1
|
Chang Y, Pan WJ, Wang SJ. Epigoitrin decreases synaptosomal glutamate release and protects neurons from glutamate excitotoxicity in rats. Eur J Pharmacol 2025; 998:177654. [PMID: 40280263 DOI: 10.1016/j.ejphar.2025.177654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/10/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Excessive synaptic glutamate levels can lead to excitotoxicity, which is implicated in various neuropathologies. This study investigates whether epigoitrin, an alkaloid abundantly found in Radix isatidis, affects glutamate release in rat cortical nerve terminals (synaptosomes) and its impact on excitotoxicity induced by the glutamate analogue kainic acid in rats. In rat cortical synaptosomes, epigoitrin reduced glutamate release induced by 4-aminopyridine in a dose-dependent manner, with an IC50 value of 3 μM. Removal of extracellular Ca2+ or blockade of P/Q-type Ca2+ channels prevented epigoitrin's effect on synaptosomal glutamate release, while the N-type Ca2+ channel inhibitor did not. In an in vivo rat model of glutamate excitotoxicity induced by kainic acid, epigoitrin pretreatment significantly mitigated neuronal injury, glutamate elevation, and the upregulation of excitotoxicity-related proteins (DAPK1 and NMDA receptor subunit GluN2B) in the cortex of kainic acid-treated rats. Additionally, epigoitrin pretreatment reduced reactive oxygen species (ROS) production, glial activation, and levels of inflammatory cytokines (tumor necrosis factor-α, interleukin-1β, and interleukin-6), while increasing the anti-inflammatory cytokine interleutin-10 in the cortex of kainic acid-treated rats. These results suggest that epigoitrin inhibits glutamate release from cortical synaptosomes by reducing P/Q-type Ca2+ channel activity and provides neuroprotection against kainic acid-induced neurotoxicity by preventing oxidative stress, neuroinflammation, and glutamate elevation. This study is the first to reveal the impact of epigoitrin on the glutamatergic system.
Collapse
Affiliation(s)
- Yi Chang
- School of Medicine, Fu Jen Catholic University, New Taipei City, 24205, Taiwan; Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, 22060, Taiwan
| | - Wun-Jing Pan
- Ph.D. Program in Pharmaceutical Biotechnology, School of Medicine, Fu-Jen Catholic University, New Taipei, 24205, Taiwan
| | - Su-Jane Wang
- School of Medicine, Fu Jen Catholic University, New Taipei City, 24205, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 33303, Taiwan.
| |
Collapse
|
2
|
Wang S, Zhang H, Li R, Liu Z, Xiang D. Altered Neuroplasticity in Epilepsy is Associated with Neuroinflammation and Oxidative Stress: In vivo Evidence of Brain-Derived Extracellular Vesicles. Int J Nanomedicine 2025; 20:7185-7197. [PMID: 40491852 PMCID: PMC12146889 DOI: 10.2147/ijn.s514559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 05/22/2025] [Indexed: 06/11/2025] Open
Abstract
Purpose Recurrent seizures lead to self-reconstruction of the central nervous system, which is termed the neuroplasticity of epilepsy. While preclinical studies implicate neuroinflammation and oxidative stress in epilepsy-associated neuroplasticity, in vivo molecular-level evidence in humans is lacking. Patients and Methods We used astrocyte-derived extracellular vesicles (ADEVs) and neuron-derived extracellular vesicles (NDEVs) as brain-derived biomarkers to explore biomarkers of neuroplasticity, neuroinflammation, and oxidative stress. A total of 50 patients in the epilepsy group (EP) and 25 matched healthy controls (HC) were recruited for this study. Plasma ADEVs and NDEVs were isolated and confirmed, and the levels of the EV marker CD81, the neuroplasticity marker brain-derived neurotrophic factor (BDNF), and the neuroinflammation marker tumor necrosis factor α (TNF-α) in ADEVs, as well as the markers of oxidative stress, superoxide dismutase 1 (SOD1) and malondialdehyde (MDA), in NDEVs were measured. Results BDNF levels in ADEVs and SOD1 levels in NDEVs from EP were significantly lower than those in HC, whereas TNF-α levels in ADEVs and MDA levels in NDEVs were significantly increased, and the results remained stable after normalization by CD81. Spearman correlation analysis revealed that BDNF levels in ADEVs were negatively correlated with TNF-α levels in ADEVs and MDA levels in NDEVs and positively correlated with SOD1 levels in NDEVs. Conclusion The innovative use of ADEVs and NDEVs as brain-derived biomarkers in this study provides in vivo evidence that epilepsy may result in impaired neuroplasticity and may be associated with increased neuroinflammation and oxidative stress.
Collapse
Affiliation(s)
- Shun Wang
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Haiju Zhang
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Ruiling Li
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zhongchun Liu
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Dan Xiang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
3
|
Bano N, Khan S, Ahamad S, Dar NJ, Alanazi HH, Nazir A, Bhat SA. Microglial NOX2 as a therapeutic target in traumatic brain injury: Mechanisms, consequences, and potential for neuroprotection. Ageing Res Rev 2025; 108:102735. [PMID: 40122395 DOI: 10.1016/j.arr.2025.102735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/08/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Traumatic brain injury (TBI) is a leading cause of long-term disability worldwide, with secondary injury mechanisms, including neuroinflammation and oxidative stress, driving much of its chronic pathology. While NADPH oxidase 2 (NOX2)-mediated reactive oxygen species (ROS) production is a recognized factor in TBI, the specific role of microglial NOX2 in perpetuating oxidative and inflammatory damage remains underexplored. Addressing this gap is critical, as current therapeutic approaches primarily target acute symptoms and fail to interrupt the persistent neuroinflammation that contributes to progressive neurodegeneration. Besides NOX, other ROS-generating enzymes, such as CYP1B1, COX2, and XO, also play crucial roles in triggering oxidative stress and neuroinflammatory conditions in TBI. However, this review highlights the pathophysiological role of microglial NOX2 in TBI, focusing on its activation following injury and its impact on ROS generation, neuroinflammatory signaling, and neuronal loss. These insights reveal NOX2 as a critical driver of secondary injury, linked to worsened outcomes, particularly in aged individuals where NOX2 activation is more pronounced. In addition, this review evaluates emerging therapeutic approaches targeting NOX2, such as GSK2795039 and other selective NOX2 inhibitors, which show potential in reducing ROS levels, limiting neuroinflammation, and preserving neurological functions. By highlighting the specific role of NOX2 in microglial ROS production and secondary neurodegeneration, this study advocates for NOX2 inhibition as a promising strategy to improve TBI outcomes by addressing the unmet need for therapies targeting long-term inflammation and neuroprotection. Our review highlights the potential of NOX2-targeted interventions to disrupt the cycle of oxidative stress and inflammation, ultimately offering a pathway to mitigate the chronic impact of TBI.
Collapse
Affiliation(s)
- Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Nawab John Dar
- CNB, SALK Institute of Biological Sciences, La Jolla, CA 92037, USA
| | - Hamad H Alanazi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Al Jouf University 77455, Saudi Arabia
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research, New Delhi, India.
| | - Shahnawaz Ali Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
4
|
Gong X, Lu W, Xiao Q, Wang X, Cui C, Tang H. Construction of epilepsy diagnosis model based on cell senescence-related genes and its potential mechanism. Front Neurol 2025; 16:1555586. [PMID: 40520613 PMCID: PMC12162300 DOI: 10.3389/fneur.2025.1555586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 05/13/2025] [Indexed: 06/18/2025] Open
Abstract
Introduction Epilepsy is a chronic brain disease with a certain degree of neurodegeneration and is caused by abnormal discharges of neurons. The mechanism of cell senescence has garnered increasing attention in neurodegenerative diseases. However, the role of cell senescence in the onset and progression of epilepsy is unclear. Therefore, this study constructed a diagnostic model of epilepsy based on cellular senescence-related genes (CSRGs) to analyze their role in disease pathogenesis. Methods The differentially expressed genes (DEGs) were screened from the epileptic sample dataset of the gene expression omnibus (GEO) database, and the cellular senescence-related DEGs (CSRDEGs) related to epilepsy were identified by CSRGs crossover. The functional enrichment characteristics of CSRDEGs were analyzed using gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses. The differences in biological processes between high and low-risk groups were analyzed using gene set enrichment analysis (GSEA). For model construction, logistic regression, random forest, and least absolute shrinkage and selection operator (LASSO) regression were employed to identify key genes, including ribosomal protein S6 kinase alpha-3 (RPS6KA3), cathepsin D (CTSD), and zinc finger protein 101 (ZNF101). Subsequently, a multifactor logistic regression model was developed to evaluate the risk of epilepsy based on these screened genes. Results The model exhibited higher area under the curve (AUC) values in the GSE data sets 143272 and 32534, producing encouraging results. Finally, mRNA-miRNA and mRNA-transcription factors (TFs) networks revealed the potential regulatory mechanism of the selected critical genes in the disease. Discussion This study elucidated the possible process of cell senescence in epileptic diseases through bioinformatics analysis, offering a potential target for personalized diagnosis and precise treatment.
Collapse
Affiliation(s)
- Xiangyao Gong
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Epilepsy Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wei Lu
- Department of General Practice, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Qihua Xiao
- Epilepsy Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiaopeng Wang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Epilepsy Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chenchen Cui
- Epilepsy Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hai Tang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Epilepsy Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
5
|
Lee H, Ju IG, Kim JH, Choi Y, Lee S, Park HJ, Oh MS. Artemisiae Iwayomogii Herba Protects Dopaminergic Neurons Against 1-Methyl-4-phenylpyridinium/1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine Neurotoxicity in Models of Parkinson's Disease. Nutrients 2025; 17:1672. [PMID: 40431412 PMCID: PMC12114580 DOI: 10.3390/nu17101672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 05/05/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Parkinson's disease (PD) is a common neurodegenerative disease characterized by motor symptoms caused by the loss of dopaminergic neurons. While the pathophysiology of PD is still not fully understood, it is recognized that oxidative stress plays a major role in its progression. Previous studies have shown that the aerial parts of Artemisia iwayomogi Kitamura (AIK) possess medicinal properties, including antioxidant activity. This study aimed to investigate whether AIK can alleviate neuronal loss and motor symptoms in a PD model and to explore its therapeutic mechanisms. Methods: For the in vitro study, PC12 cells were treated with AIK and 1-methyl-4-phenylpyridinium (MPP+). For the in vivo study, C57BL/6J mice were orally administered AIK for 12 days; they received intraperitoneal injections of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) for 5 consecutive days, starting on the 8th day of AIK administration. Results: AIK treatment to PC12 cells in the presence of MPP+ enhanced the phosphorylation of the protein kinase B/glycogen synthase kinase-3β signaling pathway, which is a crucial regulator of nuclear factor erythroid 2-related factor 2 (Nrf2) translocation. Additionally, AIK treatment increased cell survival and induced an antioxidant response involving heme oxygenase-1, via increasing the level of Nrf2 in the nucleus. In an MPTP-induced mouse model of PD, AIK administration activated Nrf2 in dopaminergic neurons and prevented the loss of dopaminergic neurons in the brain, which in turn alleviated motor dysfunction. Conclusions: Collectively, these findings suggest that AIK is a potential botanical candidate for PD treatment by protecting dopaminergic neurons through antioxidant activity.
Collapse
Affiliation(s)
- Hanbyeol Lee
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - In Gyoung Ju
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jin Hee Kim
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yujin Choi
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seungmin Lee
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hi-Joon Park
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul 02447, Republic of Korea
| | - Myung Sook Oh
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
6
|
Li B, Ming R. Knockdown of YTHDF2 mitigates OGD-induced microglial inflammation by preventing m 6A-dependent PARP14 degradation. J Neuroimmunol 2025; 405:578636. [PMID: 40383033 DOI: 10.1016/j.jneuroim.2025.578636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/26/2025] [Accepted: 05/11/2025] [Indexed: 05/20/2025]
Abstract
Neuroinflammation is a key pathological factor in ischemic brain diseases, contributing to the initiation and progression of these conditions. The function of the m6A reader protein YTHDF2 in regulating neuroinflammation across various neurological contexts. To elucidate the role and regulatory mechanism of YTHDF2 in inflammation under ischemic-like conditions, this study employed an in vitro model, exposing microglia to oxygen-glucose deprivation (OGD) to mimic the stress environment. And through YTHDF2 knockdown, we investigated its effect on OGD-induced inflammation. The results demonstrated that YTHDF2 knockdown significantly suppressed the expression of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6), in OGD-treated microglia. Mechanistic analysis revealed that YTHDF2 interacts with Parp14 mRNA under OGD conditions, reducing its RNA stability via m6A-dependent mechanisms, which in turn decreases Poly (ADP-ribose) polymerase family, member 14 (PARP14) protein expression. Additionally, YTHDF2 knockdown after OGD promoted a PARP14-driven phenotypic switch in microglia from the pro-inflammatory M1 state to the anti-inflammatory M2 state, resulting in diminished inflammation. These findings offer new insights into the regulatory function of YTHDF2 in OGD-induced microglial inflammation and propose m6A modification as a potential therapeutic target for alleviating neuroinflammation.
