1
|
Ulhe A, Raina P, Chaudhary A, Kaul-Ghanekar R. Alpha-linolenic acid-mediated epigenetic reprogramming of cervical cancer cell lines. Epigenetics 2025; 20:2451551. [PMID: 39895102 PMCID: PMC11792827 DOI: 10.1080/15592294.2025.2451551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/25/2024] [Accepted: 01/02/2025] [Indexed: 02/04/2025] Open
Abstract
Cervical cancer, the fourth most common cancer globally and the second most prevalent cancer among women in India, is primarily caused by Human Papilloma Virus (HPV). The association of diet with cancer etiology and prevention has been well established and nutrition has been shown to regulate cancer through modulation of epigenetic markers. Dietary fatty acids, especially omega-3, reduce the risk of cancer by preventing or reversing the progression through a variety of cellular targets, including epigenetic regulation. In this work, we have evaluated the potential of ALA (α linolenic acid), an ω-3 fatty acid, to regulate cervical cancer through epigenetic mechanisms. The effect of ALA was evaluated on the regulation of histone deacetylases1, DNA methyltransferases 1, and 3b, and global DNA methylation by ELISA. RT-PCR was utilized to assess the expression of tumor regulatory genes (hTERT, DAPK, RARβ, and CDH1) and their promoter methylation in HeLa (HPV18-positive), SiHa (HPV16-positive) and C33a (HPV-negative) cervical cancer cell lines. ALA increased DNA demethylase, HMTs, and HATs while decreasing global DNA methylation, DNMT, HDMs, and HDACs mRNA expression/activity in all cervical cancer cell lines. ALA downregulated hTERT oncogene while upregulating the mRNA expression of TSGs (Tumor Suppressor Genes) CDH1, RARβ, and DAPK in all the cell lines. ALA reduced methylation in the 5' CpG island of CDH1, RARβ, and DAPK1 promoters and reduced global DNA methylation in cervical cancer cell lines. These results suggest that ALA regulates the growth of cervical cancer cells by targeting epigenetic markers, shedding light on its potential therapeutic role in cervical cancer management.
Collapse
Affiliation(s)
- Amrita Ulhe
- Cancer Research Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Prerna Raina
- Cancer Research Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
- Analytical Department (ADT), Lupin Limited, Pune, India
| | - Amol Chaudhary
- Cancer Research Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Ruchika Kaul-Ghanekar
- Cancer Research Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
- Symbiosis Centre for Research and Innovation (SCRI); Symbiosis International Deemed University (SIU), Pune, India
- Cancer Research Lab, Symbiosis School of Biological Sciences (SSBS), Symbiosis International Deemed University (SIU), Pune, India
| |
Collapse
|
2
|
Ibrahim E, Mansour YE, Soror S, Haffez H. New Fluorescent Synthetic Retinoids as Potential RAR Agonists with Anticancer, Molecular Docking and ADME Assessments. J Fluoresc 2025:10.1007/s10895-025-04343-6. [PMID: 40410548 DOI: 10.1007/s10895-025-04343-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Accepted: 04/22/2025] [Indexed: 05/25/2025]
Abstract
Natural and synthetic retinoids are derivatives of vitamin A that mediate different transcriptional activities. Synthesis of fluorescent probes can be a useful tool in cellular imaging and understanding different regulatory signaling pathways. In this study, new fluorescent synthetic retinoid analogues (3a, 3b, 4a, and 4b) were prepared and biologically screened against six different cancer and normal cell lines for assessment of their anticancer and fluorescent activities. A combination of biological assays, such as MTT, flow cytometry, gene and protein expression analysis, DNA fragmentation, and ATPase activity assays, as well as in-silico and ADME studies, was performed. All new compounds showed anti-proliferative activity (2.09-132.70 µM) against different cancer cell types with minimal cytotoxicity (SI > 1), and the Caco-2 cancer cell line was selected for further in vitro investigation. All compounds showed cell cycle arrest at the SubG0-G1 phase with induction of early apoptosis and necrosis. Compound 4b showed a significant apoptotic effect by overexpression of Caspase-3 and Cyt-c genes, followed by compound 3a. All compounds showed anti-inflammatory activity by significantly down-regulating the IL-10 pro-inflammatory marker, while compounds 3b, 4a, and 4b specifically down-regulated IL-6. Retinoic acid receptors (RARs) were suggested as molecular targets confirmed by their overexpression of both gene and protein levels with molecular docking and molecular dynamic simulation studies. All fluorescent compounds showed intracellular fluorescent emission spectra with intracellular lipophilic properties. The new fluorescent synthetic retinoids showed dual activities as anticancer agents with fluorescence properties and can be used as useful probes in a variety of cellular imaging investigations.
Collapse
Affiliation(s)
- Esraa Ibrahim
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
- Center of Scientific Excellence "Helwan Structural Biology Research, (HSBR)", Helwan University, Cairo, 11795, Egypt
| | - Yara E Mansour
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
| | - Sameh Soror
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
- Center of Scientific Excellence "Helwan Structural Biology Research, (HSBR)", Helwan University, Cairo, 11795, Egypt
| | - Hesham Haffez
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt.
- Center of Scientific Excellence "Helwan Structural Biology Research, (HSBR)", Helwan University, Cairo, 11795, Egypt.
| |
Collapse
|
3
|
Butey S, Brown ML, Julson JR, Marayati R, Atigadda VR, Shaikh MG, Nazam N, Quinn CH, Shirley S, Stafman LL, Beierle EA. A Novel Rexinoid Agonist, UAB116, Decreases Metastatic Phenotype in Hepatoblastoma by Inhibiting the Wnt/β-Catenin Pathway via Upregulation of TRIM29. Int J Mol Sci 2025; 26:3933. [PMID: 40362175 PMCID: PMC12072001 DOI: 10.3390/ijms26093933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/16/2025] [Accepted: 04/19/2025] [Indexed: 05/15/2025] Open
Abstract
Hepatoblastoma (HB) is the most common pediatric primary liver tumor. About 20% of affected children have pulmonary metastasis at presentation. Survival rates for these children are dismal, not exceeding 25%. To study this subset of patients, we sequenced a metastatic HB cell line, HLM_2, and identified downregulation of the Liver X Receptor (LXR)/Retinoid X Receptor (RXR) pathway. LXR/RXRs function as transcriptional regulators that influence genes implicated in HB development, including the Wnt/β-catenin signaling pathway. We assessed the effects of a novel LXR/RXR agonist, UAB116, on metastatic HB, hypothesizing that this compound would affect genes governing the Wnt/β-catenin pathway, decreasing the metastatic phenotype of HLM_2 metastatic HB cells. We evaluated its effects on viability, proliferation, stemness, clonogenicity, and motility, and performed RNA sequencing to study differential gene regulation. Treatment with UAB116 for 72 h decreased HLM_2 proliferation, stemness, clonogenicity, and invasion. RNA sequencing identified an eight-fold increase in TRIM29, a gene known to inhibit β-catenin, in cells treated with UAB116. Administration of the LXR/RXR agonist, UAB116, reduces proliferation, stemness, and invasiveness of metastatic HB cells, potentially by upregulation of TRIM29, a known modulator of the Wnt/β-catenin pathway, providing support for further exploration of LXR/RXR agonism as a therapeutic strategy for metastatic HB.
Collapse
Affiliation(s)
- Swatika Butey
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA (M.L.B.); (J.R.J.); (M.G.S.); (N.N.); (C.H.Q.); (S.S.); (L.L.S.)
| | - Morgan L. Brown
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA (M.L.B.); (J.R.J.); (M.G.S.); (N.N.); (C.H.Q.); (S.S.); (L.L.S.)
| | - Janet R. Julson
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA (M.L.B.); (J.R.J.); (M.G.S.); (N.N.); (C.H.Q.); (S.S.); (L.L.S.)
| | - Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA (M.L.B.); (J.R.J.); (M.G.S.); (N.N.); (C.H.Q.); (S.S.); (L.L.S.)
| | - Venkatram R. Atigadda
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Maryam G. Shaikh
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA (M.L.B.); (J.R.J.); (M.G.S.); (N.N.); (C.H.Q.); (S.S.); (L.L.S.)
| | - Nazia Nazam
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA (M.L.B.); (J.R.J.); (M.G.S.); (N.N.); (C.H.Q.); (S.S.); (L.L.S.)
| | - Colin H. Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA (M.L.B.); (J.R.J.); (M.G.S.); (N.N.); (C.H.Q.); (S.S.); (L.L.S.)
| | - Sorina Shirley
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA (M.L.B.); (J.R.J.); (M.G.S.); (N.N.); (C.H.Q.); (S.S.); (L.L.S.)
| | - Laura L. Stafman
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA (M.L.B.); (J.R.J.); (M.G.S.); (N.N.); (C.H.Q.); (S.S.); (L.L.S.)
| | - Elizabeth A. Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA (M.L.B.); (J.R.J.); (M.G.S.); (N.N.); (C.H.Q.); (S.S.); (L.L.S.)
| |
Collapse
|
4
|
Matsuoka M, Uchibe K, Tang N, Tian H, Suzuki A, Oichi T, Usami Y, Alferiev I, Otsuru S, Abzug JM, Herzenberg JE, Pacifici M, Enomoto-Iwamoto M, Chorny M, Iwamoto M. Retinoid-impregnated nanoparticles enable control of bone growth by site-specific modulation of endochondral ossification in mice. J Bone Miner Res 2025; 40:535-547. [PMID: 39883086 PMCID: PMC12010157 DOI: 10.1093/jbmr/zjaf018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/02/2025] [Accepted: 01/18/2025] [Indexed: 01/31/2025]
Abstract
Growth-plate (GP) injures in limbs and other sites can impair GP function and cause deceleration of bone growth, leading to progressive bone lengthening imbalance, deformities and/or physical discomfort, decreased motion and pain. At present, surgical interventions are the only means available to correct these conditions by suppressing the GP activity in the unaffected limb and/or other bones in the ipsilateral region. Here, we aimed to develop a pharmacologic treatment of GP growth imbalance that involves local application of nanoparticles (NP)-based controlled release of a selective retinoic acid nuclear receptor gamma (RARγ) agonist drug. When RARγ agonist-loaded NP were implanted near the medial and lateral sides of proximal tibial growth plate in juvenile C57BL/6J mice, the GP underwent involution and closure. Overall tibia length was shortened compared to the contralateral element implanted with drug-free control NP. Importantly, when the RARγ agonist NP were implanted on the lateral side only, the adjacent epiphysis tilted toward the lateral side, leading to apical angulation of the tibia. In contrast to the local selectivity of these responses, systemic administration of RARγ agonists led to GP closure at many sites, inhibiting skeletal growth over time. Agonists for RARα and RARβ elicited no obvious responses over parallel regimens. Our findings provide novel evidence that RARγ agonist-loaded NP can control activity, function and directionality of a targeted GP, offering a potential and clinically-relevant alternative or supplementation to surgical correction of limb length discrepancy and angular deformities.
