1
|
Shiwal A, Nibrad D, Tadas M, Katariya R, Kale M, Wankhede N, Kotagale N, Umekar M, Taksande B. Polyamines signalling pathway: A key player in unveiling the molecular mechanisms underlying Huntington's disease. Neuroscience 2025; 570:213-224. [PMID: 39986431 DOI: 10.1016/j.neuroscience.2025.02.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
Polyaminesare essential organic cations found in all eukaryotic cells and play an important role in many cellular processes including growth, differentiation, andneuroprotection. This review explores the complex relationship between polyamine signaling and Huntington's disease (HD), an autosomal-dominant neurodegenerative disorder characterized by the progressive degeneration of medium-spiny neurons in the striatum and cortex due to mutations in the huntingtin gene. We provide a comprehensive overview of how polyamines, specificallyputrescine,spermidine, andspermine, regulate important cellular functions such as gene expression, protein synthesis, membrane stability, and ion channel regulation with implications for HD. Dysfunction in polyamine metabolism in HD, reveals how changes in these molecules promote oxidative stress, mitochondrial dysfunction, andexcitotoxicity. Importantly, polyamines interact with mutanthuntingtin protein (mHTT) to affect its aggregationand neurotoxicity. This effect may contribute to the pathophysiological mechanisms underlying HD, suggesting that polyamines may act as potential biomarkers of disease progression. Additionally, we discuss the therapeutic implications of targeting the polyamine signaling pathway to alleviate HD symptoms. By enhancing autophagy and modulating neurotransmitter systems, polyamines mayprovideneuroprotectionagainstmHTT-inducedtoxicity. Moreover, the present review provides new insight into the role of polyamines in the pathogenesis of HDand suggests that regulation of polyamine metabolism may represent a promising therapy to slow the disease progression. Besides this, the review highlights the need for further investigation of the diverse roles of polyamines in neurodegenerative diseases, including HD, paving the way for novel interventions to improve cellular homeostasis andpatient outcomes.
Collapse
Affiliation(s)
- Amit Shiwal
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Dhanshree Nibrad
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Manasi Tadas
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Raj Katariya
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Mayur Kale
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Nitu Wankhede
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Nandkishor Kotagale
- Government College of Pharmacy, Kathora Naka, VMV Road, Amravati, MS 444 604, India
| | - Milind Umekar
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Brijesh Taksande
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India.
| |
Collapse
|
2
|
BenSouf I, Saidani M, Maazoun A, Bejaoui B, Larbi MB, M’Hamdi N, Aggad H, Joly N, Rojas J, Morillo M, Martin P. Use of Natural Biomolecules in Animal Feed to Enhance Livestock Reproduction. Int J Mol Sci 2025; 26:2328. [PMID: 40076947 PMCID: PMC11900002 DOI: 10.3390/ijms26052328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Feed additives are crucial in livestock production, enhancing performance, health, and reproductive efficiency. Recently, there has been a shift toward natural biomolecules as feed additives, specifically targeting improved reproductive outcomes and sperm quality. This transition arises from concerns about antibiotic misuse, antimicrobial resistance, and consumer preferences for eco-friendly products, along with the superior bioavailability, lower toxicity, and reduced environmental impact of natural biomolecules compared to synthetic alternatives. Collaboration among researchers, veterinarians, nutritionists, and regulators is essential to ensure safe and effective livestock management. The review explores advancements in using vital biomolecules in reproductive processes, including plant-derived bioactives such as phytochemicals and antioxidants. It investigates not only the mechanisms but also the intricate interactions of these compounds with animals' hormonal and physiological systems. Additionally, the review critically assesses challenges and prospects related to incorporating natural biomolecules into livestock practices. The potential benefits include enhanced reproductive efficiency and improved sperm quality. However, successful implementation requires understanding factors like precise dosing, potential interactions, and long-term health impacts. Overall, this comprehensive review highlights recent research, technological strides, and the future potential of integrating natural biomolecules into animal diets.
Collapse
Affiliation(s)
- Ikram BenSouf
- Animal and Food Resources Laboratory (LRAA), National Agronomic Institute of Tunisia, University of Carthage, 43 Av. Charles Nicolle, Tunis 1082, Tunisia; (I.B.); (N.M.)
| | - Mariem Saidani
- Research Unit of Biodiversity and Resource Development in Mountain Areas of Tunisia, UR17AGR14, Higher School of Agriculture of Mateur, University of Carthage, Tunis 1082, Tunisia; (M.S.); (M.B.L.)
| | - Asma Maazoun
- Horticultural Science Laboratory, LR13AGR01, National Agronomic Institute of Tunisia, University of Carthage, 43 Av. Charles Nicolle, Tunis 1082, Tunisia;
| | - Bochra Bejaoui
- Laboratory of Useful Materials, National Institute of Research and Pysico-Chemical Analysis (INRAP), Technopark of Sidi Thabet, Ariana 2020, Tunisia;
- Department of Chemistry, Faculty of Sciences of Bizerte, Zarzouna, University of Carthage, Bizerte 7021, Tunisia
| | - Manel Ben Larbi
- Research Unit of Biodiversity and Resource Development in Mountain Areas of Tunisia, UR17AGR14, Higher School of Agriculture of Mateur, University of Carthage, Tunis 1082, Tunisia; (M.S.); (M.B.L.)
| | - Naceur M’Hamdi
- Animal and Food Resources Laboratory (LRAA), National Agronomic Institute of Tunisia, University of Carthage, 43 Av. Charles Nicolle, Tunis 1082, Tunisia; (I.B.); (N.M.)
| | - Hebib Aggad
- Laboratory of Hygiene and Animal Pathology, Institute of Veterinary Science, University of Tiaret, Route d’Alger BP 78, Tiaret 14000, Algeria;
| | - Nicolas Joly
- Unité Transformations &Agroressources, ULR7519, Université d’Artois, UniLaSalle, F-62408 Béthune, France;
| | - Janne Rojas
- Biomoléculas Orgánicas Research Group, Faculty of Pharmacy and Bioanalysis, University of Los Andes, Mérida 5101, Venezuela;
| | - Marielba Morillo
- Ecology and Nutrition Research Group, Faculty of Pharmacy and Bioanalysis, University of Los Andes, Mérida 5101, Venezuela;
| | - Patrick Martin
- Unité Transformations &Agroressources, ULR7519, Université d’Artois, UniLaSalle, F-62408 Béthune, France;
| |
Collapse
|
3
|
Gao A, Lv J, Su Y. The Inflammatory Mechanism of Parkinson's Disease: Gut Microbiota Metabolites Affect the Development of the Disease Through the Gut-Brain Axis. Brain Sci 2025; 15:159. [PMID: 40002492 PMCID: PMC11853208 DOI: 10.3390/brainsci15020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/30/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Parkinson's disease is recognized as the second most prevalent neurodegenerative disorder globally, with its incidence rate projected to increase alongside ongoing population growth. However, the precise etiology of Parkinson's disease remains elusive. This article explores the inflammatory mechanisms linking gut microbiota to Parkinson's disease, emphasizing alterations in gut microbiota and their metabolites that influence the disease's progression through the bidirectional transmission of inflammatory signals along the gut-brain axis. Building on this mechanistic framework, this article further discusses research methodologies and treatment strategies focused on gut microbiota metabolites, including metabolomics detection techniques, animal model investigations, and therapeutic approaches such as dietary interventions, probiotic treatments, and fecal transplantation. Ultimately, this article aims to elucidate the relationship between gut microbiota metabolites and the inflammatory mechanisms underlying Parkinson's disease, thereby paving the way for novel avenues in the research and treatment of this condition.
Collapse
Affiliation(s)
| | | | - Yanwei Su
- Department of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (A.G.); (J.L.)
| |
Collapse
|
4
|
Cantabrana B, Peña-Iglesias P, Castro-Estrada P, Suárez L, Bordallo J, Barreiro-Alonso E, Sánchez M. Dietary intake of polyamines in a Spanish adult population: Age-dependent correlation with Healthy Eating Index and Dietary Inflammatory Index scores. Nutrition 2025; 130:112608. [PMID: 39602838 DOI: 10.1016/j.nut.2024.112608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/03/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024]
Abstract
OBJECTIVES A healthy and balanced diet is crucial to maintaining optimal health. Understanding the benefits of different food components is essential. The polyamine spermidine is linked to age-related disease protection, but daily intakes and whether these vary with age are unknown. This study aimed to determine polyamine intake in a Mediterranean diet population and its association with participants' age and Healthy Eating Index (HEI) and Dietary Inflammatory Index (DII) scores. METHODS A database was created with references concerning polyamine content in foods to determine the daily intake of foods frequently consumed by 203 participants (84 males and 119 females), ages 18 to 90 y, using a nutritional survey (VioScreen) that includes HEI and DII scores. RESULTS The participants' characteristics were as reported in the corresponding 2020 Spanish nutritional survey. Two-thirds demonstrated moderate to high adherence to the Mediterranean diet. The mean HEI score was 74.45 (out of 100), and the mean DII was -1.94 (anti-inflammatory). The median intake of polyamines was 45.59 mg/d/person (mean, 46.89 mg/d/person, 410.57 µmol/d/person), without sex differences. After normalizing the intake per kilocalorie, the Kruskal-Wallis test showed significant differences among age groups for total polyamines ingested, putrescine, and spermidine. The intake of putrescine and spermidine was significantly higher in the 60 to 69 age group compared with the 24 to 59 and 18 to 23 age groups, respectively. HEI scores were positively correlated with polyamine intake, whereas DII scores were negatively correlated. CONCLUSIONS Polyamine intake was higher than reported in other populations, did not decrease based on age, and was associated with healthy eating and anti-inflammatory foods.