Collapse
Affiliation(s)
- Bin Li
- Institute of Comparative Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China..
| | - Ruixi Ming
- Institute of Comparative Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
7
|
Singh PK, Maurya S, Saadi A, Shekh-Ahmad T. Targeting NOX2 mitigates seizure susceptibility, oxidative stress, and neuroinflammation in the pentylenetetrazol seizure model. Free Radic Biol Med 2025; 235:306-316. [PMID: 40345502 DOI: 10.1016/j.freeradbiomed.2025.05.386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/27/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Oxidative stress is a pivotal driver of epileptogenesis and seizure-induced neuronal pathology, with NADPH oxidase 2 (NOX2) serving as a major source of reactive oxygen species (ROS) in the brain. Despite its established role in seizure pathophysiology, the therapeutic implications of selective NOX2 inhibition in epilepsy remain insufficiently explored. Here, we investigate the effect of GSK2795039, a potent NOX2 inhibitor, using both in vitro and in vivo epilepsy models. In vitro, mixed cortical neuroglial cultures were treated with 4-aminopyridine (4-AP) and picrotoxin (PTX) to induce epileptiform activity. Calcium imaging and dihydroethidium (DHE) fluorescence assays revealed that GSK2795039 significantly reduced synchronous Ca2+ oscillations and ROS accumulation. In vivo, adult rats implanted with ECoG transmitters were pretreated with GSK2795039 prior to pentylenetetrazol (PTZ) administration to evoke seizures. ECoG recording and behavioral seizure scoring showed that GSK2795039 pretreatment inhibited the seizure severity, duration and cumulative seizure burden. Molecular analyses, including quantitative PCR and western blotting, revealed a significant downregulation of NOX2 mRNA in both the hippocampus and cortex, although protein levels remained unchanged. Additionally, immunofluorescence and histological staining confirmed that GSK2795039 mitigated oxidative DNA damage, preserved hippocampal neuronal integrity, and differentially modulated pro- and anti-inflammatory cytokine expression. These findings underscore NOX2 inhibition as a compelling neuroprotective strategy and highlight the potential of GSK2795039 to suppress oxidative and inflammatory cascades in epilepsy. Targeting NOX2 may represent a promising avenue for precision therapeutics in oxidative stress-driven epilepsy.
Collapse
Affiliation(s)
- Prince Kumar Singh
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, 91120, Israel.
| | - Shweta Maurya
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Aseel Saadi
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Tawfeeq Shekh-Ahmad
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, 91120, Israel.
| |
Collapse
|
8
|
Ciubotaru AD, Leferman CE, Ignat BE, Knieling A, Esanu IM, Salaru DL, Foia LG, Minea B, Hritcu LD, Dimitriu CD, Stoica L, Ciureanu IA, Ciobica AS, Neamtu A, Stoica BA, Ghiciuc CM. Behavioral and Biochemical Insights into the Therapeutic Potential of Mitocurcumin in a Zebrafish-Pentylenetetrazole (PTZ) Epilepsy Model. Pharmaceuticals (Basel) 2025; 18:382. [PMID: 40143158 PMCID: PMC11944435 DOI: 10.3390/ph18030382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/22/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Epilepsy is a complex neurological disorder with a strong link to oxidative stress, which contributes to seizure susceptibility and neuronal damage. This study aims to investigate the effects of curcumin (Cur), sodium valproate (VPA), and mitocurcumin (MitoCur), a mitochondria-targeted curcumin, on behavioral and oxidative stress parameters in a zebrafish model of pentylenetetrazole (PTZ)-induced seizures. Methods: Adult zebrafish were exposed to two concentrations (0.25 and 0.5 µM for Cur and MitoCur; 0.25 and 0.5 mM for VPA). Behavioral assessments, including locomotion, spatial exploration, and directional movement, were conducted using EthoVision XT tracking software. Oxidative stress markers, including superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GPx), and total antioxidant status (TAS), were analyzed in brain homogenates. Results: Behavioral analyses indicated dose-dependent effects, with higher doses generally reducing activity. MitoCur at 0.25 µM enhanced antioxidant defenses and reduced oxidative damage, while higher doses exhibited a pro-oxidant shift. VPA at 0.25 mM improved TAS without significantly altering MDA levels. Conclusions: These findings emphasize the importance of dose optimization in antioxidant-based epilepsy treatments and highlight the potential of MitoCur as a targeted therapeutic option.
Collapse
Affiliation(s)
- Alin Dumitru Ciubotaru
- Discipline of Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (A.D.C.); (C.-E.L.); (C.M.G.)
- Discipline of Biochemistry, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
- Discipline of Neurology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Carmen-Ecaterina Leferman
- Discipline of Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (A.D.C.); (C.-E.L.); (C.M.G.)
| | - Bogdan-Emilian Ignat
- Discipline of Neurology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
- Neurology Department, Clinical Rehabilitation Hospital, 14 Pantelimon Halipa Street, 700661 Iasi, Romania
| | - Anton Knieling
- Discipline of Forensic Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
- Institute of Forensic Medicine, 4 Buna Vestire Street, 700455 Iasi, Romania
| | - Irina Mihaela Esanu
- Department of Medical Specialties I, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700111 Iasi, Romania;
| | - Delia Lidia Salaru
- Institute of Cardiovascular Diseases, 50 Carol I Avenue, 700503 Iasi, Romania;
| | - Liliana Georgeta Foia
- Discipline of Biochemistry, Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (L.G.F.); (B.M.)
| | - Bogdan Minea
- Discipline of Biochemistry, Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (L.G.F.); (B.M.)
| | - Luminita Diana Hritcu
- Internal Medicine Clinic, Ion Ionescu de la Brad University of Life Sciences, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania;
| | - Cristina Daniela Dimitriu
- Discipline of Biochemistry, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Laura Stoica
- Discipline of Cell and Molecular Biology, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Ioan-Adrian Ciureanu
- Department of Medical Informatics and Biostatistics, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Alin Stelian Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 20A Carol I Avenue, 700505 Iasi, Romania;
- Center of Biomedical Research, Romanian Academy, Iasi Branch, 2 Teodor Codrescu Street, 700481 Iasi, Romania
- “Ioan Haulica” Institute, Apollonia University, 11 Păcurari Street, 700511 Iasi, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| | - Andrei Neamtu
- Department of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Bogdan Alexandru Stoica
- Discipline of Biochemistry, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Cristina Mihaela Ghiciuc
- Discipline of Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (A.D.C.); (C.-E.L.); (C.M.G.)
- St. Mary’s Emergency Children Hospital, 62 Vasile Lupu Street, 700309 Iasi, Romania
| |
Collapse
|
9
|
He Y, Ouyang K, Yang H, Wang L, Zhang Q, Li D, Li L. The MC-LR induced neuroinflammation and the disorders of neurotransmitter system in zebrafish (Danio rerio): Oxidative stress as a key. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110126. [PMID: 39824299 DOI: 10.1016/j.fsi.2025.110126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/13/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
Microcystin-leucine-arginine (MC-LR) has been shown to induce neuroinflammation and disrupt neurotransmitter system. However, little is known about the mechanism of toxicity. In this study, male adult zebrafish (Danio rerio) were exposed to MC-LR at concentrations of 0, 0.1, 1, 10 μg/L for 30 days. Histomorphological evaluation revealed thrombus formation and vacuolization in the brains of zebrafish exposed to 10 μg/L MC-LR. Additionally, this exposure led to elevated MDA levels and decreased T-SOD, CAT and GSH levels in the brain, indicating oxidative stress. MC-LR exposure also significantly increased TNF-α and IL-1β contents and altered transcriptional levels of genes associated with the NOD/NFκB pathway (nod1, nod2, tak2, ripk2, ikbkb, nfkbiaa and nfkb2), implicating that MC-LR induced neuroinflammation. Concurrently, disruptions in neurotransmitter systems were observed, manifested by reductions in ACH, DA, 5-HT contents, an increase in Glu, and changes in related genes (ache, chran7a, dat, drd2b, 5htt, htr1aa, glsa and grin2aa). Partial least squares path modeling (PLS-PM) analysis showed that the oxidative stress and antioxidant defenses directly affected the cholinergic and glutamatergic systems and inflammatory response, as well as indirectly influenced the dopaminergic system via inflammation. Thus, our results suggested that oxidative stress may be a potential mechanism underlying the neuroinflammation and disruption of neurotransmitter systems induced by MC-LR. Furthermore, BMD modeling indicated that the BMDL values for ACH, T-SOD and MDA were all greater than 1 μg/L, suggesting that long-term exposure to MC-LR concentrations below 1 μg/L pose a relatively low risk of neurotoxicity. The lowest BMDL for MDA also implies that oxidative stress is a primary concern in the brain, making MDA a preferred biomarker for MC-LR exposure.
Collapse
Affiliation(s)
- Ya He
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Kang Ouyang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangmou Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qian Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China.
| |
Collapse
|
10
|
Liu D, Webber HC, Bian F, Xu Y, Prakash M, Feng X, Yang M, Yang H, You IJ, Li L, Liu L, Liu P, Huang H, Chang CY, Liu L, Shah SH, La Torre A, Welsbie DS, Sun Y, Duan X, Goldberg JL, Braun M, Lansky Z, Hu Y. Optineurin-facilitated axonal mitochondria delivery promotes neuroprotection and axon regeneration. Nat Commun 2025; 16:1789. [PMID: 39979261 PMCID: PMC11842812 DOI: 10.1038/s41467-025-57135-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 02/07/2025] [Indexed: 02/22/2025] Open
Abstract
Optineurin (OPTN) mutations are linked to amyotrophic lateral sclerosis (ALS) and normal tension glaucoma (NTG), but a relevant animal model is lacking, and the molecular mechanisms underlying neurodegeneration are unknown. We find that OPTN C-terminus truncation (OPTN∆C) causes late-onset neurodegeneration of retinal ganglion cells (RGCs), optic nerve (ON), and spinal cord motor neurons, preceded by a decrease of axonal mitochondria in mice. We discover that OPTN directly interacts with both microtubules and the mitochondrial transport complex TRAK1/KIF5B, stabilizing them for proper anterograde axonal mitochondrial transport, in a C-terminus dependent manner. Furthermore, overexpressing OPTN/TRAK1/KIF5B prevents not only OPTN truncation-induced, but also ocular hypertension-induced neurodegeneration, and promotes robust ON regeneration. Therefore, in addition to generating animal models for NTG and ALS, our results establish OPTN as a facilitator of the microtubule-dependent mitochondrial transport necessary for adequate axonal mitochondria delivery, and its loss as the likely molecular mechanism of neurodegeneration.
Collapse
Affiliation(s)
- Dong Liu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Hannah C Webber
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Fuyun Bian
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Yangfan Xu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, P.R. China
| | - Manjari Prakash
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague West, Czechia
| | - Xue Feng
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Ming Yang
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Hang Yang
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - In-Jee You
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Liang Li
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Liping Liu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Pingting Liu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Haoliang Huang
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Chien-Yi Chang
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Liang Liu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sahil H Shah
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - Derek S Welsbie
- Viterbi Family Department of Ophthalmology, University of California San Diego, San Diego, CA, USA
| | - Yang Sun
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Xin Duan
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | - Jeffrey Louis Goldberg
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Marcus Braun
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague West, Czechia
| | - Zdenek Lansky
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague West, Czechia.
| | - Yang Hu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
11
|
Lin TK, Pai MS, Yeh KC, Hung CF, Wang SJ. Hydrogen inhalation exerts anti-seizure effects by preventing oxidative stress and inflammation in the hippocampus in a rat model of kainic acid-induced seizures. Neurochem Int 2025; 183:105925. [PMID: 39725210 DOI: 10.1016/j.neuint.2024.105925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Hydrogen gas (H2) is an antioxidant with demonstrated neuroprotective efficacy. In this study, we administered H2 via inhalation to rats to evaluate its effects on seizures induced by kainic acid (KA) injection and the underlying mechanism. The animals were intraperitoneally injected with KA (15 mg/kg) to induce seizures. H2 was inhaled 2 h once a day for 5 days before KA administration. The seizure activity was evaluated using Racine's convulsion scale and electroencephalography (EEG). Neuronal cell loss, glial cell activation, and the levels of inflammatory cytokines (TNF-α, IL-1β, IL-6, CCL2, and CCL3), reactive oxygen species (ROS) and nuclear factor erythroid 2-related factor 2 (Nrf2) in the hippocampus were assessed. The cerebral blood flow of the rats was also evaluated. The results revealed that KA-treated rats presented increased seizure intensity; increased neuronal loss and astrocyte activation; increased levels of ROS, TNF-α, IL-1β, IL-6, CCL2, and CCL3; and reduced Nrf2 phosphorylation levels. Pretreatment with H2 inhalation significantly attenuated seizure intensity; prevented neuronal loss; decreased microglial and astrocytic activation; decreased ROS, TNF-α, IL-1β, IL-6, CCL2 and CCL3 levels; and increased Nrf2 levels. Inhalation of H2 also prevented the KA-induced decrease in cerebral blood flow. These results suggest that pretreatment with H2 inhalation ameliorates KA-induced seizures and inhibits the inflammatory response and oxidative stress, which protects neurons.