Collapse
Affiliation(s)
- Masatake Matsuoka
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Orthopaedic Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kenta Uchibe
- Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Maxillofacial Anatomy and Neurosciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ningfeng Tang
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Hongying Tian
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Akiko Suzuki
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Takeshi Oichi
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Yu Usami
- Department of Oral and Maxillofacial Pathology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Ivan Alferiev
- Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Satoru Otsuru
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Joshua M Abzug
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - John E Herzenberg
- International Center for Limb Lengthening, Sinai Hospital, Baltimore, MD, United States
| | - Maurizio Pacifici
- Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Motomi Enomoto-Iwamoto
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Michael Chorny
- Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Masahiro Iwamoto
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
5
|
Zhang Y, Gailloud L, Shin A, Fewkes J, Pinckney R, Whiting A, Chazot P. A Comparative Study of a Potent CNS-Permeable RARβ-Modulator, Ellorarxine, in Neurons, Glia and Microglia Cells In Vitro. Int J Mol Sci 2025; 26:3551. [PMID: 40332055 PMCID: PMC12027090 DOI: 10.3390/ijms26083551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/28/2025] [Accepted: 03/20/2025] [Indexed: 05/08/2025] Open
Abstract
Vitamin A (retinol) and its derivatives (retinoids) assume critical roles in neural development, cellular differentiation, axon elongation, programmed cell apoptosis and various fundamental cellular processes. Retinoids function by binding to specific nuclear receptors, such as retinoic acid receptors (RARs) and retinoid X receptors (RXRs), activating specific signalling pathways in the cells. The disruption of the retinoic acid signalling pathway can result in neuroinflammation, oxidative and ER stress and mitochondrial dysfunction and has been implicated in a wide range of neurodegenerative diseases. The present study explored the potential therapeutic application of our innovative CNS-permeable synthetic retinoid, Ellorarxine, for the treatment of neurodegenerative disorders in vitro. An MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium assay, lactate dehydrogenase (LDH) assay, enzyme-linked immunosorbent assay (ELISA), immunocytochemistry and immunofluorescence staining were performed. Ellorarxine increased Cyp26 and, selectively, RARβ protein expression in neurons, glia and microglia. Ellorarxine significantly reduced cell death (neurons, glia), increased mitochondrial viability (neurons), modulated cytokine release (microglia), and positively regulated cellular autophagy (neurons, glia, microglia). These results suggest that Ellorarxine is a promising drug candidate that should be further investigated in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yunxi Zhang
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (Y.Z.); (L.G.); (A.S.); (J.F.); (R.P.)
| | - Lilie Gailloud
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (Y.Z.); (L.G.); (A.S.); (J.F.); (R.P.)
- Department of Pharmacology, University College London, London WC1E 6BT, UK
| | - Alexander Shin
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (Y.Z.); (L.G.); (A.S.); (J.F.); (R.P.)
| | - Jessica Fewkes
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (Y.Z.); (L.G.); (A.S.); (J.F.); (R.P.)
| | - Rosella Pinckney
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (Y.Z.); (L.G.); (A.S.); (J.F.); (R.P.)
| | - Andrew Whiting
- Department of Chemistry, Science Laboratories, Durham University, South Road, Durham DH1 3LE, UK;
| | - Paul Chazot
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (Y.Z.); (L.G.); (A.S.); (J.F.); (R.P.)
| |
Collapse
|
6
|
Chen J, Zhang J, Chen S, Qin J, Hu X, Xi S, Zhang L, Zhou M, Zhou Y, Fu B, Wei H. CD121b-positive neutrophils predict immunosuppression in septic shock. Front Immunol 2025; 16:1565797. [PMID: 40230851 PMCID: PMC11994419 DOI: 10.3389/fimmu.2025.1565797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/13/2025] [Indexed: 04/16/2025] Open
Abstract
Background Septic shock is linked with high mortality and significant long-term morbidity in survivors. However, the specific role of neutrophils in septic shock pathophysiology remains scarce in recent research. Methods Peripheral blood immune cells from healthy donors and patients with septic shock were analyzed using single-cell RNA sequencing and batch RNA sequencing. We measured serum CD121b in both patients and healthy donors. Peripheral immune cells were isolated and exposed to either a CD121b recombinant protein or a CD121b blocking antibody to evaluate the expression of inflammatory factors. Additionally, in a humanized mouse sepsis model, the expression of CD121b in neutrophils across different tissues was assessed following treatment with all-trans retinoic acid (ATRA). Results This study identified a subset of CD10-CD121b+ neutrophils in the peripheral blood of patients with septic shock. These patients exhibited elevated concentrations of soluble CD121b in serum and urine. Furthermore, outcomes revealed that the presence of CD121b+ neutrophils positively correlated with the severity of septic shock. These cells displayed immunosuppressive characteristics; after blocking CD121b, proinflammatory cytokines increased in peripheral immune cells. Additionally, we found that treatment with ATRA down-regulated the expression of CD121b. Conclusions CD121b is closely associated with the progression of septic shock and may serve as a potential predictor indicator of immunosuppression for the condition.
Collapse
Affiliation(s)
- Jian Chen
- Department of Critical Care Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- The Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jinghe Zhang
- The Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Siao Chen
- The Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Jingkun Qin
- The Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Xinyu Hu
- The Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Shengdi Xi
- The Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Lin Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Min Zhou
- Department of Critical Care Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Yonggang Zhou
- The Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Binqing Fu
- The Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- The Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
7
|
Kazim N, Peng W, Yue J, Yen A. FGR Src family kinase causes signaling and phenotypic shift mimicking retinoic acid-induced differentiation of leukemic cells. Oncotarget 2025; 16:202-218. [PMID: 40116400 PMCID: PMC11927794 DOI: 10.18632/oncotarget.28705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/06/2025] [Indexed: 03/23/2025] Open
Abstract
Retinoic acid (RA), an embryonic morphogen, is used in cancer differentiation therapy, causing extensive gene expression changes leading to cell differentiation. This study reveals that the expression of the Src-family kinase (SFK), FGR, alone can induce cell differentiation similar to RA. Traditionally, RA's mechanism involves transcriptional activation via RAR/RXR(Retinoic Acid Receptor/Retinoid X Receptor) nuclear receptors. In the HL-60 human myelo-monocytic leukemia model, an actively proliferating phenotypically immature, lineage bipotent NCI-60 cell line. RA promotes myeloid lineage selection and maturation with G1/0 growth inhibition. This study finds that FGR expression alone is sufficient to induce differentiation, marked by CD38, CD11b, ROS, and p27(kip1) expression, characteristic of mature myeloid cells. To understand the mechanism, signaling attributes promoting RA-induced differentiation were analyzed. RA induces FGR expression, which activates a novel cytosolic macromolecular signaling complex(signalsome) driving differentiation. RA increases the abundance, associations, and phosphorylation of signalsome components, including RAF, LYN, FGR, SLP-76, and CBL, which appear as nodes in the signalsome. These traditionally cytosolic signaling molecules go into the nucleus. RAF complexes with a retinoic acid-response element (RARE) in the blr1 gene promoter, where the induced BLR1 expression is essential for RA-induced differentiation. We find now that FGR expression mimics RA's enhancement of signalsome nodes, RAF expression, and phosphorylation, leading to BLR1 expression. Notably, FGR induces the expression of genes targeted by RAR/RXR, such as cd38 and blr1, even without RA. Thus, FGR triggers signaling events and phenotypic shifts characteristic of RA. This finding represents a paradigm shift, given FGR's historical role as a pro-proliferation oncogene.
Collapse
Affiliation(s)
- Noor Kazim
- Department of Biomedical Science, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Wang Peng
- Department of Biomedical Science, City University of Hong Kong, Hong Kong, PRC
| | - Jianbo Yue
- Department of Biomedical Science, City University of Hong Kong, Hong Kong, PRC
- Current address: Division of Natural and Applied Sciences, Synear Molecular Biology Lab, Duke Kunshan University, Kunshan, China
| | - Andrew Yen
- Department of Biomedical Science, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
8
|
Singh U, Kokkanti RR, Patnaik S. Beyond chemotherapy: Exploring 5-FU resistance and stemness in colorectal cancer. Eur J Pharmacol 2025; 991:177294. [PMID: 39863147 DOI: 10.1016/j.ejphar.2025.177294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/28/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Colorectal cancer (CRC) remains a significant global health challenge, demanding continuous advancements in treatment strategies. This review explores the complexities of targeting colorectal cancer stem cells (CSCs) and the mechanisms contributing to resistance to 5-fluorouracil (5-FU). The efficacy of 5-FU is enhanced by combination therapies such as FOLFOXIRI and targeted treatments like bevacizumab, cetuximab, and panitumumab, particularly in KRAS wild-type tumors, despite associated toxicity. Biomarkers like thymidylate synthase (TYMS), thymidine phosphorylase (TP), and dihydropyrimidine dehydrogenase (DPD) are crucial for predicting 5-FU efficacy and resistance. Targeting CRC-CSCs remains challenging due to their inherent resistance to conventional therapies, marker variability, and the protective influence of the tumor microenvironment which promotes stemness and survival. Personalized treatment strategies are increasingly essential to address CRC's genetic and phenotypic diversity. Advances in immunotherapy, including immune checkpoint inhibitors and cancer vaccines, along with nanomedicine-based therapies, offer promising targeted drug delivery systems that enhance specificity, reduce toxicity, and provide novel approaches for overcoming resistance mechanisms. Integrating these innovative strategies with traditional therapies may enhance the effectiveness of CRC therapy by addressing the underlying causes of 5-FU resistance in CSCs.