Collapse
Affiliation(s)
- Begoña Cantabrana
- Farmacología, Departamento de Medicina, Universidad de Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Pablo Peña-Iglesias
- Farmacología, Departamento de Medicina, Universidad de Oviedo, Oviedo, Spain
| | | | - Lorena Suárez
- Farmacología, Departamento de Medicina, Universidad de Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Javier Bordallo
- Farmacología, Departamento de Medicina, Universidad de Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Eva Barreiro-Alonso
- Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Servicio de Digestivo, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Manuel Sánchez
- Farmacología, Departamento de Medicina, Universidad de Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.
| |
Collapse
|
5
|
Kim MJ, Chang JH. Structure simulation-based comparison of active site variations in fungal ornithine decarboxylases. Commun Integr Biol 2025; 18:2458872. [PMID: 39906711 PMCID: PMC11792860 DOI: 10.1080/19420889.2025.2458872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 02/06/2025] Open
Abstract
Polyamines play crucial roles in various biological processes, including cell proliferation and differentiation, immune response modulation, and signal transduction. Ornithine decarboxylase (ODC) initiates polyamine biosynthesis by catalyzing the conversion of ornithine to putrescine in a pyridoxal phosphate (PLP)-dependent manner. While the structures of mammalian and protozoan ODCs have been elucidated, fungal ODCs remain uncharacterized. In this study, AlphaFold2 was employed to simulate the structures of ODCs from four fungi: Kluyveromyces lactis, Candida albicans, Debaryomyces hansenii, and Schizosaccharomyces pombe. The results indicated that, although these ODCs share α/β-barrel and β-sheet domains, their active site conformations exhibit subtle differences. Additionally, substrate selectivity among ODCs and related decarboxylases varied depending on the distance between the Cα of aspartate or glutamate residues within the specificity helix and the C4α of PLP. Notably, the bacterial Campylobacter jejuni decarboxylase (CjCANSDC), which binds the largest substrate, exhibits the longest distance, whereas fungal ODC, which binds the smallest substrate, displays the shortest distance. Furthermore, significant differences in the composition of amino acid residues within the active sites were also observed. This study provides insights into the structural diversity and catalytic activity of ODCs across a broad range of organisms, advancing the understanding of structure-dependent evolutionary processes.
Collapse
Affiliation(s)
- Min Jeong Kim
- Department of Biology Education, Kyungpook National University, Daegu, South Korea
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daegu, South Korea
- Department of Biomedical Convergence Science and Technology, Kyungpook National University, Daegu, South Korea
- Science Education Research Institute, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
6
|
He Y, Jia Y, Liu Y, Chang X, Yang P, Shi M, Guo D, Peng Y, Chen J, Wang A, Xu T, He J, Zhang Y, Zhu Z. High Plasma Polyamine Levels Are Associated With an Increased Risk of Poststroke Cognitive Impairment: A Multicenter Prospective Study From CATIS. J Am Heart Assoc 2025; 14:e037465. [PMID: 39817544 DOI: 10.1161/jaha.124.037465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/27/2024] [Indexed: 01/18/2025]
Abstract
BACKGROUND Polyamines have been suggested to play pivotal roles in ischemic stroke and neurodegenerative disorders, but the associations of plasma polyamines with poststroke cognitive impairment (PSCI) remain unclear. We aimed to prospectively investigate the associations of plasma putrescine, spermidine, and spermine with PSCI among patients with ischemic stroke in a multicenter cohort study. METHODS AND RESULTS We measured plasma polyamine levels at baseline among 619 patients with ischemic stroke from a preplanned ancillary study of CATIS (China Antihypertensive Trial in Acute Ischemic Stroke). We used the Mini-Mental State Examination and Montreal Cognitive Assessment to evaluate cognitive function at 3-month follow-up after ischemic stroke, and PSCI was defined as Mini-Mental State Examination score <27 or Montreal Cognitive Assessment score <25. According to the Mini-Mental State Examination score, plasma polyamines were positively associated with PSCI. The adjusted odds ratios of PSCI for the highest versus lowest quartile of putrescine, spermidine, and spermine were 1.81 (95% CI, 1.09-3.00), 1.81 (95% CI, 1.09-3.01), and 1.92 (95% CI, 1.15-3.20), respectively. In addition, plasma putrescine (net reclassification improvement, 32.08%; P<0.001; integrated discrimination improvement, 1.62%; P=0.002), spermidine (net reclassification improvement, 25.29%; P=0.002; integrated discrimination improvement, 1.22%; P=0.006), and spermine (net reclassification improvement, 16.54%; P=0.045; integrated discrimination improvement, 1.36%; P=0.004) could significantly improve the risk reclassification of PSCI beyond established risk factors. There were similar significant relationships when PSCI was defined by Montreal Cognitive Assessment score. CONCLUSIONS Higher plasma polyamine levels were associated with increased risk of PSCI among patients with ischemic stroke. Our findings suggest that plasma polyamines should be implicated in the pathophysiologic processes of PSCI and may be the potential intervention targets for PSCI. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT01840072.
Collapse
Affiliation(s)
- Yu He
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Noncommunicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology Suzhou Medical College of Soochow University Suzhou, Jiangsu Province China
| | - Yiming Jia
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Noncommunicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology Suzhou Medical College of Soochow University Suzhou, Jiangsu Province China
| | - Yi Liu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Noncommunicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology Suzhou Medical College of Soochow University Suzhou, Jiangsu Province China
| | - Xinyue Chang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Noncommunicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology Suzhou Medical College of Soochow University Suzhou, Jiangsu Province China
| | - Pinni Yang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Noncommunicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology Suzhou Medical College of Soochow University Suzhou, Jiangsu Province China
| | - Mengyao Shi
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Noncommunicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology Suzhou Medical College of Soochow University Suzhou, Jiangsu Province China
- Department of Epidemiology Tulane University School of Public Health and Tropical Medicine New Orleans LA United States
| | - Daoxia Guo
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Noncommunicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology Suzhou Medical College of Soochow University Suzhou, Jiangsu Province China
| | - Yanbo Peng
- Department of Neurology Affiliated Hospital of North China University of Science and Technology Tangshan Hebei Province China
| | - Jing Chen
- Department of Epidemiology Tulane University School of Public Health and Tropical Medicine New Orleans LA United States
- Department of Medicine Tulane University School of Medicine New Orleans LA United States
| | - Aili Wang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Noncommunicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology Suzhou Medical College of Soochow University Suzhou, Jiangsu Province China
| | - Tan Xu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Noncommunicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology Suzhou Medical College of Soochow University Suzhou, Jiangsu Province China
| | - Jiang He
- Department of Epidemiology Tulane University School of Public Health and Tropical Medicine New Orleans LA United States
- Department of Medicine Tulane University School of Medicine New Orleans LA United States
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Noncommunicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology Suzhou Medical College of Soochow University Suzhou, Jiangsu Province China
| | - Zhengbao Zhu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Noncommunicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology Suzhou Medical College of Soochow University Suzhou, Jiangsu Province China
- Department of Epidemiology Tulane University School of Public Health and Tropical Medicine New Orleans LA United States
| |
Collapse
|
7
|
Akdas S, Yuksel D, Yazihan N. Assessment of the Relationship Between Amino Acid Status and Parkinson's Disease: A Comprehensive Review and Meta-analysis. Can J Neurol Sci 2024:1-17. [PMID: 39651578 DOI: 10.1017/cjn.2024.310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by the inability of dopamine production from amino acids. Therefore, changes in amino acid profile in PD patients are very critical for understanding disease development. Determination of amino acid levels in PD patients with a cumulative approach may enlighten the disease pathophysiology. METHODS A systematic search was performed until February 2023, resulting in 733 articles in PubMed, Web of Science and Scopus databases to evaluate the serum amino acid profile of PD patients. Relevant articles in English with mean/standard deviation values of serum amino acid levels of patients and their healthy controls were included in the meta-analysis. RESULTS Our results suggest that valine, proline, ornithine and homocysteine levels were increased, while aspartate, citrulline, lysine and serine levels were significantly decreased in PD patients compared to healthy controls. Homocysteine showed positive correlations with glutamate and ornithine levels. We also analyzed the disease stage parameters: Unified Parkinson's Disease Rating Scale III (UPDRS III) score, Hoehn-Yahr Stage Score, disease duration and levodopa equivalent daily dose (LEDD) of patients. It was observed that LEDD has a negative correlation with arginine levels in patients. UPDRS III score is negatively correlated with phenylalanine levels, and it also tends to show a negative correlation with tyrosine levels. Disease duration tends to be negatively correlated with citrulline levels in PD patients. CONCLUSION This cumulative analysis shows evidence of the relation between the mechanisms underlying amino acid metabolism in PD, which may have a great impact on disease development and new therapeutic strategies.