Collapse
Affiliation(s)
- Tzu-Kang Lin
- School of Medicine, Fu Jen Catholic University, New Taipei City, 24205, Taiwan; Department of Neurosurgery, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, 24205, Taiwan
| | - Ming-Shang Pai
- School of Medicine, Fu Jen Catholic University, New Taipei City, 24205, Taiwan; Department of Psychiatry, Taoyuan Armed Forces General Hospital, Taoyuan, 33303, Taiwan
| | - Kun-Chieh Yeh
- School of Medicine, Fu Jen Catholic University, New Taipei City, 24205, Taiwan; Department of Neurosurgery, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, 24205, Taiwan; Department of Surgery, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City, 24205, Taiwan; School of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Su-Jane Wang
- School of Medicine, Fu Jen Catholic University, New Taipei City, 24205, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, 33303, Taiwan.
| |
Collapse
|
12
|
Hashemi P, Mardani P, Eghbali Raz Z, Saedi A, Fatahi E, Izapanah E, Ahmadi S. Alpha-Pinene Decreases the Elevated Levels of Astrogliosis, Pyroptosis, and Autophagy Markers in the Hippocampus Triggered by Kainate in a Rat Model of Temporal Lobe Epilepsy. Mol Neurobiol 2025; 62:2264-2276. [PMID: 39096444 DOI: 10.1007/s12035-024-04407-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
The development and progression of temporal lobe epilepsy (TLE) are heavily influenced by inflammation, excessive activation of glial cells, and neuronal cell death. This study aimed to investigate the effects of treatment with alpha-pinene (APN) on pro-and anti-inflammatory cytokine levels, astrogliosis, pyroptosis, and autophagy markers in the hippocampus in a rat model of TLE induced by kainic acid (KA). Male Wistar rats were employed, and TLE was induced by intracerebroventricular injection of KA. APN (50 mg/kg) was intraperitoneally administered for 19 days, including two weeks before and five days after the administration of KA. After full recovery from anesthesia and KA injection, the seizure-related behavioral expressions were evaluated. On day 19, the hippocampal levels of IL-1β, TNF-α, progranulin, IL-10, ERK1/2, phospho-ERK1/2, NF-κB, GFAP, S100-B, NLRP1, NLRP3, caspase-1, and becline-1 were examined. The results revealed that treatment with APN significantly diminished the heightened levels of IL-1β, TNF-α, progranulin, ERK1/2, and NF-κB and reversed the reduced levels of the anti-inflammatory cytokine, IL-10, in the hippocampus caused by KA. Furthermore, administration of APN significantly reduced the levels of astrogliosis, pyroptosis, and autophagy markers in the hippocampus that were elevated by KA. It can be concluded that treatment with APN for 19 days alleviated neuroinflammation by inhibiting ERK1/2 and NF-κB signaling pathways and prevented increases in astrogliosis, pyroptosis, and autophagy markers in the hippocampus in a rat model of TLE.
Collapse
Affiliation(s)
- Paria Hashemi
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | | | - Zabihollah Eghbali Raz
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Ali Saedi
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Ehsan Fatahi
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Esmael Izapanah
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Shamseddin Ahmadi
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran.
| |
Collapse
|
13
|
Guo Y, Wang Y, Xu B, Li Y. The prospective therapeutic benefits of sesamol: neuroprotection in neurological diseases. Nutr Neurosci 2025:1-14. [PMID: 39881218 DOI: 10.1080/1028415x.2025.2457051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Oxidative stress is recognized as a critical contributor to the advancement of neurological diseases, thereby rendering the alleviation of oxidative stress a pivotal strategy in the therapeutic management of such conditions. Sesamol, the principal constituent of sesame oil, has been the subject of extensive research due to its significant antioxidant properties, especially its ability to effectively counteract oxidative stress within the central nervous system and confer neuroprotection. While sesamol demonstrates potential in the treatment and prevention of neurological diseases, its modulation of oxidative stress is complex and not yet fully understood. This review delves into the neuroprotective effects arising from sesamol's antioxidant properties, analyzing how its antioxidative capabilities impact neurological diseases. It provides a theoretical foundation and unveils potential novel therapeutic applications of sesamol in the treatment of neurological disorders through the modulation of oxidative stress.
Collapse
Affiliation(s)
- Yuchao Guo
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Yaqing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
| | - Boyang Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
| | - Yue Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, People's Republic of China
| |
Collapse
|
14
|
Quincozes-Santos A, Bobermin LD, Tramontina AC, Wartchow KM, Da Silva VF, Gayger-Dias V, Thomaz NK, de Moraes ADM, Schauren D, Nardin P, Gottfried C, Souza DO, Gonçalves CA. Glioprotective Effects of Resveratrol Against Glutamate-Induced Cellular Dysfunction: The Role of Heme Oxygenase 1 Pathway. Neurotox Res 2025; 43:7. [PMID: 39869271 DOI: 10.1007/s12640-025-00730-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/21/2024] [Accepted: 01/19/2025] [Indexed: 01/28/2025]
Abstract
Resveratrol, a natural polyphenol, has shown promising neuroprotective effects in several in vivo and in vitro experimental models. However, the mechanisms by which resveratrol mediates these effects are not fully understood. Glutamate is the major excitatory neurotransmitter in the brain; however, excessive extracellular glutamate levels can affect neural activity in several neurological diseases. Astrocytes are the glial cells that maintain brain homeostasis and can attenuate excitotoxicity by actively participating in glutamate neurotransmission. This study aimed to investigate the glioprotective effects of resveratrol against glutamate-induced cellular dysfunction in hippocampal slices and primary astrocyte cultures, with a focus on the role of heme-oxygenase 1 (HO-1). Glutamate impaired glutamate uptake activity through a glutamate receptor-dependent mechanism, in addition to altering other important astroglial parameters, including glutamine synthetase activity, glutathione levels and cystine uptake, which were normalized by resveratrol. Resveratrol also prevented glutamate-induced disruption in antioxidant defenses, as well as in trophic and inflammatory functions, including the nuclear factor κB (NFκB) transcriptional activity. Most of the effects of resveratrol, mainly in astrocytes, were dependent on the HO-1 signaling pathway, as they were abrogated when HO-1 was pharmacologically inhibited. Resveratrol also increased HO-1 mRNA expression and its transcriptional regulator, nuclear factor erythroid-derived 2-like 2 (Nrf2). Finally, resveratrol prevented glutamate-induced p21 senescence marker, indicating an anti-aging effect. Therefore, we demonstrated that the activation of the Nrf2/HO-1 system in astrocytes by resveratrol represents an astrocyte-targeted neuroprotective mechanism in neurodegeneration, with glutamate excitotoxicity, oxidative stress, and neuroinflammation as common neurochemical alterations.
Collapse
Affiliation(s)
- André Quincozes-Santos
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600- Anexo Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600- Anexo Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil.
| | - Ana Carolina Tramontina
- Programa de Pós-Graduação em Ambiente e Sustentabilidade, Universidade Estadual do Rio Grande do Sul, São Francisco de Paula, RS, Brazil
| | - Krista Minéia Wartchow
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York City, NY, USA
| | - Vanessa-Fernanda Da Silva
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vitor Gayger-Dias
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Natalie K Thomaz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Aline Daniel Moreira de Moraes
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniele Schauren
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia Nardin
- Escola de Saúde, Universidade do Vale do Rio dos Sinos (Unisinos), São Leopoldo, RS, Brazil
| | - Carmem Gottfried
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600- Anexo Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
- National Institute of Science and Technology in Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Diogo Onofre Souza
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600- Anexo Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - Carlos-Alberto Gonçalves
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600- Anexo Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| |
Collapse
|
15
|
Barbalho SM, Leme Boaro B, da Silva Camarinha Oliveira J, Patočka J, Barbalho Lamas C, Tanaka M, Laurindo LF. Molecular Mechanisms Underlying Neuroinflammation Intervention with Medicinal Plants: A Critical and Narrative Review of the Current Literature. Pharmaceuticals (Basel) 2025; 18:133. [PMID: 39861194 PMCID: PMC11768729 DOI: 10.3390/ph18010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Neuroinflammation is a key factor in the progression of neurodegenerative diseases, driven by the dysregulation of molecular pathways and activation of the brain's immune system, resulting in the release of pro-inflammatory and oxidative molecules. This chronic inflammation is exacerbated by peripheral leukocyte infiltration into the central nervous system. Medicinal plants, with their historical use in traditional medicine, have emerged as promising candidates to mitigate neuroinflammation and offer a sustainable alternative for addressing neurodegenerative conditions in a green healthcare framework. This review evaluates the effects of medicinal plants on neuroinflammation, emphasizing their mechanisms of action, effective dosages, and clinical implications, based on a systematic search of databases such as PubMed, SCOPUS, and Web of Science. The key findings highlight that plants like Cleistocalyx nervosum var. paniala, Curcuma longa, Cannabis sativa, and Dioscorea nipponica reduce pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β), inhibit enzymes (COX-2 and iNOS), and activate antioxidant pathways, particularly Nrf2. NF-κB emerged as the primary pro-inflammatory pathway inhibited across studies. While the anti-inflammatory potential of these plants is significant, the variability in dosages and phytochemical compositions limits clinical translation. Here, we highlight that medicinal plants are effective modulators of neuroinflammation, underscoring their therapeutic potential. Future research should focus on animal models, standardized protocols, and safety assessments, integrating advanced methodologies, such as genetic studies and nanotechnology, to enhance their applicability in neurodegenerative disease management.
Collapse
Affiliation(s)
- Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil; (S.M.B.); (L.F.L.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Beatriz Leme Boaro
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, São Paulo, Brazil
| | - Jéssica da Silva Camarinha Oliveira
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, São Paulo, Brazil
| | - Jiří Patočka
- Faculty of Health and Social Studies, Institute of Radiology, Toxicology and Civil Protection, University of South Bohemia Ceske Budejovice, 37005 Ceske Budejovice, Czech Republic
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Caroline Barbalho Lamas
- Department of Gerontology, School of Gerontology, Universidade Federal de São Carlos (UFSCar), São Carlos 13565-905, São Paulo, Brazil
| | - Masaru Tanaka
- Danube Neuroscience Research Laboratory, HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos Krt. 113, H-6725 Szeged, Hungary
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil; (S.M.B.); (L.F.L.)
| |
Collapse
|
16
|
Rahimi-Dehkordi N, Heidari-Soureshjani S, Rostamian S. A Systematic Review of the Anti-seizure and Antiepileptic Effects and Mechanisms of Piperine. Cent Nerv Syst Agents Med Chem 2025; 25:143-156. [PMID: 39082167 DOI: 10.2174/0118715249297934240630111059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/27/2024] [Accepted: 05/29/2024] [Indexed: 04/23/2025]
Abstract
INTRODUCTION AND AIMS Seizures due to epilepsy in any form cause a wide range of problems in a patient's physical, psychological, and social health. This study aimed to investigate piperine's anti-seizure and antiepileptic effects and mechanisms. METHODS In this systematic review study, which was conducted according to the principles of PRISMA 2020, the initial search was conducted on November 2, 2023, using EndNote software. Various databases such as PubMed, Cochrane Library, Web of Science, Embase, and Scopus were searched using specific keywords. After screening the articles, a form was designed according to the objectives of the study, and the information related to the included articles was entered in the form, and the studies were reviewed. RESULTS Piperine showed its antiepileptic activity by affecting the brain's antioxidant, anti-inflammatory, and anti-apoptotic activity. It also, by modulating brain-derived neurotrophic factor (BDNF) and gamma-aminobutyric acid (GABA)ergic activity, can control seizures. In addition, piperine can help treat seizures and epilepsy by elevating 5-HT levels in the brain, modulating astrocyte and microglia function, modulatory effects on Ca2+ and NA+ channels, increasing antiepileptic drugs bioavailability and influencing protein and gene expression. CONCLUSION In vivo and in vitro studies showed beneficial effects on treating epilepsy. Although clinical studies also showed similar results, these needed to be increased, and more clinical studies needed to be designed in this field.
Collapse
Affiliation(s)
- Nasim Rahimi-Dehkordi
- Department of Pediatrics, School of Medicine, Hajar Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | | |
Collapse
|
17
|
Lim CR, Ogawa S, Kumari Y. Exploring β-caryophyllene: a non-psychotropic cannabinoid's potential in mitigating cognitive impairment induced by sleep deprivation. Arch Pharm Res 2025; 48:1-42. [PMID: 39653971 DOI: 10.1007/s12272-024-01523-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
Sleep deprivation or sleep loss, a prevalent issue in modern society, is linked to cognitive impairment, leading to heightened risks of errors and accidents. Chronic sleep deprivation affects various cognitive functions, including memory, attention, and decision-making, and is associated with an increased risk of neurodegenerative diseases, cardiovascular issues, and metabolic disorders. This review examines the potential of β-caryophyllene, a dietary non-psychotropic cannabinoid, and FDA-approved flavoring agent, as a therapeutic solution for sleep loss-induced cognitive impairment. It highlights β-caryophyllene's ability to mitigate key contributors to sleep loss-induced cognitive impairment, such as inflammation, oxidative stress, neuronal death, and reduced neuroplasticity, by modulating various signaling pathways, including TLR4/NF-κB/NLRP3, MAPK, Nrf2/HO-1, PI3K/Akt, and cAMP/PKA/CREB. As a naturally occurring, non-psychotropic compound with low toxicity, β-caryophyllene emerges as a promising candidate for further investigation. The review underscores the therapeutic potential of β-caryophyllene for sleep loss-induced cognitive impairment and provides mechanistic insights into its action on crucial pathways, suggesting that β-caryophyllene could be a valuable addition to strategies aimed at combating cognitive impairment and other health issues due to sleep loss.
Collapse
Affiliation(s)
- Cher Ryn Lim
- Neurological Disorder and Aging Research Group (NDA), Neuroscience Research Strength (NRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Satoshi Ogawa
- Neuroscience Research Strength (NRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Yatinesh Kumari
- Neurological Disorder and Aging Research Group (NDA), Neuroscience Research Strength (NRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia.
| |
Collapse
|
18
|
Viswas A, Dabla PK, Gupta S, Yadav M, Tanwar A, Upreti K, Koner BC. SCN1A Genetic Alterations and Oxidative Stress in Idiopathic Generalized Epilepsy Patients: A Causative Analysis in Refractory Cases. Indian J Clin Biochem 2025; 40:105-110. [PMID: 39835235 PMCID: PMC11741965 DOI: 10.1007/s12291-023-01164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/09/2023] [Indexed: 08/27/2024]
Abstract
Single Nucleotide Polymorphisms (SNPs) have found it be associated with drug resistance in epilepsy. The purpose of this study was to determine the role of SCN1A gene polymorphism in developing drug resistance in idiopathic generalized epilepsy (IGE) patients, along with increased oxidative stress. The study was conducted at a tertiary care hospital in Delhi, India. We recruited 100 patients diagnosed with IGE patients, grouped as drug-resistant and drug-responsive, and then further compared the SCN1A SNP rs10167228 A*/T analysis between the two groups. We utilized the PCR-RFLP technique to investigate the association between polymorphisms and refractory epilepsy. Serum HMGB1 levels were estimated using the ELISA technique to analyze oxidative stress in both groups. rs10167228 A*/T polymorphism genotypes AT and AA genotypes are significantly associated with an increased risk of developing drug resistance. Serum HMGB1, IL-1β, and IL-6 levels were significantly higher in drug-resistant cases, compared to the drug-responsive group. The association of SCN1A gene polymorphisms, in conjunction with raised oxidative stress, may be predictive of the development of drug-resistant epilepsy. The AT and AA genotypes of rs10167228 may pose a risk factor for developing drug-resistant epilepsy.
