thoroughly examined. RESULTS By utilizing the DEGs between the two clusters, a lactylation score was identified to predict the overall survival status and the response of BLCA patients receiving immunotherapy. Our results demonstrated that patients with a high lactylation score tended to have a worse survival period and increased immune cell infiltration level. Further analysis showed that high lactylation score may be associated with higher sensitivity to immune checkpoint inhibitor (ICI) treatment which is crucial in the identification of the suitable candidates for ICI therapy. CONCLUSIONS Our results emphasize the possible predictive role of lactylation-related gene signature both in the survival rates of BLCA and its implications for treatment strategies.
Collapse
Affiliation(s)
- Guoyuan Liu
- Department of Urology, Shantou Central Hospital, Shantou.
| | - Ting Hong
- Clinical Medical Research Center, Shantou Central Hospital, Shantou.
| | - Xinyu Liu
- Clinical Medical Research Center, Shantou Central Hospital, Shantou.
| | - Xuanhao Lin
- Department of Biobank, Shantou Central Hospital, Shantou.
| | - Peixiu Yao
- Department of Biobank, Shantou Central Hospital, Shantou.
| | - Xifeng Chen
- Department of Biobank, Shantou Central Hospital, Shantou.
| | - Yonghai Zhang
- Department of Urology, Health Sciences University, Prof. Dr. Ilhan Varank Education and Training Hospital, Istanbul; Department of Urology, Biruni University, Medical School, Istanbul.
| | - Kemal Sarica
- Department of Urology, Health Sciences University, Prof. Dr. Ilhan Varank Education and Training Hospital; Department of Urology, Biruni University, Medical School, Istanbul.
| | - Xuwei Hong
- Department of Urology, Shantou Central Hospital, Shantou.
| |
Collapse
|
9
|
Du Q, Meng C, Zhang W, Huang L, Xue C. Establishing a Prognostic Model Correlates to Inflammatory Response Pathways for Prostate Cancer via Multiomic Analysis of Lactylation-Related Genes. Int J Genomics 2025; 2025:6681711. [PMID: 40161494 PMCID: PMC11952923 DOI: 10.1155/ijog/6681711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Prostate cancer (PCa) continues to pose substantial clinical challenges, with molecular heterogeneity significantly impacting therapeutic decision-making and disease trajectories. Emerging evidence implicates protein lactylation-a novel epigenetic regulatory mechanism-in oncogenic processes, though its prognostic relevance in PCa remains underexplored. Through integrative bioinformatics interrogation of lactylation-associated molecular signatures, we established prognostic correlations using multivariable feature selection methodologies. Initial screening via differential expression analysis (limma package) coupled with Cox proportional hazards modeling revealed 11 survival-favorable regulators and 16 hazard-associated elements significantly linked to biochemical recurrence. To enhance predictive precision, ensemble machine learning frameworks were implemented, culminating in a 10-gene lactylation signature demonstrating robust discriminative capacity (concordance index = 0.738) across both primary (TCGA-PRAD) and external validation cohorts (DKFZ). Multivariable regression confirmed the lactylation score's prognostic independence, exhibiting prominent associations with clinicopathological parameters including tumor staging and metastatic potential. The developed clinical-molecular nomogram achieved superior predictive accuracy (C - index > 0.7) through the synergistic integration of biological and clinical covariates. Tumor microenvironment deconvolution uncovered distinct immunological landscapes, with high-risk stratification correlating with enriched stromal infiltration and immunosuppressive phenotypes. Pathway enrichment analyses implicated chromatin remodeling processes and cytokine-mediated inflammatory cascades as potential mechanistic drivers of prognostic divergence. Therapeutic vulnerability profiling demonstrated differential response patterns: low-risk patients exhibited enhanced immune checkpoint inhibitor responsiveness, whereas high-risk subgroups showed selective chemosensitivity to docetaxel and mitoxantrone. Functional validation in PC-3 models revealed AK5 silencing induced proapoptotic effects, suppressed metastatic potential of migration and invasion, and modulated immune checkpoint regulation through CD276 coexpression. These multimodal findings position lactylation dynamics, particularly AK5-mediated pathways, as promising therapeutic targets and stratification biomarkers in PCa management.
Collapse
Affiliation(s)
- Qinglong Du
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - CuiYu Meng
- The Department of EICU, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, Shandong, China
| | - Wenchao Zhang
- The Department of Urology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, Shandong, China
| | - Li Huang
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong, China
| | - Chunlei Xue
- The Department of Urology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, Shandong, China
| |
Collapse
|
10
|
Wu X, Liu C, Zhang C, Kuai L, Hu S, Jia N, Song J, Jiang W, Chen Q, Li B. The Role of Lactate and Lactylation in the Dysregulation of Immune Responses in Psoriasis. Clin Rev Allergy Immunol 2025; 68:28. [PMID: 40080284 DOI: 10.1007/s12016-025-09037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 03/15/2025]
Abstract
Historically, lactate has been considered merely a metabolic byproduct. However, recent studies have revealed that lactate plays a much more dynamic role, acting as an immune signaling molecule that influences cellular communication, through the process of "lactate shuttling." Lactylation, a novel post-translational modification, is directly derived from lactate and represents an emerging mechanism through which lactate exerts its effects on cellular function. It has been shown to directly affect immune cells by modulating the activation of pro-inflammatory and anti-inflammatory pathways. This modification influences the expression of key immune-related genes, thereby impacting immune cell differentiation, cytokine production, and overall immune response. In this review, we focused on the role of lactate and lactylation in the dysregulation of immune responses in psoriasis and its relapse. Additionally, we discuss the potential applications of targeting lactate metabolism and lactylation modifications in the treatment of psoriasis, alongside the investigation of artificial intelligence applications in advancing lactate and lactylation-focused drug development, identifying therapeutic targets, and enabling personalized medical decision-making. The significance of this review lies in its comprehensive exploration of how lactate and lactylation contribute to immune dysregulation, offering a novel perspective for understanding the metabolic and epigenetic changes associated with psoriasis. By identifying the roles of these pathways in modulating immune responses, this review provides a foundation for the development of new therapeutic strategies that target these mechanisms.
Collapse
Affiliation(s)
- Xinxin Wu
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Changya Liu
- Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Caiyun Zhang
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Le Kuai
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Sheng Hu
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Ning Jia
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jiankun Song
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Wencheng Jiang
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Qilong Chen
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Bin Li
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| |
Collapse
|
11
|
Li J, Li S, Sun Q, Li L, Zhang Y, Hua Z. H3K18 lactylation-mediated nucleotide-binding oligomerization domain-2 (NOD2) expression promotes bilirubin-induced pyroptosis of astrocytes. J Neuroinflammation 2025; 22:76. [PMID: 40075479 PMCID: PMC11905654 DOI: 10.1186/s12974-025-03399-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Histone lactylation, a newly glycosis-related histone modification, plays a crucial role in the regulation of gene expression in various immune cells. However, the role of histone lactylation in astrocytes remains unclear. Here, this study showed that the H3K18 lactylation (H3K18la) levels were upregulated in primary astrocytes under unconjugated bilirubin (UCB) stimulation and hippocampus of bilirubin encephalopathy (BE) rats. Inhibition of glycolysis decreased H3K18la and attenuated pyroptosis both in vitro and in vivo. CUT& Tag and RNA-seq results revealed that H3K18la was enriched at the promoter of nucleotide-binding oligomerization domain 2 (NOD2) and promoted its transcription. Moreover, NOD2 boosted the activation of downstream mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways, which exacerbated the neuroinflammation of BE. Collectively, this study provides a novel understanding of epigenetic regulation in astrocytes, and interruption of the H3K18la/NOD2 axis may represent a novel therapeutic strategy for treating bilirubin encephalopathy.
Collapse
Affiliation(s)
- Jing Li
- Department of Neonatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Siyu Li
- Department of Neonatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Qian Sun
- Department of Neonatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Ling Li
- Department of Neonatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Yan Zhang
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Ziyu Hua
- Department of Neonatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China.
| |
Collapse
|
12
|
Peng TY, Lu JM, Zheng XL, Zeng C, He YH. The role of lactate metabolism and lactylation in pulmonary arterial hypertension. Respir Res 2025; 26:99. [PMID: 40075458 PMCID: PMC11905457 DOI: 10.1186/s12931-025-03163-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Pulmonary arterial hypertension (PAH) is a complex and progressive disease characterized by elevated pulmonary artery pressure and vascular remodeling. Recent studies have underscored the pivotal role of metabolic dysregulation and epigenetic modifications in the pathogenesis of PAH. Lactate, a byproduct of glycolysis, is now recognized as a key molecule that links cellular metabolism with activity regulation. Recent findings indicate that, in addition to altered glycolytic activity and dysregulated. Lactate homeostasis and lactylation-a novel epigenetic modification-also play a significant role in the development of PAH. This review synthesizes current knowledge regarding the relationship between altered glycolytic activity and PAH, with a particular focus on the cumulative effects of lactate in pulmonary vascular cells. Furthermore, lactylation, an emerging epigenetic modification, is discussed in the context of PAH. By elucidating the complex interplay between lactate metabolism and lactylation in PAH, this review aims to provide insights into potential therapeutic targets. Understanding these metabolic pathways may lead to innovative strategies for managing PAH and improving patient outcomes. Future research should focus on the underlying mechanisms through which lactylation influences the pathophysiology of PAH, thereby aiding in the development of targeted interventions.
Collapse
Affiliation(s)
- Tong-Yu Peng
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jun-Mi Lu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xia-Lei Zheng
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Cheng Zeng
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yu-Hu He
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
13
|
Li C, Zhao Y, Li Q, Chen R, Feng Y, Sang X, Li X, Shen B, Jiang N, Chen Q. The TgAMPK-TgPFKII axis essentially regulates protein lactylation in the zoonotic parasite Toxoplasma gondii. Microbiol Spectr 2025; 13:e0204424. [PMID: 39918324 PMCID: PMC11878075 DOI: 10.1128/spectrum.02044-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/23/2025] [Indexed: 03/05/2025] Open
Abstract
Toxoplasma gondii infects nucleated cells of warm-blooded animals and cause zoonotic toxoplasmosis. Lysine lactylation, as a novel post-translational modification, is essential for epigenetic regulation and cellular processes, and proteomic analyses have shown that lactylated proteins are involved in a wide range of biological processes including energy metabolism, gene regulation, and protein biosynthesis. Additionally, protein lactylation is prevalent in T. gondii, while its regulatory mechanisms have not been fully understood. In this study, we investigated the role of T. gondii phosphofructokinase-2 (TgPFKII) and the adenosine-5'-monophosphate-activated protein kinase (AMPK) signaling pathway in the invasion, replication, and lactylation regulation of T. gondii. We localized TgPFKII in the cytoplasm of T. gondii tachyzoites and demonstrated its necessity for parasite growth and protein lactylation through auxin-induced degradation. Our results showed that inhibition of the AMPK pathway led to decreased TgPFKII expression and reduced protein lactylation levels. Furthermore, AMPK-specific inhibitors significantly impaired parasite invasion and proliferation. These findings highlight TgPFKII as a crucial regulator of lactylation and underscore the importance of the AMPK pathway in T. gondii's pathogenic mechanisms, offering potential targets for therapeutic intervention.IMPORTANCEUnderstanding the intricate mechanisms by which Toxoplasma gondii invades and proliferates within host cells is essential for developing novel therapeutic strategies against toxoplasmosis. This study focuses on the pivotal roles of T. gondii phosphofructokinase-2 (TgPFKII) and the adenosine-5'-monophosphate-activated protein kinase (AMPK) signaling pathway in regulating protein lactylation in association with parasite invasion and growth. By elucidating the cellular localization and functional importance of TgPFKII, as well as its regulation through AMPK-specific inhibitors, we provide comprehensive insights into the metabolic and signaling networks that underpin T. gondii pathogenicity. Our findings reveal that TgPFKII is a critical regulator of lactylation and that the AMPK pathway significantly influences T. gondii's ability to invade and replicate within host cells. These insights pave the way for targeted interventions aimed at disrupting key metabolic and signaling pathways in T. gondii, potentially leading to more effective treatments for toxoplasmosis.