Collapse
Affiliation(s)
- Ursheeta Singh
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, 751024, Odisha, India
| | - Rekha Rani Kokkanti
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, 751024, Odisha, India
| | - Srinivas Patnaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, 751024, Odisha, India.
| |
Collapse
|
9
|
Chitren R, Gowda K, Amin S, Robertson GP, Jonnalagadda S, Budak-Alpdogan T, Pandey MK. Novel Pan-ALDH Inhibitor KS100 Effectively Targets ALDH+/CD138⁻ Stem-like Cells to Overcome Relapse in Multiple Myeloma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641909. [PMID: 40161728 PMCID: PMC11952311 DOI: 10.1101/2025.03.06.641909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Multiple myeloma (MM), a clonal plasma cell disorder is the second most frequent hematological malignancy in the United States. This malignancy is characterized by a series of symptoms such as bone lesions, hypercalcemia, renal failure, and anemia. The current clinical drugs in the market are successful in treating multiple myeloma patients into remission but does not address relapse where a more aggressive phenotype of the cancer remains untreatable. We hypothesize that a small subset of multiple myeloma stem-like cells (MMSLC's) that overexpress aldehyde dehydrogenases (ALDH + ) is the cause of the relapse. Overexpression of ALDH bolsters drug resistance via detoxification and stemness via the retinoic acid signaling pathway. The phenotype of MMSLC's is not yet known for certainty but there are a few well established markers such CD138 negative (CD138 neg ) cells that are known to overexpress ALDH. In this study, we target regular MM cells and bortezomib resistant ALDH + /CD138 neg MMSLC's with a novel, potent, pan-ALDH inhibitor, KS100. Here we report KS100 effectively lowered ALDH expression in regular and bortezomib resistant ALDH + /CD138 neg cells, MM cell viability as well as proteins associated with MMSLC's. Most importantly we showed that KS100 lowered ALDH + populations in regular, bortezomib resistant and CD138 neg cells via ALDEFLUOR™ assay.
Collapse
|
10
|
Bandesh K, Motakis E, Nargund S, Kursawe R, Selvam V, Bhuiyan RM, Eryilmaz GN, Krishnan SN, Spracklen CN, Ucar D, Stitzel ML. Single-cell decoding of human islet cell type-specific alterations in type 2 diabetes reveals converging genetic- and state-driven β -cell gene expression defects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633590. [PMID: 39896672 PMCID: PMC11785113 DOI: 10.1101/2025.01.17.633590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Pancreatic islets maintain glucose homeostasis through coordinated action of their constituent endocrine and affiliate cell types and are central to type 2 diabetes (T2D) genetics and pathophysiology. Our understanding of robust human islet cell type-specific alterations in T2D remains limited. Here, we report comprehensive single cell transcriptome profiling of 245,878 human islet cells from a 48-donor cohort spanning non-diabetic (ND), pre-diabetic (PD), and T2D states, identifying 14 distinct cell types detected in every donor from each glycemic state. Cohort analysis reveals ~25-30% loss of functional beta cell mass in T2D vs. ND or PD donors resulting from (1) reduced total beta cell numbers/proportions and (2) reciprocal loss of 'high function' and gain of senescent β -cell subpopulations. We identify in T2D β -cells 511 differentially expressed genes (DEGs), including new (66.5%) and validated genes (e.g., FXYD2, SLC2A2, SYT1), and significant neuronal transmission and vitamin A metabolism pathway alterations. Importantly, we demonstrate newly identified DEG roles in human β -cell viability and/or insulin secretion and link 47 DEGs to diabetes-relevant phenotypes in knockout mice, implicating them as potential causal islet dysfunction genes. Additionally, we nominate as candidate T2D causal genes and therapeutic targets 27 DEGs for which T2D genetic risk variants (GWAS SNPs) and pathophysiology (T2D vs. ND) exert concordant expression effects. We provide this freely accessible atlas for data exploration, analysis, and hypothesis testing. Together, this study provides new genomic resources for and insights into T2D pathophysiology and human islet dysfunction.
Collapse
Affiliation(s)
- Khushdeep Bandesh
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032 USA
| | - Efthymios Motakis
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032 USA
| | - Siddhi Nargund
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032 USA
| | - Romy Kursawe
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032 USA
| | - Vijay Selvam
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032 USA
| | - Redwan M Bhuiyan
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032 USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT 06032 USA
| | - Giray Naim Eryilmaz
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032 USA
| | - Sai Nivedita Krishnan
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032 USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT 06032 USA
| | - Cassandra N. Spracklen
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Duygu Ucar
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032 USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT 06032 USA
- Institute for Systems Genomics, UConn, Farmington, CT 06032 USA
| | - Michael L. Stitzel
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032 USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT 06032 USA
- Institute for Systems Genomics, UConn, Farmington, CT 06032 USA
| |
Collapse
|
11
|
Kacemi R, Campos MG. Bee Pollen Phytochemicals and Nutrients as Unequaled Pool of Epigenetic Regulators: Implications for Age-Related Diseases. Foods 2025; 14:347. [PMID: 39941940 PMCID: PMC11816923 DOI: 10.3390/foods14030347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Bee pollen is characterized by an exceptional diversity and abundance of micronutrients and bioactive phytochemicals. This richness remains very sparsely investigated, but accumulating evidence strongly supports a promising future for bee pollen in human nutrition and medicine. Epigenetic regulation is among the most compelling biomedical topics that remain completely untapped in bee pollen and bee derivative research. In our current research, we identified numerous ubiquitous compounds that are consistently present in this matrix, regardless of its botanical and geographical origins, and that have been well studied and documented as epigenetic regulators in recent years. Given the relative newness of both bee pollen biomedical research and epigenetic studies within nutritional, pharmaceutical, and medical sciences, this review aims to bridge these valuable fields and advance related experimental investigations. To the best of our knowledge, this is the first work that has aimed to comprehensively investigate the epigenetic modulatory potential of bee pollen compounds. Our findings have also unveiled several intriguing phenomena, such as a dual effect of the same compound depending on the cellular context or the effect of some compounds on the cross-generational heritability of epigenetic traits. Although experimental studies of epigenetic regulation by bee pollen as a whole or by its extract are still lacking, our current study clearly indicates that this research avenue is very promising and worth further investigations. We hope that our current work constitutes a foundational cornerstone of future investigations for this avenue of research.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria G. Campos
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra Chemistry Centre (CQC, FCT Unit 313) (FCTUC), University of Coimbra, Rua Larga, 3004-531 Coimbra, Portugal
| |
Collapse
|
12
|
Zhao Q, Samuels C, Timmins P, Massri N, Chemerinski A, Wu T, Loia R, Cheung EK, Zhang X, Arora R, Babwah AV, Douglas NC. Signaling via retinoic acid receptors mediates decidual angiogenesis in mice and human stromal cell decidualization. FASEB J 2025; 39:e70291. [PMID: 39777800 PMCID: PMC11706222 DOI: 10.1096/fj.202400766r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 12/05/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
At the maternal-fetal interface, tightly regulated levels of retinoic acid (RA), the physiologically active metabolite of vitamin A, are required for embryo implantation and pregnancy success. Herein, we utilize mouse models, primary human cells, and pharmacological tools to demonstrate how depletion of RA signaling via RA receptor (RAR) disrupts implantation and progression of early pregnancy. To inhibit RAR signaling during early pregnancy, BMS493, an inverse pan-RAR agonist that prevents RA-induced differentiation, was administered to pregnant mice during the peri-implantation period. Attenuation of RA/RAR signaling prior to embryo implantation results in implantation failure, whereas attenuation of RA/RAR signaling after embryo implantation disrupts the post-implantation decidual vasculature and results in pregnancy failure by mid-gestation. To inhibit RAR signaling during human endometrial stromal cell (HESC) decidualization, primary HESCs and decidualized primary HESCs were transfected with silencing RNA specific for human RARA. Inhibition of RA/RARA signaling prevents initiation of HESC decidualization, but not maintenance of the decidualized HESC phenotype. These data show that RA/RAR signaling is required for maintenance of the decidual vasculature that supports early pregnancy in mice, and distinct RAR signaling is required for initiation, but not maintenance of primary HESC decidualization in vitro.
Collapse
Affiliation(s)
- Qingshi Zhao
- Department of Obstetrics, Gynecology and Reproductive HealthRutgers Biomedical and Health SciencesNewarkNew JerseyUSA
| | - Cherie‐Ann Samuels
- Department of Obstetrics, Gynecology and Reproductive HealthRutgers Biomedical and Health SciencesNewarkNew JerseyUSA
| | - Patrick Timmins
- Department of Obstetrics, Gynecology and Reproductive HealthRutgers Biomedical and Health SciencesNewarkNew JerseyUSA
| | - Noura Massri
- Department of Obstetrics, Gynecology and Reproductive BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Anat Chemerinski
- Department of Obstetrics, Gynecology and Reproductive HealthRutgers Biomedical and Health SciencesNewarkNew JerseyUSA
| | - Tracy Wu
- Department of Obstetrics, Gynecology and Reproductive HealthRutgers Biomedical and Health SciencesNewarkNew JerseyUSA
| | - Rachel Loia
- Department of Obstetrics, Gynecology and Reproductive HealthRutgers Biomedical and Health SciencesNewarkNew JerseyUSA
| | - Emma K. Cheung
- Department of Obstetrics, Gynecology and Reproductive HealthRutgers Biomedical and Health SciencesNewarkNew JerseyUSA
| | - Xusheng Zhang
- Epigenomics/Computational Genomics CoreAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Ripla Arora
- Department of Obstetrics, Gynecology and Reproductive BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Andy V. Babwah
- Department of PediatricsRobert Wood Johnson Medical School, Rutgers Biomedical and Health SciencesNew BrunswickNew JerseyUSA
| | - Nataki C. Douglas
- Department of Obstetrics, Gynecology and Reproductive HealthRutgers Biomedical and Health SciencesNewarkNew JerseyUSA
- Center for Immunity and InflammationRutgers Biomedical and Health SciencesNewarkNew JerseyUSA
| |
Collapse
|
13
|
Bravo SC, Montalbetti CA, Freije García F, Petrera E, Liñares GG. Improving Retinoic Acid Efficacy: Lipase-Catalyzed Synthesis of Derivatives with Antiviral Activity. Chembiochem 2025; 26:e202400728. [PMID: 39585961 DOI: 10.1002/cbic.202400728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 11/27/2024]
Abstract
An efficient enzymatic approach was applied to the synthesis of new derivatives of retinoic acid. Nine derivatives, four of them new compounds, were obtained through lipase-catalysis with excellent yield. In order to find the optimal reaction conditions, the influence of various parameters such as enzyme source, nucleophile : substrate ratio, enzyme : substrate ratio, solvent and temperature was studied. The excellent results obtained by lipase catalysis made the procedure very efficient considering their advantages such as mild reaction conditions and low environmental impact. In addition, several synthesized compounds exhibited lower cytotoxicity than the retinoic acid in Vero cells and a remarkably higher antiviral activity against Herpes simplex virus type 1 (HSV-1) and Herpes simplex virus type 2 (HSV-2).