Collapse
Affiliation(s)
- Aroop Viswas
- Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research, New Delhi, India
| | - Pradeep Kumar Dabla
- Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research, New Delhi, India
| | - Swapan Gupta
- Department of Neurology, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research, New Delhi, India
| | - Manisha Yadav
- Multi-disciplinary Research Unit, Maulana Azad Medical College, New Delhi, India
| | - Alokit Tanwar
- Multi-disciplinary Research Unit, Maulana Azad Medical College, New Delhi, India
- Manav Rachna International Institute of Research and Studies, Faridabad, Haryana India
| | - Kamal Upreti
- Department of Computer Science, CHRIST (Deemed to be University), Ghaziabad, Delhi NCR India
| | - B C Koner
- Multi-disciplinary Research Unit, Maulana Azad Medical College, New Delhi, India
- Department of Biochemistry, Maulana Azad Medical College, New Delhi, India
| |
Collapse
|
19
|
Rahimi-Tesiye M, Rajabi-Maham H, Hosseini A, Azizi V. Beneficial effects of fenoprofen on cognitive impairment induced by the kindling model of epilepsy: Interaction of oxidative stress and inflammation. Brain Res Bull 2025; 220:111151. [PMID: 39626803 DOI: 10.1016/j.brainresbull.2024.111151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/13/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Hippocampal-dependent cognitive impairments are consequences of temporal lobe epilepsy. This study aimed to assess the modulatory effects of fenoprofen on Pentylenetetrazol (PTZ)-induced cognitive dysfunction in the rat model of epilepsy. Male Wistar rats were randomly divided into five groups. Except for the control group, the kindling model was induced by intraperitoneal (IP) injection of PTZ (35 mg/kg) every other day for a month. Three groups received fenoprofen (10, 20, and 40 mg/kg) before each PTZ injection. One week after kindling development, rats were challenged with PTZ (70 mg/kg). The Morris Water Maze, Shuttle Box, and Elevated Plus Maze tests were applied to assess cognitive functions. Rats' serum and brain samples were prepared for biochemical, histological, and gene expression studies. Fenoprofen pretreatment effectively reduced the mean seizure score, and treated rats had better cognitive performance than the PTZ group in passive avoidance and spatial memory and learning tests; they also showed less anxiety-like behaviors. Its administration also showed anti-oxidative properties. So the serum level of Nitric oxide was significantly reduced while Glutathione and Catalase increased significantly. It also diminished the expression of inflammatory genes (Tumor Necrosis Factor alpha (TNF-α) and Nuclear Factor Kappa B (NF-kB)) in the hippocampus, these results were confirmed by histological observation from Hematoxylin & Eosin staining. These results show the ability of fenoprofen to reduce cognitive impairments caused by epilepsy induction. These effects seem to be through the modulation of inflammatory mediators and oxidative stress.
Collapse
Affiliation(s)
- Maryam Rahimi-Tesiye
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Hassan Rajabi-Maham
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Abdolkarim Hosseini
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Vahid Azizi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
20
|
Antar A, Abdel-Rehiem ES, Al-Khalaf AA, Abuelsaad ASA, Abdel-Gabbar M, Shehab GMG, Abdel-Aziz AM. Therapeutic Efficacy of Lavandula dentata's Oil and Ethanol Extract in Regulation of the Neuroinflammation, Histopathological Alterations, Oxidative Stress, and Restoring Balance Treg Cells Expressing FoxP3+ in a Rat Model of Epilepsy. Pharmaceuticals (Basel) 2024; 18:35. [PMID: 39861097 PMCID: PMC11768170 DOI: 10.3390/ph18010035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Despite the availability of antiepileptic drugs (AEDs) that can manage seizures, they often come with cognitive side effects. Furthermore, the role of oxidative stress and neuroinflammatory responses in epilepsy and the limitations of current AEDs necessitate exploring alternative therapeutic options. Medicinal plants, e.g., Lavandula dentata L., are rich in phenolic compounds and may provide neuroprotective and anti-inflammatory benefits. However, limited research evaluates their effectiveness in modulating neuroinflammation and histopathological changes in epilepsy models. Therefore, the current study hypothesized that treating Lavandula dentata L. extract or essential oils may reduce neuroinflammatory responses and mitigate histopathological changes in the brain, providing a natural alternative or adjunct therapy for epilepsy management. Methods: Five groups of male Wistar rats were used: control, pilocarpine-treated epileptic, valproic acid (VPA-treated epileptic), L. dentata extract, and essential oils. Numerous electrolyte levels, monoamine levels, neurotransmitter levels, and the mRNA expression of specific gate channel subtypes were evaluated in homogenate brain tissue. Additionally, histological changes in various brain regions were investigated. Results: The investigation revealed that the extract and essential oils obtained from L. dentata L. exhibited the ability to improve the modulation of electrolytes and ions across voltage- and ligand-gated ion channels. Furthermore, it was revealed that they could decrease neuronal excitability by facilitating repolarization. Moreover, L. dentata's oil and ethanol extract re-balances T-reg/Th-17 cytokines, restoring the pro/anti-inflammatory cytokines and Treg markers, e.g., FOXP3 and CTLA-4, to their normal level. Conclusions: The present work confirms that the extract and essential oils of L. dentata L. have different activities to ameliorate the progression of histopathological alterations. Therefore, when used in conjunction with other AEDs, the extract and essential oils of L. dentata can slow the progression of epileptogenesis.
Collapse
Affiliation(s)
- Aziza Antar
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt; (A.A.); (M.A.-G.)
| | - Eman S. Abdel-Rehiem
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt;
| | - Areej A. Al-Khalaf
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Abdelaziz S. A. Abuelsaad
- Immunology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mohamed Abdel-Gabbar
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt; (A.A.); (M.A.-G.)
| | - Gaber M. G. Shehab
- Department of Biochemistry, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ayman M. Abdel-Aziz
- Zoology Department, Faculty of Science, Fayoum University, Fayoum 63514, Egypt;
| |
Collapse
|
21
|
Pinho RA, Muller AP, Marqueze LF, Radak Z, Arida RM. Physical exercise-mediated neuroprotective mechanisms in Parkinson's disease, Alzheimer's disease, and epilepsy. Braz J Med Biol Res 2024; 57:e14094. [PMID: 39607205 DOI: 10.1590/1414-431x2024e14094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Research suggests that physical exercise is associated with prevention and management of chronic diseases. The influence of physical exercise on brain function and metabolism and the mechanisms involved are well documented in the literature. This review provides a comprehensive overview of the potential implications of physical exercise and the molecular benefits of exercise in Parkinson's disease, Alzheimer's disease, and epilepsy. Here, we present an overview of the effects of exercise on various aspects of metabolism and brain function. To this end, we conducted an extensive literature search of the PubMed, Web of Science, and Google Scholar databases to identify articles published in the past two decades. This review delves into key aspects including the modulation of neuroinflammation, neurotrophic factors, and synaptic plasticity. Moreover, we explored the potential role of exercise in advancing therapeutic strategies for these chronic diseases. In conclusion, the review highlights the importance of regular physical exercise as a complementary non-pharmacological treatment for individuals with neurological disorders such as Alzheimer's, Parkinson's disease, and epilepsy.
Collapse
Affiliation(s)
- R A Pinho
- Laboratório de Bioquímica do Exercício em Saúde, Programa de Pós-Graduação em Ciências da Saúde, Escola de Medicina e Ciências da Vida, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brasil
- Rede Nacional de Neurociência e Atividade Física, Brasil
| | - A P Muller
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | - L F Marqueze
- Laboratório de Bioquímica do Exercício em Saúde, Programa de Pós-Graduação em Ciências da Saúde, Escola de Medicina e Ciências da Vida, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brasil
| | - Z Radak
- Research Institute of Sport Science, Hungarian University of Sport Science, Budapest, Hungary
| | - R M Arida
- Rede Nacional de Neurociência e Atividade Física, Brasil
- Departamento de Fisiologia, Universidade Federal de São Paulo, Botucatu, SP, Brasil
| |
Collapse
|
22
|
Rentschler KM, Kodavanti UP. Mechanistic insights regarding neuropsychiatric and neuropathologic impacts of air pollution. Crit Rev Toxicol 2024; 54:953-980. [PMID: 39655487 PMCID: PMC12043015 DOI: 10.1080/10408444.2024.2420972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 12/24/2024]
Abstract
Air pollution is a significant environmental health risk for urban areas and developing countries. Air pollution may contribute to the incidence of cardiopulmonary and metabolic diseases. Evidence also points to the role of air pollution in worsening or developing neurological and neuropsychiatric conditions. Inhaled pollutants include compositionally differing mixtures of respirable gaseous and particulate components of varied sizes, solubilities, and chemistry. Inhalation of combustibles and volatile organic compounds (VOCs) or other irritant particulate matter (PM) may trigger lung sensory afferents which initiate a sympathetic stress response via activation of the hypothalamic-pituitary-adrenal (HPA) and sympathetic-adrenal-medullary (SAM) axes. Activation of SAM and HPA axes are associated with selective inhibition of hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-thyroid (HPT) axes following exposure. Regarding chronic exposure in susceptible hosts, these changes may become pathological by causing neuroinflammation, neurotransmitter, and neuroendocrine imbalances. Soluble PM, such as metals and nano-size particles may translocate across the olfactory, trigeminal, or vagal nerves through retrograde axonal transport, or through systemic circulation which may disrupt the blood-brain barrier (BBB) and deposit in neural tissue. Neuronal deposition of metallic components can have a negative impact through multiple molecular mechanisms. In addition to systemic translocation, the release of pituitary and stress hormones, altered metabolic hormonal status and resultant circulating metabolic milieu, and sympathetically and HPA-mediated changes in immune markers, may secondarily impact the brain through a variety of regulatory adrenal hormone-dependent mechanisms. Several reviews covering air pollution as a risk factor for neuropsychiatric disorders have been published, but no reviews discuss the in-depth intersection between molecular and stress-related neuroendocrine mechanisms, thereby addressing adaptation and susceptibility variations and link to peripheral tissue effects. The purpose of this review is to discuss evidence regarding neurochemical, neuroendocrine, and molecular mechanisms which may contribute to neuropathology from air pollution exposure. This review also covers bi-directional neural and systemic interactions which may raise the risk for air pollution-related systemic illness.
Collapse
Affiliation(s)
- Katherine M. Rentschler
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Urmila P. Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
23
|
Lansdon P, Kasuya J, Kitamoto T. Commensal bacteria exacerbate seizure-like phenotypes in Drosophila voltage-gated sodium channel mutants. GENES, BRAIN, AND BEHAVIOR 2024; 23:e70000. [PMID: 39231190 PMCID: PMC11373613 DOI: 10.1111/gbb.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024]
Abstract
Mutations in voltage-gated sodium (Nav) channels, which are essential for generating and propagating action potentials, can lead to serious neurological disorders, such as epilepsy. However, disease-causing Nav channel mutations do not always result in severe symptoms, suggesting that the disease conditions are significantly affected by other genetic factors and various environmental exposures, collectively known as the "exposome". Notably, recent research emphasizes the pivotal role of commensal bacteria in neural development and function. Although these bacteria typically benefit the nervous system under normal conditions, their impact during pathological states remains largely unknown. Here, we investigated the influence of commensal microbes on seizure-like phenotypes exhibited by paraShu-a gain-of-function mutant of the Drosophila Nav channel gene, paralytic. Remarkably, the elimination of endogenous bacteria considerably ameliorated neurological impairments in paraShu. Consistently, reintroducing bacteria, specifically from the Lactobacillus or Acetobacter genera, heightened the phenotypic severity in the bacteria-deprived mutants. These findings posit that particular native bacteria contribute to the severity of seizure-like phenotypes in paraShu. We further uncovered that treating paraShu with antibiotics boosted Nrf2 signaling in the gut, and that global Nrf2 activation mirrored the effects of removing bacteria from paraShu. This raises the possibility that the removal of commensal bacteria suppresses the seizure-like manifestations through augmented antioxidant responses. Since bacterial removal during development was critical for suppression of adult paraShu phenotypes, our research sets the stage for subsequent studies, aiming to elucidate the interplay between commensal bacteria and the developing nervous system in conditions predisposed to the hyperexcitable nervous system.
Collapse
Affiliation(s)
- Patrick Lansdon
- Interdisciplinary Graduate Program in Genetics, Graduate College, University of Iowa, Iowa City, Iowa, USA
| | - Junko Kasuya
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Toshihiro Kitamoto
- Interdisciplinary Graduate Program in Genetics, Graduate College, University of Iowa, Iowa City, Iowa, USA
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
24
|
Mineiro R, Rodrigues Cardoso M, Catarina Duarte A, Santos C, Cipolla-Neto J, Gaspar do Amaral F, Costa D, Quintela T. Melatonin and brain barriers: The protection conferred by melatonin to the blood-brain barrier and blood-cerebrospinal fluid barrier. Front Neuroendocrinol 2024; 75:101158. [PMID: 39395545 DOI: 10.1016/j.yfrne.2024.101158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/29/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
The blood-brain barrier and the blood-cerebrospinal fluid barrier separate the blood from brain tissue and cerebrospinal fluid. These brain barriers are important to maintain homeostasis and complex functions by protecting the brain from xenobiotics and harmful endogenous compounds. The disruption of brain barriers is a characteristic of neurologic diseases. Melatonin is a lipophilic hormone that is mainly produced by the pineal gland. The blood-brain barrier and the blood-cerebrospinal fluid barriers are melatonin-binding sites. Among the several melatonin actions, the most characteristic one is the regulation of sleep-wake cycles, melatonin has anti-inflammatory and antioxidant properties. Since brain barriers disruption can arise from inflammation and oxidative stress, knowing the influence of melatonin on the integrity of brain barriers is extremely important. Therefore, the objective of this review is to gather and discuss the available literature about the regulation of brain barriers by melatonin.