Collapse
Affiliation(s)
- Chenghuan Li
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Yang Zhao
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Qilong Li
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Bang Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| |
Collapse
|
14
|
Rho H, Hay N. Protein lactylation in cancer: mechanisms and potential therapeutic implications. Exp Mol Med 2025; 57:545-553. [PMID: 40128358 PMCID: PMC11958728 DOI: 10.1038/s12276-025-01410-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/14/2024] [Accepted: 12/06/2024] [Indexed: 03/26/2025] Open
Abstract
Increased glycolysis, which leads to high lactate production, is a common feature of cancer cells. Recent evidence suggests that lactate plays a role in the post-translational modification of histone and nonhistone proteins via lactylation. In contrast to genetic mutations, lactylation in cancer cells is reversible. Thus, reversing lactylation can be exploited as a pharmacological intervention for various cancers. Here we discuss recent advances in histone and nonhistone lactylation in cancer, including L-, D- and S-lactylation, as well as alanyl-tRNA synthetase as a novel lactyltransferase. We also discuss potential approaches for targeting lactylation as a therapeutic opportunity in cancer treatment.
Collapse
Affiliation(s)
- Hyunsoo Rho
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea.
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- Research and Development Section, Jesse Brown VA Medical Center, Chicago, IL, USA.
| |
Collapse
|
15
|
Weng W, He Z, Ma Z, Huang J, Han Y, Feng Q, Qi W, Peng Y, Wang J, Gu J, Wang W, Lin Y, Jiang G, Jiang J, Feng J. Tufm lactylation regulates neuronal apoptosis by modulating mitophagy in traumatic brain injury. Cell Death Differ 2025; 32:530-545. [PMID: 39496783 PMCID: PMC11894137 DOI: 10.1038/s41418-024-01408-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
Lactates accumulation following traumatic brain injury (TBI) is detrimental. However, whether lactylation is triggered and involved in the deterioration of TBI remains unknown. Here, we first report that Tufm lactylation pathway induces neuronal apoptosis in TBI. Lactylation is found significantly increased in brain tissues from patients with TBI and mice with controlled cortical impact (CCI), and in neuronal injury cell models. Tufm, a key factor in mitophagy, is screened and identified to be mostly lactylated. Tufm is detected to be lactylated at K286 and the lactylation inhibits the interaction of Tufm and Tomm40 on mitochondria. The mitochondrial distribution of Tufm is then inhibited. Consequently, Tufm-mediated mitophagy is suppressed while mitochondria-induced neuronal apoptosis is increased. In contrast, the knockin of a lactylation-deficient TufmK286R mutant in mice rescues the mitochondrial distribution of Tufm and Tufm-mediated mitophagy, and improves functional outcome after CCI. Likewise, mild hypothermia, as a critical therapeutic method in neuroprotection, helps in downregulating Tufm lactylation, increasing Tufm-mediated mitophagy, mitigating neuronal apoptosis, and eventually ameliorating the outcome of TBI. A novel molecular mechanism in neuronal apoptosis, TBI-initiated Tufm lactylation suppressing mitophagy, is thus revealed.
Collapse
Affiliation(s)
- Weiji Weng
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenghui He
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Zixuan Ma
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Jialin Huang
- Shanghai Institute of Head Trauma, Shanghai, China
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhan Han
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Qiyuan Feng
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Wenlan Qi
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Yidong Peng
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Jiangchang Wang
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Jiacheng Gu
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Wenye Wang
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Yong Lin
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Gan Jiang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiyao Jiang
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Junfeng Feng
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Institute of Head Trauma, Shanghai, China.
| |
Collapse
|
16
|
Peng C, You C, Cao S, Cheng L, Ren J, Cao J, Wang J, Liu T. Decoding Osteosarcoma's Lactylation Gene Expression: Insights Into Prognosis, Immune Dynamics, and Treatment. Anal Cell Pathol (Amst) 2025; 2025:6517238. [PMID: 40026531 PMCID: PMC11870760 DOI: 10.1155/ancp/6517238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/29/2024] [Accepted: 01/04/2025] [Indexed: 03/05/2025] Open
Abstract
Osteosarcoma (OS), characterized by a complex tumor microenvironment, poses challenges in treatment, metastasis, and therapy resistance. This study examined the impact of lactylation, a posttranslational modification, on gene expression and tumor behavior in OS, particularly its influence on prognosis, immune cell infiltration, and chemotherapy response. Utilizing data from the Gene Expression Omnibus series accession number 21257 (GSE21257) and the Therapeutically Applicable Research to Generate Effective Treatments on Osteosarcoma (TARGET-OS) datasets, the investigation focused on analyzing the expression profiles of 267 lactylation modifier genes, which were selected from a total of 336 lactylation-related genes compiled from various studies in the literature. The methods included unsupervised clustering using "ConsensusClusterPlus" heatmap generation with "pheatmap" pathway analysis from several databases, and immune cell infiltration assessment using the "single-sample Gene Set Enrichment Analysis (ssGSEA)" function. The research revealed 36 significant lactylation-related genes in OS, categorizing them into two clusters with distinct survival and biological characteristics. One cluster demonstrated poor prognosis due to increased tumor cell proliferation and specific immune cell variations, also showcasing genes that enhance tumor growth and metastasis, thus indicating its aggressive nature and adverse outcomes for patients. These insights are crucial for understanding the molecular mechanisms of OS and identifying therapeutic targets. Therefore, the study elucidates the role of lactylation-related genes in the prognosis, pathogenesis, and treatment response of OS, laying the groundwork for further exploration into potential therapeutic targets and the underlying mechanisms within OS.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Chaoqun You
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
- Department of Orthopedics, Clinical Medical College, Weifang Medical University, Weifang 261053, Shandong, China
| | - Shuang Cao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200021, China
| | - Linfei Cheng
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Jiaji Ren
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
- Department of Orthopedics, Clinical Medical College, Weifang Medical University, Weifang 261053, Shandong, China
| | - Jiashi Cao
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
- Department of Orthopedics, No. 455 Hospital of the Chinese People's Liberation Army, The Navy Medical University, Shanghai 200052, China
| | - Jing Wang
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Tielong Liu
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| |
Collapse
|
17
|
Yu L, Shi Y, Zhi Z, Li S, Yu W, Zhang Y. Establishment of a Lactylation-Related Gene Signature for Hepatocellular Carcinoma Applying Bulk and Single-Cell RNA Sequencing Analysis. Int J Genomics 2025; 2025:3547543. [PMID: 39990773 PMCID: PMC11845269 DOI: 10.1155/ijog/3547543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/08/2025] [Indexed: 02/25/2025] Open
Abstract
Background: Lactylation is closely involved in cancer progression, but its role in hepatocellular carcinoma (HCC) is unclear. The present work set out to develop a lactylation-related gene (LRG) signature for HCC. Methods: The lactylation score of tumor and normal groups was calculated using the gene set variation analysis (GSVA) package. The single-cell RNA sequencing (scRNA-seq) analysis of HCC was performed in the "Seurat" package. Prognostic LRGs were selected by performing univariate and least absolute shrinkage and selection operator (LASSO) Cox regression analyses to develop and validate a Riskscore model. Functional enrichment analysis was conducted by gene set enrichment analysis (GSEA) using the "clusterProfiler" package. Genomic characteristics between different risk groups were compared, and tumor mutational burden (TMB) was calculated by the "Maftools" package. Immune cell infiltration was assessed by algorithms of cell-type identification by estimating relative subsets of RNA transcript (CIBERSORT), microenvironment cell populations-counter (MCP-counter), estimating the proportions of immune and cancer cells (EPIC), tumor immune estimation resource (TIMER), and single-sample gene set enrichment analysis (ssGSEA). Immunotherapy response was predicted by the tumor immune dysfunction and exclusion (TIDE) algorithm. Drug sensitivity was analyzed using the "pRRophetic" package. A nomogram was established using the "rms" package. The expressions of the prognostic LRGs in HCC cells were verified by in vitro test, and cell counting kit-8 (CCK-8), wound healing, and transwell assays were carried out to measure the viability, migration, and invasion of HCC cells. Results: The lactylation score, which was higher in the tumor group than in the normal group, has been confirmed as an independent factor for the prognostic evaluation in HCC. Six prognostic LRGs, including two protective genes (FTCD and APCS) and four risk genes (LGALS3, C1orf43, TALDO1, and CCT5), were identified to develop a Riskscore model with a strong prognostic prediction performance in HCC. The scRNA-seq analysis revealed that LGALS3 was largely expressed in myeloid cells, while APCS, FTCD, TALDO1, CCT5, and C1orf43 were mainly expressed in hepatocytes. The high-risk group was primarily enriched in the pathways involved in tumor occurrence and development, with higher T cell infiltration. Moreover, the high-risk group was found to be less responsive to immunotherapy but was more sensitive to chemotherapeutic drugs. By integrating Riskscore and clinical features, a nomogram with a high predictive accuracy was developed. Additionally, C1orf43, CCT5, TALDO1, and LGALS3 were highly expressed in HCC cells. Silencing CCT5 inhibited the viability, migration, and invasion of HCC cells. Conclusion: The present work developed a novel LRG gene signature that could be considered a promising therapeutic target and biomarker for HCC.
Collapse
Affiliation(s)
- Lianghe Yu
- Hepatobiliary Surgery, The Third Affiliated Hospital, Naval Military Medical University, Shanghai, China
| | - Yan Shi
- Hepatobiliary Surgery, The Third Affiliated Hospital, Naval Military Medical University, Shanghai, China
| | - Zhenyu Zhi
- Hepatobiliary Surgery, The Third Affiliated Hospital, Naval Military Medical University, Shanghai, China
| | - Shuang Li
- Bioinformatics R&D Department, Hangzhou Mugu Technology Co., Ltd, Hangzhou, China
| | - Wenlong Yu
- Hepatobiliary Surgery, The Third Affiliated Hospital, Naval Military Medical University, Shanghai, China
| | - Yongjie Zhang
- Hepatobiliary Surgery, The Third Affiliated Hospital, Naval Military Medical University, Shanghai, China
| |
Collapse
|
18
|
Ma S, Dahabieh MS, Mann TH, Zhao S, McDonald B, Song WS, Chung HK, Farsakoglu Y, Garcia-Rivera L, Hoffmann FA, Xu S, Du VY, Chen D, Furgiuele J, LaPorta M, Jacobs E, DeCamp LM, Oswald BM, Sheldon RD, Ellis AE, Liu L, He P, Wang Y, Jang C, Jones RG, Kaech SM. Nutrient-driven histone code determines exhausted CD8 + T cell fates. Science 2025; 387:eadj3020. [PMID: 39666821 PMCID: PMC11881194 DOI: 10.1126/science.adj3020] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 06/30/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024]
Abstract
Exhausted T cells (TEX) in cancer and chronic viral infections undergo metabolic and epigenetic remodeling, impairing their protective capabilities. However, the impact of nutrient metabolism on epigenetic modifications that control TEX differentiation remains unclear. We showed that TEX cells shifted from acetate to citrate metabolism by down-regulating acetyl-CoA synthetase 2 (ACSS2) while maintaining ATP-citrate lyase (ACLY) activity. This metabolic switch increased citrate-dependent histone acetylation, mediated by histone acetyltransferase KAT2A-ACLY interactions, at TEX signature genes while reducing acetate-dependent histone acetylation, dependent on p300-ACSS2 complexes, at effector and memory T cell genes. Nuclear ACSS2 overexpression or ACLY inhibition prevented TEX differentiation and enhanced tumor-specific T cell responses. These findings unveiled a nutrient-instructed histone code governing CD8+ T cell differentiation, with implications for metabolic- and epigenetic-based T cell therapies.