Collapse
Affiliation(s)
- Sofía C Bravo
- Laboratorio de Biocatálisis, Departamento de Química Orgánica y UMYMFOR, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, piso 3, C1428EGA, Buenos Aires, Argentina
| | - Carlos A Montalbetti
- Laboratorio de Virología: agentes antivirales y citoprotectores, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, piso 3, C1428EGA, Buenos Aires, Argentina
| | - Fabricio Freije García
- Laboratorio de Biocatálisis, Departamento de Química Orgánica y UMYMFOR, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, piso 3, C1428EGA, Buenos Aires, Argentina
| | - Erina Petrera
- Laboratorio de Virología: agentes antivirales y citoprotectores, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, piso 3, C1428EGA, Buenos Aires, Argentina
| | - Guadalupe García Liñares
- Laboratorio de Biocatálisis, Departamento de Química Orgánica y UMYMFOR, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, piso 3, C1428EGA, Buenos Aires, Argentina
| |
Collapse
|
14
|
Wang Z, Chen J, Wen J, Zhang S, Li Y, Wang J, Li Z. RNA-Seq and ATAC-Seq Reveal CYP26A1-Mediated Regulation of Retinoic Acid-Induced Meiosis in Chicken Primordial Germ Cells. Animals (Basel) 2024; 15:23. [PMID: 39794966 PMCID: PMC11718974 DOI: 10.3390/ani15010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Retinoic acid (RA) plays a critical role in initiating meiosis in primordial germ cells (PGC), yet the specific mechanisms of its interaction with PGC remain unclear. In this study, we used an in vitro feeder-free culture system with chicken PGC as a model to explore the mechanisms by which RA induces the entry of PGC into meiosis. Results demonstrated that exogenous RA treatment altered the cell cycle distribution of PGC, significantly increasing the proportion of cells in the G1 phase and decreasing those in the G2 phase, suggesting that RA may promote the transition of PGC from proliferation to differentiation. Giemsa staining further revealed that chromosomes in a subset of RA-treated PGC exhibited meiotic characteristics. Through combined RNA-seq and ATAC-seq analyses, we identified that CYP26A1, a gene involved in RA degradation, was significantly upregulated in the RA-treated group, with enhanced accessibility in its chromatin regions. This finding suggests a robust mechanism for self-regulation of RA levels within PGC, indicating that CYP26A1 may play a pivotal role in the degradation of exogenous RA in chicken PGC. This study elucidated the effects of RA on chicken PGC and provided new insights into the role of RA in germ cell differentiation.
Collapse
Affiliation(s)
- Zhaochuan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (J.C.); (J.W.); (S.Z.); (Y.L.); (J.W.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Jiayi Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (J.C.); (J.W.); (S.Z.); (Y.L.); (J.W.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Jintian Wen
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (J.C.); (J.W.); (S.Z.); (Y.L.); (J.W.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Siyu Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (J.C.); (J.W.); (S.Z.); (Y.L.); (J.W.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Yantao Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (J.C.); (J.W.); (S.Z.); (Y.L.); (J.W.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Jiali Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (J.C.); (J.W.); (S.Z.); (Y.L.); (J.W.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Zhenhui Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (J.C.); (J.W.); (S.Z.); (Y.L.); (J.W.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
15
|
Mushtaq M, Liaño-Pons J, Wang J, Alzrigat M, Yuan Y, Ruiz-Pérez MV, Chen Y, Kashuba E, Haglund de Flon F, Brodin B, Arsenian-Henriksson M. EZH2 inhibition sensitizes retinoic acid-driven senescence in synovial sarcoma. Cell Death Dis 2024; 15:836. [PMID: 39550391 PMCID: PMC11569238 DOI: 10.1038/s41419-024-07176-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/18/2024]
Abstract
Synovial sarcoma (SS) is driven by a unique t(18;X) chromosomal translocation resulting in expression of the SS18-SSX fusion oncoprotein, a transcriptional regulator with both activating and repressing functions. However, the manner in which SS18-SSX contributes to the development of SS is not entirely known. Here, we show that SS18-SSX drives the expression of Preferentially Expressed Antigen in Melanoma (PRAME), which is highly expressed in SS but whose function remains poorly understood. The fusion protein directly binds and activates the PRAME promoter and we found that expression of SS18-SSX and PRAME are positively correlated. We provide evidence that PRAME modulates retinoic acid (RA) signaling, forming a ternary complex with the RA receptor α (RARα) and the Enhancer of Zeste Homolog 2 (EZH2). Knockdown of PRAME suppressed the response to all-trans retinoic acid (ATRA) supporting PRAME's role in modulating RA-signaling. Notably, we demonstrate that combined pharmacological inhibition of EZH2 and treatment with ATRA reconstituted RA signaling followed by reduced proliferation and induction of cellular senescence. In conclusion, our data provides new insights on the role of the SS18-SSX fusion protein in regulation of PRAME expression and RA signaling, highlighting the therapeutic potential of disrupting the RARα-PRAME-EZH2 complex in SS. Schematic presentation of the proposed model. A The RARα-PRAME-EZH2 ternary complex in SS. The fusion SS18-SSX oncoprotein binds to the PRAME promoter and activates its expression. PRAME in turn interacts with RARα-RXR heterodimers as well as with EZH2, and the complex binds to retinoic acid response elements (RAREs) in the DNA. This results in transcriptional repression of retinoic acid (RA) responsive genes and thus inhibition of RA-signaling, allowing tumor cell proliferation. B Therapeutic strategy. Treatment with an EZH2 inhibitor, such as GSK343, or activation of RAR receptors via all-trans retinoic acid (ATRA), disrupts the RARα-PRAME-EZH2 ternary complex and restores RA-signaling. Exposure to GSK343 or ATRA results in inhibition of cell proliferation and induction of cellular senescence, where GSK343 shows a dominant effect. The Figure was created with Biorender.com.
Collapse
Affiliation(s)
- Muhammad Mushtaq
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65, Stockholm, Sweden.
- Department of Biotechnology, Faculty of Life Sciences and Informatics. Balochistan University of Information Technology, Engineering, and Management Sciences (BUITEMS), 87300, Quetta, Pakistan.
| | - Judit Liaño-Pons
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65, Stockholm, Sweden.
| | - Jiansheng Wang
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Mohammad Alzrigat
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Ye Yuan
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - María Victoria Ruiz-Pérez
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Yi Chen
- Department of Oncology-Pathology, Karolinska Institutet, Solna, SE-171 76, Stockholm, Sweden
- Division of Hematology and Oncology, Department of Medicine, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, USA
| | - Elena Kashuba
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65, Stockholm, Sweden
- RE Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of NAS of Ukraine, 03022, Kyiv, Ukraine
| | - Felix Haglund de Flon
- Department of Oncology-Pathology, Karolinska Institutet, Solna, SE-171 76, Stockholm, Sweden
| | - Bertha Brodin
- Department of Applied Physics, Biomedical and X-Ray Physics, KTH Royal Institute of Technology, SE-10691, Stockholm, Sweden
| | - Marie Arsenian-Henriksson
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65, Stockholm, Sweden.
| |
Collapse
|
16
|
Matsuoka M, Uchibe K, Tang N, Tian H, Suzuki A, Oichi T, Usami Y, Alferiev I, Otsuru S, Abzug JM, Herzenberg JE, Pacifici M, Enomoto-Iwamoto M, Chorny M, Iwamoto M. Retinoid-impregnated nanoparticles enable control of bone growth by site-specific modulation of endochondral ossification in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.08.622655. [PMID: 39605497 PMCID: PMC11601462 DOI: 10.1101/2024.11.08.622655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Growth-plate (GP) injures in limbs and other sites can impair GP function and cause deceleration of bone growth, leading to progressive bone lengthening imbalance, deformities and/or physical discomfort, decreased motion and pain. At present, surgical interventions are the only means available to correct these conditions by suppressing the GP activity in the unaffected limb and/or other bones in the ipsilateral region. Here, we aimed to develop a pharmacologic treatment of GP growth imbalance that involves local application of nanoparticles-based controlled release of a selective retinoic acid nuclear receptor gamma (RARγ) agonist drug. When RARγ agonist-loaded nanoparticles were implanted near the medial and lateral sides of proximal tibial growth plate in juvenile C57BL/6j mice, the GP underwent involution and closure. Overall tibia length was shortened compared to the contralateral element implanted with drug-free control nanoparticles. Importantly, when the RARγ agonist nanoparticles were implanted on the lateral side only, the adjacent epiphysis tilted toward the lateral site, leading to apical angulation of the tibia. In contrast to the local selectivity of these responses, systemic administration of RARγ agonists led to GP closure at many sites, inhibiting skeletal growth over time. Agonists for RARα and RARβ elicited no obvious responses over parallel regimens. Our findings provide novel evidence that RARγ agonist-loaded nanoparticles can control activity, function and directionality of a targeted GP, offering a potential and clinically-relevant alternative or supplementation to surgical correction of limb length discrepancy and angular deformities. Lay summary Growth-plates (physes), which are cartilage tissues near the ends of bones, support normal bone growth in children. Growth plate injures in limbs and other sites can impair growth plate function, leading to inhibited or imbalanced bone growth, skeletal deformities, decreased motion, discomfort or pain. At present, surgical interventions are the only means available to correct these conditions. Here, we aimed to develop a pharmacologic treatment for bone growth imbalance. Nanoparticles loaded with a selective agonist for the retinoic acid nuclear receptor gamma were prepared and implanted near the tibial growth plate in juvenile mice. The growth plate underwent involution and closure, and overall tibia length was shortened compared to the contralateral element implanted with drug-free control nanoparticles. Importantly, when the same drug nanoparticles were implanted in only one side of the tibia, the tibia was tilted toward the injection site. Our findings provide novel evidence that retinoic acid receptor gamma agonist-loaded nanoparticles can control activity, function and directionality of a targeted growth plate, offering a potential and clinically-relevant alternative or supplementation to surgical correction of limb length imbalances and deformities.