Collapse
Affiliation(s)
- Rafael Mineiro
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Maria Rodrigues Cardoso
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ana Catarina Duarte
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Cecília Santos
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Jose Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Diana Costa
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal.
| |
Collapse
|
25
|
Zhang Y, Hu X, Zou LQ. Flavonoids as therapeutic agents for epilepsy: unveiling anti-inflammatory and antioxidant pathways for novel treatments. Front Pharmacol 2024; 15:1457284. [PMID: 39329119 PMCID: PMC11424894 DOI: 10.3389/fphar.2024.1457284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
Epilepsy, a chronic neurological disorder affecting millions globally, is often exacerbated by neuroinflammation and oxidative stress. Existing antiepileptic drugs primarily manage symptoms, leaving the disease's progression largely unaddressed. Flavonoids, ubiquitous plant metabolites with potent anti-inflammatory and antioxidant properties, show promise in epilepsy treatment. Unlike conventional therapies, they target multiple pathophysiological processes simultaneously, offering a comprehensive approach to this complex neurological disorder. This review explores the dual role of flavonoids in mitigating neuroinflammation and reducing oxidative stress through various molecular pathways. By inhibiting key inflammatory mediators and pathways such as NF-κB, MAPK, JNK, and JAK, flavonoids offer neuronal protection. They enhance the body's natural antioxidant defenses by modulating enzyme activities, including superoxide dismutase, catalase, and glutathione peroxidase. Moreover, flavonoids influence crucial antioxidant response pathways like PI3K/AKT, Nrf2, JNK, and PKA. Despite their therapeutic promise, the low bioavailability of flavonoids poses a considerable challenge. However, cutting-edge strategies, including nanotechnology and chemical modifications, are underway to improve their bioavailability and therapeutic efficacy. These advancements support the potential of flavonoids as a valuable addition to epilepsy treatment strategies.
Collapse
Affiliation(s)
- Ya Zhang
- Department of Emergency Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Xizhuo Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li-Qun Zou
- Department of Emergency Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
26
|
Li F, Zhang L, Zhang X, Fang Q, Xu Y, Wang H. Rutin alleviates Pb-induced oxidative stress, inflammation and cell death via activating Nrf2/ARE system in SH-SY5Y cells. Neurotoxicology 2024; 104:1-10. [PMID: 39032614 DOI: 10.1016/j.neuro.2024.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Lead (Pb) is harmful to almost all organs, particularly the developmental neural system, and previous studies revealed oxidative stress played an important role in Pb neurotoxicity. Rutin, a type of flavonoid glycoside found in various plants and fruits, is widely used as a dietary supplement due to its antioxidant and anti-inflammatory properties, but whether rutin could protect against Pb neurotoxicity is unclear. In this study, we found rutin treatment significantly alleviated Pb-induced cell death, oxidative stress, and inflammation, resulting in cell survival. Moreover, rutin treatment promoted nuclear factor erythroid 2-related factor 2 (Nrf2) translocation from cytoplasm to nucleus and subsequently activated antioxidant and detoxifying enzymes expression including HO-1. Knocking down Nrf2 by siRNA transfection abolished this protection of rutin against Pb. Overall, rutin could alleviate Pb-induced oxidative stress, inflammation, and cell death by activating the Nrf2/antioxidant response elements (ARE) system.
Collapse
Affiliation(s)
- Fen Li
- School hospital, Shandong University of Science and Technology, No.579, Qianwangang Road, Qingdao 266590, People's Republic of China
| | - Lin Zhang
- School hospital, Shandong University of Science and Technology, No.579, Qianwangang Road, Qingdao 266590, People's Republic of China
| | - Xingxu Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 18877, Jingshi Road, Ji'nan 250062, People's Republic of China
| | - Qimeng Fang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 18877, Jingshi Road, Ji'nan 250062, People's Republic of China
| | - Yingshun Xu
- School hospital, Shandong University of Science and Technology, No.579, Qianwangang Road, Qingdao 266590, People's Republic of China
| | - Hui Wang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 18877, Jingshi Road, Ji'nan 250062, People's Republic of China.
| |
Collapse
|
27
|
Parenti M, Slupsky CM. Disrupted Prenatal Metabolism May Explain the Etiology of Suboptimal Neurodevelopment: A Focus on Phthalates and Micronutrients and their Relationship to Autism Spectrum Disorder. Adv Nutr 2024; 15:100279. [PMID: 39059765 PMCID: PMC11375317 DOI: 10.1016/j.advnut.2024.100279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/03/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
Pregnancy is a time of high metabolic coordination, as maternal metabolism adapts to support the growing fetus. Many of these changes are coordinated by the placenta, a critical fetal endocrine organ and the site of maternal-fetal crosstalk. Dysregulation in maternal and placental metabolism during pregnancy has been linked to adverse outcomes, including altered neurodevelopment. Autism spectrum disorder (ASD) is a neurodevelopmental disorder linked to metabolic alterations in both children and their mothers. Prenatal environmental exposures have been linked to risk of ASD through dysregulated maternal, placental, and fetal metabolism. In this review, we focus on recent studies investigating the associations between prenatal metabolism in the maternal-placental-fetal unit and the impact of prenatal environmental exposures to phthalates and micronutrients on ASD risk. By identifying the mechanisms through which phthalates and other ubiquitous endocrine disrupting chemicals influence development, and how nutritional interventions can impact those mechanisms, we can identify promising ways to prevent suboptimal neurodevelopment.
Collapse
Affiliation(s)
- Mariana Parenti
- Department of Nutrition, University of California, Davis, CA, United States
| | - Carolyn M Slupsky
- Department of Nutrition, University of California, Davis, CA, United States; Department of Food Science and Technology, University of California, Davis, CA, United States.
| |
Collapse
|
28
|
Singh PK, Shekh-Ahmad T. Nrf2 as a potential target for the treatment of epilepsy. Neural Regen Res 2024; 19:1865-1866. [PMID: 38227501 DOI: 10.4103/1673-5374.390975] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/22/2023] [Indexed: 01/17/2024] Open
Affiliation(s)
- Prince Kumar Singh
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | |
Collapse
|
29
|
Ignacio-Mejía I, Contreras-García IJ, Pichardo-Macías LA, García-Cruz ME, Ramírez Mendiola BA, Bandala C, Medina-Campos ON, Pedraza-Chaverri J, Cárdenas-Rodríguez N, Mendoza-Torreblanca JG. Effect of Levetiracetam on Oxidant-Antioxidant Activity during Long-Term Temporal Lobe Epilepsy in Rats. Int J Mol Sci 2024; 25:9313. [PMID: 39273262 PMCID: PMC11395009 DOI: 10.3390/ijms25179313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Epilepsy is a disorder characterized by a predisposition to generate seizures. Levetiracetam (LEV) is an antiseizure drug that has demonstrated oxidant-antioxidant effects during the early stages of epilepsy in several animal models. However, the effect of LEV on oxidant-antioxidant activity during long-term epilepsy has not been studied. Therefore, the objective of the present study was to determine the effects of LEV on the concentrations of five antioxidant enzymes and on the levels of four oxidant stress markers in the hippocampus of rats with temporal lobe epilepsy at 5.7 months after status epilepticus (SE). The results revealed that superoxide dismutase (SOD) activity was significantly greater in the epileptic group (EPI) than in the control (CTRL), CTRL + LEV and EPI + LEV groups. No significant differences were found among the groups' oxidant markers. However, the ratios of SOD/hydrogen peroxide (H2O2), SOD/glutathione peroxidase (GPx) and SOD/GPx + catalase (CAT) were greater in the EPI group than in the CTRL and EPI + LEV groups. Additionally, there was a positive correlation between SOD activity and GPx activity in the EPI + LEV group. LEV-mediated modulation of the antioxidant system appears to be time dependent; at 5.7 months after SE, the role of LEV may be as a stabilizer of the redox state.
Collapse
Affiliation(s)
- Iván Ignacio-Mejía
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados de Sanidad, UDEFA, Mexico City 11200, Mexico
| | - Itzel Jatziri Contreras-García
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados de Sanidad, UDEFA, Mexico City 11200, Mexico
- Laboratorio de Biología de la Reproducción, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico
| | - Luz Adriana Pichardo-Macías
- Departamento de Fisiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City 07738, Mexico
| | - Mercedes Edna García-Cruz
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico
| | | | - Cindy Bandala
- Laboratorio de Neurociencia Traslacional Enfermedades Crónicas y Emergentes, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11410, Mexico
| | - Omar Noel Medina-Campos
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Noemí Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico
| | | |
Collapse
|
30
|
Melini S, Trinchese G, Lama A, Cimmino F, Del Piano F, Comella F, Opallo N, Leo A, Citraro R, Trabace L, Mattace Raso G, Pirozzi C, Mollica MP, Meli R. Sex Differences in Hepatic Inflammation, Lipid Metabolism, and Mitochondrial Function Following Early Lipopolysaccharide Exposure in Epileptic WAG/Rij Rats. Antioxidants (Basel) 2024; 13:957. [PMID: 39199203 PMCID: PMC11351225 DOI: 10.3390/antiox13080957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Among the non-communicable neurological diseases, epilepsy is characterized by abnormal brain activity with several peripheral implications. The role of peripheral inflammation in the relationship between seizure development and nonalcoholic fatty liver disease based on sex difference remains still overlooked. Severe early-life infections lead to increased inflammation that can aggravate epilepsy and hepatic damage progression, both related to increased odds of hospitalization for epileptic patients with liver diseases. Here, we induced a post-natal-day 3 (PND3) infection by LPS (1 mg/kg, i.p.) to determine the hepatic damage in a genetic model of young epileptic WAG/Rij rats (PND45). We evaluated intra- and inter-gender differences in systemic and liver inflammation, hepatic lipid dysmetabolism, and oxidative damage related to mitochondrial functional impairment. First, epileptic rats exposed to LPS, regardless of gender, displayed increased serum hepatic enzymes and altered lipid profile. Endotoxin challenge triggered a more severe inflammatory and immune response in male epileptic rats, compared to females in both serum and liver, increasing pro-inflammatory cytokines and hepatic immune cell recruitment. Conversely, LPS-treated female rats showed significant alterations in systemic and hepatic lipid profiles and reduced mitochondrial fatty acid oxidation. The two different sex-dependent mechanisms of LPS-induced liver injury converge in increased ROS production and related mitochondrial oxidative damage in both sexes. Notably, a compensatory increase in antioxidant defense was evidenced only in female rats. Our study with a translational potential demonstrates, for the first time, that early post-natal infections in epileptic rats induced or worsened hepatic disorders in a sex-dependent manner, amplifying inflammation, lipid dysmetabolism, and mitochondrial impairment.
Collapse
Affiliation(s)
- Stefania Melini
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (S.M.); (A.L.); (F.C.); (N.O.); (G.M.R.); (R.M.)
| | - Giovanna Trinchese
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (F.C.); (M.P.M.)
| | - Adriano Lama
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (S.M.); (A.L.); (F.C.); (N.O.); (G.M.R.); (R.M.)
| | - Fabiano Cimmino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (F.C.); (M.P.M.)
| | - Filomena Del Piano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy;
| | - Federica Comella
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (S.M.); (A.L.); (F.C.); (N.O.); (G.M.R.); (R.M.)
| | - Nicola Opallo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (S.M.); (A.L.); (F.C.); (N.O.); (G.M.R.); (R.M.)
| | - Antonio Leo
- Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (A.L.); (R.C.)
| | - Rita Citraro
- Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (A.L.); (R.C.)
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Giuseppina Mattace Raso
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (S.M.); (A.L.); (F.C.); (N.O.); (G.M.R.); (R.M.)
| | - Claudio Pirozzi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (S.M.); (A.L.); (F.C.); (N.O.); (G.M.R.); (R.M.)
| | - Maria Pina Mollica
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (F.C.); (M.P.M.)
| | - Rosaria Meli
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (S.M.); (A.L.); (F.C.); (N.O.); (G.M.R.); (R.M.)
| |
Collapse
|
31
|
Liang LP, Sri Hari A, Day BJ, Patel M. Pharmacological elevation of glutathione inhibits status epilepticus-induced neuroinflammation and oxidative injury. Redox Biol 2024; 73:103168. [PMID: 38714094 PMCID: PMC11087235 DOI: 10.1016/j.redox.2024.103168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/09/2024] Open
Abstract
Glutathione (GSH) is a major endogenous antioxidant, and its depletion has been observed in several brain diseases including epilepsy. Previous studies in our laboratory have shown that dimercaprol (DMP) can elevate GSH via post-translational activation of glutamate cysteine ligase (GCL), the rate limiting GSH biosynthetic enzyme and inhibit neuroinflammation in vitro. Here we determined 1) the role of cysteamine as a new mechanism by which DMP increases GSH biosynthesis and 2) its ability to inhibit neuroinflammation and neuronal injury in the rat kainate model of epilepsy. DMP depleted cysteamine in a time- and concentration-dependent manner in a cell free system. To guide the in vivo administration of DMP, its pharmacokinetic profile was determined in the plasma, liver, and brain. The results confirmed DMP's ability to cross the blood-brain-barrier. Treatment of rats with DMP (30 mg/kg) depleted cysteamine in the liver and hippocampus that was associated with increased GCL activity in these tissues. GSH levels were significantly increased (20 %) in the hippocampus 1 h after 30 mg/kg DMP administration. Following DMP (30 mg/kg) administration once daily, a marked attenuation of GSH depletion was seen in the SE model. SE-induced inflammatory markers including cytokine release, microglial activation, and neuronal death were significantly attenuated in the hippocampus with DMP treatment. Taken together, these results highlight the importance of restoring redox status with rescue of GSH depletion by DMP in post epileptogenic insults.