Collapse
Affiliation(s)
- Shixin Ma
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Michael S. Dahabieh
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Thomas H. Mann
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Steven Zhao
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Bryan McDonald
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Won-Suk Song
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - H. Kay Chung
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yagmur Farsakoglu
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Lizmarie Garcia-Rivera
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Filipe Araujo Hoffmann
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Shihao Xu
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Victor Y. Du
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Dan Chen
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jesse Furgiuele
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Michael LaPorta
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Emily Jacobs
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Lisa M. DeCamp
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Brandon M. Oswald
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Ryan D. Sheldon
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
- Mass Spectrometry Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Abigail E. Ellis
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
- Mass Spectrometry Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Longwei Liu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Peixiang He
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Yingxiao Wang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Russell G. Jones
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Susan M. Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
19
|
Al-Malsi K, Xie S, Cai Y, Mohammed N, Xie K, Lan T, Wu H. The role of lactylation in tumor growth and cancer progression. Front Oncol 2025; 15:1516785. [PMID: 39968078 PMCID: PMC11832377 DOI: 10.3389/fonc.2025.1516785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/16/2025] [Indexed: 02/20/2025] Open
Abstract
Background Lactate's perception of lactate has changed over the last 30 years from a straightforward metabolic byproduct to a complex chemical with important biological activities, such as signal transduction, gluconeogenesis, and mitochondrial respiration. In addition to its metabolic contributions, lactate has far-reaching repercussions. This review highlights the role of lactate in the course of cancer by highlighting lactylation as a unique epigenetic alteration. The purpose of this review is to clarify the functions of lactate in the biology of tumors, with a particular focus on the translational potential of lactylation pathways in cancer diagnosis and treatment approaches. Methods This review summarizes research on the relationship between lactate and cancer, with an emphasis on histone lactylation, its effect on gene expression, and its influence on the tumor microenvironment. By establishing a connection between metabolic byproducts and epigenetic gene regulation, we investigated how lactylation affects immune regulation, inflammation, and cellular repair. Findings Histone lactylation, or the addition of lactate to lysine residues on histone proteins, increases transcriptional activity and facilitates the expression of genes involved in homeostasis and repair. These findings have important implications for cancer treatment. Lactylation, for example, activates genes such as Arg1, which is a hallmark of the M2 macrophage phenotype implicated in immunosuppression and tumor growth. The ability of lactate to dynamically alter gene expression is further supported by its function as a histone deacetylase(HDAC)inhibitor and its impact on histone acetylation. Its wide-ranging involvement in cellular metabolism and epigenetic control has been demonstrated by the discovery of particular lactylation sites on histones in various cell types, including cancer cells.
Collapse
Affiliation(s)
- Khulood Al-Malsi
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Sinan Xie
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yunshi Cai
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Nader Mohammed
- Emergency Department Research, Hamad Medical Corporation, Doha, Qatar
| | - Kunlin Xie
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Tian Lan
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Wu
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Zheng X, Zhang X, Li D, Wang Z, Zhang J, Li J, Li Y. Integrative bioinformatics and experimental analyses identify U2SURP as a novel lactylation-related prognostic signature in esophageal carcinoma. Immunol Res 2025; 73:45. [PMID: 39900790 DOI: 10.1007/s12026-024-09589-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/27/2024] [Indexed: 02/05/2025]
Abstract
The lactylation modification has been implicated in several cancer types; however, the role of lactylation modification-related genes in esophageal carcinoma (EC) remains underexplored. Utilizing a set of 16 lactylation modification-related genes, cohorts of patients with EC were stratified into two distinct clusters, characterized by significant disparities in both survival outcomes and the immune microenvironment. An extensive bioinformatics analysis unveiled 382 differentially expressed genes (DEGs) between these two clusters. A subsequent univariate Cox regression analysis identified 24 DEGs specifically associated with lactylation, forming the basis of a constructed lactylation-related score. The resultant lactylation-related score exhibited notable predictive efficacy for survival and other clinicopathological traits, which was validated through calibration curves, Kaplan-Meier survival curves and the Wilcoxon test. Moreover, the lactylation-related score displayed a close correlation with immune cell infiltration in EC. Notable differential expressions of immune checkpoints and regulators were observed between groups stratified by low and high lactylation scores, with the latter exhibiting a more favorable response to anti-PD-1/PD-L1 therapy. Furthermore, the expression profile of U2 snRNP associated SURP domain containing (U2SURP), a constituent of the lactylation-related score, underwent both ex vivo and in vitro validation. The expression of U2SURP was significantly associated with lactylation levels, histological grade and tumor stage. Notably, knockdown of U2SURP expression inhibited the lactylation levels, immune genes IL-1A and IL-1B, proliferation, migration and invasion of EC cells. In conclusion, the lactylation-related score developed in the present study showed promise in predicting the prognosis and immunotherapeutic responses among patients with EC. Moreover, the identification of U2SUPR as a novel oncogene in EC suggests its potential as a prospective therapeutic target for EC treatment.
Collapse
Affiliation(s)
- Xuan Zheng
- The Cancer Institute, Tangshan People's Hospital, Tangshan, 063001, China
- Hebei Key Laboratory of Molecular Oncology, Tangshan, 063001, China
| | - Xiaoru Zhang
- Nuclear Medicine Laboratory, Tangshan People's Hospital, Tangshan, 063001, China
| | - Dan Li
- The Cancer Institute, Tangshan People's Hospital, Tangshan, 063001, China
- Hebei Key Laboratory of Molecular Oncology, Tangshan, 063001, China
| | - Zhuo Wang
- The Cancer Institute, Tangshan People's Hospital, Tangshan, 063001, China
- Hebei Key Laboratory of Molecular Oncology, Tangshan, 063001, China
| | - Jun Zhang
- The Cancer Institute, Tangshan People's Hospital, Tangshan, 063001, China
- Hebei Key Laboratory of Molecular Oncology, Tangshan, 063001, China
| | - Jingwu Li
- The Cancer Institute, Tangshan People's Hospital, Tangshan, 063001, China.
- Hebei Key Laboratory of Molecular Oncology, Tangshan, 063001, China.
| | - Yufeng Li
- The Cancer Institute, Tangshan People's Hospital, Tangshan, 063001, China.
- Hebei Key Laboratory of Molecular Oncology, Tangshan, 063001, China.
| |
Collapse
|
21
|
Zhang X, Liu Y, Rekowski MJ, Wang N. Lactylation of tau in human Alzheimer's disease brains. Alzheimers Dement 2025; 21:e14481. [PMID: 39740133 PMCID: PMC11851134 DOI: 10.1002/alz.14481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 01/02/2025]
Abstract
INTRODUCTION Aggregation of hyperphosphorylated tau (tauopathy) is associated with cognitive impairment in patients with Alzheimer's disease (AD). In AD, a metabolic shift due to the Warburg effect results in increased lactate production. Lactate can induce a post-translational modification (PTM) on proteins that conjugates lactyl groups to lysine (K) residues, which is known as lactylation. METHODS We analyzed lactylation of tau in control and AD brain tissue and conducted cell-based assays. In addition, we used in vitro assays to determine whether p300 catalyzed tau lactylation. RESULTS Quantitative proteomics detected that tau lactylation was elevated in AD brains, with K residue at position 331 (K331) being a prominent site. Lactate induced tau lactylation, which increased tau phosphorylation and cleavage and reduced ubiquitination. Inhibition of lactate production lowered tau lactylation; p300 catalyzed tau lactylation. DISCUSSION Our findings suggest that tau lactylation links metabolic dysregulation with tauopathy and could serve as a novel diagnostic and therapeutic target. HIGHLIGHTS Elevated tau lactylation, particularly at K331, is evident in in human AD brain samples. Lactate induces tau lactylation, enhancing phosphorylation and cleavage while inhibiting ubiquitination. The acetyl-transferase p300 catalyzes tau lactylation, with K331 being the most prominent site.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Cell Biology and PhysiologyUniversity of Kansas Medical CenterKansas CityKansasUSA
- Institute of Reproductive and Developmental SciencesUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Yan Liu
- Department of Cell Biology and PhysiologyUniversity of Kansas Medical CenterKansas CityKansasUSA
- Institute of Reproductive and Developmental SciencesUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Michaella J. Rekowski
- Mass Spectrometry/Proteomics Core LaboratoryUniversity of Kansas Medical CenterKansas CityKansasUSA
- Department of Cancer BiologyUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Ning Wang
- Department of Cell Biology and PhysiologyUniversity of Kansas Medical CenterKansas CityKansasUSA
- Institute of Reproductive and Developmental SciencesUniversity of Kansas Medical CenterKansas CityKansasUSA
- Landon Center on AgingUniversity of Kansas Medical CenterKansas CityKansasUSA
- University of Kansas Alzheimer's Disease Research CenterFairwayKansasUSA
| |
Collapse
|
22
|
Hua M, Li T. Multiomic machine learning on lactylation for molecular typing and prognosis of lung adenocarcinoma. Sci Rep 2025; 15:3075. [PMID: 39856156 PMCID: PMC11760357 DOI: 10.1038/s41598-025-87419-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025] Open
Abstract
To integrate machine learning and multiomic data on lactylation-related genes (LRGs) for molecular typing and prognosis prediction in lung adenocarcinoma (LUAD). LRG mRNA and long non-coding RNA transcriptomes, epigenetic methylation data, and somatic mutation data from The Cancer Genome Atlas LUAD cohort were analyzed to identify lactylation cancer subtypes (CSs) using 10 multiomics ensemble clustering techniques. The findings were then validated using the GSE31210 and GSE13213 LUAD cohorts. A prognosis model for LUAD was developed using the identified hub LRGs to divide patients into high- and low-risk groups. The effectiveness of this model was validated. We identified two lactylation CSs, which were validated in the GSE31210 and GSE13213 LUAD cohorts. Nine hub LRGs, namely HNRNPC, PPIA, BZW1, GAPDH, H2AFZ, RAN, KIF2C, RACGAP1, and WBP11, were used to construct the prognosis model. In the subsequent prognosis validation, the high-risk group included more patients with stage T3 + 4, N1 + 2 + 3, M1, and III + IV cancer; higher recurrence/metastasis rates; and lower 1, 3, and 5 year overall survival rates. In the oncogenic pathway analysis, most of the oncogenic mutations were detected in the high-risk group. The tumor microenvironment analysis illustrated that immune activity was notably elevated in low-risk patients, indicating they might more strongly respond to immunotherapy than high-risk patients. Further, oncoPredict analysis revealed that low-risk patients have increased sensitivity to chemotherapeutics. Overall, we developed a model that combines multiomic analysis and machine learning for LUAD prognosis. Our findings represent a valuable reference for further understanding the important function of lactylation modification pathways in LUAD progression.
Collapse
Affiliation(s)
- Mengmeng Hua
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Tao Li
- Department of Respiratory Diseases, Qilu Hospital of Shandong University, No. 107, Culture West Road, Jinan, Shandong, China.
| |
Collapse
|
23
|
Elsafadi S, Hankele AK, Giesbertz P, Ulbrich SE. Roe deer uterine fluid metabolome reveals elevated glycolysis, fatty acid breakdown, and spermidine synthesis upon reactivation from diapause†. Biol Reprod 2025; 112:70-85. [PMID: 39673258 PMCID: PMC11736431 DOI: 10.1093/biolre/ioae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/25/2024] [Accepted: 11/28/2024] [Indexed: 12/16/2024] Open
Abstract
The blastocyst of the European roe deer (Capreolus capreolus) undergoes a period of decelerated growth and limited metabolism. During this period known as embryonic diapause, it floats freely in the uterus encircled by the histotroph. Prior to implantation, reactivation is marked by rapid embryonic growth and conceptus elongation. We hypothesized that the uterine fluid, which is known to undergo changes in its composition to support early embryonic development, contributes to controlling embryonic growth during diapause and elongation. We therefore characterized the pre-implantation uterine fluid metabolome during diapause and at elongation by mass spectrometry and particularly assessed nonpolar lipids, polar metabolites, acylcarnitines, and polyamines. Our results show that triglycerides and diglycerides levels decreased at elongation, likely serving as a source for membrane synthesis rather than for energy production. A functional analysis identified glycolysis as a key pathway during elongation, which may compensate for the energy requirements during this phase. We also observed an increase of sphingomyelin; prostaglandin precursors; and the amino acids asparagine, glutamine, and methionine upon elongation. The sphingolipid and glycerophospholipid metabolism pathways were implicated during elongation. Particularly, spermidine, and to some extent spermine but not putrescine-levels significantly increased in the uterine fluid during elongation, indicating their significance for reactivation and/or proliferation at embryo elongation. We conclude that the roe deer uterine fluid sustained dynamic compositional changes necessary to support the energy- and resource-intensive conceptus elongation. However, it remains to be determined whether these changes are the cause or a consequence of embryo elongation. Studying the metabolic changes and molecular interactions in the roe deer during diapause and elongation not only reveals insights into aspects of its reproductive strategy, but also deepens our knowledge of embryo metabolic demands and developmental velocities across species.