Collapse
Affiliation(s)
- Sevginur Akdas
- Interdisciplinary Food Metabolism and Clinical Nutrition Department, Ankara University, Institute of Health Sciences, Ankara, Turkey
| | - Demir Yuksel
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Baskent University, Ankara, Turkey
| | - Nuray Yazihan
- Interdisciplinary Food Metabolism and Clinical Nutrition Department, Ankara University, Institute of Health Sciences, Ankara, Turkey
- Department of Pathophysiology, Internal Medicine, Faculty of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
8
|
Sikorski Ł, Bęś A, Karetko-Sikorska E, Truszkowski W, Tomaszewska K. Ion-exchange chromatography in the assessment of environmental pollution with chlortetracycline. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107142. [PMID: 39504861 DOI: 10.1016/j.aquatox.2024.107142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/26/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Chemical substances such as drugs pose a threat to the environment. One of the substances recorded in soil and water is chlortetracycline, an antibiotic used in veterinary medicine. Plants exposed to such xenobiotics show changes in the content of biogenic amines. An analytical technique - ion exchange chromatography is used to assess their content. The occurrence of these active compounds is used to determine the degree of environmental pollution with chemical substances. The study aimed to evaluate the toxicity of chlortetracycline (CTC) at concentrations of 0; 0.05; 0.1; 0.2 0.5;1; 2; 3; and 5 mM towards the test organism Lemna minor, and determine the content of biogenic amines in the plant tissues. The content of biogenic amines was analyzed by ion-exchange chromatography with post-column ninhydrin derivatization and photometric detection. The Lemna test proved that increasing concentrations of CTC had a toxic effect on the plants. It was calculated that the Lowest Observed Effects Concentration (LOEC) of CTC at >0.04 mM and >0.05 mM was phytotoxic to L. minor growth and yield. It was determined that the levels of histamine, tyramine, and cadaverine exhibited an increase, reaching 1.04, 1.90, and 3.10 µg g-1 of tissue at 2.00 mM CTC. Simultaneously, spermine and putrescine increased to 1.21 and 3.89 µg g-1 of tissue at concentrations of 0.10 and 0.50 mM of the drug. Conversely, the study revealed an over 88 % reduction in spermidine in plants at 5 mM of CTC. Using ion-exchange chromatography, analysis of biogenic amines, particularly spermidine and cadaverine, highlighted these intra-tissue compounds as sensitive biomarkers for water contamination with the tested drug. This research confirmed that the Lemna test is effective for assessing CTC toxicity and that ion-exchange chromatography is useful for evaluating environmental pollution by this antibiotic.
Collapse
Affiliation(s)
- Łukasz Sikorski
- Department of Chemistry, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 4,10-727 Olsztyn, Poland.
| | - Agnieszka Bęś
- Department of Chemistry, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 4,10-727 Olsztyn, Poland
| | - Elżbieta Karetko-Sikorska
- Experiment and Education Station, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 1,10-724 Olsztyn, Poland
| | - Wojciech Truszkowski
- Department of Agrotechnology and Agribusiness, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, M. Oczapowskiego 8,10-719 Olsztyn, Poland
| | - Katarzyna Tomaszewska
- Department of Chemistry, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 4,10-727 Olsztyn, Poland
| |
Collapse
|
9
|
Yazici KU, Ozturk ŞK, Yazici IP, Ustundag B. Altered Arginine/Agmatine Pathway and Polyamines in Adolescents Diagnosed with Major Depressive Disorder. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2024; 22:624-634. [PMID: 39420609 PMCID: PMC11494420 DOI: 10.9758/cpn.24.1176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/24/2024] [Accepted: 04/04/2024] [Indexed: 10/19/2024]
Abstract
Objective Major depressive disorder (MDD) is common in childhood, but its etiopathogenesis is still unclear. Published neurochemical studies mostly focus on monoaminergic system, however, the pathophysiology of MDD cannot be explained by monoamine hypothesis only, medications that have effect on monoamines cannot have effect needed in all patients. We aimed to investigate the poliamine pathway of L-arginine metabolism which is proceeding by way of agmatine in adolescents with MDD. Methods Our study involved 45 patients with MDD (case group), and 44 healthy controls (control group) between the ages of 13-17. Sociodemographic data form, Schedule for Affective Disorders and Schizophrenia for School Age Children-Present and Lifetime Version-DSM-5-Turkish, Beck Depression Inventory (BDI), Spielberger's State-Trait Anxiety Inventory were applied to all subjects. All subjects were evaluated in terms of the levels of serum agmatine, putrescine, spermidine, and spermine. Results The levels of agmatine and spermine were significantly higher and putrescine and spermidine were significantly lower in case group compared with healthy controls. There was significant negative correlation with the levels of putrescine and spermidine between BDI scores, and there was significant positive correlation between the levels of spermine and BDI scores. No correlation found between the levels of agmatine and BDI scores. Conclusion These differences that the levels of agmatine and polyamines in the MDD group seem to be a field that worth researching. In the future, the evaluation of the arginine/polyamine metabolism in MDD with larger sample and longitudinal studies is going to capable to contribute to a better understanding of the disorder.
Collapse
Affiliation(s)
- Kemal Utku Yazici
- Department of Child and Adolescent Psychiatry, Firat University Faculty of Medicine, Elazig, Turkey
| | - Şukru Kaan Ozturk
- Department of Child and Adolescent Psychiatry, Firat University Faculty of Medicine, Elazig, Turkey
| | - Ipek Percinel Yazici
- Department of Child and Adolescent Psychiatry, Firat University Faculty of Medicine, Elazig, Turkey
| | - Bilal Ustundag
- Department of Biochemistry, Firat University Faculty of Medicine, Elazig, Turkey
| |
Collapse
|
10
|
Félix J, Díaz-Del Cerro E, Baca A, López-Ballesteros A, Gómez-Sánchez MJ, De la Fuente M. Human Supplementation with AM3, Spermidine, and Hesperidin Enhances Immune Function, Decreases Biological Age, and Improves Oxidative-Inflammatory State: A Randomized Controlled Trial. Antioxidants (Basel) 2024; 13:1391. [PMID: 39594533 PMCID: PMC11591374 DOI: 10.3390/antiox13111391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
The positive effect of AM3, spermidine, and hesperidin, which have antioxidant and anti-inflammatory properties, on immunity is known, but their effect on the rate of aging, known as biological age (BA), is unclear. This work aims to test if the intake of a blend of AM3 (150 mg), spermidine (0.6 mg), and hesperidin (50 mg) for 2 months could decrease BA and improve immunity, redox, and inflammatory states. For this, 41 participants (30-63 years) were randomly divided into placebo and supplement groups. The supplement group took two capsules daily with AM3, spermidine, and hesperidin for two months, while the placebo group took capsules containing only calcium phosphate and talcum powder. Before and after the treatment, peripheral blood was collected. Immune function was assessed in leukocytes, redox state in whole-blood cells, erythrocytes, and plasma, and cytokine concentration in both mononuclear cell cultures and plasma. Finally, the Immunity Clock model was applied to determine BA. The results show that the intake of this blend improves the immune functions that constitute the Immunity Clock, decreasing BA by 11 years and reducing the oxidative-inflammatory state of the participants. Therefore, this supplement can be proposed as a strategy to rejuvenate BA and achieve healthy aging.
Collapse
Affiliation(s)
- Judith Félix
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (E.D.-D.C.); (A.B.)
- Institute of Investigation Hospital 12 Octubre (Imas12), 28041 Madrid, Spain
| | - Estefanía Díaz-Del Cerro
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (E.D.-D.C.); (A.B.)
- Institute of Investigation Hospital 12 Octubre (Imas12), 28041 Madrid, Spain
| | - Adriana Baca
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (E.D.-D.C.); (A.B.)
| | | | | | - Mónica De la Fuente
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (E.D.-D.C.); (A.B.)
- Institute of Investigation Hospital 12 Octubre (Imas12), 28041 Madrid, Spain
| |
Collapse
|
11
|
Upadhyay RK, Shao J, Maul JE, Schomberg H, Handa AK, Roberts DP, Mattoo AK. Unlocking the role of novel primary/di-amine oxidases in crop improvement: Tissue specificity leads to specific roles connected to abiotic stress, hormone responses and sensing nitrogen. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154374. [PMID: 39522457 DOI: 10.1016/j.jplph.2024.154374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Genetic improvements of solanaceous crops for quality and stress responsive traits are needed because of the central role vegetables and fruits have in providing nutrients to human diets. Copper amine oxidase (CuAO) encoding genes involved in metabolism of primary/di-amine nitrogenous compounds, play a role in balancing internal nitrogen (N) pools especially when external N supply fluctuates during growth, development and environmental stresses. In the present study, we investigated the occurrence, molecular evolution and possible role(s) of these unknown genes in tomato crops. Multiple genome-wide bioinformatics approaches led to the identification of eight bona fide CuAO genes (SlCuAO1-SlCuAO8) in the tomato genome with gene numbers like those in Arabidopsis and rice indicating their conserved functional relevance with a tandemly duplicated SlCuAO6-SlCuAO7 pair at chr.9. A conserved intron-exon size and phase distribution for SlCuAO2, 3, 4 pairs are similar to a recently identified single duckweed SpCuAO1 orthologue gene indicating its evolutionary conservation. Synteny analysis showed their closest association to Arabidopsis and but not with rice. Transcriptome data indicated that gene expression for about six genes (SlCuAO1, 2, 3, 4, 6, 7) is root specific, fruit specific for SlCuAO5 and flower specific for SlCuAO8 thus indicating amine oxidation is variable across tissues with a prominance in the root tissue. The majority of CuAO genes are negatively regulated by methyl jasmonate. Positive regulation, however, involves CuAO3/8. Transcript analysis of the ethylene-deficient transgenic lines indicated that ethylene is required for activation of SlCuAO4. CuAO4 and CuAO5 exhibited most significant tissues-independent gene expression responses across various nitrogen regimes. Drought, heat and N stress identified CuAO5 as an overlapping highly expressed gene that corroborates with putrescine accumulation for free and conjugated forms with an opposite abundance of bound forms. Taken together our study highlights new insights into the roles of copper amine oxidation genes and identifies CuAO5 as a multiple stress induced gene that can be used in genetic improvement programs for combining heat, drought and nitrogen use efficiency related traits.