Collapse
|
17
|
Giannakaki AG, Giannakaki MN, Oikonomou E, Nikolettos K, Bothou A, Kotanidou S, Andreou S, Kritsotaki N, Nalmpanti T, Spanoudakis E, Iatrakis G, Damaskos C, Garmpis N, Nikolettos N, Tsikouras P. Leukemia in pregnancy: Diagnosis and therapeutic approach (Review). Mol Clin Oncol 2024; 21:79. [PMID: 39246846 PMCID: PMC11375773 DOI: 10.3892/mco.2024.2777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/05/2024] [Indexed: 09/10/2024] Open
Abstract
The present study aimed to evaluate the epidemiological, diagnostic and therapeutic data of hematological malignancies in pregnancy. Leukemia in pregnancy is rare, and literature data are not extensive. Risk factors, epidemiology and pathogenesis of these diseases are not fully developed. Furthermore, there is a detailed report on the complications in pregnancy and the overall (per trimester) management of these diseases, specifically their treatment strategy. The possibility of achieving a future pregnancy in women with leukemia is described in the present study. The limited clinical research data currently available is mainly due to the inability to conduct randomized clinical trials for ethical reasons. Further research is needed, firstly due to the importance of these diseases for the pregnant woman and the fetus, and secondly, due to the continuous development of novel anticancer drugs that aim to improve the prognosis of these diseases.
Collapse
Affiliation(s)
- Aikaterini-Gavriela Giannakaki
- First Department of Obstetrics and Gynecology, Alexandra University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | | | - Efthymios Oikonomou
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Konstantinos Nikolettos
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Anastasia Bothou
- Neonatal Department, Alexandra University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Sonia Kotanidou
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Sotiris Andreou
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Nektaria Kritsotaki
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Theopi Nalmpanti
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Emmanuel Spanoudakis
- Department of Hematology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - George Iatrakis
- Department of Obstetrics and Gynecology, Rea Maternity Hospital, National and Kapodistrian University of Athens, 17564 Athens, Greece
| | - Christos Damaskos
- Department of Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
- Renal Transplantation Unit, Laiko General Hospital, 11527 Athens, Greece
| | | | - Nikolaos Nikolettos
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Panagiotis Tsikouras
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
18
|
Haaker MW, Goossens V, Hoogland NAN, van Doorne H, Wang Z, Jansen JWA, Kaloyanova DV, van de Lest CHA, Houweling M, Vaandrager AB, Helms JB. Early activation of hepatic stellate cells induces rapid initiation of retinyl ester breakdown while maintaining lecithin:retinol acyltransferase (LRAT) activity. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159540. [PMID: 39068984 DOI: 10.1016/j.bbalip.2024.159540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/30/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Lecithin:retinol acyltransferase (LRAT) is the main enzyme producing retinyl esters (REs) in quiescent hepatic stellate cells (HSCs). When cultured on stiff plastic culture plates, quiescent HSCs activate and lose their RE stores in a process similar to that in the liver following tissue damage, leading to fibrosis. Here we validated HSC cultures in soft gels to study RE metabolism in stable quiescent HSCs and investigated RE synthesis and breakdown in activating HSCs. HSCs cultured in a soft gel maintained characteristics of quiescent HSCs, including the size, amount and composition of their characteristic large lipid droplets. Quiescent gel-cultured HSCs maintained high expression levels of Lrat and a RE storing phenotype with low levels of RE breakdown. Newly formed REs are highly enriched in retinyl palmitate (RP), similar to freshly isolated quiescent HSCs, which is associated with high LRAT activity. Comparison of these quiescent gel-cultured HSCs with activated plastic-cultured HSCs showed that although during early activation the total RE levels and RP-enrichment are reduced, levels of RE formation are maintained and mediated by LRAT. Loss of REs was caused by enhanced RE breakdown in activating HSCs. Upon prolonged culturing, activated HSCs have lost their LRAT activity and produce small amounts of REs by DGAT1. This study reveals unexpected dynamics in RE metabolism during early HSC activation, which might be important in liver disease as early stages are reversible. Soft gel cultures provide a promising model to study RE metabolism in quiescent HSCs, allowing detailed molecular investigations on the mechanisms for storage and release.
Collapse
Affiliation(s)
- Maya W Haaker
- Department of Biomolecular Health Sciences, Division of Cell Biology, Metabolism & Cancer, Faculty of Veterinary Medicine and Institute of Biomembranes, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - Vera Goossens
- Department of Biomolecular Health Sciences, Division of Cell Biology, Metabolism & Cancer, Faculty of Veterinary Medicine and Institute of Biomembranes, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - Nina A N Hoogland
- Department of Biomolecular Health Sciences, Division of Cell Biology, Metabolism & Cancer, Faculty of Veterinary Medicine and Institute of Biomembranes, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - Hidde van Doorne
- Department of Biomolecular Health Sciences, Division of Cell Biology, Metabolism & Cancer, Faculty of Veterinary Medicine and Institute of Biomembranes, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - Ziqiong Wang
- Department of Biomolecular Health Sciences, Division of Cell Biology, Metabolism & Cancer, Faculty of Veterinary Medicine and Institute of Biomembranes, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - Jeroen W A Jansen
- Department of Biomolecular Health Sciences, Division of Cell Biology, Metabolism & Cancer, Faculty of Veterinary Medicine and Institute of Biomembranes, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - Dora V Kaloyanova
- Department of Biomolecular Health Sciences, Division of Cell Biology, Metabolism & Cancer, Faculty of Veterinary Medicine and Institute of Biomembranes, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - Chris H A van de Lest
- Department of Biomolecular Health Sciences, Division of Cell Biology, Metabolism & Cancer, Faculty of Veterinary Medicine and Institute of Biomembranes, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - Martin Houweling
- Department of Biomolecular Health Sciences, Division of Cell Biology, Metabolism & Cancer, Faculty of Veterinary Medicine and Institute of Biomembranes, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - A Bas Vaandrager
- Department of Biomolecular Health Sciences, Division of Cell Biology, Metabolism & Cancer, Faculty of Veterinary Medicine and Institute of Biomembranes, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - J Bernd Helms
- Department of Biomolecular Health Sciences, Division of Cell Biology, Metabolism & Cancer, Faculty of Veterinary Medicine and Institute of Biomembranes, Utrecht University, 3584 CM Utrecht, the Netherlands.
| |
Collapse
|
19
|
Datta N, Vp S, Parvathy K, A S S, Maliekal TT. ALDH1A1 as a marker for metastasis initiating cells: A mechanistic insight. Exp Cell Res 2024; 442:114213. [PMID: 39173941 DOI: 10.1016/j.yexcr.2024.114213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
Since metastasis accounts for the majority of cancer morbidity and mortality, attempts are focused to block metastasis and metastasis initiating cellular programs. It is generally believed that hypoxia, reactive oxygen species (ROS) and the dysregulated redox pathways regulate metastasis. Although induction of epithelial to mesenchymal transition (EMT) can initiate cell motility to different sites other than the primary site, the initiation of a secondary tumor at a distant site depends on self-renewal property of cancer stem cell (CSC) property. That subset of metastatic cells possessing CSC property are referred to as metastasis initiating cells (MICs). Among the different cellular intermediates regulating metastasis in response to hypoxia by inducing EMT and self-renewal property, ALDH1A1 is a critical molecule, which can be used as a marker for MICs in a wide variety of malignancies. The cytosolic ALDHs can irreversibly convert retinal to retinoic acid (RA), which initiates RA signaling, important for self-renewal and EMT. The metastasis permissive tumor microenvironment increases the expression of ALDH1A1, primarily through HIF1α, and leads to metabolic reprograming through OXPHOS regulation. The ALDH1A1 expression and its high activity can reprogram the cancer cells with the transcriptional upregulation of several genes, involved in EMT through RA signaling to manifest hybrid EMT or Hybrid E/M phenotype, which is important for acquiring the characteristics of MICs. Thus, the review on this topic highlights the use of ALDH1A1 as a marker for MICs, and reporters for the marker can be effectively used to trace the population in mouse models, and to screen drugs that target MICs.