Collapse
Affiliation(s)
- Sara Elsafadi
- ETH Zürich, Animal Physiology, Institute of Agricultural Sciences, Universtitätstr. 2, CH-8092 Zurich, Switzerland
| | - Anna-Katharina Hankele
- ETH Zürich, Animal Physiology, Institute of Agricultural Sciences, Universtitätstr. 2, CH-8092 Zurich, Switzerland
| | - Pieter Giesbertz
- Else Kröner-Fresenius-Center of Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Susanne E Ulbrich
- ETH Zürich, Animal Physiology, Institute of Agricultural Sciences, Universtitätstr. 2, CH-8092 Zurich, Switzerland
| |
Collapse
|
24
|
Gurner KH, Gardner DK. Blastocyst-Derived Lactate as a Key Facilitator of Implantation. Biomolecules 2025; 15:100. [PMID: 39858494 PMCID: PMC11764449 DOI: 10.3390/biom15010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
The blastocyst develops a unique metabolism that facilitates the creation of a specialized microenvironment at the site of implantation characterized by high levels of lactate and reduced pH. While historically perceived as a metabolic waste product, lactate serves as a signaling molecule which facilitates the invasion of surrounding tissues by cancers and promotes blood vessel formation during wound healing. However, the role of lactate in reproduction, particularly at the implantation site, is still being considered. Here, we detail the biological significance of the microenvironment created by the blastocyst at implantation, exploring the origin and significance of blastocyst-derived lactate, its functional role at the implantation site and how understanding this mediator of the maternal-fetal dialogue may help to improve implantation in assisted reproduction.
Collapse
Affiliation(s)
| | - David K. Gardner
- Melbourne IVF, East Melbourne, VIC 3002, Australia;
- School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
25
|
Liu D, Liu S, Ji Y, Jin Z, He Z, Hou M, Li D, Ma X. Lactylation modulation identifies key biomarkers and therapeutic targets in KMT2A-rearranged AML. Sci Rep 2025; 15:1511. [PMID: 39789150 PMCID: PMC11718094 DOI: 10.1038/s41598-025-86136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/08/2025] [Indexed: 01/12/2025] Open
Abstract
Acute Myeloid Leukemia (AML) with KMT2A rearrangements (KMT2Ar), found on chromosome 11q23, is often called KMT2A-rearranged AML (KMT2Ar-AML). This variant is highly aggressive, characterized by rapid disease progression and poor outcomes. Growing knowledge of epigenetic changes, especially lactylation, has opened new avenues for investigation and management of this subtype. Lactylation plays a significant role in cancer, inflammation, and tissue regeneration, but the underlying mechanisms are not yet fully understood. This research examined the influence of lactylation on gene expression within KMT2Ar-AML, initially identifying twelve notable lactylation-dependent differentially expressed genes (DEGs). Using advanced machine learning techniques, six key lactylation-associated genes (PFN1, S100A6, CBR1, LDHB, LGALS1, PRDX1) were identified as essential for prognostic evaluation and linked to relevant disease pathways. The study also suggested PI3K inhibitors and Pevonedistat as possible therapeutic options to modulate immune cell infiltration. Our findings confirm the critical role of lactylation in KMT2Ar-AML and identify six key genes that may serve as biomarkers for diagnosis and treatment. In addition to highlighting the need for further validation in clinical settings, these findings contribute to our understanding of KMT2Ar-AML's molecular mechanisms.
Collapse
Grants
- No. wzyw2021012 Science and Technology Bureau of Wuzhong District, Suzhou, Jiangsu Province, China
- No. wzyw2021012 Science and Technology Bureau of Wuzhong District, Suzhou, Jiangsu Province, China
- No. wzyw2021012 Science and Technology Bureau of Wuzhong District, Suzhou, Jiangsu Province, China
- No. wzyw2021012 Science and Technology Bureau of Wuzhong District, Suzhou, Jiangsu Province, China
- No. 2020WSB03 Translational Research Grant of NCRCH
- No. 2020WSB03 Translational Research Grant of NCRCH
- No. 2020WSB03 Translational Research Grant of NCRCH
- No. 18KJA320005 Natural Science Foundation of the Jiangsu Higher Education Institution of China
- No. 18KJA320005 Natural Science Foundation of the Jiangsu Higher Education Institution of China
- No. 81900130 National Natural Science Foundation of China
Collapse
Affiliation(s)
- Dan Liu
- Soochow Hopes Hematonosis Hospital, Wudong Road 1339, Wuzhong District, Suzhou, 215100, China.
| | - Silu Liu
- Soochow Hopes Hematonosis Hospital, Wudong Road 1339, Wuzhong District, Suzhou, 215100, China
| | - Yujie Ji
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Ziyan Jin
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Zhewei He
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Mengjia Hou
- Soochow Hopes Hematonosis Hospital, Wudong Road 1339, Wuzhong District, Suzhou, 215100, China
| | - Dongyang Li
- Soochow Hopes Hematonosis Hospital, Wudong Road 1339, Wuzhong District, Suzhou, 215100, China
| | - Xiao Ma
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
- The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, China.
| |
Collapse
|
26
|
Gui C, Gao Y, Zhang R, Zhou G. Bioinformatics Analysis of Lactylation-related Biomarkers and Potential Pathogenesis Mechanisms in Age-related Macular Degeneration. Curr Genomics 2025; 26:191-209. [PMID: 40433417 PMCID: PMC12105335 DOI: 10.2174/0113892029291661241114055924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/30/2024] [Accepted: 10/16/2024] [Indexed: 05/29/2025] Open
Abstract
Background Lactylation is increasingly recognized to play a crucial role in human health and diseases. However, its involvement in age-related macular degeneration (AMD) remains largely unclear. Objectives The aim of this study was to identify and characterize the pivotal lactylation-related genes and explore their underlying mechanism in AMD. Methods Gene expression profiles of AMD patients and control individuals were obtained and integrated from the GSE29801 and GSE50195 datasets. Differentially expressed genes (DEGs) were screened and intersected with lactylation-related genes for lactylation-related DEGs. Machine learning algorithms were used to identify hub genes associated with AMD. Subsequently, the selected hub genes were subject to correlation analysis, and reverse transcription quantitative real-time PCR (RT-qPCR) was used to detect the expression of hub genes in AMD patients and healthy control individuals. Results A total of 68 lactylation-related DEGs in AMD were identified, and seven genes, including HMGN2, TOP2B, HNRNPH1, SF3A1, SRRM2, HIST1H1C, and HIST1H2BD were selected as key genes. RT-qPCR analysis validated that all 7 key genes were down-regulated in AMD patients. Conclusion We identified seven lactylation-related key genes potentially associated with the progression of AMD, which might deepen our understanding of the underlying mechanisms involved in AMD and provide clues for the targeted therapy.
Collapse
Affiliation(s)
- Chenwei Gui
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yan Gao
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Rong Zhang
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Guohong Zhou
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
27
|
Wang L, Dong Z, Zhang Y, Peng L. Emerging Roles of High-mobility Group Box-1 in Liver Disease. J Clin Transl Hepatol 2024; 12:1043-1056. [PMID: 39649031 PMCID: PMC11622203 DOI: 10.14218/jcth.2024.00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 12/10/2024] Open
Abstract
High-mobility group box-1 (HMGB1) is an architectural chromosomal protein with various roles depending on its cellular localization. Extracellular HMGB1 functions as a prototypical damage-associated molecular pattern that triggers inflammation and adaptive immune responses, mediated by specific cell surface receptors, including receptors for advanced glycation end products and toll-like receptors. Post-translational modifications of HMGB1 significantly impact various cellular processes that contribute to the pathogenesis of liver diseases. Recent studies have highlighted the close relationship between HMGB1 and the pathogenesis of acute liver injuries, including acetaminophen-induced liver injury, hepatic ischemia-reperfusion injury, and acute liver failure. In chronic liver diseases, HMGB1 plays a role in nonalcoholic fatty liver disease, alcohol-associated liver disease, liver fibrosis, and hepatocellular carcinoma. Targeting HMGB1 as a therapeutic approach, either by inhibiting its release or blocking its extracellular function, is a promising strategy for treating liver diseases. This review aimed to summarize the available evidence on HMGB1's role in liver disease, focusing on its multifaceted signaling pathways, impact on disease progression, and the translation of these findings into clinical interventions.
Collapse
Affiliation(s)
- Lu Wang
- Department of Diagnostics, Second School of Clinical Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Zhiwei Dong
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yeqiong Zhang
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liang Peng
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
28
|
He Y, Xiang L, Yuan J, Yan H. Lactylation Modification as a Promoter of Bladder Cancer: Insights from Multi-Omics Analysis. Curr Issues Mol Biol 2024; 46:12866-12885. [PMID: 39590360 PMCID: PMC11593262 DOI: 10.3390/cimb46110766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/06/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Bladder cancer (BLAC) is a malignant tumor with high morbidity and mortality. The establishment of a prognostic model for BLAC is of great significance for clinical prognosis prediction and treatment guidance. Lactylation modification is a newly discovered post-transcriptional modification of proteins, which is closely related to the occurrence and development of tumors. Multiple omics data of BLAC were obtained from the GEO database and TCGA database. The Lasso algorithm was used to establish a prognostic model related to lactylation modification, and its predictive ability was tested with a validation cohort. Functional enrichment analysis, tumor microenvironment analysis, and treatment response evaluation were performed on the high- and low-risk groups. Single-cell and spatial transcriptome data were used to analyze the distribution characteristics of model genes and their changes during epithelial carcinogenesis. A prognostic model consisting of 12 genes was constructed. The survival rate of the high-risk group was significantly lower than that of the low-risk group. The multiple ROC curve showed that the prediction efficiency of the model was higher than that of the traditional clinical tumor grading. Functional enrichment analysis showed that glycolysis and hypoxia pathways were significantly upregulated in the high-risk group. The high-risk group was more sensitive to most first-line chemotherapy drugs, while the low-risk group had a better response to immunotherapy. Single-cell sequencing analysis revealed the dynamic changes of model genes during the transition of epithelial cells to squamous-differentiated cells. Spatial transcriptome analysis showed the spatial distribution characteristics of the model genes. The lactylation-related models have a satisfactory predictive ability and the potential to guide the clinical treatment of BLAC. This model has significant biological implications at the single-cell level as well as at the spatial level.
Collapse
Affiliation(s)
- Yipeng He
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.H.); (L.X.); (J.Y.)
- The First Clinical College, Wuhan University, Wuhan 430060, China
| | - Lingyan Xiang
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.H.); (L.X.); (J.Y.)
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.H.); (L.X.); (J.Y.)
| | - Honglin Yan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.H.); (L.X.); (J.Y.)
| |
Collapse
|
29
|
Graf LG, Moreno-Yruela C, Qin C, Schulze S, Palm GJ, Schmöker O, Wang N, Hocking DM, Jebeli L, Girbardt B, Berndt L, Dörre B, Weis DM, Janetzky M, Albrecht D, Zühlke D, Sievers S, Strugnell RA, Olsen CA, Hofmann K, Lammers M. Distribution and diversity of classical deacylases in bacteria. Nat Commun 2024; 15:9496. [PMID: 39489725 PMCID: PMC11532494 DOI: 10.1038/s41467-024-53903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024] Open
Abstract
Classical Zn2+-dependent deac(et)ylases play fundamental regulatory roles in life and are well characterized in eukaryotes regarding their structures, substrates and physiological roles. In bacteria, however, classical deacylases are less well understood. We construct a Generalized Profile (GP) and identify thousands of uncharacterized classical deacylases in bacteria, which are grouped into five clusters. Systematic structural and functional characterization of representative enzymes from each cluster reveal high functional diversity, including polyamine deacylases and protein deacylases with various acyl-chain type preferences. These data are supported by multiple crystal structures of enzymes from different clusters. Through this extensive analysis, we define the structural requirements of substrate selectivity, and discovered bacterial de-D-/L-lactylases and long-chain deacylases. Importantly, bacterial deacylases are inhibited by archetypal HDAC inhibitors, as supported by co-crystal structures with the inhibitors SAHA and TSA, and setting the ground for drug repurposing strategies to fight bacterial infections. Thus, we provide a systematic structure-function analysis of classical deacylases in bacteria and reveal the basis of substrate specificity, acyl-chain preference and inhibition.