Collapse
Affiliation(s)
- Rakesh K Upadhyay
- Sustainable Agricultural Systems Laboratory, USDA-ARS, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD, 20705-2350, USA; Center of Plant Biology, Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA; Department of Natural Sciences, College of Arts and Sciences, Bowie State University, 14000 Jericho Park Rd., Bowie, MD, 20715, USA.
| | - Jonathan Shao
- Statistics and Bioinformatics Group-Northeast Area, USDA-ARS, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD, 20705-2350, USA
| | - Jude E Maul
- Sustainable Agricultural Systems Laboratory, USDA-ARS, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD, 20705-2350, USA
| | - Harry Schomberg
- Sustainable Agricultural Systems Laboratory, USDA-ARS, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD, 20705-2350, USA
| | - Avtar K Handa
- Center of Plant Biology, Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
| | - Daniel P Roberts
- Sustainable Agricultural Systems Laboratory, USDA-ARS, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD, 20705-2350, USA
| | - Autar K Mattoo
- Sustainable Agricultural Systems Laboratory, USDA-ARS, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD, 20705-2350, USA.
| |
Collapse
|
12
|
Raza A, Bhardwaj S, Rahman MA, García-Caparrós P, Copeland RGR, Charagh S, Rivero RM, Gopalakrishnan S, Corpas FJ, Siddique KHM, Hu Z. Fighting to thrive via plant growth regulators: Green chemical strategies for drought stress tolerance. PHYSIOLOGIA PLANTARUM 2024; 176:e14605. [PMID: 39513406 DOI: 10.1111/ppl.14605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 11/15/2024]
Abstract
As global climate change intensifies, the occurrence and severity of various abiotic stresses will significantly threaten plant health and productivity. Drought stress (DS) is a formidable obstacle, disrupting normal plant functions through specific morphological, physiological, biochemical, and molecular mechanisms. Understanding how plants navigate DS is paramount to mitigating its adverse effects. In response to DS, plants synthesize or accumulate various plant growth regulators (PGRs), including phytohormones, neurotransmitters, gasotransmitters, and polyamines, which present promising sustainable green chemical strategies to adapt or tolerate stress conditions. These PGRs orchestrate crucial plant structure and function adjustments, activating defense systems and modulating cellular-level responses, transcript levels, transcription factors, metabolic genes, and stress-responsive candidate proteins. However, the efficacy of these molecules in mitigating DS depends on the plant species, applied PGR dose, treatment type, duration of DS exposure, and growth stages. Thus, exploring the integrated impact of PGRs on enhancing plant fitness and DS tolerance is crucial for global food security and sustainable agriculture. This review investigates plant responses to DS, explains the potential of exogenously applied diverse PGRs, dissects the complex chemistry among PGRs, and sheds light on omics approaches for harnessing the molecular basis of DS tolerance. This updated review delivers comprehensive mechanistic insights for leveraging various PGRs to enhance overall plant fitness under DS conditions.
Collapse
Affiliation(s)
- Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Technology Research Center for Marine Algal Biotechnology, Shenzhen Collaborative Innovation Public Service Platform for Marine Algae Industry, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Savita Bhardwaj
- Department of Botany, MCM DAV College, Kangra, Himachal Pradesh, India
| | | | - Pedro García-Caparrós
- Agronomy Department of Superior School Engineering, University of Almería, Almería, Spain
| | - Rhys G R Copeland
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, Zhejiang, China
| | - Rosa M Rivero
- Department of Plant Nutrition, Center of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Murcia, Spain
| | | | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, Perth, Australia
| | - Zhangli Hu
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Technology Research Center for Marine Algal Biotechnology, Shenzhen Collaborative Innovation Public Service Platform for Marine Algae Industry, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
13
|
Nishio T, Schiessel H. Coalescence of liquid or gel-like DNA-encapsulating microdroplets. J Chem Phys 2024; 161:134904. [PMID: 39356067 DOI: 10.1063/5.0223951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
Liquid-liquid phase separation plays a prominent role in the physics of life, providing the cells with various membrane-less compartments. These structures exhibit a range of material properties that, in many cases, change over time. Inspired by this, we investigate here an aqueous two-phase system formed by mixing polyethylene glycol with dextran. We modulate the material properties of the resulting dextran droplets by adding DNA that readily enters the droplets. We find a non-monotonic dependence of the physical properties of the droplets under the imposed ionic conditions.
Collapse
Affiliation(s)
- Takashi Nishio
- Cluster of Excellence Physics of Life, TUD Dresden University of Technology, 01307 Dresden, Germany
| | - Helmut Schiessel
- Cluster of Excellence Physics of Life, TUD Dresden University of Technology, 01307 Dresden, Germany
- Institut für Theoretische Physik, TUD Dresden University of Technology, 01062 Dresden, Germany
| |
Collapse
|
14
|
Gupta S, Kant K, Kaur N, Jindal P, Naeem M, Khan MN, Ali A. Polyamines: Rising stars against metal and metalloid toxicity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109030. [PMID: 39137683 DOI: 10.1016/j.plaphy.2024.109030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Globally, metal/metalloid(s) soil contamination is a persistent issue that affects the atmosphere, soil, water and plant health in today's industrialised world. However, an overabundance of these transition ions promotes the excessive buildup of reactive oxygen species (ROS) and ion imbalance, which harms agricultural productivity. Plants employ several strategies to overcome their negative effects, including hyperaccumulation, tolerance, exclusion, and chelation with organic molecules. Polyamines (PAs) are the organic compounds that act as chelating agents and modulate various physiological, biochemical, and molecular processes under metal/metalloid(s) stress. Their catabolic products, including H2O2 and gamma amino butyric acid (GABA), are also crucial signalling molecules in abiotic stress situations, particularly under metal/metalloid(s) stress. In this review, we explained how PAs regulate genes and enzymes, particularly under metal/metalloid(s) stress with a specific focus on arsenic (As), boron (B), cadmium (Cd), chromium (Cr), and zinc (Zn). The PAs regulate various plant stress responses by crosstalking with other plant hormones, upregulating phytochelatin, and metallothionein synthesis, modulating stomatal closure and antioxidant capacity. This review presents valuable insights into how PAs use a variety of tactics to reduce the harmful effects of metal/metalloid(s) through multifaceted strategies.
Collapse
Affiliation(s)
- Shalu Gupta
- Plant Physiology and Biochemistry Lab, Department of Botany, Dayalbagh Educational Institute (Deemed to be University), Agra, 282005, India
| | - Krishan Kant
- Plant Physiology and Biochemistry Lab, Department of Botany, Dayalbagh Educational Institute (Deemed to be University), Agra, 282005, India
| | - Navneet Kaur
- Plant Physiology and Biochemistry Lab, Department of Botany, Dayalbagh Educational Institute (Deemed to be University), Agra, 282005, India
| | - Parnika Jindal
- Plant Physiology and Biochemistry Lab, Department of Botany, Dayalbagh Educational Institute (Deemed to be University), Agra, 282005, India
| | - M Naeem
- Department of Botany, Aligarh Muslim University, Aligarh, 2020002, UP, India
| | - M Nasir Khan
- Renewable Energy and Environmental Technology Center, University of Tabuk, Tabuk, 71491, Saudi Arabia; Department of Science and Basic Studies, Applied College, University of Tabuk, Tabuk-71491, Saudi Arabia
| | - Akbar Ali
- Plant Physiology and Biochemistry Lab, Department of Botany, Dayalbagh Educational Institute (Deemed to be University), Agra, 282005, India.
| |
Collapse
|
15
|
Singh P, Choi JY, Wang W, T Lam T, Lechner P, Vanderwal CD, Pou S, Nilsen A, Ben Mamoun C. A fluorescence-based assay for measuring polyamine biosynthesis aminopropyl transferase-mediated catalysis. J Biol Chem 2024; 300:107832. [PMID: 39342998 PMCID: PMC11541840 DOI: 10.1016/j.jbc.2024.107832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
Polyamines are polycationic molecules that are crucial in a wide array of cellular functions. Their biosynthesis is mediated by aminopropyl transferases (APTs), which are promising targets for antimicrobial, antineoplastic, and antineurodegenerative therapies. A major limitation in studying APT enzymes, however, is the lack of high-throughput assays to measure their activity. We have developed the first fluorescence-based assay, diacetyl benzene (DAB)-APT, for the measurement of APT activity using 1,2-DAB, which forms fluorescent conjugates with putrescine, spermidine, and spermine, with fluorescence intensity increasing with the carbon chain length. The assay has been validated using APT enzymes from Saccharomyces cerevisiae and Plasmodium falciparum, and the data further validated by mass spectrometry and TLC. Using mass spectrometry analysis, the structures of the fluorescent putrescine, spermidine, and spermine 1,2-DAB adducts were determined to be substituted 1,3-dimethyl isoindoles. The DAB-APT assay is optimized for high-throughput screening, facilitating the evaluation of large chemical libraries. Given the critical roles of APTs in infectious diseases, oncology, and neurobiology, the DAB-APT assay offers a powerful tool with broad applicability, poised to drive advancements in research and drug discovery.