Collapse
Affiliation(s)
- Li-Ping Liang
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ashwini Sri Hari
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Brian J Day
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA; Department of Medicine, National Jewish Health, Denver, CO, 80202, USA
| | - Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
32
|
Pant K, Sharma A, Menon SV, Ali H, Hassan Almalki W, Kaur M, Deorari M, Kazmi I, Mahajan S, Kalra H, Alzarea SI. Exploring ncRNAs in epilepsy: From oxidative stress regulation to therapy. Brain Res 2024; 1841:149089. [PMID: 38880410 DOI: 10.1016/j.brainres.2024.149089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Epilepsy is a prevalent neurological illness which is linked with high worldwide burdens. Oxidative stress (OS) is recognized to be among the contributors that trigger the advancement of epilepsy, affecting neuronal excitability and synaptic transmission. Various types of non-coding RNAs (ncRNAs) are known to serve vital functions in many disease mechanisms, including epilepsy. The current review sought to understand better the mechanisms through which these ncRNAs regulate epilepsy's OS-related pathways. We investigated the functions of microRNAs in controlling gene expression at the post-translatory stage and their involvement in OS and neuroinflammation. We also looked at the different regulatory roles of long ncRNAs, including molecular scaffolding, enhancer, and transcriptional activator, during OS. Circular RNAs and their capability to act as miRNA decoys and their consequential impact on epilepsy development were also explored. Our review aimed to improve the current understanding of novel therapies for epilepsy based on the role of ncRNAs in OS pathways. We also demonstrated the roles of ncRNAs in epilepsy treatment and diagnosis, explaining that these molecules play vital roles that could be used in therapy as biomarkers.
Collapse
Affiliation(s)
- Kumud Pant
- Graphic Era (Deemed to be University), Clement Town Dehradun, 248002, India; Graphic Era Hill University Clement Town Dehradun, 248002, India
| | - Aanchal Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjheri, Mohali 140307, Punjab, India
| | - Soumya V Menon
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan.
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Mahamedha Deorari
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh-247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand- 831001, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Shriya Mahajan
- Centre of Research Impact and Outcome, Chitkara University, Rajpura 140417, Punjab, India
| | - Hitesh Kalra
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh 174103, India
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| |
Collapse
|
33
|
Patwa J, Flora SJS. Copper: From enigma to therapeutic target for neurological disorder. Basic Clin Pharmacol Toxicol 2024; 134:778-791. [PMID: 38622813 DOI: 10.1111/bcpt.14010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/19/2024] [Accepted: 03/24/2024] [Indexed: 04/17/2024]
Abstract
Neurological disorders (NDs) have a negative impact on the lives of individuals. There could be two explanations for this: unclear aetiology and lack of effective therapy. However, research in the past few years has revealed the role of bio-metals dyshomeostasis in NDs. The imbalance in copper (Cu) concentration may be one of the main causative factors in NDs. In this review, we have discussed the role of Cu in NDs, especially Alzheimer's disease (AD), including the molecular mechanisms involved in Cu-associated NDs like oxidative stress, neuroinflammation, and protein misfolding. We have also summarized the recent Cu-targeting approaches and highlighted the in vitro and in vivo studies recently being reported on the subject. Based on the earlier published reports, it could be speculated that the Cu targeting strategy might be an interesting and potential therapeutic approach for NDs. Various difficulties must be overcome to develop safe and efficient Cu-targeting medications for NDs.
Collapse
Affiliation(s)
- Jayant Patwa
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand, India
| | - Swaran Jeet Singh Flora
- Era College of Pharmaceuticals, Era Lucknow Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
34
|
Park H, Lee CH. The Impact of Pulmonary Disorders on Neurological Health (Lung-Brain Axis). Immune Netw 2024; 24:e20. [PMID: 38974208 PMCID: PMC11224666 DOI: 10.4110/in.2024.24.e20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/30/2024] [Accepted: 05/23/2024] [Indexed: 07/09/2024] Open
Abstract
The brain and lungs, vital organs in the body, play essential roles in maintaining overall well-being and survival. These organs interact through complex and sophisticated bi-directional pathways known as the 'lung-brain axis', facilitated by their close proximity and neural connections. Numerous studies have underscored the mediation of the lung-brain axis by inflammatory responses and hypoxia-induced damage, which are pivotal to the progression of both pulmonary and neurological diseases. This review aims to delve into how pulmonary diseases, including acute/chronic airway diseases and pulmonary conditions, can instigate neurological disorders such as stroke, Alzheimer's disease, and Parkinson's disease. Additionally, we highlight the emerging research on the lung microbiome which, drawing parallels between the gut and lungs in terms of microbiome contents, may play a significant role in modulating brain health. Ultimately, this review paves the way for exciting avenues of future research and therapeutics in addressing respiratory and neurological diseases.
Collapse
Affiliation(s)
- Hongryeol Park
- Department of Tissue Morphogenesis, Max-Planck Institute for Molecular Biomedicine, Muenster 48149, Germany
| | - Chan Hee Lee
- Department of Biomedical Science, Hallym University, Chuncheon 24252, Korea
- Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
35
|
Xia Y, Lai W, Sha L, Duan Y, Chen L. Causal link between oxidative stress and epilepsy: A two-sample Mendelian randomization study. Brain Behav 2024; 14:e3549. [PMID: 38849979 PMCID: PMC11161392 DOI: 10.1002/brb3.3549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Although a growing body of research has indicated a strong link between oxidative stress and epilepsy, the exact nature of their interaction remains elusive. To elucidate this intricate relationship, we conducted a bidirectional Mendelian randomization (MR) analysis employing two independent datasets. METHODS A two-sample MR analysis was performed using instrumental variables derived from genome-wide association study summary statistics of oxidative stress injury biomarkers (OSIB) and epilepsy. The OSIBs were selected from eight primary metabolic pathways associated with oxidative stress. Additionally, seven distinct epilepsy phenotypes were considered, which encompassed all epilepsy, generalized epilepsy, generalized tonic-clonic seizures, focal epilepsy, focal epilepsy with hippocampal sclerosis (focal HS), focal epilepsy with lesions other than HS (focal NHS), and lesion-negative focal epilepsy. Causal estimates were computed using the inverse-variance weighted method or the Wald ratio method, and the robustness of causality was assessed through sensitivity analyses. RESULTS For OSIB and epilepsy, 520 and 23 genetic variants, respectively, were selectively extracted as instrumental variants. Genetically predicted higher kynurenine level was associated with a decreased risk of focal epilepsy (odds ratio [OR] 1.950, 95% CI 1.373-2.528, p = .023) and focal NHS (OR 1.276, 95% CI 1.100-1.453, p = .006). For reverse analysis, there was a suggestive effect of focal NHS on urate (OR 1.19 × 1015, 95% CI 11.19 × 1015 to 1.19 × 1015, p = .0000746) and total bilirubin (Tb) (OR 4.98, 95% CI 3.423-6.543, p = .044). In addition, genetic predisposition to focal HS was associated with higher Tb levels (OR 9.83, 95% CI 7.77-11.888, p = .034). CONCLUSION This MR study provides compelling evidence of a robust association between oxidative stress and epilepsy, with a notable emphasis on a causal relationship between oxidative stress and focal epilepsy. Additional research is warranted to confirm the connection between oxidative stress and the risk of epilepsy and to unravel the underlying mechanisms.
Collapse
Affiliation(s)
- Yilin Xia
- Department of Neurology, West China HospitalSichuan UniversityChengduChina
| | - Wanlin Lai
- Department of Neurology, West China HospitalSichuan UniversityChengduChina
| | - Leihao Sha
- Department of Neurology, West China HospitalSichuan UniversityChengduChina
| | - Yifei Duan
- Department of Neurology, West China HospitalSichuan UniversityChengduChina
| | - Lei Chen
- Department of Neurology, West China HospitalSichuan UniversityChengduChina
- Pazhou LabGuangzhouChina
| |
Collapse
|
36
|
Berkowitz BA, Paruchuri A, Stanek J, Abdul-Nabi M, Podolsky RH, Bustos AH, Childers KL, Murphy GG, Stangis K, Roberts R. Biomarker evidence of early vision and rod energy-linked pathophysiology benefits from very low dose DMSO in 5xFAD mice. Acta Neuropathol Commun 2024; 12:85. [PMID: 38822433 PMCID: PMC11140992 DOI: 10.1186/s40478-024-01799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
Here, we test whether early visual and OCT rod energy-linked biomarkers indicating pathophysiology in nicotinamide nucleotide transhydrogenase (Nnt)-null 5xFAD mice also occur in Nnt-intact 5xFAD mice and whether these biomarkers can be pharmacologically treated. Four-month-old wild-type or 5xFAD C57BL/6 substrains with either a null (B6J) Nnt or intact Nnt gene (B6NTac) and 5xFAD B6J mice treated for one month with either R-carvedilol + vehicle or only vehicle (0.01% DMSO) were studied. The contrast sensitivity (CS), external limiting membrane-retinal pigment epithelium (ELM-RPE) thickness (a proxy for low pH-triggered water removal), profile shape of the hyperreflective band just posterior to the ELM (i.e., the mitochondrial configuration within photoreceptors per aspect ratio [MCP/AR]), and retinal laminar thickness were measured. Both wild-type substrains showed similar visual performance indices and dark-evoked ELM-RPE contraction. The lack of a light-dark change in B6NTac MCP/AR, unlike in B6J mice, is consistent with relatively greater mitochondrial efficiency. 5xFAD B6J mice, but not 5xFAD B6NTac mice, showed lower-than-WT CS. Light-adapted 5xFAD substrains both showed abnormal ELM-RPE contraction and greater-than-WT MCP/AR contraction. The inner retina and superior outer retina were thinner. Treating 5xFAD B6J mice with R-carvedilol + DMSO or DMSO alone corrected CS and ELM-RPE contraction but not supernormal MCP/AR contraction or laminar thinning. These results provide biomarker evidence for prodromal photoreceptor mitochondrial dysfunction/oxidative stress/oxidative damage, which is unrelated to visual performance, as well as the presence of the Nnt gene. This pathophysiology is druggable in 5xFAD mice.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA.
| | - Anuhya Paruchuri
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA
| | - Josh Stanek
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA
| | - Mura Abdul-Nabi
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA
| | - Robert H Podolsky
- Biostatistics and Study Methodology, Children's National Hospital, Silver Spring, MD, USA
| | | | | | - Geoffrey G Murphy
- Department of Molecular and Integrative Physiology, Molecular Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Katherine Stangis
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Robin Roberts
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA
| |
Collapse
|
37
|
Shkundin A, Halaris A. IL-8 (CXCL8) Correlations with Psychoneuroimmunological Processes and Neuropsychiatric Conditions. J Pers Med 2024; 14:488. [PMID: 38793070 PMCID: PMC11122344 DOI: 10.3390/jpm14050488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Interleukin-8 (IL-8/CXCL8), an essential CXC chemokine, significantly influences psychoneuroimmunological processes and affects neurological and psychiatric health. It exerts a profound effect on immune cell activation and brain function, suggesting potential roles in both neuroprotection and neuroinflammation. IL-8 production is stimulated by several factors, including reactive oxygen species (ROS) known to promote inflammation and disease progression. Additionally, CXCL8 gene polymorphisms can alter IL-8 production, leading to potential differences in disease susceptibility, progression, and severity across populations. IL-8 levels vary among neuropsychiatric conditions, demonstrating sensitivity to psychosocial stressors and disease severity. IL-8 can be detected in blood circulation, cerebrospinal fluid (CSF), and urine, making it a promising candidate for a broad-spectrum biomarker. This review highlights the need for further research on the diverse effects of IL-8 and the associated implications for personalized medicine. A thorough understanding of its complex role could lead to the development of more effective and personalized treatment strategies for neuropsychiatric conditions.
Collapse
Affiliation(s)
| | - Angelos Halaris
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Chicago Stritch School of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA;
| |
Collapse
|
38
|
Qin P, Sun Y, Li L. Mitochondrial dysfunction in chronic neuroinflammatory diseases (Review). Int J Mol Med 2024; 53:47. [PMID: 38577947 PMCID: PMC10999227 DOI: 10.3892/ijmm.2024.5371] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/14/2024] [Indexed: 04/06/2024] Open
Abstract
Chronic neuroinflammation serves a key role in the onset and progression of neurodegenerative disorders. Mitochondria serve as central regulators of neuroinflammation. In addition to providing energy to cells, mitochondria also participate in the immunoinflammatory response of neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, multiple sclerosis and epilepsy, by regulating processes such as cell death and inflammasome activation. Under inflammatory conditions, mitochondrial oxidative stress, epigenetics, mitochondrial dynamics and calcium homeostasis imbalance may serve as underlying regulatory mechanisms for these diseases. Therefore, investigating mechanisms related to mitochondrial dysfunction may result in therapeutic strategies against chronic neuroinflammation and neurodegeneration. The present review summarizes the mechanisms of mitochondria in chronic neuroinflammatory diseases and the current treatment approaches that target mitochondrial dysfunction in these diseases.