Collapse
Affiliation(s)
- Leonie G Graf
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Carlos Moreno-Yruela
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Chemical Sciences and Engineering (ISIC), School of Basic Sciences (SB), EPFL, Lausanne, Switzerland
| | - Chuan Qin
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Sabrina Schulze
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Gottfried J Palm
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Ole Schmöker
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Nancy Wang
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Dianna M Hocking
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Leila Jebeli
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Britta Girbardt
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Leona Berndt
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Babett Dörre
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Daniel M Weis
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Markus Janetzky
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Dirk Albrecht
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Daniela Zühlke
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Susanne Sievers
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Richard A Strugnell
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Christian A Olsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Michael Lammers
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
30
|
Chen Y, Chang L, Hu L, Yan C, Dai L, Shelat VG, Yarmohammadi H, Sun J. Identification of a lactylation-related gene signature to characterize subtypes of hepatocellular carcinoma using bulk sequencing data. J Gastrointest Oncol 2024; 15:1636-1646. [PMID: 39279958 PMCID: PMC11399878 DOI: 10.21037/jgo-24-405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/02/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND Prior studies indicate that lactylation regulates various biological mechanisms within cancer. However, lactylation-related genes (LRGs) have been found to have limited value in predicting the prognosis of hepatocellular carcinoma (HCC). The aim of this study was to review HCC LRGs using data from The Cancer Genome Atlas (TCGA). METHODS The RNA sequencing data and related clinical information of patients with HCC patients were collected from the TCGA database. A total of 20 LRGs were selected and bioinformatics analysis was performed. A consistency cluster analysis was conducted to classify the HCC tumors. Using a lactylation-related model of HCC, prognosis, immune cell infiltration, and immunotherapy was evaluated. RESULTS A total of 4,378 genes were associated with prognosis. Twenty LRGs (i.e., ACIN1, RAN, PPP1CB, ALDOB, SUMO2, THOC2, HDAC1, SF3A1, SF3B1, HNRNPM, PPP1CC, SRRM1, PRPF6, HDAC2, H2AFV, ALYREF, H2AFZ, H2AFX, HNRNPK, and MAGOH) were identified. The 20 LRGs were used to divide TCGA-HCC patients into low-risk (G1) and high-risk (G2) categories. The upregulated genes in the G1 group primarily participate in the p53 signaling pathway, focal adhesion, extracellular matrix (ECM)-receptor interaction, and cell cycle, while the downregulated genes primarily participate in the glycolysis/gluconeogenesis, carbon metabolism, and biosynthesis of amino acids. The box plots showed a significant difference in the immune cell populations, with a higher abundance of B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and myeloid dendritic cells in the G1 than the G2 HCC samples. Further, the box plots showed higher expression levels of seven of the eight immune checkpoint inhibitor (ICI)-related genes in the G1 HCC samples than the G2 samples. There was a significant disparity in the cancer stem cell (CSC) scores between the G1 and G2 TCGA-HCC patients. Additionally, the G1 TCGA-HCC patients had higher tumor immune dysfunction and exclusion (TIDE) scores than the G2 TCGA-HCC patients. The prognosis of the HCC patients was also predicted using a six-LRG model, comprising HDAC2, SRRM1, SF3B1, HDAC1, THOC2, and PPP1CB. CONCLUSIONS Strong correlation between LRGs and tumor classification as well as immunity in patients with HCC was identified. LRG signatures serve as reliable prognostic markers for HCC.
Collapse
Affiliation(s)
- Yan Chen
- Department of Laboratory, Yangzhou Hongquan Hospital, Yangzhou, China
| | - Li Chang
- Department of Laboratory, Yangzhou Hongquan Hospital, Yangzhou, China
| | - Ling Hu
- Department of Laboratory, Yangzhou Hongquan Hospital, Yangzhou, China
| | - Cuiping Yan
- Department of Laboratory, Yangzhou Hongquan Hospital, Yangzhou, China
| | - Liu Dai
- Department of Laboratory, Yangzhou Second People’s Hospital, Yangzhou, China
| | - Vishal G. Shelat
- Department of General Surgery, Tan Tock Seng Hospital, Singapore, Singapore
| | - Hooman Yarmohammadi
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jun Sun
- Department of Oncology, Yangzhou Hongquan Hospital, Yangzhou, China
| |
Collapse
|
31
|
Li LN, Li WW, Xiao LS, Lai WN. Lactylation signature identifies liver fibrosis phenotypes and traces fibrotic progression to hepatocellular carcinoma. Front Immunol 2024; 15:1433393. [PMID: 39257588 PMCID: PMC11383765 DOI: 10.3389/fimmu.2024.1433393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/31/2024] [Indexed: 09/12/2024] Open
Abstract
Introduction Precise staging and classification of liver fibrosis are crucial for the hierarchy management of patients. The roles of lactylation are newly found in the progression of liver fibrosis. This study is committed to investigating the signature genes with histone lactylation and their connection with immune infiltration among liver fibrosis with different phenotypes. Methods Firstly, a total of 629 upregulated and 261 downregulated genes were screened out of 3 datasets of patients with liver fibrosis from the GEO database and functional analysis confirmed that these differentially expressed genes (DEGs) participated profoundly in fibrosis-related processes. After intersecting with previously reported lactylation-related genes, 12 DEGs related to histone lactylation were found and narrowed down to 6 core genes using R algorithms, namely S100A6, HMGN4, IFI16, LDHB, S100A4, and VIM. The core DEGs were incorporated into the Least absolute shrinkage and selection operator (LASSO) model to test their power to distinguish the fibrotic stage. Results Advanced fibrosis presented a pattern of immune infiltration different from mild fibrosis, and the core DEGs were significantly correlated with immunocytes. Gene set and enrichment analysis (GSEA) results revealed that core DEGs were closely linked to immune response and chemokine signaling. Samples were classified into 3 clusters using the LASSO model, followed by gene set variation analysis (GSVA), which indicated that liver fibrosis can be divided into status featuring lipid metabolism reprogramming, immunity immersing, and intermediate of both. The regulatory networks of the core genes shared several transcription factors, and certain core DEGs also presented dysregulation in other liver fibrosis and idiopathic pulmonary fibrosis (IPF) cohorts, indicating that lactylation may exert comparable functions in various fibrotic pathology. Lastly, core DEGs also exhibited upregulation in HCC. Discussion Lactylation extensively participates in the pathological progression and immune infiltration of fibrosis. Lactylation and related immune infiltration could be a worthy focus for the investigation of HCC developed from liver fibrosis.
Collapse
Affiliation(s)
- Lin-Na Li
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wen-Wen Li
- Guangzhou Wondfo Health Science and Technology Co., Ltd, Guangzhou, China
| | - Lu-Shan Xiao
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei-Nan Lai
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
32
|
Hu X, Huang J, Li Z, Li J, Ouyang F, Chen Z, Li Y, Zhao Y, Wang J, Yu S, Jing J, Cheng L. Lactate promotes microglial scar formation and facilitates locomotor function recovery by enhancing histone H4 lysine 12 lactylation after spinal cord injury. J Neuroinflammation 2024; 21:193. [PMID: 39095832 PMCID: PMC11297795 DOI: 10.1186/s12974-024-03186-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
Lactate-derived histone lactylation is involved in multiple pathological processes through transcriptional regulation. The role of lactate-derived histone lactylation in the repair of spinal cord injury (SCI) remains unclear. Here we report that overall lactate levels and lactylation are upregulated in the spinal cord after SCI. Notably, H4K12la was significantly elevated in the microglia of the injured spinal cord, whereas exogenous lactate treatment further elevated H4K12la in microglia after SCI. Functionally, lactate treatment promoted microglial proliferation, scar formation, axon regeneration, and locomotor function recovery after SCI. Mechanically, lactate-mediated H4K12la elevation promoted PD-1 transcription in microglia, thereby facilitating SCI repair. Furthermore, a series of rescue experiments confirmed that a PD-1 inhibitor or microglia-specific AAV-sh-PD-1 significantly reversed the therapeutic effects of lactate following SCI. This study illustrates the function and mechanism of lactate/H4K12la/PD-1 signaling in microglia-mediated tissue repair and provides a novel target for SCI therapy.
Collapse
Affiliation(s)
- Xuyang Hu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Jinxin Huang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Ziyu Li
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Jianjian Li
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Fangru Ouyang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Zeqiang Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Yiteng Li
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Yuanzhe Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Jingwen Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Shuisheng Yu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
| | - Juehua Jing
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
| | - Li Cheng
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
| |
Collapse
|
33
|
Zhang Y, Zhang X. Virus-Induced Histone Lactylation Promotes Virus Infection in Crustacean. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401017. [PMID: 38874057 PMCID: PMC11321649 DOI: 10.1002/advs.202401017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/04/2024] [Indexed: 06/15/2024]
Abstract
As "non-cellular organisms", viruses need to infect living cells to survive themselves. The virus infection must alter host's metabolisms. However, the influence of the metabolites from the altered metabolisms of virus-infected host cells on virus-host interactions remains largely unclear. To address this issue, shrimp, a representative species of crustaceans, is challenged with white spot syndrome virus (WSSV) in this study. The in vivo results presented that the WSSV infection enhanced shrimp glycolysis, leading to the accumulation of lactate. The lactate accumulation in turn promoted the site-specific histone lactylation (H3K18la and H4K12la) in a p300/HDAC1/HDAC3-dependent manner. H3K18la and H4K12la are enriched in the promoters of 75 target genes, of which the H3K18la and H4K12la modification upregulated the expression of ribosomal protein S6 kinases 2 (S6K2) in the virus-infected hosts to promote the virus infection. Further data revealed that the virus-encoded miR-N20 targeted hypoxia inducible factor-1α (HIF-1α) to inhibit the host glycolysis, leading to the suppression of H3K18la and H4K12la. Therefore, the findings contributed novel insights into the effects and the underlying mechanism of the virus-induced histone lactylation on the virus-host interactions, providing new targets for the control of virus infection.
Collapse
Affiliation(s)
- Yu Zhang
- College of Life SciencesZhejiang UniversityHangzhou310058P. R. China
- Department of Clinical PharmacologyKey Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang ProvinceAffiliated Hangzhou First People's HospitalCancer CenterWestlake University School of MedicineHangzhou310006P. R. China
| | - Xiaobo Zhang
- College of Life SciencesZhejiang UniversityHangzhou310058P. R. China
- Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao)Qingdao266003P. R. China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Zhuhai519000P. R. China
| |
Collapse
|
34
|
Liu X, Zhou Y, Wang H. The role of lactate-induced protein lactylation in gliomas: implications for preclinical research and the development of new treatments. Front Pharmacol 2024; 15:1383274. [PMID: 38983918 PMCID: PMC11231103 DOI: 10.3389/fphar.2024.1383274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024] Open
Abstract
The most prevalent primary brain tumors in adults are gliomas. In addition to insufficient therapeutic alternatives, gliomas are fatal mostly due to the rapid proliferation and continuous infiltration of tumor cells into the surrounding healthy brain tissue. According to a growing body of research, aerobic glycolysis, or the Warburg effect, promotes glioma development because gliomas are heterogeneous cancers that undergo metabolic reprogramming. Therefore, addressing the Warburg effect might be a useful therapeutic strategy for treating cancer. Lactate plays a critical role in reprogramming energy metabolism, allowing cells to rapidly access large amounts of energy. Lactate, a byproduct of glycolysis, is therefore present in rapidly proliferating cells and tumors. In addition to the protumorigenesis pathways of lactate synthesis, circulation, and consumption, lactate-induced lactylation has been identified in recent investigations. Lactate plays crucial roles in modulating immune processes, maintaining homeostasis, and promoting metabolic reprogramming in tumors, which are processes regulated by the lactate-induced lactylation of the lysine residues of histones. In this paper, we discuss the discovery and effects of lactylation, review the published studies on how protein lactylation influences cancer growth and further explore novel treatment approaches to achieve improved antitumor effects by targeting lactylation. These findings could lead to a new approach and guidance for improving the prognosis of patients with gliomas.