Collapse
Affiliation(s)
- Nandini Datta
- Cancer Research, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, Kerala, 695014, India
| | - Snijesh Vp
- Division of Molecular Medicine, St. John's Research Institute, St John's National Academy of Health Sciences, Bangalore, 560034, India
| | - K Parvathy
- Cancer Research, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, Kerala, 695014, India
| | - Sneha A S
- Cancer Research, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, Kerala, 695014, India
| | - Tessy Thomas Maliekal
- Cancer Research, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, Kerala, 695014, India; Regional Centre for Biotechnology, Faridabad, Haryana 121001, India.
| |
Collapse
|
20
|
Helder M, Pandeya N, Seviiri M, Olsen CM, Whiteman DC, Law MH. No evidence that retinol is protective for skin cancer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.27.24312670. [PMID: 39252920 PMCID: PMC11383465 DOI: 10.1101/2024.08.27.24312670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
With over 1.5 million new cases annually, skin cancers are the most commonly diagnosed group of cancers worldwide. Among these, melanoma and keratinocyte cancers (KC), comprising squamous cell carcinoma (SCC) and basal cell carcinoma (BCC), are predominant. Retinol, a vitamin A derivative, is essential in the regulation of growth and differentiation of epidermal cells. Moreover, retinol exhibits antioxidant properties, protecting the skin against ultra-violet (UV) radiation induced oxidative damage. Existing research on the impact of retinol on melanoma, SCC and BCC development shows mixed results. Several dietary intake studies have suggested that higher retinol levels reduce skin cancer risk, however, others have failed to find this association. We used two-sample Mendelian randomization (MR) to explore if there is a causal relationship between retinol and the risk of developing melanoma, SCC or BCC. Genetically predicted circulating retinol levels were obtained from a genome wide association study (GWAS) meta-analysis of the INTERVAL (N=11,132) and METSIM (N=6,136) cohorts. Melanoma (30,134 cases and 375,188 controls), SCC (10,557 cases and 537,850 controls) and BCC (36,479 cases and 540,185 controls) risks were derived from published GWAS meta-analyses. We conducted two MR approaches. In the first MR we used a single SNP (rs10882283) that is associated with the levels of Retinol Binding Protein 4 (RBP4) as an instrument variable (IV) for circulating retinol levels. In the second MR we used all independent genetic variants that were strongly associated (P < 5 × 10-8) with retinol levels as IVs. Odds ratios (OR) for skin cancer were calculated for a one standard deviation (SD) increase in genetically predicted retinol levels. The single IV approach revealed that retinol levels were not significantly associated with risk of melanoma (OR = 1.04 [95% confidence interval 0.83, 1.31], P = 0.72), SCC (OR = 1.15 [0.87, 1.51], P = 0.32) or BCC (OR = 1.06 [0.90, 1.23], P = 0.50). Similar null results were observed with the multiple IV approach for melanoma (OR = 1.03 [0.95, 1.11], P = 0.54), SCC (OR = 1.01 [0.91, 1.13], P = 0.83), and BCC (OR = 1.04 [0.96, 1.12], P = 0.38). In conclusion, we found no evidence that circulating retinol levels were causally associated with the development of melanoma, SCC and BCC.
Collapse
Affiliation(s)
- Marloes Helder
- Division of Human Nutrition and Health, Wageningen University, the Netherlands
- Statistical Genetics, QIMR Berghofer Medical Research Institute
| | - Nirmala Pandeya
- Cancer Control, QIMR Berghofer Medical Research Institute
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Mathias Seviiri
- Statistical Genetics, QIMR Berghofer Medical Research Institute
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Catherine M. Olsen
- Cancer Control, QIMR Berghofer Medical Research Institute
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - David C. Whiteman
- Cancer Control, QIMR Berghofer Medical Research Institute
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Matthew H. Law
- Statistical Genetics, QIMR Berghofer Medical Research Institute
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
21
|
Bonilla ME, Radyk MD, Perricone MD, Elhossiny AM, Harold AC, Medina-Cabrera PI, Kadiyala P, Shi J, Frankel TL, Carpenter ES, Green MD, Mitrea C, Lyssiotis CA, Pasca di Magliano M. Metabolic landscape of the healthy pancreas and pancreatic tumor microenvironment. JCI Insight 2024; 9:e180114. [PMID: 39315547 PMCID: PMC11457849 DOI: 10.1172/jci.insight.180114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
Pancreatic cancer, one of the deadliest human malignancies, is characterized by a fibro-inflammatory tumor microenvironment and wide array of metabolic alterations. To comprehensively map metabolism in a cell type-specific manner, we harnessed a unique single-cell RNA-sequencing dataset of normal human pancreata. This was compared with human pancreatic cancer samples using a computational pipeline optimized for this study. In the cancer cells we observed enhanced biosynthetic programs. We identified downregulation of mitochondrial programs in several immune populations, relative to their normal counterparts in healthy pancreas. Although granulocytes, B cells, and CD8+ T cells all downregulated oxidative phosphorylation, the mechanisms by which this occurred were cell type specific. In fact, the expression pattern of the electron transport chain complexes was sufficient to identify immune cell types without the use of lineage markers. We also observed changes in tumor-associated macrophage (TAM) lipid metabolism, with increased expression of enzymes mediating unsaturated fatty acid synthesis and upregulation in cholesterol export. Concurrently, cancer cells exhibited upregulation of lipid/cholesterol receptor import. We thus identified a potential crosstalk whereby TAMs provide cholesterol to cancer cells. We suggest that this may be a new mechanism boosting cancer cell growth and a therapeutic target in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jiaqi Shi
- Rogel Cancer Center
- Department of Pathology
| | | | - Eileen S. Carpenter
- Rogel Cancer Center
- Department of Internal Medicine, Division of Gastroenterology and Hepatology
| | - Michael D. Green
- Program in Cancer Biology
- Rogel Cancer Center
- Department of Radiation Oncology; and
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Radiation Oncology, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | | | - Costas A. Lyssiotis
- Department of Molecular and Integrative Physiology
- Rogel Cancer Center
- Department of Internal Medicine, Division of Gastroenterology and Hepatology
| | - Marina Pasca di Magliano
- Rogel Cancer Center
- Department of Surgery
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
22
|
Chen D, Lu Y, Lian J, Yu J, Li L, Li L. Plasma metabolome analysis for predicting antiviral treatment efficacy in chronic hepatitis B: diagnostic biomarkers and therapeutic insights. Front Immunol 2024; 15:1414476. [PMID: 39072321 PMCID: PMC11272971 DOI: 10.3389/fimmu.2024.1414476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/31/2024] [Indexed: 07/30/2024] Open
Abstract
The early and accurate identification of predictive biomarkers for antiviral treatment efficacy remains a significant clinical challenge, particularly in the management of chronic hepatitis B (CHB). This study aimed to assess whether the plasma metabolome could reliably predict the success of antiviral therapy in CHB patients. We conducted a retrospective analysis on 56 treatment-naive CHB patients at the First Affiliated Hospital of Zhejiang University from December 2013 to March 2016. Patients who underwent a 48-week treatment regimen of entecavir (ETV) and interferon-alpha (IFN-α) were randomly assigned to either a discovery cohort (n=29) or a validation cohort (n=27). Based on the outcome of the treatment, patients were classified as HBeAg seroconversion group (High responders, Hrp) or the non-remission group (Low responder, Lrp). Our methodology involved an untargeted analysis of the amine/phenol and carboxylic acid submetabolomes in the CHB patients under treatment, utilizing chemical isotope labeling (CIL) techniques with liquid chromatography-mass spectrometry (LC-MS). Several metabolites were identified as having significant diagnostic potential for distinguishing Hrp from Lrp, with areas under the receiver operating characteristic curve (AUC) exceeding those typical clinical indicators. Notably, four metabolites, namely 2-methyl-3-ketovaleric acid, 2-ketohexanoic acid, 6-oxo-1,4,5,6-tetrahydronicotinic acid, and α-ketoisovaleric acid, demonstrated exceptionally high sensitivity and specificity in both cohorts, nearing 100%. In contrast, the clinical indicators, including HBcAb, log(HBsAg), and HBeAb, demonstrated lower and inconsistent sensitivity and specificity between the discovery and validation cohorts. Using HBcAb as a marker, the sensitivity was 87.5% with 76.9% specificity in the discovery cohort; however, the sensitivity dropped to 46.7% with 91.7% specificity in the validation cohort. Using log(HBsAg), the sensitivity was 84.6% with 69.2% specificity in the discovery cohort, compared to 85.7% sensitivity and 83.3% specificity in the validation cohort. For HBeAb, the separation of Hrp and Lrp had a sensitivity of 87.5% with 69.2% specificity in the discovery cohort, while the validation cohort showed 86.7% sensitivity and 91.7% specificity.
Collapse
Affiliation(s)
- Deying Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yingfeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiangshan Lian
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiong Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Liang Li
- The Metabolomics Innovation Centre and Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Wu Y, Wang Q, Jia S, Lu Q, Zhao M. Gut-tropic T cells and extra-intestinal autoimmune diseases. Autoimmun Rev 2024; 23:103544. [PMID: 38604462 DOI: 10.1016/j.autrev.2024.103544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Gut-tropic T cells primarily originate from gut-associated lymphoid tissue (GALT), and gut-tropic integrins mediate the trafficking of the T cells to the gastrointestinal tract, where their interplay with local hormones dictates the residence of the immune cells in both normal and compromised gastrointestinal tissues. Targeting gut-tropic integrins is an effective therapy for inflammatory bowel disease (IBD). Gut-tropic T cells are further capable of entering the peripheral circulatory system and relocating to multiple organs. There is mounting evidence indicating a correlation between gut-tropic T cells and extra-intestinal autoimmune disorders. This review aims to systematically discuss the origin, migration, and residence of gut-tropic T cells and their association with extra-intestinal autoimmune-related diseases. These discoveries are expected to offer new understandings into the development of a range of autoimmune disorders, as well as innovative approaches for preventing and treating the diseases.
Collapse
Affiliation(s)
- Yutong Wu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, 410011 Changsha, China
| | - Qiaolin Wang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China
| | - Sujie Jia
- Department of Pharmacy, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, 410011 Changsha, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China.
| | - Ming Zhao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, 410011 Changsha, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China.
| |
Collapse
|
24
|
Nuguri SM, Hackshaw KV, Castellvi SDL, Wu Y, Gonzalez CM, Goetzman CM, Schultz ZD, Yu L, Aziz R, Osuna-Diaz MM, Sebastian KR, Brode WM, Giusti MM, Rodriguez-Saona L. Surface-Enhanced Raman Spectroscopy Combined with Multivariate Analysis for Fingerprinting Clinically Similar Fibromyalgia and Long COVID Syndromes. Biomedicines 2024; 12:1447. [PMID: 39062021 PMCID: PMC11275161 DOI: 10.3390/biomedicines12071447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/15/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Fibromyalgia (FM) is a chronic central sensitivity syndrome characterized by augmented pain processing at diffuse body sites and presents as a multimorbid clinical condition. Long COVID (LC) is a heterogenous clinical syndrome that affects 10-20% of individuals following COVID-19 infection. FM and LC share similarities with regard to the pain and other clinical symptoms experienced, thereby posing a challenge for accurate diagnosis. This research explores the feasibility of using surface-enhanced Raman spectroscopy (SERS) combined with soft independent modelling of class analogies (SIMCAs) to develop classification models differentiating LC and FM. Venous blood samples were collected using two supports, dried bloodspot cards (DBS, n = 48 FM and n = 46 LC) and volumetric absorptive micro-sampling tips (VAMS, n = 39 FM and n = 39 LC). A semi-permeable membrane (10 kDa) was used to extract low molecular fraction (LMF) from the blood samples, and Raman spectra were acquired using SERS with gold nanoparticles (AuNPs). Soft independent modelling of class analogy (SIMCA) models developed with spectral data of blood samples collected in VAMS tips showed superior performance with a validation performance of 100% accuracy, sensitivity, and specificity, achieving an excellent classification accuracy of 0.86 area under the curve (AUC). Amide groups, aromatic and acidic amino acids were responsible for the discrimination patterns among FM and LC syndromes, emphasizing the findings from our previous studies. Overall, our results demonstrate the ability of AuNP SERS to identify unique metabolites that can be potentially used as spectral biomarkers to differentiate FM and LC.