Collapse
Affiliation(s)
- Pei Qin
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Ye Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Liya Li
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| |
Collapse
|
39
|
Remigante A, Spinelli S, Zuccolini P, Gavazzo P, Marino A, Pusch M, Morabito R, Dossena S. Melatonin protects Kir2.1 function in an oxidative stress-related model of aging neuroglia. Biofactors 2024; 50:523-541. [PMID: 38095328 DOI: 10.1002/biof.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/01/2023] [Indexed: 06/15/2024]
Abstract
Melatonin is a pleiotropic biofactor and an effective antioxidant and free radical scavenger and, as such, can be protective in oxidative stress-related brain conditions including epilepsy and aging. To test the potential protective effect of melatonin on brain homeostasis and identify the corresponding molecular targets, we established a new model of oxidative stress-related aging neuroglia represented by U-87 MG cells exposed to D-galactose (D-Gal). This model was characterized by a substantial elevation of markers of oxidative stress, lipid peroxidation, and protein oxidation. The function of the inward rectifying K+ channel Kir2.1, which was identified as the main Kir channel endogenously expressed in these cells, was dramatically impaired. Kir2.1 was unlikely a direct target of oxidative stress, but the loss of function resulted from a reduction of protein abundance, with no alterations in transcript levels and trafficking to the cell surface. Importantly, melatonin reverted these changes. All findings, including the melatonin antioxidant effect, were reproduced in heterologous expression systems. We conclude that the glial Kir2.1 can be a target of oxidative stress and further suggest that inhibition of its function might alter the extracellular K+ buffering in the brain, therefore contributing to neuronal hyperexcitability and epileptogenesis during aging. Melatonin can play a protective role in this context.
Collapse
Affiliation(s)
- Alessia Remigante
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Sara Spinelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Paolo Zuccolini
- Institute of Biophysics, National Research Council, Genova, Italy
| | - Paola Gavazzo
- Institute of Biophysics, National Research Council, Genova, Italy
| | - Angela Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Michael Pusch
- Institute of Biophysics, National Research Council, Genova, Italy
| | - Rossana Morabito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
40
|
Xu H, Wang Y, Yu C, Han C, Cui H. Heparin-Modified Superparamagnetic Iron Oxide Nanoparticles Suppress Lithium Chloride/Pilocarpine-Induced Temporal Lobe Epilepsy in Rats through Attenuation of Inflammation and Oxidative Stress. ACS Chem Neurosci 2024; 15:1937-1947. [PMID: 38630556 DOI: 10.1021/acschemneuro.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
The development of antiepileptic drugs is still a long process. In this study, heparin-modified superparamagnetic iron oxide nanoparticles (UFH-SPIONs) were prepared, and their antiepileptic effect and underlying mechanism were investigated. UFH-SPIONs are stable, homogeneous nanosystems with antioxidant enzyme activity that are able to cross the blood-brain barrier (BBB) and enriched in hippocampal epileptogenic foci. The pretreatment with UFH-SPIONs effectively prolonged the onset of seizures and reduced seizure severity after lithium/pilocarpine (LP)-induced seizures in rats. The pretreatment with UFH-SPIONs significantly decreased the expression of inflammatory factors in hippocampal tissues, including IL-6, IL-1β, and TNF-α. LP-induced oxidative stress in hippocampal tissues was in turn reduced upon pretreatment with UFH-SPIONs, as evidenced by an increase in the levels of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) and a decrease in the level of lipid peroxidation (MDA). Moreover, the LP-induced upregulation of apoptotic cells was decreased upon pretreatment with UFH-SPIONs. Together, these observations suggest that the pretreatment with UFH-SPIONs ameliorates LP-induced seizures and downregulates the inflammatory response and oxidative stress, which exerts neuronal protection during epilepsy.
Collapse
Affiliation(s)
- Hanbing Xu
- Key Laboratory of Chemical Biology, Ministry of Education, Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yubo Wang
- Key Laboratory of Chemical Biology, Ministry of Education, Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Congcong Yu
- Key Laboratory of Chemical Biology, Ministry of Education, Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Chunhong Han
- Key Laboratory of Chemical Biology, Ministry of Education, Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Huifei Cui
- Key Laboratory of Chemical Biology, Ministry of Education, Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- National Glycoengineering Research Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
41
|
Liang LP, Pearson-Smith JN, Day BJ, Patel M. Novel Catalytic Antioxidant Formulation Decreases Oxidative Stress, Neuroinflammation and Cognitive Dysfunction in a Model of Nerve Agent Intoxication. J Pharmacol Exp Ther 2024; 388:358-366. [PMID: 37652711 PMCID: PMC10801718 DOI: 10.1124/jpet.123.001708] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023] Open
Abstract
Reactive oxygen species have an emerging role in the pathologic consequences of status epilepticus. We have previously demonstrated the efficacy of a water-for-injection formulation of the meso-porphyrin catalytic antioxidant, manganese (III) meso-tetrakis (N-N-diethylimidazole) porphyrin (AEOL10150) against oxidative stress, neuroinflammation, and neuronal death initiated by kainic acid, pilocarpine, diisopropylflurophosphate (DFP), and soman. This previous dose and dosing strategy of AEOL10150 required smaller multiple daily injections, precluding our ability to test its efficacy against delayed consequences of nerve agent exposure such as neurodegeneration and cognitive dysfunction. Therefore, we developed formulations of AEOL10150 designed to deliver a larger dose once daily with improved brain pharmacodynamics. We examined four new formulations of AEOL10150 that resulted in 8 times higher subcutaneous dose with lower acute toxicity, slower absorption, longer half-life, and higher maximal plasma concentrations compared with our previous strategy. AEOL10150 brain levels exhibited improved pharmacodynamics over 24 hours with all four formulations. We tested a subcutaneous dose of 40 mg/kg AEOL10150 in two formulations (2% carboxymethyl cellulose and 4% polyethylene glycol-4000) in the DFP rat model, and both formulations exhibited significant protection against DFP-induced oxidative stress. Additionally, and in one formulation (4% polyethylene glycol-4000), AEOL10150 significantly protected against DFP-induced neuronal death, microglial activation, delayed memory impairment, and mortality. These results suggest that reformulation of AEOL10150 can attenuate acute and delayed outcomes of organophosphate neurotoxicity. SIGNIFICANCE STATEMENT: Reformulation of manganese (III) meso-tetrakis (N-N-diethylimidazole) porphyrin allowed higher tolerated doses of the compound with improved pharmacodynamics. Specifically, one new formulation allowed fewer daily doses and improvement in acute and delayed outcomes of organophosphate toxicity.
Collapse
Affiliation(s)
- Li-Ping Liang
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado (L.-P.L., J.N.P.-S., B.J.D., M.P.); and Department of Medicine, National Jewish Health, Denver, Colorado (B.J.D.)
| | - Jennifer N Pearson-Smith
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado (L.-P.L., J.N.P.-S., B.J.D., M.P.); and Department of Medicine, National Jewish Health, Denver, Colorado (B.J.D.)
| | - Brian J Day
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado (L.-P.L., J.N.P.-S., B.J.D., M.P.); and Department of Medicine, National Jewish Health, Denver, Colorado (B.J.D.)
| | - Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado (L.-P.L., J.N.P.-S., B.J.D., M.P.); and Department of Medicine, National Jewish Health, Denver, Colorado (B.J.D.)
| |
Collapse
|
42
|
Fornari Laurindo L, Aparecido Dias J, Cressoni Araújo A, Torres Pomini K, Machado Galhardi C, Rucco Penteado Detregiachi C, Santos de Argollo Haber L, Donizeti Roque D, Dib Bechara M, Vialogo Marques de Castro M, de Souza Bastos Mazuqueli Pereira E, José Tofano R, Jasmin Santos German Borgo I, Maria Barbalho S. Immunological dimensions of neuroinflammation and microglial activation: exploring innovative immunomodulatory approaches to mitigate neuroinflammatory progression. Front Immunol 2024; 14:1305933. [PMID: 38259497 PMCID: PMC10800801 DOI: 10.3389/fimmu.2023.1305933] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
The increasing life expectancy has led to a higher incidence of age-related neurodegenerative conditions. Within this framework, neuroinflammation emerges as a significant contributing factor. It involves the activation of microglia and astrocytes, leading to the release of pro-inflammatory cytokines and chemokines and the infiltration of peripheral leukocytes into the central nervous system (CNS). These instances result in neuronal damage and neurodegeneration through activated nucleotide-binding domain and leucine-rich repeat containing (NLR) family pyrin domain containing protein 3 (NLRP3) and nuclear factor kappa B (NF-kB) pathways and decreased nuclear factor erythroid 2-related factor 2 (Nrf2) activity. Due to limited effectiveness regarding the inhibition of neuroinflammatory targets using conventional drugs, there is challenging growth in the search for innovative therapies for alleviating neuroinflammation in CNS diseases or even before their onset. Our results indicate that interventions focusing on Interleukin-Driven Immunomodulation, Chemokine (CXC) Receptor Signaling and Expression, Cold Exposure, and Fibrin-Targeted strategies significantly promise to mitigate neuroinflammatory processes. These approaches demonstrate potential anti-neuroinflammatory effects, addressing conditions such as Multiple Sclerosis, Experimental autoimmune encephalomyelitis, Parkinson's Disease, and Alzheimer's Disease. While the findings are promising, immunomodulatory therapies often face limitations due to Immune-Related Adverse Events. Therefore, the conduction of randomized clinical trials in this matter is mandatory, and will pave the way for a promising future in the development of new medicines with specific therapeutic targets.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Jefferson Aparecido Dias
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Karina Torres Pomini
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Anatomy, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Cristiano Machado Galhardi
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Claudia Rucco Penteado Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Luíza Santos de Argollo Haber
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Domingos Donizeti Roque
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Anatomy, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Eliana de Souza Bastos Mazuqueli Pereira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Ricardo José Tofano
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Iris Jasmin Santos German Borgo
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, Universidade de São Paulo (FOB-USP), Bauru, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo, Brazil
| |
Collapse
|
43
|
Mohseni-Moghaddam P, Khaleghzadeh-Ahangar H, Atabaki R. Role of Necroptosis, a Regulated Cell Death, in Seizure and Epilepsy. Neurochem Res 2024; 49:1-13. [PMID: 37646959 DOI: 10.1007/s11064-023-04010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
Epilepsy is a chronic neurological disease that is characterized by spontaneous and recurrent seizures. Regulated cell death is a controlled process and has been shown to be involved in neurodegenerative diseases. Necroptosis is a type of regulated cell death, and its association with epilepsy has been documented. Necroptosis signaling can be divided into two pathways: canonical and non-canonical pathways. Inhibition of caspase-8, dimerization of receptor-interacting protein kinase 1 (RIP1) and RIP3, activation of mixed-lineage kinase domain-like protein (MLKL), movement of MLKL to the plasma membrane, and cell rupture occurred in these pathways. Through literature review, it has been revealed that there is a relationship between seizure, neuroinflammation, and oxidative stress. The seizure activity triggers the activation of various pathways within the central nervous system, including TNF-α/matrix metalloproteases, Neogenin and Calpain/ Jun N-terminal Kinase 1, which result in distinct responses in the brain. These responses involve the activation of neurons and astrocytes, consequently leading to an increase in the expression levels of proteins and genes such as RIP1, RIP3, and MLKL in a time-dependent manner in regions such as the hippocampus (CA1, CA3, dentate gyrus, and hilus), piriform cortex, and amygdala. Furthermore, the imbalance in calcium ions, depletion of adenosine triphosphate, and elevation of extracellular glutamate and potassium within these pathways lead to the progression of necroptosis, a reduction in seizure threshold, and increased susceptibility to epilepsy. Therefore, it is plausible that therapeutic targeting of these pathways could potentially provide a promising approach for managing seizures and epilepsy.
Collapse
Affiliation(s)
- Parvaneh Mohseni-Moghaddam
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Khaleghzadeh-Ahangar
- Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
- Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Rabi Atabaki
- Shahid Fakouri High School, Department of Biology Education, Department of Education, Jouybar, Iran.
| |
Collapse
|
44
|
Jivad N, Heidari-Soureshjani S, Bagheri H, Sherwin CMT, Rostamian S. Anti-seizure Effects and Mechanisms of Berberine: A Systematic Review. Curr Pharm Biotechnol 2024; 25:2253-2265. [PMID: 38385486 DOI: 10.2174/0113892010283237240107121749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/28/2023] [Accepted: 01/01/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Epilepsy is one of the most common in all age groups and disabling neurologic disorders around the world. OBJECTIVES This systematic review was to explore whether berberine (BBR) has any anti-seizure or anti-epileptic effects and also reviewed this possible mechanism. METHODS The EMBASE, Scopus, Cochrane Library, PubMed, and Web of Science databases were searched before Sep 2023. All types of studies that investigated the effects of BBR on epilepsy or chemical-induced seizures were eligible for inclusion. Two authors independently evaluated and reviewed titles/abstracts to identify publications for potential eligibility, and a third team member resolved discrepancies. Data were extracted in an Excel form, and the outcomes were discussed. RESULTS BBR showed its neuroprotective properties by reducing oxidative stress, neuroinflammation, and anti-apoptosis effects. It also increases brain-derived neurotrophic factor (BDNF) release and reduces transforming growth factor-beta (TGF-β1) and hypoxia-inducible factor 1α (HIF-1α). BBR by increasing scavenging reactive oxygen species (ROS), nuclear factor erythroid 2-related factor 2 (Nrf2), endogenous antioxidant enzymes, heme oxygenase-1 (HO-1), and inhibition of lipid peroxidation insert its antioxidant activity. Moreover, BBR showed antiinflammatory activity by reducing Interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha (TNF-α) levels and through inhibiting cyclooxygenase-2 (COX-2), and including nuclear factor κB (NF-κB). In addition, it modulated c-fos expression and neuronal excitability in the brain. CONCLUSION BBR indicated promising anti-seizure effects with remarkable antioxidant, antiinflammatory, anti-apoptotic, and neuroprotective activity. Future studies should be based on well-designed clinical trial studies that are integrated with new methods related to increasing bioavailability.