Collapse
Affiliation(s)
- Xiaoying Liu
- Department of Pharmacy, Xindu District People’s Hospital of Chengdu, Chengdu, China
| | - Yue Zhou
- Department of Pharmacy, Xindu District People’s Hospital of Chengdu, Chengdu, China
| | - Haichuan Wang
- Department of Paediatrics, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
35
|
Wei Y, Pan B, Qin J, Cao B, Lv T, Ye J, Ning A, Du K, Chen X, Zou S, Zang S, Yu G, Song T, Liang Q, Zhou G. The walnut-derived peptide TW-7 improves mouse parthenogenetic embryo development of vitrified MII oocytes potentially by promoting histone lactylation. J Anim Sci Biotechnol 2024; 15:86. [PMID: 38858724 PMCID: PMC11165821 DOI: 10.1186/s40104-024-01045-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/05/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Previous studies have shown that the vitrification of metaphase II (MII) oocytes significantly represses their developmental potential. Abnormally increased oxidative stress is the probable factor; however, the underlying mechanism remains unclear. The walnut-derived peptide TW-7 was initially isolated and purified from walnut protein hydrolysate. Accumulating evidences implied that TW-7 was a powerful antioxidant, while its prospective application in oocyte cryopreservation has not been reported. RESULT Here, we found that parthenogenetic activation (PA) zygotes derived from vitrified MII oocytes showed elevated ROS level and delayed progression of pronucleus formation. Addition of 25 μmol/L TW-7 in warming, recovery, PA, and embryo culture medium could alleviate oxidative stress in PA zygotes from vitrified mouse MII oocytes, furtherly increase proteins related to histone lactylation such as LDHA, LDHB, and EP300 and finally improve histone lactylation in PA zygotes. The elevated histone lactylation facilitated the expression of minor zygotic genome activation (ZGA) genes and preimplantation embryo development. CONCLUSIONS Our findings revealed the mechanism of oxidative stress inducing repressed development of PA embryos from vitrified mouse MII oocytes and found a potent and easy-obtained short peptide that could significantly rescue the decreased developmental potential of vitrified oocytes, which would potentially contribute to reproductive medicine, animal protection, and breeding.
Collapse
Affiliation(s)
- Yaozong Wei
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bo Pan
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jianpeng Qin
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Beijia Cao
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tianyi Lv
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiangfeng Ye
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ao Ning
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kunlin Du
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiangyi Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuqi Zou
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shengqin Zang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guozhi Yu
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| | - Tianzeng Song
- Institute of Animal Science, Xizang Academy of Agricultural and Animal Husbandry Science, Lhasa, 850009, Xizang, China
| | - Qiuxia Liang
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China.
| | - Guangbin Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
36
|
Ma W, Jia K, Cheng H, Xu H, Li Z, Zhang H, Xie H, Sun H, Yi L, Chen Z, Duan S, Sano M, Fukuda K, Lu L, Gao F, Zhang R, Yan X. Orphan Nuclear Receptor NR4A3 Promotes Vascular Calcification via Histone Lactylation. Circ Res 2024; 134:1427-1447. [PMID: 38629274 DOI: 10.1161/circresaha.123.323699] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/02/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Medial arterial calcification is a chronic systemic vascular disorder distinct from atherosclerosis and is commonly observed in patients with chronic kidney disease, diabetes, and aging individuals. We previously showed that NR4A3 (nuclear receptor subfamily 4 group A member 3), an orphan nuclear receptor, is a key regulator in apo (apolipoprotein) A-IV-induced atherosclerosis progression; however, its role in vascular calcification is poorly understood. METHODS We generated NR4A3-/- mice and 2 different types of medial arterial calcification models to investigate the biological roles of NR4A3 in vascular calcification. RNA-seq was performed to determine the transcriptional profile of NR4A3-/- vascular smooth muscle cells under β-glycerophosphate treatment. We integrated Cleavage Under Targets and Tagmentation analysis and RNA-seq data to further investigate the gene regulatory mechanisms of NR4A3 in arterial calcification and target genes regulated by histone lactylation. RESULTS NR4A3 expression was upregulated in calcified aortic tissues from chronic kidney disease mice, 1,25(OH)2VitD3 overload-induced mice, and human calcified aorta. NR4A3 deficiency preserved the vascular smooth muscle cell contractile phenotype, inhibited osteoblast differentiation-related gene expression, and reduced calcium deposition in the vasculature. Further, NR4A3 deficiency lowered the glycolytic rate and lactate production during the calcification process and decreased histone lactylation. Mechanistic studies further showed that NR4A3 enhanced glycolysis activity by directly binding to the promoter regions of the 2 glycolysis genes ALDOA and PFKL and driving their transcriptional initiation. Furthermore, histone lactylation promoted medial calcification both in vivo and in vitro. NR4A3 deficiency inhibited the transcription activation and expression of Phospho1 (phosphatase orphan 1). Consistently, pharmacological inhibition of Phospho1 attenuated calcium deposition in NR4A3-overexpressed vascular smooth muscle cells, whereas overexpression of Phospho1 reversed the anticalcific effect of NR4A3 deficiency in vascular smooth muscle cells. CONCLUSIONS Taken together, our findings reveal that NR4A3-mediated histone lactylation is a novel metabolome-epigenome signaling cascade mechanism that participates in the pathogenesis of medial arterial calcification.
Collapse
MESH Headings
- Animals
- Vascular Calcification/metabolism
- Vascular Calcification/genetics
- Vascular Calcification/pathology
- Mice
- Mice, Knockout
- Humans
- Histones/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Mice, Inbred C57BL
- Nuclear Receptor Subfamily 4, Group A, Member 3/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 3/genetics
- Male
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Cells, Cultured
- DNA-Binding Proteins
- Nerve Tissue Proteins
- Receptors, Steroid
- Receptors, Thyroid Hormone
Collapse
Affiliation(s)
- Wenqi Ma
- Department of Cardiovascular Medicine, Ruijin Hospital (W.M., K.J., H.C., Z.L., H.Z., H.X., L.Z., Z.W., Y.C., H.S., L.Y., Z.C., L.L., R.Z., X.Y.), Shanghai Jiao Tong University School of Medicine, China
- Institute of Cardiovascular Diseases (W.M., K.J., H.C., Z.L., H.Z., H.X., L.Z., Z.W., Y.C., H.S., L.Y., Z.C., L.L., R.Z., X.Y.), Shanghai Jiao Tong University School of Medicine, China
| | - Kangni Jia
- Department of Cardiovascular Medicine, Ruijin Hospital (W.M., K.J., H.C., Z.L., H.Z., H.X., L.Z., Z.W., Y.C., H.S., L.Y., Z.C., L.L., R.Z., X.Y.), Shanghai Jiao Tong University School of Medicine, China
- Institute of Cardiovascular Diseases (W.M., K.J., H.C., Z.L., H.Z., H.X., L.Z., Z.W., Y.C., H.S., L.Y., Z.C., L.L., R.Z., X.Y.), Shanghai Jiao Tong University School of Medicine, China
| | - Haomai Cheng
- Department of Cardiovascular Medicine, Ruijin Hospital (W.M., K.J., H.C., Z.L., H.Z., H.X., L.Z., Z.W., Y.C., H.S., L.Y., Z.C., L.L., R.Z., X.Y.), Shanghai Jiao Tong University School of Medicine, China
- Institute of Cardiovascular Diseases (W.M., K.J., H.C., Z.L., H.Z., H.X., L.Z., Z.W., Y.C., H.S., L.Y., Z.C., L.L., R.Z., X.Y.), Shanghai Jiao Tong University School of Medicine, China
| | - Hong Xu
- Department of Cardiovascular Medicine, Ruijin Hospital (W.M., K.J., H.C., Z.L., H.Z., H.X., L.Z., Z.W., Y.C., H.S., L.Y., Z.C., L.L., R.Z., X.Y.), Shanghai Jiao Tong University School of Medicine, China
| | - Zhigang Li
- Department of Cardiovascular Medicine, Ruijin Hospital (W.M., K.J., H.C., Z.L., H.Z., H.X., L.Z., Z.W., Y.C., H.S., L.Y., Z.C., L.L., R.Z., X.Y.), Shanghai Jiao Tong University School of Medicine, China
- Institute of Cardiovascular Diseases (W.M., K.J., H.C., Z.L., H.Z., H.X., L.Z., Z.W., Y.C., H.S., L.Y., Z.C., L.L., R.Z., X.Y.), Shanghai Jiao Tong University School of Medicine, China
| | - Hang Zhang
- Department of Cardiovascular Medicine, Ruijin Hospital (W.M., K.J., H.C., Z.L., H.Z., H.X., L.Z., Z.W., Y.C., H.S., L.Y., Z.C., L.L., R.Z., X.Y.), Shanghai Jiao Tong University School of Medicine, China
- Institute of Cardiovascular Diseases (W.M., K.J., H.C., Z.L., H.Z., H.X., L.Z., Z.W., Y.C., H.S., L.Y., Z.C., L.L., R.Z., X.Y.), Shanghai Jiao Tong University School of Medicine, China
| | - Hongyang Xie
- Institute of Cardiovascular Diseases (W.M., K.J., H.C., Z.L., H.Z., H.X., L.Z., Z.W., Y.C., H.S., L.Y., Z.C., L.L., R.Z., X.Y.), Shanghai Jiao Tong University School of Medicine, China
| | - Hang Sun
- Department of Cardiovascular Medicine, Ruijin Hospital (W.M., K.J., H.C., Z.L., H.Z., H.X., L.Z., Z.W., Y.C., H.S., L.Y., Z.C., L.L., R.Z., X.Y.), Shanghai Jiao Tong University School of Medicine, China
| | - Lei Yi
- Department of Cardiovascular Medicine, Ruijin Hospital (W.M., K.J., H.C., Z.L., H.Z., H.X., L.Z., Z.W., Y.C., H.S., L.Y., Z.C., L.L., R.Z., X.Y.), Shanghai Jiao Tong University School of Medicine, China
| | - Zhiyong Chen
- Department of Cardiovascular Medicine, Ruijin Hospital (W.M., K.J., H.C., Z.L., H.Z., H.X., L.Z., Z.W., Y.C., H.S., L.Y., Z.C., L.L., R.Z., X.Y.), Shanghai Jiao Tong University School of Medicine, China
| | - Shengzhong Duan
- Department of Cardiovascular Medicine, Ruijin Hospital (W.M., K.J., H.C., Z.L., H.Z., H.X., L.Z., Z.W., Y.C., H.S., L.Y., Z.C., L.L., R.Z., X.Y.), Shanghai Jiao Tong University School of Medicine, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology (S.D.), Shanghai Jiao Tong University School of Medicine, China
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital (S.D.), Shanghai Jiao Tong University School of Medicine, China
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (M.S., K.F.)