Collapse
Affiliation(s)
- Pallavi Singh
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jae-Yeon Choi
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Weiwei Wang
- Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, Connecticut, USA
| | - Tukiet T Lam
- Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, Connecticut, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Philip Lechner
- Department of Chemistry, University of California, Irvine, California, USA
| | - Christopher D Vanderwal
- Department of Chemistry, University of California, Irvine, California, USA; Department of Pharmaceutical Sciences, University of California, Irvine, California, USA
| | - Sovitj Pou
- VA Healthcare System, Medical Research Service, Portland, Oregon, USA
| | - Aaron Nilsen
- VA Healthcare System, Medical Research Service, Portland, Oregon, USA; Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Choukri Ben Mamoun
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA; Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
16
|
Jouyban K, Mohammad Jafari R, Charkhpour M, Rezaei H, Seyfinejad B, Manavi MA, Tavangar SM, Dehpour AR. Spermidine Exerts Protective Effects in Random-Pattern Skin Flap Survival in Rats: Possible Involvement of Inflammatory Cytokines, Nitric Oxide, and VEGF. Aesthetic Plast Surg 2024; 48:3500-3509. [PMID: 38755497 DOI: 10.1007/s00266-024-04119-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 04/25/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Distal necrosis and inflammation are two of the most common health consequences of random-pattern skin flaps survival (SFS). Anti-inflammatory effects of spermidine have been identified in various studies. On the other hand, considering the involvement of the nitric oxide molecule in the spermidine mode of action and also its role in skin tissue function, we analyzed the possible effects of spermidine on the SFS and also, potential involvement of nitrergic pathway and inflammatory cytokine in these phenomena. METHODS Each rat was pretreated with either a vehicle (control) or various doses of spermidine (0.5, 1, 3, 5, 10 and 30 mg/kg) and then was executed a random-pattern skin flap paradigm. Also, spermidine at the dose of 5 mg/kg was selected and one group rats received spermidine 20 min prior to surgery and one additional dose 1 day after operation. Then, 7 days after operations, interleukin (IL)-6, tumor necrosis factor (TNF)-α, interferon-gamma (IFN-γ), and nitrite levels were inquired in the tissue samples by ELIZA kit. Vascular endothelial growth factor expression was assessed by DAPI staining and fluorescent microscopes. The concentrations of three polyamines, including spermidine, spermine, and cadaverine, were analyzed using HPLC. RESULTS Pretreatment with spermidine 5 mg/kg improved SFS considerably in microscopic skin H&E staining analysis and decreased the percentage of necrotic area. Moreover, spermidine exerted promising anti-inflammatory effects via the modulation of nitric oxide and reducing inflammatory cytokines. CONCLUSIONS Spermidine could improve skin flaps survival, probably through the nitrergic system and inflammation pathways. This preclinical study provides level III evidence for the potential therapeutic effects of spermidine on SFS in rats, based on the analysis of animal models. Further studies are needed to confirm these findings in clinical settings. LEVEL OF EVIDENCE III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Kimiya Jouyban
- Student Research Committee, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, 131145-784, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, 131145-784, Iran.
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Charkhpour
- Drug Applied Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadis Rezaei
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrouz Seyfinejad
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amin Manavi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, 131145-784, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Intensive Care, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, 131145-784, Iran.
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Esposito L, Perillo M, Di Mattia CD, Scroccarello A, Della Pelle F, Compagnone D, Sacchetti G, Mastrocola D, Martuscelli M. A Survey on Potentially Beneficial and Hazardous Bioactive Compounds in Cocoa Powder Samples Sourced from the European Market. Foods 2024; 13:2457. [PMID: 39123648 PMCID: PMC11311273 DOI: 10.3390/foods13152457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Cocoa (Theobroma cacao, L.) represents an important market that gained relevance and became an esteemed commodity thanks to cocoa powder, chocolate, and other related products. This work analyzed 59 cocoa powder samples from the European market. Three distinct subgroups were identified: organic or conventional, alkalized or not alkalized, and raw or roasted processing. The impact of the technological process on their pH, color, and compositional traits, as well as their content of biogenic amines and salsolinol, was evaluated. The phenolic fraction was also investigated through both common and emerging methods. The results depict that the influence of the agronomical practices (organic/conventional) did not significantly (p < 0.05) affect the composition of the cocoa powders; similarly, the roasting process was not a determinant of the compounds traced. On the other hand, the alkalinization process greatly impacted color and pH, no matter the cocoa's provenience or obtention or other processes, also resulting in reducing the phenolic fraction of the treated samples. Principal component analysis confirmed that the alkali process acts on pH, color, and phenolic composition but not on the content of other bioactive molecules (biogenic amines and salsolinol). All the samples were safe, while the alkalized powders saw a great reduction in beneficial biocompounds. A novel strategy could be to emphasize on the label whether cocoa powder is non-alkalized to meet the demand for more beneficial products.
Collapse
Affiliation(s)
- Luigi Esposito
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (L.E.); (C.D.D.M.); (A.S.); (F.D.P.); (D.C.); (G.S.); (D.M.)
| | - Matteo Perillo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Carla Daniela Di Mattia
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (L.E.); (C.D.D.M.); (A.S.); (F.D.P.); (D.C.); (G.S.); (D.M.)
| | - Annalisa Scroccarello
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (L.E.); (C.D.D.M.); (A.S.); (F.D.P.); (D.C.); (G.S.); (D.M.)
| | - Flavio Della Pelle
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (L.E.); (C.D.D.M.); (A.S.); (F.D.P.); (D.C.); (G.S.); (D.M.)
| | - Dario Compagnone
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (L.E.); (C.D.D.M.); (A.S.); (F.D.P.); (D.C.); (G.S.); (D.M.)
| | - Giampiero Sacchetti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (L.E.); (C.D.D.M.); (A.S.); (F.D.P.); (D.C.); (G.S.); (D.M.)
| | - Dino Mastrocola
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (L.E.); (C.D.D.M.); (A.S.); (F.D.P.); (D.C.); (G.S.); (D.M.)
| | - Maria Martuscelli
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (L.E.); (C.D.D.M.); (A.S.); (F.D.P.); (D.C.); (G.S.); (D.M.)
| |
Collapse
|
18
|
Zhang R, Li X, Zhang S. The Role of Bacteria in Central Nervous System Tumors: Opportunities and Challenges. Microorganisms 2024; 12:1053. [PMID: 38930435 PMCID: PMC11205425 DOI: 10.3390/microorganisms12061053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Tumors of the central nervous system (CNS) are severe and refractory diseases with poor prognosis, especially for patients with malignant glioblastoma and brain metastases. Currently, numerous studies have explored the potential role of bacteria and intestinal flora in tumor development and treatment. Bacteria can penetrate the blood-brain barrier (BBB), targeting the hypoxic microenvironment at the core of tumors, thereby eliminating tumors and activating both the innate and adaptive immune responses, rendering them promising therapeutic agents for CNS tumors. In addition, engineered bacteria and derivatives, such as bacterial membrane proteins and bacterial spores, can also be used as good candidate carriers for targeted drug delivery. Moreover, the intestinal flora can regulate CNS tumor metabolism and influence the immune microenvironment through the "gut-brain axis". Therefore, bacterial anti-tumor therapy, engineered bacterial targeted drug delivery, and intervention of the intestinal flora provide therapeutic modalities for the treatment of CNS tumors. In this paper, we performed a comprehensive review of the mechanisms and therapeutic practices of bacterial therapy for CNS tumors and discussed potential future research directions in this field.
Collapse
Affiliation(s)
| | | | - Si Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China; (R.Z.); (X.L.)
| |
Collapse
|
19
|
Rádis-Baptista G, Konno K. Spider and Wasp Acylpolyamines: Venom Components and Versatile Pharmacological Leads, Probes, and Insecticidal Agents. Toxins (Basel) 2024; 16:234. [PMID: 38922129 PMCID: PMC11209471 DOI: 10.3390/toxins16060234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/27/2024] Open
Abstract
Polyamines (PAs) are polycationic biogenic amines ubiquitously present in all life forms and are involved in molecular signaling and interaction, determining cell fate (e.g., cell proliferation, dif-ferentiation, and apoptosis). The intricate balance in the PAs' levels in the tissues will determine whether beneficial or detrimental effects will affect homeostasis. It's crucial to note that endoge-nous polyamines, like spermine and spermidine, play a pivotal role in our understanding of neu-rological disorders as they interact with membrane receptors and ion channels, modulating neuro-transmission. In spiders and wasps, monoamines (histamine, dopamine, serotonin, tryptamine) and polyamines (spermine, spermidine, acyl polyamines) comprise, with peptides and other sub-stances, the low molecular weight fraction of the venom. Acylpolyamines are venom components exclusively from spiders and a species of solitary wasp, which cause inhibition chiefly of iono-tropic glutamate receptors (AMPA, NMDA, and KA iGluRs) and nicotinic acetylcholine receptors (nAChRs). The first venom acylpolyamines ever discovered (argiopines, Joro and Nephila toxins, and philanthotoxins) have provided templates for the design and synthesis of numerous analogs. Thus far, analogs with high potency exert their effect at nanomolar concentrations, with high se-lectivity toward their ionotropic and ligand receptors. These potent and selective acylpolyamine analogs can serve biomedical purposes and pest control management. The structural modification of acylpolyamine with photolabile and fluorescent groups converted these venom toxins into use-ful molecular probes to discriminate iGluRs and nAchRs in cell populations. In various cases, the linear polyamines, like spermine and spermidine, constituting venom acyl polyamine backbones, have served as cargoes to deliver active molecules via a polyamine uptake system on diseased cells for targeted therapy. In this review, we examined examples of biogenic amines that play an essential role in neural homeostasis and cell signaling, contributing to human health and disease outcomes, which can be present in the venom of arachnids and hymenopterans. With an empha-sis on the spider and wasp venom acylpolyamines, we focused on the origin, structure, derivatiza-tion, and biomedical and biotechnological application of these pharmacologically attractive, chemically modular venom components.