Collapse
Affiliation(s)
- Shreya Madhav Nuguri
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (S.M.N.); (S.d.L.C.); (Y.W.); (C.M.G.); (M.M.G.); (L.R.-S.)
| | - Kevin V. Hackshaw
- Department of Internal Medicine, Division of Rheumatology, Dell Medical School, The University of Texas, 1601 Trinity St., Austin, TX 78712, USA
| | - Silvia de Lamo Castellvi
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (S.M.N.); (S.d.L.C.); (Y.W.); (C.M.G.); (M.M.G.); (L.R.-S.)
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| | - Yalan Wu
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (S.M.N.); (S.d.L.C.); (Y.W.); (C.M.G.); (M.M.G.); (L.R.-S.)
| | - Celeste Matos Gonzalez
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (S.M.N.); (S.d.L.C.); (Y.W.); (C.M.G.); (M.M.G.); (L.R.-S.)
| | - Chelsea M. Goetzman
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (C.M.G.); (Z.D.S.)
- Savannah River National Laboratory, Jackson, SC 29831, USA
| | - Zachary D. Schultz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (C.M.G.); (Z.D.S.)
| | - Lianbo Yu
- Center of Biostatistics and Bioinformatics, The Ohio State University, Columbus, OH 43210, USA; (L.Y.); (W.M.B.)
| | - Rija Aziz
- Department of Internal Medicine, Dell Medical School, The University of Texas, 1601 Trinity St., Austin, TX 78712, USA; (R.A.); (M.M.O.-D.); (K.R.S.)
| | - Michelle M. Osuna-Diaz
- Department of Internal Medicine, Dell Medical School, The University of Texas, 1601 Trinity St., Austin, TX 78712, USA; (R.A.); (M.M.O.-D.); (K.R.S.)
| | - Katherine R. Sebastian
- Department of Internal Medicine, Dell Medical School, The University of Texas, 1601 Trinity St., Austin, TX 78712, USA; (R.A.); (M.M.O.-D.); (K.R.S.)
| | - W. Michael Brode
- Center of Biostatistics and Bioinformatics, The Ohio State University, Columbus, OH 43210, USA; (L.Y.); (W.M.B.)
| | - Monica M. Giusti
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (S.M.N.); (S.d.L.C.); (Y.W.); (C.M.G.); (M.M.G.); (L.R.-S.)
| | - Luis Rodriguez-Saona
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (S.M.N.); (S.d.L.C.); (Y.W.); (C.M.G.); (M.M.G.); (L.R.-S.)
| |
Collapse
|
25
|
Zhang Y, Wang X, Ji Y, Hong H, Geng X, Zhang K, Fu Z, Cai G, Chen X, Li P, Hong Q. All-trans retinoic acid pretreatment of mesenchymal stem cells enhances the therapeutic effect on acute kidney injury. Cell Commun Signal 2024; 22:291. [PMID: 38802835 PMCID: PMC11129434 DOI: 10.1186/s12964-024-01671-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
A promising new therapy option for acute kidney injury (AKI) is mesenchymal stem cells (MSCs). However, there are several limitations to the use of MSCs, such as low rates of survival, limited homing capacity, and unclear differentiation. In search of better therapeutic strategies, we explored all-trans retinoic acid (ATRA) pretreatment of MSCs to observe whether it could improve the therapeutic efficacy of AKI. We established a renal ischemia/reperfusion injury model and treated mice with ATRA-pretreated MSCs via tail vein injection. We found that AKI mice treated with ATRA-MSCs significantly improved renal function compared with DMSO-MSCs treatment. RNA sequencing screened that hyaluronic acid (HA) production from MSCs promoted by ATRA. Further validation by chromatin immunoprecipitation experiments verified that retinoic acid receptor RARα/RXRγ was a potential transcription factor for hyaluronic acid synthase 2. Additionally, an in vitro hypoxia/reoxygenation model was established using human proximal tubular epithelial cells (HK-2). After co-culturing HK-2 cells with ATRA-pretreated MSCs, we observed that HA binds to cluster determinant 44 (CD44) and activates the PI3K/AKT pathway, which enhances the anti-inflammatory, anti-apoptotic, and proliferative repair effects of MSCs in AKI. Inhibition of the HA/CD44 axis effectively reverses the renal repair effect of ATRA-pretreated MSCs. Taken together, our study suggests that ATRA pretreatment promotes HA production by MSCs and activates the PI3K/AKT pathway in renal tubular epithelial cells, thereby enhancing the efficacy of MSCs against AKI.
Collapse
Affiliation(s)
- Yifan Zhang
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, National Clinical Research Center for Kidney Diseases, No.28 Fuxing Road, Beijing, 100853, China
| | - Xiaochen Wang
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, National Clinical Research Center for Kidney Diseases, No.28 Fuxing Road, Beijing, 100853, China
| | - Yuwei Ji
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, National Clinical Research Center for Kidney Diseases, No.28 Fuxing Road, Beijing, 100853, China
| | - Haijuan Hong
- Songjiang District Central Hospital, Shanghai, China
| | - Xiaodong Geng
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, National Clinical Research Center for Kidney Diseases, No.28 Fuxing Road, Beijing, 100853, China
- Health Care Office of the Service Bureau of Agency for Offices Administration of the Central Military Commission, Beijing, China
| | - Keying Zhang
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, National Clinical Research Center for Kidney Diseases, No.28 Fuxing Road, Beijing, 100853, China
| | - Zhangning Fu
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, National Clinical Research Center for Kidney Diseases, No.28 Fuxing Road, Beijing, 100853, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, National Clinical Research Center for Kidney Diseases, No.28 Fuxing Road, Beijing, 100853, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, National Clinical Research Center for Kidney Diseases, No.28 Fuxing Road, Beijing, 100853, China
| | - Ping Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, National Clinical Research Center for Kidney Diseases, No.28 Fuxing Road, Beijing, 100853, China.
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, National Clinical Research Center for Kidney Diseases, No.28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
26
|
Sun L, Zheng M, Gao Y, Brigstock DR, Gao R. Retinoic acid signaling pathway in pancreatic stellate cells: Insight into the anti-fibrotic effect and mechanism. Eur J Pharmacol 2024; 967:176374. [PMID: 38309676 DOI: 10.1016/j.ejphar.2024.176374] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
Pancreatic stellate cells (PSCs) are activated following loss of cytoplasmic vitamin A (retinol)-containing lipid droplets, which is a key event in the process of fibrogenesis of chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDCA). PSCs are the major source of cancer-associated fibroblasts (CAFs) that produce stroma to induce PDAC cancer cell growth, invasion, and metastasis. As an active metabolite of retinol, retinoic acid (RA) can regulate target gene expression in PSCs through its nuclear receptor complex (RAR/RXR or RXR/RXR) or transcriptional intermediary factor. Additionally, RA also has extranuclear and non-transcriptional effects. In vitro studies have shown that RA induces PSC deactivation which reduces extracellular matrix production through multiple modes of action, such as inhibiting TβRⅡ, PDGFRβ, β-catenin and Wnt production, downregulating ERK1/2 and JNK phosphorylation and suppressing active TGF-β1 release. RA alone or in combination with other reagents have been demonstrated to have an effective anti-fibrotic effect on cerulein-induced mouse CP models in vivo studies. Clinical trial data have shown that repurposing all-trans retinoic acid (ATRA) as a stromal-targeting agent for human pancreatic cancer is safe and tolerable, suggesting the possibility of using RA for the treatment of CP and PDCA in humans. This review focuses on RA signaling pathways in PSCs and the effects and mechanisms of RA in PSC-mediated fibrogenesis as well as the anti-fibrotic and anti-tumor effects of RA targeting PSCs or CAFs in vitro and in vivo, highlighting the potential therapies of RA against CP and PDAC.
Collapse
Affiliation(s)
- Li Sun
- Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China; Department of Pathology, First Hospital of Jilin University, Changchun, China
| | - Meifang Zheng
- Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China; Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Yanhang Gao
- Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China; Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - David R Brigstock
- The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Runping Gao
- Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China; Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
27
|
Piazza A, Carlone R, Spencer GE. Non-canonical retinoid signaling in neural development, regeneration and synaptic function. Front Mol Neurosci 2024; 17:1371135. [PMID: 38516042 PMCID: PMC10954794 DOI: 10.3389/fnmol.2024.1371135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Canonical retinoid signaling via nuclear receptors and gene regulation is critical for the initiation of developmental processes such as cellular differentiation, patterning and neurite outgrowth, but also mediates nerve regeneration and synaptic functions in adult nervous systems. In addition to canonical transcriptional regulation, retinoids also exert rapid effects, and there are now multiple lines of evidence supporting non-canonical retinoid actions outside of the nucleus, including in dendrites and axons. Together, canonical and non-canonical retinoid signaling provide the precise temporal and spatial control necessary to achieve the fine cellular coordination required for proper nervous system function. Here, we examine and discuss the evidence supporting non-canonical actions of retinoids in neural development and regeneration as well as synaptic function, including a review of the proposed molecular mechanisms involved.