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (M.S., K.F.)
| | - Lin Lu
- Department of Cardiovascular Medicine, Ruijin Hospital (W.M., K.J., H.C., Z.L., H.Z., H.X., L.Z., Z.W., Y.C., H.S., L.Y., Z.C., L.L., R.Z., X.Y.), Shanghai Jiao Tong University School of Medicine, China
| | - Fei Gao
- Beijing Anzhen Hospital, Capital Medical University, China (F.G.)
| | - Ruiyan Zhang
- Department of Cardiovascular Medicine, Ruijin Hospital (W.M., K.J., H.C., Z.L., H.Z., H.X., L.Z., Z.W., Y.C., H.S., L.Y., Z.C., L.L., R.Z., X.Y.), Shanghai Jiao Tong University School of Medicine, China
| | - Xiaoxiang Yan
- Department of Cardiovascular Medicine, Ruijin Hospital (W.M., K.J., H.C., Z.L., H.Z., H.X., L.Z., Z.W., Y.C., H.S., L.Y., Z.C., L.L., R.Z., X.Y.), Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
37
|
Yang D, Zheng H, Lu W, Tian X, Sun Y, Peng H. Histone Lactylation Is Involved in Mouse Oocyte Maturation and Embryo Development. Int J Mol Sci 2024; 25:4821. [PMID: 38732042 PMCID: PMC11084948 DOI: 10.3390/ijms25094821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Numerous post-translational modifications are involved in oocyte maturation and embryo development. Recently, lactylation has emerged as a novel epigenetic modification implicated in the regulation of diverse cellular processes. However, it remains unclear whether lactylation occurs during oocyte maturation and embryo development processes. Herein, the lysine lactylation (Kla) modifications were determined during mouse oocyte maturation and early embryo development by immunofluorescence staining. Exogenous lactate was supplemented to explore the consequences of modulating histone lactylation levels on oocyte maturation and embryo development processes by transcriptomics. Results demonstrated that lactylated proteins are widely present in mice with tissue- and cell-specific distribution. During mouse oocyte maturation, immunofluorescence for H3K9la, H3K14la, H4K8la, and H4K12la was most intense at the germinal vesicle (GV) stage and subsequently weakened or disappeared. Further, supplementing the culture medium with 10 mM sodium lactate elevated both the oocyte maturation rate and the histone Kla levels in GV oocytes, and there were substantial increases in Kla levels in metaphase II (MII) oocytes. It altered the transcription of molecules involved in oxidative phosphorylation. Moreover, histone lactylation levels changed dynamically during mouse early embryogenesis. Sodium lactate at 10 mM enhanced early embryo development and significantly increased lactylation, while impacting glycolytic gene transcription. This study reveals the roles of lactylation during oocyte maturation and embryo development, providing new insights to improving oocyte maturation and embryo quality.
Collapse
Affiliation(s)
- Diqi Yang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (D.Y.)
| | - Haoyi Zheng
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenjie Lu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (D.Y.)
| | - Xueqi Tian
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (D.Y.)
| | - Yanyu Sun
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (D.Y.)
| | - Hui Peng
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (D.Y.)
| |
Collapse
|
38
|
Min K, Yenilmez B, Kelly M, Echeverria D, Elleby M, Lifshitz LM, Raymond N, Tsagkaraki E, Harney SM, DiMarzio C, Wang H, McHugh N, Bramato B, Morrison B, Rothstein JD, Khvorova A, Czech MP. Lactate transporter MCT1 in hepatic stellate cells promotes fibrotic collagen expression in nonalcoholic steatohepatitis. eLife 2024; 12:RP89136. [PMID: 38564479 PMCID: PMC10987092 DOI: 10.7554/elife.89136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Circulating lactate is a fuel source for liver metabolism but may exacerbate metabolic diseases such as nonalcoholic steatohepatitis (NASH). Indeed, haploinsufficiency of lactate transporter monocarboxylate transporter 1 (MCT1) in mice reportedly promotes resistance to hepatic steatosis and inflammation. Here, we used adeno-associated virus (AAV) vectors to deliver thyroxin binding globulin (TBG)-Cre or lecithin-retinol acyltransferase (Lrat)-Cre to MCT1fl/fl mice on a choline-deficient, high-fat NASH diet to deplete hepatocyte or stellate cell MCT1, respectively. Stellate cell MCT1KO (AAV-Lrat-Cre) attenuated liver type 1 collagen protein expression and caused a downward trend in trichrome staining. MCT1 depletion in cultured human LX2 stellate cells also diminished collagen 1 protein expression. Tetra-ethylenglycol-cholesterol (Chol)-conjugated siRNAs, which enter all hepatic cell types, and hepatocyte-selective tri-N-acetyl galactosamine (GN)-conjugated siRNAs were then used to evaluate MCT1 function in a genetically obese NASH mouse model. MCT1 silencing by Chol-siRNA decreased liver collagen 1 levels, while hepatocyte-selective MCT1 depletion by AAV-TBG-Cre or by GN-siRNA unexpectedly increased collagen 1 and total fibrosis without effect on triglyceride accumulation. These findings demonstrate that stellate cell lactate transporter MCT1 significantly contributes to liver fibrosis through increased collagen 1 protein expression in vitro and in vivo, while hepatocyte MCT1 appears not to be an attractive therapeutic target for NASH.
Collapse
Affiliation(s)
- Kyounghee Min
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Batuhan Yenilmez
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Mark Kelly
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Michael Elleby
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Lawrence M Lifshitz
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Naideline Raymond
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Emmanouela Tsagkaraki
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Shauna M Harney
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Chloe DiMarzio
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Hui Wang
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Nicholas McHugh
- RNA Therapeutics Institute, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Brianna Bramato
- RNA Therapeutics Institute, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Brett Morrison
- Department of Neurology, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Jeffery D Rothstein
- Department of Neurology, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| |
Collapse
|
39
|
Manoj KM. Murburn posttranslational modifications of proteins: Cellular redox processes and murzyme-mediated metabolo-proteomics. J Cell Physiol 2024; 239:e30954. [PMID: 36716112 DOI: 10.1002/jcp.30954] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/31/2023]
Abstract
Murburn concept constitutes the thesis that diffusible reactive species or DRS are obligatorily involved in routine metabolic and physiological activities. Murzymes are defined as biomolecules/proteins that generate/modulate/sustain/utilize DRS. Murburn posttranslational modifications (PTMs) result because murburn/murzyme functionalism is integral to cellular existence. Cells must incorporate the inherently stochastic nature of operations mediated by DRS. Due to the earlier/inertial stigmatic perception that DRS are mere agents of chaos, several such outcomes were either understood as deterministic modulations sponsored by house-keeping enzymes or deemed as unregulated nonenzymatic events resulting out of "oxidative stress". In the current review, I dispel the myths around DRS-functions, and undertake systematic parsing and analyses of murburn modifications of proteins. Although it is impossible to demarcate all PTMs into the classical or murburn modalities, telltale signs of the latter are evident from the relative inaccessibility of the locus, non-specificities and mechanistic details. It is pointed out that while many murburn PTMs may be harmless, some others could have deleterious or beneficial physiological implications. Some details of reversible/irreversible modifications of amino acid residues and cofactors that may be subjected to phosphorylation, halogenation, glycosylation, alkylation/acetylation, hydroxylation/oxidation, etc. are listed, along with citations of select proteins where such modifications have been reported. The contexts of these modifications and their significance in (patho)physiology/aging and therapy are also presented. With more balanced explorations and statistically verified data, a definitive understanding of normal versus pathological contexts of murburn modifications would be obtainable in the future.
Collapse
|
40
|
Mecca M, Picerno S, Cortellino S. The Killer's Web: Interconnection between Inflammation, Epigenetics and Nutrition in Cancer. Int J Mol Sci 2024; 25:2750. [PMID: 38473997 DOI: 10.3390/ijms25052750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Inflammation is a key contributor to both the initiation and progression of tumors, and it can be triggered by genetic instability within tumors, as well as by lifestyle and dietary factors. The inflammatory response plays a critical role in the genetic and epigenetic reprogramming of tumor cells, as well as in the cells that comprise the tumor microenvironment. Cells in the microenvironment acquire a phenotype that promotes immune evasion, progression, and metastasis. We will review the mechanisms and pathways involved in the interaction between tumors, inflammation, and nutrition, the limitations of current therapies, and discuss potential future therapeutic approaches.
Collapse
Affiliation(s)
- Marisabel Mecca
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, PZ, Italy
| | - Simona Picerno
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, PZ, Italy
| | - Salvatore Cortellino
- Laboratory of Preclinical and Translational Research, Responsible Research Hospital, 86100 Campobasso, CB, Italy
- Scuola Superiore Meridionale (SSM), Clinical and Translational Oncology, 80138 Naples, NA, Italy
- S.H.R.O. Italia Foundation ETS, 10060 Candiolo, TO, Italy
| |
Collapse
|
41
|
Yang C, Pan RY, Guan F, Yuan Z. Lactate metabolism in neurodegenerative diseases. Neural Regen Res 2024; 19:69-74. [PMID: 37488846 PMCID: PMC10479854 DOI: 10.4103/1673-5374.374142] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/08/2023] [Accepted: 03/30/2023] [Indexed: 07/26/2023] Open
Abstract
Lactate, a byproduct of glycolysis, was thought to be a metabolic waste until the discovery of the Warburg effect. Lactate not only functions as a metabolic substrate to provide energy but can also function as a signaling molecule to modulate cellular functions under pathophysiological conditions. The Astrocyte-Neuron Lactate Shuttle has clarified that lactate plays a pivotal role in the central nervous system. Moreover, protein lactylation highlights the novel role of lactate in regulating transcription, cellular functions, and disease development. This review summarizes the recent advances in lactate metabolism and its role in neurodegenerative diseases, thus providing optimal perspectives for future research.
Collapse
Affiliation(s)
- Chaoguang Yang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Rui-Yuan Pan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zengqiang Yuan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
42
|
Singh AK, Prasad P, Cancelas JA. Mesenchymal stromal cells, metabolism, and mitochondrial transfer in bone marrow normal and malignant hematopoiesis. Front Cell Dev Biol 2023; 11:1325291. [PMID: 38169927 PMCID: PMC10759248 DOI: 10.3389/fcell.2023.1325291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
Hematopoietic stem cell (HSC) transplantation-based treatments are in different phases of clinical development, ranging from current therapies to a promise in the repair and regeneration of diseased tissues and organs. Mesenchymal stromal/stem cells (MSCs), which are fibroblast-like heterogeneous progenitors with multilineage differentiation (osteogenic, chondrogenic, and adipogenic) and self-renewal potential, and exist in the bone marrow (BM), adipose, and synovium, among other tissues, represent one of the most widely used sources of stem cells in regenerative medicine. MSCs derived from bone marrow (BM-MSCs) exhibit a variety of traits, including the potential to drive HSC fate and anti-inflammatory and immunosuppressive capabilities via paracrine activities and interactions with the innate and adaptive immune systems. The role of BM-MSC-derived adipocytes is more controversial and may act as positive or negative regulators of benign or malignant hematopoiesis based on their anatomical location and functional crosstalk with surrounding cells in the BM microenvironment. This review highlights the most recent clinical and pre-clinical findings on how BM-MSCs interact with the surrounding HSCs, progenitors, and immune cells, and address some recent insights on the mechanisms that mediate MSCs and adipocyte metabolic control through a metabolic crosstalk between BM microenvironment cells and intercellular mitochondrial transfer in normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Abhishek K. Singh
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Hoxworth Blood Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Parash Prasad
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Jose A. Cancelas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Hoxworth Blood Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
43
|
Qu J, Li P, Sun Z. Histone lactylation regulates cancer progression by reshaping the tumor microenvironment. Front Immunol 2023; 14:1284344. [PMID: 37965331 PMCID: PMC10641494 DOI: 10.3389/fimmu.2023.1284344] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
As a major product of glycolysis and a vital signaling molecule, many studies have reported the key role of lactate in tumor progression and cell fate determination. Lactylation is a newly discovered post-translational modification induced by lactate. On the one hand, lactylation introduced a new era of lactate metabolism in the tumor microenvironment (TME), and on the other hand, it provided a key breakthrough point for elucidation of the interaction between tumor metabolic reprogramming and epigenetic modification. Studies have shown that the lactylation of tumor cells, tumor stem cells and tumor-infiltrating immune cells in TME can participate in the development of cancer through downstream transcriptional regulation, and is a potential and promising tumor treatment target. This review summarized the discovery and effects of lactylation, as well as recent research on histone lactylation regulating cancer progression through reshaping TME. We also focused on new strategies to enhance anti-tumor effects via targeting lactylation. Finally, we discussed the limitations of existing studies and proposed new perspectives for future research in order to further explore lactylation targets. It may provide a new way and direction to improve tumor prognosis.