Collapse
Affiliation(s)
- Gandhi Rádis-Baptista
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceara, Fortaleza 60165-081, Brazil
| | - Katsuhiro Konno
- Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
20
|
Rahman A, Kulik E, Majláth I, Khan I, Janda T, Pál M. Different reactions of wheat, maize, and rice plants to putrescine treatment. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:807-822. [PMID: 38846465 PMCID: PMC11150351 DOI: 10.1007/s12298-024-01462-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/25/2024] [Accepted: 05/15/2024] [Indexed: 06/09/2024]
Abstract
Polyamines play an important role in growth and differentiation by regulating numerous physiological and biochemical processes at the cellular level. In addition to their roborative effect, their essential role in plant stress responses has been also reported. However, the positive effect may depend on the fine-tuning of polyamine metabolism, which influences the production of free radicals and/or signalling molecules. In the present study, 0.3 mM hydroponic putrescine treatment was tested in wheat, maize, and rice in order to reveal differences in their answers and highlight the relation of these with polyamine metabolism. In the case of wheat, the chlorophyll content and the actual quantum yield increased after putrescine treatment, and no remarkable changes were detected in the stress markers, polyamine contents, or polyamine metabolism-related gene expression. Although, in maize, the actual quantum yield decreased, and the root hydrogen peroxide content increased, no other negative effect was observed after putrescine treatment due to activation of polyamine oxidases at enzyme and gene expression levels. The results also demonstrated that after putrescine treatment, rice with a higher initial polyamine content, the balance of polyamine metabolism was disrupted and a significant amount of putrescine was accumulated, accompanied by a detrimental decrease in the level of higher polyamines. These initial differences and the putrescine-induced shift in polyamine metabolism together with the terminal catabolism or back-conversion-induced release of a substantial quantity of hydrogen peroxide could contribute to oxidative stress observed in rice.
Collapse
Affiliation(s)
- Altafur Rahman
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, Hungarian Research Network, Brunszvik 2, Martonvásár, 2462 Hungary
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Budapest, 1118 Hungary
| | | | - Imre Majláth
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, Hungarian Research Network, Brunszvik 2, Martonvásár, 2462 Hungary
| | - Imran Khan
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Budapest, 1118 Hungary
| | - Tibor Janda
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, Hungarian Research Network, Brunszvik 2, Martonvásár, 2462 Hungary
| | - Magda Pál
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, Hungarian Research Network, Brunszvik 2, Martonvásár, 2462 Hungary
| |
Collapse
|
21
|
Lu X, Lu J, Li S, Feng S, Wang Y, Cui L. The Role of Liquid-Liquid Phase Separation in the Accumulation of Pathological Proteins: New Perspectives on the Mechanism of Neurodegenerative Diseases. Aging Dis 2024; 16:769-786. [PMID: 38739933 PMCID: PMC11964424 DOI: 10.14336/ad.2024.0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/20/2024] [Indexed: 05/16/2024] Open
Abstract
It is widely accepted that living organisms form highly dynamic membrane-less organelles (MLOS) with various functions through phase separation, and the indispensable role that phase separation plays in the mechanisms of normal physiological functions and pathogenesis is gradually becoming clearer. Pathological aggregates, regarded as hallmarks of neurodegenerative diseases, have been revealed to be closely related to aberrant phase separation. Specific proteins are assembled into condensates and transform into insoluble inclusions through aberrant phase separation, contributing to the development of diseases. In this review, we present an overview of the progress of phase separation research, involving its biological mechanisms and the status of research in neurodegenerative diseases, focusing on five main disease-specific proteins, tau, TDP-43, FUS, α-Syn and HTT, and how exactly these proteins reside within dynamic liquid-like compartments and thus turn into solid deposits. Further studies will yield new perspectives for understanding the aggregation mechanisms and potential therapeutic strategies, and future research directions are anticipated.
Collapse
Affiliation(s)
- Xingyu Lu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Jiongtong Lu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Shengnan Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Sifan Feng
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Yan Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
- The Marine Biomedical Research Institute of Guangdong, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong, China.
| |
Collapse
|
22
|
Singh P, Choi JY, Mamoun CB. DAB-APT: a Fluorescence-Based Assay for Determining Aminopropyl Transferase Activity and Inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588734. [PMID: 38645036 PMCID: PMC11030440 DOI: 10.1101/2024.04.09.588734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Polyamines are polycationic molecules that are crucial in a wide array of cellular functions. Their biosynthesis is mediated by aminopropyl transferases (APTs), promising targets in antimicrobial, antineoplastic and antineurodegenerative therapies. A major limitation, however, is the lack of high-throughput assays to measure their activity. We developed the first fluorescence-based assay, DAB-APT, for measurement of APT activity using 1,2-diacetyl benzene, which forms fluorescent conjugates with putrescine, spermidine and spermine with fluorescence intensity increasing with increasing carbon chain length. The assay has been validated using APT enzymes from S. cerevisiae and P. falciparum and is suitable for high-throughput screening of large chemical libraries. Given the importance of APTs in infectious diseases, cancer and neurobiology, our DAB-APT assay has broad applications, holding promise for advancing research and drug discovery efforts.
Collapse
|
23
|
Horn PJ, Chapman KD. Imaging plant metabolism in situ. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1654-1670. [PMID: 37889862 PMCID: PMC10938046 DOI: 10.1093/jxb/erad423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/25/2023] [Indexed: 10/29/2023]
Abstract
Mass spectrometry imaging (MSI) has emerged as an invaluable analytical technique for investigating the spatial distribution of molecules within biological systems. In the realm of plant science, MSI is increasingly employed to explore metabolic processes across a wide array of plant tissues, including those in leaves, fruits, stems, roots, and seeds, spanning various plant systems such as model species, staple and energy crops, and medicinal plants. By generating spatial maps of metabolites, MSI has elucidated the distribution patterns of diverse metabolites and phytochemicals, encompassing lipids, carbohydrates, amino acids, organic acids, phenolics, terpenes, alkaloids, vitamins, pigments, and others, thereby providing insights into their metabolic pathways and functional roles. In this review, we present recent MSI studies that demonstrate the advances made in visualizing the plant spatial metabolome. Moreover, we emphasize the technical progress that enhances the identification and interpretation of spatial metabolite maps. Within a mere decade since the inception of plant MSI studies, this robust technology is poised to continue as a vital tool for tackling complex challenges in plant metabolism.
Collapse
Affiliation(s)
- Patrick J Horn
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton TX 76203, USA
| | - Kent D Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton TX 76203, USA
| |
Collapse
|
24
|
Ma Z, Liu D, Zhou M, Gu S, Zuo H. Plasma levels of urea cycle related amino acids in association with risk of ischemic stroke: Findings from a nested case-control study. J Stroke Cerebrovasc Dis 2024; 33:107531. [PMID: 38101276 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023] Open
Abstract
OBJECTIVES The role of urea cycle related amino acids in the development of ischemic stroke (IS) remains unclear. The study aimed to evaluate the association of these amino acids with IS. MATERIALS AND METHODS We conducted a case-control study nested within a cohort study in Changshu, Eastern China. A total of 321 cases and 321 controls matched by age and gender were finally included. Plasma levels of ornithine, arginine, spermidine, and proline were measured using ultra-high performance liquid chromatography-tandem mass-spectrometry (UHPLC-MS/MS). Odds ratios (ORs) and their 95 % confidence intervals (CIs) were calculated by conditional logistic regression analyses. RESULTS Plasma ornithine was inversely associated with risk of IS [crude OR: 0.62 (95 % CI: 0.40-0.97)]. After adjustment for body mass index, smoking, hypertension, family history of stroke, estimated glomerular filtration rate, and total cholesterol, the corresponding ORs for the highest compared to the lowest quartiles was essentially unchanged [adjusted OR: 0.62 (95 % CI: 0.39-0.99)]. The risk association remained significant after repeating the analyses by excluding the first two years of follow-up. Plasma arginine, spermidine, and proline were not associated with the risk of IS. CONCLUSION We observed that higher plasma levels of ornithine were associated with a lower risk of incident IS. Our novel findings suggest a protective role of ornithine in the pathogenesis of IS.
Collapse
Affiliation(s)
- Ze Ma
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Dong Liu
- School of Public Health, Nantong University, Nantong, China
| | - Meng Zhou
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Shujun Gu
- Department of Chronic Disease Control and Prevention, Changshu Center for Disease Control and Prevention, Changshu, China
| | - Hui Zuo
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
25
|
Lüersen K, Jöckel T, Chin D, Demetrowitsch T, Schwarz K, Rimbach G. Reduced iron and cobalt levels in response to curcumin supplementation are not responsible for the prolonged larval development and do not affect the oxidative stress tolerance and polyamine status of D. melanogaster. Biofactors 2024; 50:161-180. [PMID: 37597249 DOI: 10.1002/biof.2000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/23/2023] [Indexed: 08/21/2023]
Abstract
Recent reports indicated that the phytochemical curcumin possesses iron-chelating activity. Here, by employing the fruit fly Drosophila melanogaster, we conducted feeding studies supplementing curcumin or, as a control, the iron chelator bathophenanthroline (BPA). First, the absorption and further metabolization of dietary curcuminoids were proved by metabolomics analyses. Next, we found that 0.2% dietary curcumin, similar to BPA, lowered the iron but also the cobalt content, and to a lesser extent affected the manganese and zinc status. Supplementation during larval stages was required and sufficient for both compounds to elicit these alterations in adult animals. However, curcumin-induced retarded larval development was not attributable to the changed trace metal status. In addition, a reduction in the iron content of up to 70% by curcumin or BPA supplementation did not reduce heme-dependent catalase activity and tolerance toward H2 O2 in D. melanogaster. Moreover, polyamines were not influenced by curcumin treatment and decreased iron levels. This was confirmed for selected organs from 0.2% curcumin-treated mice, except for the spleen. Here, elevated spermidine level and concomitant upregulation of genes involved in polyamine production were associated with a putatively anemia-derived increased spleen mass. Our data underline that the metal-chelating property of curcumin needs to be considered in feeding studies.