Collapse
Affiliation(s)
| | | | - Gaynor E. Spencer
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
28
|
Zhao Q, Ye Y, Zhang Q, Wu Y, Wang G, Gui Z, Zhang M. PANoptosis-related long non-coding RNA signature to predict the prognosis and immune landscapes of pancreatic adenocarcinoma. Biochem Biophys Rep 2024; 37:101600. [PMID: 38371527 PMCID: PMC10873882 DOI: 10.1016/j.bbrep.2023.101600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 02/20/2024] Open
Abstract
Background Cancer growth is significantly influenced by processes such as pyroptosis, apoptosis, and necroptosis that underlie PANoptosis, a proinflammatory programmed cell death. Several studies have examined the long non-coding RNAs (lncRNAs) associated with pancreatic adenocarcinoma (PAAD). However, the predictive value of lncRNAs related to PANoptosis for PAAD has not been established. Methods The Clinical Genome Atlas database was used to obtain the transcriptome 、clinical data and the corresponding mutation data of the patients with PAAD in this study. The least absolute shrinkage and selection operator regression analysis was employed to obtain prognosis-related lncRNAs for constructing a risk signature. According to the median risk score of the signature, patients with PAAD were grouped into low- and high-risk groups to further compare the survival prognosis of different risk groups. Time-dependent receiver operating characteristic curves, c-index analysis, nomograms, principal component analysis and univariate Cox and multivariate Cox regression were performed for the internal validation of the signature. In addition, enrichment analysis of different genes was performed using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Lastly, differences in tumor mutation burden (TMB), immune function, tumor immune dysfunction and rejection (TIDE), and drug response were determined for the two risk groups. Results The signature was constructed with six PANoptosis-related lncRNAs (AC067817.2、LINC02004、AC243829.1、AC092171.5、AP005233.2、AC004687.1) that predicted the prognosis of the patients with PAAD. Survival curves showed that patients in the two risk groups had statistically significant differences in prognosis (P < 0.05), and multi-cox regression analysis identified risk score as an independent risk factor for PAAD prognosis, and internal validation of nomograms showed high confidence in the signature. GO and KEGG enrichment analysis showed functional and pathway differences between the high- and low-risk groups. TMB evaluation demonstrated that patients in the high-risk group had a higher frequency of mutations. The TIDE score indicated that the high-risk group had a lower risk of immunotherapy escape and better immunotherapy outcomes. Additionally, the two risk groups revealed significantly different responses to 11 anticancer drugs. Conclusion We identified a novel risk signature for PANoptosis-related lncRNAs, which is a standalone prognostic indicator for PAAD. The PANoptosis-related lncRNA risk signature may be relevant for immunotherapy and a therapeutic target for PAAD.
Collapse
Affiliation(s)
- Qinying Zhao
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Traditional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, China
| | - Yingquan Ye
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Traditional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, China
| | - Quan Zhang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Traditional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, China
| | - Yue Wu
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Traditional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, China
| | - Gaoxiang Wang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Traditional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, China
| | - Zhongxuan Gui
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Traditional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, China
| | - Mei Zhang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Traditional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, China
- Graduate School of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
29
|
Nuguri SM, Hackshaw KV, de Lamo Castellvi S, Bao H, Yao S, Aziz R, Selinger S, Mikulik Z, Yu L, Osuna-Diaz MM, Sebastian KR, Giusti MM, Rodriguez-Saona L. Portable Mid-Infrared Spectroscopy Combined with Chemometrics to Diagnose Fibromyalgia and Other Rheumatologic Syndromes Using Rapid Volumetric Absorptive Microsampling. Molecules 2024; 29:413. [PMID: 38257325 PMCID: PMC10821365 DOI: 10.3390/molecules29020413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
The diagnostic criteria for fibromyalgia (FM) have relied heavily on subjective reports of experienced symptoms coupled with examination-based evidence of diffuse tenderness due to the lack of reliable biomarkers. Rheumatic disorders that are common causes of chronic pain such as rheumatoid arthritis, systemic lupus erythematosus, osteoarthritis, and chronic low back pain are frequently found to be comorbid with FM. As a result, this can make the diagnosis of FM more challenging. We aim to develop a reliable classification algorithm using unique spectral profiles of portable FT-MIR that can be used as a real-time point-of-care device for the screening of FM. A novel volumetric absorptive microsampling (VAMS) technique ensured sample volume accuracies and minimized the variation introduced due to hematocrit-based bias. Blood samples from 337 subjects with different disorders (179 FM, 158 non-FM) collected with VAMS were analyzed. A semi-permeable membrane filtration approach was used to extract the blood samples, and spectral data were collected using a portable FT-MIR spectrometer. The OPLS-DA algorithm enabled the classification of the spectra into their corresponding classes with 84% accuracy, 83% sensitivity, and 85% specificity. The OPLS-DA regression plot indicated that spectral regions associated with amide bands and amino acids were responsible for discrimination patterns and can be potentially used as spectral biomarkers to differentiate FM and other rheumatic diseases.
Collapse
Affiliation(s)
- Shreya Madhav Nuguri
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (S.M.N.); (S.d.L.C.); (H.B.); (M.M.G.); (L.R.-S.)
| | - Kevin V. Hackshaw
- Department of Internal Medicine, Division of Rheumatology, Dell Medical School, The University of Texas, 1601 Trinity St., Austin, TX 78712, USA
| | - Silvia de Lamo Castellvi
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (S.M.N.); (S.d.L.C.); (H.B.); (M.M.G.); (L.R.-S.)
- Campus Sescelades, Departament d’Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| | - Haona Bao
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (S.M.N.); (S.d.L.C.); (H.B.); (M.M.G.); (L.R.-S.)
| | - Siyu Yao
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210019, China;
| | - Rija Aziz
- Department of Internal Medicine, Dell Medical School, The University of Texas, 1601 Trinity St., Austin, TX 78712, USA; (R.A.); (S.S.); (M.M.O.-D.); (K.R.S.)
| | - Scott Selinger
- Department of Internal Medicine, Dell Medical School, The University of Texas, 1601 Trinity St., Austin, TX 78712, USA; (R.A.); (S.S.); (M.M.O.-D.); (K.R.S.)
| | - Zhanna Mikulik
- Department of Internal Medicine, Division of Immunology and Rheumatology, The Ohio State University, 480 Medical Center Dr, Columbus, OH 43210, USA;
| | - Lianbo Yu
- Center of Biostatistics and Bioinformatics, The Ohio State University, Columbus, OH 43210, USA;
| | - Michelle M. Osuna-Diaz
- Department of Internal Medicine, Dell Medical School, The University of Texas, 1601 Trinity St., Austin, TX 78712, USA; (R.A.); (S.S.); (M.M.O.-D.); (K.R.S.)
| | - Katherine R. Sebastian
- Department of Internal Medicine, Dell Medical School, The University of Texas, 1601 Trinity St., Austin, TX 78712, USA; (R.A.); (S.S.); (M.M.O.-D.); (K.R.S.)
| | - M. Monica Giusti
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (S.M.N.); (S.d.L.C.); (H.B.); (M.M.G.); (L.R.-S.)
| | - Luis Rodriguez-Saona
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (S.M.N.); (S.d.L.C.); (H.B.); (M.M.G.); (L.R.-S.)
| |
Collapse
|
30
|
Cortés-Malagón EM, Gariglio P, Sierra-Martínez M, Bonilla-Delgado J. Retinoids: Molecular Aspects and Treatment in Premalignant Lesions and Cervical Cancer. Cancer Control 2024; 31:10732748241279514. [PMID: 39163121 PMCID: PMC11337187 DOI: 10.1177/10732748241279514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
Persistent infection with high-risk human papillomavirus remains the primary factor associated with the progression of cervical squamous intraepithelial lesions and the development of cervical cancer. Nevertheless, a combination of factors, including genetic predisposition, immune response, hormonal influences, and nutritional status, contribute synergistically to the development of cervical cancer. Among the various factors involved in the pathogenesis and therapy of cervical cancer, retinoids have gained considerable attention due to their multifaceted roles in different cellular processes. This review investigates defects within the vitamin A metabolism pathway and their correlation with cervical cancer. Additionally, it integrates epidemiological and experimental findings to discuss the potential utility of retinoid-based therapies, either alone or combined with other therapies, as agents against premalignant lesions and cervical cancer.
Collapse
Affiliation(s)
- Enoc Mariano Cortés-Malagón
- Research Division, Hospital Juárez de México, Mexico City, Mexico
- Genetic Laboratory, Hospital Nacional Homeopático, Mexico City, Mexico
| | - Patricio Gariglio
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados, Ciudad de Mexico, Mexico
| | - Mónica Sierra-Martínez
- Research Unit, Hospital Regional de Alta Especialidad de Ixtapaluca, IMSS-BINESTAR, Ixtapaluca, Mexico
| | - José Bonilla-Delgado
- Research Unit, Hospital Regional de Alta Especialidad de Ixtapaluca, IMSS-BINESTAR, Ixtapaluca, Mexico
| |
Collapse
|
31
|
Kreissig S, Windisch R, Wichmann C. Deciphering Acute Myeloid Leukemia Associated Transcription Factors in Human Primary CD34+ Hematopoietic Stem/Progenitor Cells. Cells 2023; 13:78. [PMID: 38201282 PMCID: PMC10777941 DOI: 10.3390/cells13010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Hemato-oncological diseases account for nearly 10% of all malignancies and can be classified into leukemia, lymphoma, myeloproliferative diseases, and myelodysplastic syndromes. The causes and prognosis of these disease entities are highly variable. Most entities are not permanently controllable and ultimately lead to the patient's death. At the molecular level, recurrent mutations including chromosomal translocations initiate the transformation from normal stem-/progenitor cells into malignant blasts finally floating the patient's bone marrow and blood system. In acute myeloid leukemia (AML), the so-called master transcription factors such as RUNX1, KMT2A, and HOX are frequently disrupted by chromosomal translocations, resulting in neomorphic oncogenic fusion genes. Triggering ex vivo expansion of primary human CD34+ stem/progenitor cells represents a distinct characteristic of such chimeric AML transcription factors. Regarding oncogenic mechanisms of AML, most studies focus on murine models. However, due to biological differences between mice and humans, findings are only partly transferable. This review focuses on the genetic manipulation of human CD34+ primary hematopoietic stem/progenitor cells derived from healthy donors to model acute myeloid leukemia cell growth. Analysis of defined single- or multi-hit human cellular AML models will elucidate molecular mechanisms of the development, maintenance, and potential molecular intervention strategies to counteract malignant human AML blast cell growth.
Collapse
Affiliation(s)
| | | | - Christian Wichmann
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, LMU University Hospital, LMU Munich, 81377 Munich, Germany; (S.K.)
| |
Collapse
|