Collapse
Affiliation(s)
- Junxing Qu
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
| | - Peizhi Li
- The First People’s Hospital of Xinxiang City, The Fifth Clinical College of Xinxiang Medical University, Xinxiang, China
| | - Zhiheng Sun
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| |
Collapse
|
44
|
Wang T, Ye Z, Li Z, Jing D, Fan G, Liu M, Zhuo Q, Ji S, Yu X, Xu X, Qin Y. Lactate-induced protein lactylation: A bridge between epigenetics and metabolic reprogramming in cancer. Cell Prolif 2023; 56:e13478. [PMID: 37060186 PMCID: PMC10542650 DOI: 10.1111/cpr.13478] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/16/2023] Open
Abstract
Lactate is not only an endpoint of glycolysis but is gradually being discovered to play the role of a universal metabolic fuel for energy via the 'lactate shuttle' moving between cells and transmitting signals. The glycolytic-dependent metabolism found in tumours and fast-growing cells has made lactate a pivotal player in energy metabolism reprogramming, which enables cells to obtain abundant energy in a short time. Moreover, lactate can provide favourable conditions for tumorigenesis by shaping the acidic tumour microenvironment, recruiting immune cells, etc. and the recently discovered lactate-induced lactylation moves even further on pro-tumorigenesis mechanisms of lactate production, circulation and utilization. As with other epigenetic modifications, lactylation can modify histone proteins to alter the spatial configuration of chromatin, affect DNA accessibility and regulate the expression of corresponding genes. What's more, the degree of lactylation is inseparable from the spatialized lactate concentration, which builds a bridge between epigenetics and metabolic reprogramming. Here, we review the important role of lactate in energy reprogramming, summarize the latest finding of lactylation in tumorigenesis and try to explore therapeutic strategies in oncotherapy that can kill two birds with one stone.
Collapse
Affiliation(s)
- Ting Wang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Zeng Ye
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Zheng Li
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - De‐sheng Jing
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Gui‐xiong Fan
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Meng‐qi Liu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Qi‐feng Zhuo
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Shun‐rong Ji
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Xian‐jun Yu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Xiao‐wu Xu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Yi Qin
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| |
Collapse
|
45
|
Varghese B, Chianese U, Capasso L, Sian V, Bontempo P, Conte M, Benedetti R, Altucci L, Carafa V, Nebbioso A. SIRT1 activation promotes energy homeostasis and reprograms liver cancer metabolism. J Transl Med 2023; 21:627. [PMID: 37715252 PMCID: PMC10504761 DOI: 10.1186/s12967-023-04440-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/14/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Cancer cells are characterized by uncontrolled cell proliferation and impaired bioenergetics. Sirtuins are a family of highly conserved enzymes that play a fundamental role in energy metabolism regulation. SIRT1, in particular, drives many physiological stress responses and metabolic pathways following nutrient deprivation. We previously showed that SIRT1 activation using SCIC2.1 was able to attenuate genotoxic response and senescence. Here, we report that in hepatocellular carcinoma (HCC) cells under glucose-deprived conditions, SCIC2.1 treatment induced overexpression of SIRT1, SIRT3, and SIRT6, modulating metabolic response. METHODS Flow cytometry was used to analyze the cell cycle. The MTT assay and xCELLigence system were used to measure cell viability and proliferation. In vitro enzymatic assays were carried out as directed by the manufacturer, and the absorbance was measured with an automated Infinite M1000 reader. Western blotting and immunoprecipitation were used to evaluate the expression of various proteins described in this study. The relative expression of genes was studied using real-time PCR. We employed a Seahorse XF24 Analyzer to determine the metabolic state of the cells. Oil Red O staining was used to measure lipid accumulation. RESULTS SCIC2.1 significantly promoted mitochondrial biogenesis via the AMPK-p53-PGC1α pathway and enhanced mitochondrial ATP production under glucose deprivation. SIRT1 inhibition by Ex-527 further supported our hypothesis that metabolic effects are dependent on SIRT1 activation. Interestingly, SCIC2.1 reprogrammed glucose metabolism and fatty acid oxidation for bioenergetic circuits by repressing de novo lipogenesis. In addition, SCIC2.1-mediated SIRT1 activation strongly modulated antioxidant response through SIRT3 activation, and p53-dependent stress response via indirect recruitment of SIRT6. CONCLUSION Our results show that SCIC2.1 is able to promote energy homeostasis, attenuating metabolic stress under glucose deprivation via activation of SIRT1. These findings shed light on the metabolic action of SIRT1 in the pathogenesis of HCC and may help determine future therapies for this and, possibly, other metabolic diseases.
Collapse
Affiliation(s)
- Benluvankar Varghese
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico De Crecchio 7, 80138, Naples, Italy
| | - Ugo Chianese
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico De Crecchio 7, 80138, Naples, Italy
| | - Lucia Capasso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico De Crecchio 7, 80138, Naples, Italy
| | - Veronica Sian
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico De Crecchio 7, 80138, Naples, Italy
| | - Paola Bontempo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico De Crecchio 7, 80138, Naples, Italy
| | - Mariarosaria Conte
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico De Crecchio 7, 80138, Naples, Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico De Crecchio 7, 80138, Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico De Crecchio 7, 80138, Naples, Italy.
- Biogem, Molecular Biology and Genetics Research Institute, Via Camporeale, 83031, Ariano Irpino, Italy.
- IEOS CNR, Via Sergio Pansini 5, 80131, Naples, Italy.
| | - Vincenzo Carafa
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico De Crecchio 7, 80138, Naples, Italy
- Biogem, Molecular Biology and Genetics Research Institute, Via Camporeale, 83031, Ariano Irpino, Italy
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico De Crecchio 7, 80138, Naples, Italy.
| |
Collapse
|
46
|
Caddye E, Pineau J, Reyniers J, Ronen I, Colasanti A. Lactate: A Theranostic Biomarker for Metabolic Psychiatry? Antioxidants (Basel) 2023; 12:1656. [PMID: 37759960 PMCID: PMC10526106 DOI: 10.3390/antiox12091656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Alterations in neurometabolism and mitochondria are implicated in the pathophysiology of psychiatric conditions such as mood disorders and schizophrenia. Thus, developing objective biomarkers related to brain mitochondrial function is crucial for the development of interventions, such as central nervous system penetrating agents that target brain health. Lactate, a major circulatory fuel source that can be produced and utilized by the brain and body, is presented as a theranostic biomarker for neurometabolic dysfunction in psychiatric conditions. This concept is based on three key properties of lactate that make it an intriguing metabolic intermediate with implications for this field: Firstly, the lactate response to various stimuli, including physiological or psychological stress, represents a quantifiable and dynamic marker that reflects metabolic and mitochondrial health. Second, lactate concentration in the brain is tightly regulated according to the sleep-wake cycle, the dysregulation of which is implicated in both metabolic and mood disorders. Third, lactate universally integrates arousal behaviours, pH, cellular metabolism, redox states, oxidative stress, and inflammation, and can signal and encode this information via intra- and extracellular pathways in the brain. In this review, we expand on the above properties of lactate and discuss the methodological developments and rationale for the use of functional magnetic resonance spectroscopy for in vivo monitoring of brain lactate. We conclude that accurate and dynamic assessment of brain lactate responses might contribute to the development of novel and personalized therapies that improve mitochondrial health in psychiatric disorders and other conditions associated with neurometabolic dysfunction.
Collapse
Affiliation(s)
- Edward Caddye
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
| | - Julien Pineau
- Independent Researcher, Florianópolis 88062-300, Brazil
| | - Joshua Reyniers
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
- School of Life Sciences, University of Sussex, Falmer BN1 9RR, UK
| | - Itamar Ronen
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
| | - Alessandro Colasanti
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
| |
Collapse
|
47
|
Li R, Yang Y, Wang H, Zhang T, Duan F, Wu K, Yang S, Xu K, Jiang X, Sun X. Lactate and Lactylation in the Brain: Current Progress and Perspectives. Cell Mol Neurobiol 2023; 43:2541-2555. [PMID: 36928470 PMCID: PMC11410153 DOI: 10.1007/s10571-023-01335-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/04/2023] [Indexed: 03/18/2023]
Abstract
As the final product of glycolysis, lactate features not only as an energy substrate, a metabolite, and a signaling molecule in a variety of diseases-such as cancer, inflammation, and sepsis-but also as a regulator of protein lactylation; this is a newly proposed epigenetic modification that is considered to be crucial for energy metabolism and signaling in brain tissues under both physiological and pathological conditions. In this review, evidence on lactylation from studies on lactate metabolism and disease has been summarized, revealing the function of lactate and its receptors in the regulation of brain function and summarizing the levels of lactylation expression in various brain diseases. Finally, the function of lactate and lactylation in the brain and the potential mechanisms of intervention in brain diseases are presented and discussed, providing optimal perspectives for future research on the role of lactylation in the brain.
Collapse
Affiliation(s)
- Ruobing Li
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China
| | - Yi Yang
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China
| | - Haoyu Wang
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 26 Heping Road, Xiangfang District, Harbin, 8615-0040, China
| | - Tingting Zhang
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China
| | - Fangfang Duan
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China
| | - Kaidi Wu
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China
| | - Siyu Yang
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China
| | - Ke Xu
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China
| | - Xicheng Jiang
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China.
| | - Xiaowei Sun
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China.
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 26 Heping Road, Xiangfang District, Harbin, 8615-0040, China.
| |
Collapse
|
48
|
Rossi V, Govoni M, Di Stefano G. Lactate Can Modulate the Antineoplastic Effects of Doxorubicin and Relieve the Drug's Oxidative Damage on Cardiomyocytes. Cancers (Basel) 2023; 15:3728. [PMID: 37509389 PMCID: PMC10378253 DOI: 10.3390/cancers15143728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Doxorubicin (DOXO) is currently administered as the first-choice therapy for a variety of malignancies. Cancer cells exhibit enhanced glycolysis and lactate production. This metabolite affects gene expression and can play a role in chemoresistance. AIM OF THIS STUDY We investigated whether the enhanced lactate levels that characterize neoplastic tissues can modify the response of cancer cells to DOXO. METHODS After exposing cancer cells to increased lactate levels, we examined whether this metabolite could interfere with the principal mechanisms responsible for the DOXO antineoplastic effect. RESULTS Increased lactate levels did not affect DOXO-induced topoisomerase poisoning but offered protection against the oxidative damage caused by the drug. This protection was related to changes in gene expression caused by the combined action of DOXO and lactate. Oxidative damage significantly contributed to the heavy cardiotoxicity following DOXO treatment. In cultured cardiomyocytes, we confirmed that DOXO-induced DNA damage and oxidative stress can be significantly mitigated by exposing the cells to increased lactate levels. CONCLUSIONS In addition to contributing to elucidating the effects of the combined action of DOXO and lactate, our results suggest a possible method to reduce the heavy drug cardiotoxicity, a major side effect leading to therapy discontinuation.
Collapse
Affiliation(s)
- Valentina Rossi
- Department of Medical and Surgical Sciences (DIMEC), Section of General Pathology, University of Bologna, 40126 Bologna, Italy
| | - Marzia Govoni
- Department of Medical and Surgical Sciences (DIMEC), Section of General Pathology, University of Bologna, 40126 Bologna, Italy
| | - Giuseppina Di Stefano
- Department of Medical and Surgical Sciences (DIMEC), Section of General Pathology, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
49
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
50
|
Mouton AJ, do Carmo JM, da Silva AA, Omoto ACM, Hall JE. Targeting immunometabolism during cardiorenal injury: roles of conventional and alternative macrophage metabolic fuels. Front Physiol 2023; 14:1139296. [PMID: 37234412 PMCID: PMC10208225 DOI: 10.3389/fphys.2023.1139296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/14/2023] [Indexed: 05/28/2023] Open
Abstract
Macrophages play critical roles in mediating and resolving tissue injury as well as tissue remodeling during cardiorenal disease. Altered immunometabolism, particularly macrophage metabolism, is a critical underlying mechanism of immune dysfunction and inflammation, particularly in individuals with underlying metabolic abnormalities. In this review, we discuss the critical roles of macrophages in cardiac and renal injury and disease. We also highlight the roles of macrophage metabolism and discuss metabolic abnormalities, such as obesity and diabetes, which may impair normal macrophage metabolism and thus predispose individuals to cardiorenal inflammation and injury. As the roles of macrophage glucose and fatty acid metabolism have been extensively discussed elsewhere, we focus on the roles of alternative fuels, such as lactate and ketones, which play underappreciated roles during cardiac and renal injury and heavily influence macrophage phenotypes.
Collapse
Affiliation(s)
- Alan J. Mouton
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| | - Jussara M. do Carmo
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| | - Alexandre A. da Silva
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| | - Ana C. M. Omoto
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| | - John E. Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|