Collapse
Affiliation(s)
- Kai Lüersen
- Division of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Tobias Jöckel
- Division of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Dawn Chin
- Division of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Tobias Demetrowitsch
- Division of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Karin Schwarz
- Division of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Gerald Rimbach
- Division of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| |
Collapse
|
26
|
Xuan M, Gu X, Li J, Huang D, Xue C, He Y. Polyamines: their significance for maintaining health and contributing to diseases. Cell Commun Signal 2023; 21:348. [PMID: 38049863 PMCID: PMC10694995 DOI: 10.1186/s12964-023-01373-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/29/2023] [Indexed: 12/06/2023] Open
Abstract
Polyamines are essential for the growth and proliferation of mammalian cells and are intimately involved in biological mechanisms such as DNA replication, RNA transcription, protein synthesis, and post-translational modification. These mechanisms regulate cellular proliferation, differentiation, programmed cell death, and the formation of tumors. Several studies have confirmed the positive effect of polyamines on the maintenance of health, while others have demonstrated that their activity may promote the occurrence and progression of diseases. This review examines a variety of topics, such as polyamine source and metabolism, including metabolism, transport, and the potential impact of polyamines on health and disease. In addition, a brief summary of the effects of oncogenes and signaling pathways on tumor polyamine metabolism is provided. Video Abstract.
Collapse
Affiliation(s)
- Mengjuan Xuan
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Xinyu Gu
- Department of Oncology, College of Clinical Medicine, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Juan Li
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Chen Xue
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
27
|
Brito BDNDC, Martins MG, Chisté RC, Lopes AS, Gloria MBA, Pena RDS. Total and Free Hydrogen Cyanide Content and Profile of Bioactive Amines in Commercial Tucupi, a Traditionally Derived Cassava Product Widely Consumed in Northern Brazil. Foods 2023; 12:4333. [PMID: 38231841 DOI: 10.3390/foods12234333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
Tucupi is a broth derived from cassava roots which is produced after the spontaneous fermentation of manipueira (the liquid portion obtained by pressing cassava roots), followed by cooking. This product is widely consumed along with traditional dishes in the Brazilian Amazonia and is already used in different places worldwide. In this study, tucupi obtained from the markets of Belém (Pará, Brazil) and produced using agroindustrial (11 samples) and non-agroindustrial (11 samples) units were investigated to determine their physicochemical characteristics, total and free HCN contents, and free bioactive amine profiles. Most of the samples showed significant variations (p ≤ 0.05) in pH (2.82-4.67), total acidity (0.14-1.36 g lactic acid/100 mL), reducing sugars (up to 2.33 g/100 mL), and total sugars (up to 4.35 g/100 mL). Regarding the amines, four biogenic amines (0.5-4.2 mg/L tyramine, 1.0-23.1 mg/L putrescine, 0.5-66.8 mg/L histamine, and 0.6-2.9 mg/L tryptamine) and one polyamine (0.4-1.7 mg/L spermidine) were identified in the tucupi samples. Even in the tucupi produced using the agroindustrial units, which had quality seals provided by the local regulatory agency, high levels of biogenic amines (4.4-78.2 mg/L) were observed, as well as high dosages of total (8.87-114.66 mg/L) and free (0.80-38.38 mg/L) HCN. These facts highlight the need for better knowledge regarding the product manufacturing process to establish standardization and high-quality conditions for tucupi processing since high contents of biogenic amines and HCN are commonly associated with adverse health effects.
Collapse
Affiliation(s)
- Brenda de Nazaré do Carmo Brito
- Graduate Program of Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
| | - Mayara Galvão Martins
- Innovation, Development and Adaptation of Sustainable Technologies Research Group (GPIDATS), Mamirauá Institute for Sustainable Development (IDSM), Tefé 69553-225, AM, Brazil
| | - Renan Campos Chisté
- Graduate Program of Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
- Faculty of Food Engineering (FEA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
| | - Alessandra Santos Lopes
- Graduate Program of Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
- Faculty of Food Engineering (FEA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
| | - Maria Beatriz Abreu Gloria
- Laboratory of Food Biochemistry-LBqA & LCQ, Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Rosinelson da Silva Pena
- Graduate Program of Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
- Faculty of Food Engineering (FEA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
| |
Collapse
|
28
|
Jimenez Gutierrez GE, Borbolla Jiménez FV, Muñoz LG, Tapia Guerrero YS, Murillo Melo NM, Cristóbal-Luna JM, Leyva Garcia N, Cordero-Martínez J, Magaña JJ. The Molecular Role of Polyamines in Age-Related Diseases: An Update. Int J Mol Sci 2023; 24:16469. [PMID: 38003659 PMCID: PMC10671757 DOI: 10.3390/ijms242216469] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Polyamines (Pas) are short molecules that exhibit two or three amine groups that are positively charged at a physiological pH. These small molecules are present in high concentrations in a wide variety of organisms and tissues, suggesting that they play an important role in cellular physiology. Polyamines include spermine, spermidine, and putrescine, which play important roles in age-related diseases that have not been completely elucidated. Aging is a natural process, defined as the time-related deterioration of the physiological functions; it is considered a risk factor for degenerative diseases such as cardiovascular, neurodegenerative, and musculoskeletal diseases; arthritis; and even cancer. In this review, we provide a new perspective on the participation of Pas in the cellular and molecular processes related to age-related diseases, focusing our attention on important degenerative diseases such as Alzheimerߣs disease, Parkinsonߣs disease, osteoarthritis, sarcopenia, and osteoporosis. This new perspective leads us to propose that Pas function as novel biomarkers for age-related diseases, with the main purpose of achieving new molecular alternatives for healthier aging.
Collapse
Affiliation(s)
- Guadalupe Elizabeth Jimenez Gutierrez
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (G.E.J.G.); (F.V.B.J.); (L.G.M.); (Y.S.T.G.); (N.M.M.M.); (N.L.G.)
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Fabiola V. Borbolla Jiménez
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (G.E.J.G.); (F.V.B.J.); (L.G.M.); (Y.S.T.G.); (N.M.M.M.); (N.L.G.)
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Luis G. Muñoz
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (G.E.J.G.); (F.V.B.J.); (L.G.M.); (Y.S.T.G.); (N.M.M.M.); (N.L.G.)
| | - Yessica Sarai Tapia Guerrero
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (G.E.J.G.); (F.V.B.J.); (L.G.M.); (Y.S.T.G.); (N.M.M.M.); (N.L.G.)
| | - Nadia Mireya Murillo Melo
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (G.E.J.G.); (F.V.B.J.); (L.G.M.); (Y.S.T.G.); (N.M.M.M.); (N.L.G.)
| | - José Melesio Cristóbal-Luna
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Mexico City 07738, Mexico;
| | - Norberto Leyva Garcia
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (G.E.J.G.); (F.V.B.J.); (L.G.M.); (Y.S.T.G.); (N.M.M.M.); (N.L.G.)
| | - Joaquín Cordero-Martínez
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Jonathan J. Magaña
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (G.E.J.G.); (F.V.B.J.); (L.G.M.); (Y.S.T.G.); (N.M.M.M.); (N.L.G.)