Collapse
Affiliation(s)
- Nahid Jivad
- Department of Neurology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Hesamaldin Bagheri
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Catherine M T Sherwin
- Professor and Vice-Chair for Research, Pediatric Clinical Pharmacology and Toxicology, Department of Pediatrics, Wright State University Boonshoft School of Medicine, Dayton Children's Hospital, One Children's Plaza, Dayton, Ohio, USA
| | | |
Collapse
|
45
|
Shao S, Zou Y, Kennedy KG, Dimick MK, MacIntosh BJ, Goldstein BI. Higher Levels of C-reactive Protein Are Associated With Higher Cortical Surface Area and Lower Cortical Thickness in Youth With Bipolar Disorder. Int J Neuropsychopharmacol 2023; 26:867-878. [PMID: 37947206 PMCID: PMC10726415 DOI: 10.1093/ijnp/pyad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Inflammation is implicated in the neuropathology of bipolar disorder (BD). The association of C-reactive protein (CRP) with brain structure has been examined in relation to BD among adults but not youth. METHODS Participants included 101 youth (BD, n = 55; control group [CG], n = 46; aged 13-20 years). Blood samples were assayed for levels of CRP. T1-weighted brain images were acquired to obtain cortical surface area (SA), volume, and thickness for 3 regions of interest (ROI; whole-brain cortical gray matter, prefrontal cortex, orbitofrontal cortex [OFC]) and for vertex-wise analyses. Analyses included CRP main effects and interaction effects controlling for age, sex, and intracranial volume. RESULTS In ROI analyses, higher CRP was associated with higher whole-brain SA (β = 0.16; P = .03) and lower whole-brain (β = -0.31; P = .03) and OFC cortical thickness (β = -0.29; P = .04) within the BD group and was associated with higher OFC SA (β = 0.17; P = .03) within the CG. In vertex-wise analyses, higher CRP was associated with higher SA and lower cortical thickness in frontal and parietal regions within BD. A significant CRP-by-diagnosis interaction was found in frontal and temporal regions, whereby higher CRP was associated with lower neurostructural metrics in the BD group but higher neurostructural metrics in CG. CONCLUSIONS This study found that higher CRP among youth with BD is associated with higher SA but lower cortical thickness in ROI and vertex-wise analyses. The study identified 2 regions in which the association of CRP with brain structure differs between youth with BD and the CG. Future longitudinal, repeated-measures studies incorporating additional inflammatory markers are warranted.
Collapse
Affiliation(s)
- Suyi Shao
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada (Ms Shao, Drs Zou and Goldstein)
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Yi Zou
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Kody G Kennedy
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Mikaela K Dimick
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Bradley J MacIntosh
- Dr Sandra Black Centre for Brain Resilience and Recovery, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Benjamin I Goldstein
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
46
|
Mehranfard N, Ghasemi M, Rajabian A, Ansari L. Protective potential of naringenin and its nanoformulations in redox mechanisms of injury and disease. Heliyon 2023; 9:e22820. [PMID: 38058425 PMCID: PMC10696200 DOI: 10.1016/j.heliyon.2023.e22820] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
Increasing evidence suggests that elevated intracellular levels of reactive oxygen species (ROS) play a significant role in the pathogenesis of many diseases. Increased intracellular levels of ROS can lead to the oxidation of lipids, DNA, and proteins, contributing to cellular damage. Hence, the maintenance of redox hemostasis is essential. Naringenin (NAR) is a flavonoid included in the flavanones subcategory. Various pharmacological actions have been ascribable to this phytochemical composition, including antioxidant, anti-inflammatory, antibacterial, antiviral, antitumor, antiadipogenic, neuro-, and cardio-protective activities. This review focused on the underlying mechanism responsible for the antioxidative stress properties of NAR and its' nanoformulations. Several lines of in vitro and in vivo investigations suggest the effects of NAR and its nanoformulation on their target cells via modulating signaling pathways. These nanoformulations include nanoemulsion, nanocarriers, solid lipid nanoparticles (SLN), and nanomicelle. This review also highlights several beneficial health effects of NAR nanoformulations on human diseases including brain disorders, cancer, rheumatoid arthritis, and small intestine injuries. Employing nanoformulation can improve the pharmacokinetic properties of NAR and consequently efficiency by reducing its limitations, such as low bioavailability. The protective effects of NAR and its' nanoformulations against oxidative stress may be linked to the modulation of Nrf2-heme oxygenase-1, NO/cGMP/potassium channel, COX-2, NF-κB, AMPK/SIRT3, PI3K/Akt/mTOR, BDNF, NOX, and LOX-1 pathways. Understanding the mechanism behind the protective effects of NAR can facilitate drug development for the treatment of oxidative stress-related disorders.
Collapse
Affiliation(s)
- Nasrin Mehranfard
- Nanokadeh Darooee Samen Private Joint Stock Company, Urmia, 5715793731, Iran
| | - Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arezoo Rajabian
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Legha Ansari
- Nanokadeh Darooee Samen Private Joint Stock Company, Urmia, 5715793731, Iran
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
47
|
Wu X, Xie D, Zheng Q, Peng S, Liu Y, Ma P, Ye L, Mo X, Feng Z. Downregulation of NHE1 expression attenuates apoptosis of primary hippocampal neurons of an epilepsy model through the calpain-1 pathway. Neurosci Lett 2023; 815:137494. [PMID: 37748674 DOI: 10.1016/j.neulet.2023.137494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/10/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
OBJECTIVE Na(+)/H(+) exchanger isoform 1 (NHE1), a membrane protein that regulates intracellular pH, is abundantly expressed in brain tissues. It is associated with pathophysiologies in several brain diseases. The present study aimed to investigate the effects of NHE1 on the apoptosis of primary neurons of an epilepsy model. METHODS Primary hippocampal neurons were cultured in an Mg2+-free medium to establish an epilepsy cell model. Designed shNHE1 lentivirus was used to silence NHE1 level in primary neurons. Nonselective pharmacological inhibitor MDL-28170 (20 μmol/L) was used to inhibit calpain-1 protein in neurons treated with Mg2+-free medium. The expression levels of NHE1 and calpain-1, intracellular Ca2+ (Ca2+i) and H+ (H+i) levels, and the expression levels of apoptosis-related proteins Bcl-2 and Bax were detected in neurons. TUNEL staining was performed to determine apoptosis in different groups. RESULTS NHE1 expression was increased in primary neurons treated with an Mg2+-free medium, and it was correlated with increased expression of calpain-1 and cell apoptosis. Neurons from the in vitro epilepsy model showed significantly decreased Bcl-2 protein expression and significantly increased Bax protein expression. In the presence of LV-shNHE1 and the calpain-1 inhibitor MDL-28170, the changes in the expression of apoptosis-related proteins Bcl-2 and Bax were blocked in the epileptic model, and the percentage of apoptotic neurons among neurons from the in vitro epilepsy model was significantly decreased. The increase in calpain-1 expression was suppressed by LV-shNHE1; however, the inhibition of calpain-1 did not affect NHE1 expression. CONCLUSION These results demonstrate that NHE1 participates in the promotion of neuronal apoptosis of epilepsy model in vitro through the calpain-1 pathway. Downregulation of NHE1 expression could exert a neuroprotective effect on epilepsy.
Collapse
Affiliation(s)
- Xuling Wu
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Dongjun Xie
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qian Zheng
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shuang Peng
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ying Liu
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Pengfei Ma
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lan Ye
- The Medical Science Function Laboratory of Experimental Teaching Center of Basic Medicine, School of Basic Medical Science, Guizhou Medical University, Guiyang, China.
| | - Xiangang Mo
- Department of Comprehensive Care Ward, Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Zhanhui Feng
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
48
|
Fuchs M, Viel C, Lehto A, Lau H, Klein J. Oxidative stress in rat brain during experimental status epilepticus: effect of antioxidants. Front Pharmacol 2023; 14:1233184. [PMID: 37767398 PMCID: PMC10520702 DOI: 10.3389/fphar.2023.1233184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Antioxidants have been proposed as a treatment for diseases of the central nervous system. However, few studies actually studied their effects in the brain. To test central actions of antioxidants, we used the lithium-pilocarpine (Li-Pilo) model of status epilepticus (SE) in the rat in which seizures are accompanied by significant oxidative stress. We used in vivo microdialysis to determine isoprostane levels during SE in real time and brain homogenates for other measures of oxidative stress. Six different antioxidants were tested in acute and preventive experiments (vitamin C, vitamin E, ebselen, resveratrol, n-tert-butyl-α-phenylnitrone and coenzyme Q10). None of the antioxidants had an effect when given acutely during SE. In contrast, when antioxidants were given for 3 days prior to seizure induction, vitamins C and E reduced isoprostane formation by 58% and 65%, respectively. Pretreatment with the other antioxidants was ineffective. In brain homogenates prepared after 90 min of seizures, SE decreased the ratio of reduced vs. oxidized glutathione (GSH/GSSG ratio) from 60.8 to 7.50 and caused a twofold increase of 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels and protein carbonyls. Pretreatment with vitamin C or vitamin E mitigated these effects and increased the GSH/GSSG ratio to 23.9 and 28.3, respectively. Again, the other antioxidants were not effective. We conclude that preventive treatment with vitamin C or vitamin E ameliorates seizure-induced oxidative damage in the brain. Several well-studied antioxidants were inactive, possibly due to limited brain permeability or a lack of chain-breaking antioxidant activity in hydrophilic compounds.
Collapse
Affiliation(s)
| | | | | | | | - Jochen Klein
- Institute of Pharmacology and Clinical Pharmacy, College of Pharmacy, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
49
|
Ramirez JM, Carroll MS, Burgraff N, Rand CM, Weese-Mayer DE. A narrative review of the mechanisms and consequences of intermittent hypoxia and the role of advanced analytic techniques in pediatric autonomic disorders. Clin Auton Res 2023; 33:287-300. [PMID: 37326924 DOI: 10.1007/s10286-023-00958-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023]
Abstract
Disorders of autonomic functions are typically characterized by disturbances in multiple organ systems. These disturbances are often comorbidities of common and rare diseases, such as epilepsy, sleep apnea, Rett syndrome, congenital heart disease or mitochondrial diseases. Characteristic of many autonomic disorders is the association with intermittent hypoxia and oxidative stress, which can cause or exaggerate a variety of other autonomic dysfunctions, making the treatment and management of these syndromes very complex. In this review we discuss the cellular mechanisms by which intermittent hypoxia can trigger a cascade of molecular, cellular and network events that result in the dysregulation of multiple organ systems. We also describe the importance of computational approaches, artificial intelligence and the analysis of big data to better characterize and recognize the interconnectedness of the various autonomic and non-autonomic symptoms. These techniques can lead to a better understanding of the progression of autonomic disorders, ultimately resulting in better care and management.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA, 98101, USA.
- Departments of Neurological Surgery and Pediatrics, University of Washington School of Medicine, 1900 Ninth Avenue, Seattle, WA, 98101, USA.
| | - Michael S Carroll
- Data Analytics and Reporting, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Division of Autonomic Medicine, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Nicholas Burgraff
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA, 98101, USA
| | - Casey M Rand
- Division of Autonomic Medicine, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Debra E Weese-Mayer
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Division of Autonomic Medicine, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| |
Collapse
|
50
|
Liu M, Liu H, Feng F, Krook-Magnuson E, Dudley SC. TRPM7 kinase mediates hypomagnesemia-induced seizure-related death. Sci Rep 2023; 13:7855. [PMID: 37188671 DOI: 10.1038/s41598-023-34789-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 05/08/2023] [Indexed: 05/17/2023] Open
Abstract
Hypomagnesemia (HypoMg) can cause seizures and death, but the mechanism is unknown. Transient receptor potential cation channel subfamily M 7 (TRPM7) is a Mg transporter with both channel and kinase function. In this study, we focused on the kinase role of TRPM7 in HypoMg-induced seizures and death. Wild type C57BL/6J mice and transgenic mice with a global homozygous mutation in the TRPM7 kinase domain (TRPM7K1646R, with no kinase function) were fed with control diet or a HypoMg diet. After 6 weeks of HypoMg diet, mice had significantly decreased serum Mg, elevated brain TRPM7, and a significant rate of death, with females being most susceptible. Deaths were immediately preceded by seizure events. TRPM7K1646R mice showed resistance to seizure-induced death. HypoMg-induced brain inflammation and oxidative stress were suppressed by TRPM7K1646R. Compared to their male counterparts, HypoMg female mice had higher levels of inflammation and oxidative stress in the hippocampus. We concluded that TRPM7 kinase function contributes seizure-induced deaths in HypoMg mice and that inhibiting the kinase reduced inflammation and oxidative stress.
Collapse
Affiliation(s)
- Man Liu
- Cardiovascular Division, Department of Medicine, The Lillehei Heart Institute, University of Minnesota at Twin Cities, 2231 6th Street SE, CCRB 4-141, Minneapolis, MN, 55455, USA
| | - Hong Liu
- Cardiovascular Division, Department of Medicine, The Lillehei Heart Institute, University of Minnesota at Twin Cities, 2231 6th Street SE, CCRB 4-141, Minneapolis, MN, 55455, USA
| | - Feng Feng
- Cardiovascular Division, Department of Medicine, The Lillehei Heart Institute, University of Minnesota at Twin Cities, 2231 6th Street SE, CCRB 4-141, Minneapolis, MN, 55455, USA
| | - Esther Krook-Magnuson
- Department of Neuroscience, University of Minnesota at Twin Cities, Minneapolis, MN, USA
| | - Samuel C Dudley
- Cardiovascular Division, Department of Medicine, The Lillehei Heart Institute, University of Minnesota at Twin Cities, 2231 6th Street SE, CCRB 4-141, Minneapolis, MN, 55455, USA.
| |
Collapse
|