- Department of Bioengineering, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, Mexico City 14380, Mexico
| |
Collapse
|
29
|
Zhou J, Liu J, Lin Q, Shi L, Zeng Z, Guan L, Ma Y, Zeng Y, Zhong S, Xu L. Characteristics of the gut microbiome and metabolic profile in elderly patients with sarcopenia. Front Pharmacol 2023; 14:1279448. [PMID: 38026977 PMCID: PMC10654747 DOI: 10.3389/fphar.2023.1279448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: There is growing evidence of research indicating that the gut microbiota is involved in the development of sarcopenia. Nevertheless, there exists a notable deficiency in comprehension concerning the connection between irregularities in the intestinal microbiome and metabolic processes in older individuals suffering from sarcopenia. Methods: To analyze fecal samples obtained from a cohort of 30 older patients diagnosed with sarcopenia as well as 30 older patients without sarcopenia, this study employed 16S rDNA sequencing and liquid chromatography-mass spectrometry (LC-MS)-based non-targeted metabolomics profiling techniques. Results: As a result, we found that 29 genera and 172 metabolites were significantly altered in the sarcopenic patients. Among them, Blautia, Lachnospiraceae_unclassified, and Subdoligranulum were the bacteria with a potential diagnostic value for sarcopenia diagnosis. Correlation analysis between clinical indices and these gut bacteria suggested that the IL-6 level was negatively correlated with Blautia. Function prediction analysis demonstrated that 17 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways differ significantly between sarcopenic and non-sarcopenic patients. The primary classes of metabolites identified in the study included lipids and lipid-like molecules, organic acids and derivatives, and organoheterocyclic compounds. KEGG enrichment analysis showed that purine metabolism, arginine and proline metabolism, alanine, aspartate, and glutamate metabolism, butanoate metabolism, and histidine metabolism may contribute to the development of sarcopenia. The correlation study on gut microbiota and metabolites found that Lachnospiraceae_unclassified was positively associated with seven metabolites that were more abundant in the non-sarcopenia group and negatively correlated with three metabolites that were more abundant in the sarcopenia group. In addition, Subdoligranulum was positively correlated with seven metabolites that were lacking in sarcopenia and negatively correlated with two metabolites that were enriching in sarcopenia. Moreover, Blautia was positively associated with xanthosine. Discussion: We conducted a study on the intestinal microbiota and metabolic profile of elderly individuals with sarcopenia, offering a comprehensive analysis of the overall ecosystem. Through this investigation, we were able to validate existing research on the gut-muscle axis and further investigate potential pathogenic processes and treatment options for sarcopenia.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Geriatric Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Pharmacy, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jiang Liu
- Department of Pharmacy, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qinqing Lin
- Department of Geriatric Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- College of Medicine, Shantou University, Shantou, China
| | - Linhui Shi
- Department of Geriatric Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhigang Zeng
- Department of Digestive Endoscopy Center, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Lichang Guan
- Department of Geriatric Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yunzi Ma
- Department of Pharmacy, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yingtong Zeng
- Department of Pharmacy, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shilong Zhong
- Department of Pharmacy, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Laboratory of Phase I Clinical Trials, Center of Medical Research, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Lishu Xu
- Department of Geriatric Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Institute of Geriatrics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
30
|
Mohajeri M, Ayatollahi SA, Kobarfard F, Goli M, Khandan M, Mokhtari S, Khodadoost M. Wheat germ, a byproduct of the wheat milling industry, as a beneficial source of anti-aging polyamines: A quantitative comparison of various forms. Food Sci Nutr 2023; 11:7242-7254. [PMID: 37970387 PMCID: PMC10630827 DOI: 10.1002/fsn3.3650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 11/17/2023] Open
Abstract
Polyamines have received a lot of attention since the 1990s because of their anti-aging, anti-chronic disease, and proliferative effects. Wheat germ was reported as one of the natural sources of high polyamine, especially spermidine. The current study used three types of wheat germ: group A was industrially separated germ from whole grain, group B was the commercially available germinated wheat germ, and group C was manually separated wheat germ from germinated grain. The polyamine content of putrescine, spermidine, and spermine has been determined using a simplified isocratic LC-MS/MS method. An optimized extraction procedure was performed on all seven samples for obtaining a polyamine-enriched extract. The three dominant carbomylated polyamines were identified by analyzing the extracted samples in order to determine their relative abundance. Wheat germ powders contain the highest amount of polyamines (220-337 μg/g) of which spermidine is one of the most important. Germinated wheat grains, on the other hand, contain the least amount of this polyamine. The commercially available separated wheat germs are suggested as a good nutrition source of these polyamines.
Collapse
Affiliation(s)
- Maryam Mohajeri
- Phytochemistry Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research CenterShahid Beheshti University of Medical SciencesTehranIran
- Department of Pharmacognosy, School of PharmacyShahid Beheshti University of Medical SciencesTehranIran
| | - Farzad Kobarfard
- Phytochemistry Research CenterShahid Beheshti University of Medical SciencesTehranIran
- Department of Medicinal Chemistry, School of PharmacyShahid Beheshti University of Medical SciencesTehranIran
| | - Mohammad Goli
- Department of Food Science and Technology, Laser and Biophotonics in Biotechnologies Research Center, Isfahan (Khorasgan) BranchIslamic Azad UniversityIsfahanIran
| | - Maryam Khandan
- Phytochemistry Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Shaya Mokhtari
- Phytochemistry Research CenterShahid Beheshti University of Medical SciencesTehranIran
- Central Research LaboratoriesShahid Beheshti University of Medical SciencesTehranIran
| | - Mahmoud Khodadoost
- Department of Traditional Medicine, School of Traditional MedicineShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
31
|
Foressi NN, Rodríguez LC, Celej MS. Heterotypic liquid-liquid phase separation of tau and α-synuclein: Implications for overlapping neuropathologies. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140950. [PMID: 37574035 DOI: 10.1016/j.bbapap.2023.140950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
Tauopathies and synucleinopathies are characterized by the aggregation of Tau and α-synuclein (AS) into amyloid structures, respectively. Individuals with these neuropathies have an elevated risk of developing subsequent neurodegenerative or comorbid disorders. Intriguingly, post-mortem brain examinations have revealed co-localization of Tau and AS aggregates, suggesting a synergistic pathological relationship with an adverse prognosis. The role of liquid-liquid phase separation (LLPS) in the development of neurodegenerative diseases is currently receiving significant attention, as it can contribute to the aggregation and co-deposition of amyloidogenic proteins. In this study, we investigated the phase separation behavior of Tau and AS under various insults, some of which are implicated in disease progression. Our findings demonstrate the formation of heterotypic droplets composed of Tau and AS at physiologically relevant mole ratios that mimic neurons' soma and terminal buttons. Importantly, these heterotypic droplets exhibit increased resistance to electrostatic screening compared to homotypic condensates. Moreover, we observed that biologically relevant biomolecules, known to be dysregulated in disease, exert different effects on these droplets. Additionally, we provide evidence that phase separation itself influences the amyloid aggregation of Tau and AS, underscoring the significance of this process in the development of aggregopathies.
Collapse
Affiliation(s)
- Nahuel N Foressi
- Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Leandro Cruz Rodríguez
- Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - M Soledad Celej
- Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina.
| |
Collapse
|
32
|
Xie C, Zhu Y, Leng C, Wang Q, Wang P, Yang R. Investigation into the Relationship between Spermidine Degradation and Phenolic Compounds Biosynthesis in Barley Seedlings under Ultraviolet B Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:3533. [PMID: 37895996 PMCID: PMC10609958 DOI: 10.3390/plants12203533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
Barley germination under ultraviolet B (UV-B) illumination stress induces effective accumulation of phenolic compounds in the barley. Spermidine can enhance the biosynthesis of phenolic compounds and alleviate the oxidative damage caused by UV-B. To better understand the function of spermidine, inhibitors of enzymes that are involved in the degradation of spermidine and the synthesis of gamma-aminobutyric acid (GABA), the product of spermidine degradation, were applied to barley germinated under UV-B treatment. The results showed a more severe oxidative damage, and a decrease in phenolic acid contents were observed when spermidine degradation was inhibited. However, GABA application did attenuate an increase in electrolyte permeability and MDA content caused by UV-B induced oxidative damage and improved the respiration rate. Meanwhile, GABA application can elevate the accumulation of phenolic compounds by ca. 20%, by elevating the activities of some key enzymes. Furthermore, the application of GABA, together with the inhibitor of spermidine degradation, can alleviate its suppression of the synthesis of phenolic acids, and resistance to UV-B stress. In conclusion, spermidine alleviated oxidative damage and enhanced the accumulation of phenolic compounds using its degradation product.
Collapse
Affiliation(s)
- Chong Xie
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; (C.X.); (P.W.)
| | - Yahui Zhu
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing 100048, China;
| | - Chaoqun Leng
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; (C.X.); (P.W.)
| | - Qiaoe Wang
- College of Food Science and Technology, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China;
| | - Pei Wang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; (C.X.); (P.W.)
| | - Runqiang Yang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; (C.X.); (P.W.)
| |
Collapse
|
33
|
Shin D, Perez VC, Dickinson GK, Zhao H, Dai R, Tomiczek B, Cho KH, Zhu N, Koh J, Grenning A, Kim J. Altered methionine metabolism impacts phenylpropanoid production and plant development in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:187-200. [PMID: 37366635 PMCID: PMC11392427 DOI: 10.1111/tpj.16370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Phenylpropanoids are specialized metabolites derived from phenylalanine. Glucosinolates are defense compounds derived mainly from methionine and tryptophan in Arabidopsis. It was previously shown that the phenylpropanoid pathway and glucosinolate production are metabolically linked. The accumulation of indole-3-acetaldoxime (IAOx), the precursor of tryptophan-derived glucosinolates, represses phenylpropanoid biosynthesis through accelerated degradation of phenylalanine ammonia lyase (PAL). As PAL functions at the entry point of the phenylpropanoid pathway, which produces indispensable specialized metabolites such as lignin, aldoxime-mediated phenylpropanoid repression is detrimental to plant survival. Although methionine-derived glucosinolates in Arabidopsis are abundant, any impact of aliphatic aldoximes (AAOx) derived from aliphatic amino acids such as methionine on phenylpropanoid production remains unclear. Here, we investigate the impact of AAOx accumulation on phenylpropanoid production using Arabidopsis aldoxime mutants, ref2 and ref5. REF2 and REF5 metabolize aldoximes to respective nitrile oxides redundantly, but with different substrate specificities. ref2 and ref5 mutants have decreased phenylpropanoid contents due to the accumulation of aldoximes. As REF2 and REF5 have high substrate specificity toward AAOx and IAOx, respectively, it was assumed that ref2 accumulates AAOx, not IAOx. Our study indicates that ref2 accumulates both AAOx and IAOx. Removing IAOx partially restored phenylpropanoid content in ref2, but not to the wild-type level. However, when AAOx biosynthesis was silenced, phenylpropanoid production and PAL activity in ref2 were completely restored, suggesting an inhibitory effect of AAOx on phenylpropanoid production. Further feeding studies revealed that the abnormal growth phenotype commonly observed in Arabidopsis mutants lacking AAOx production is a consequence of methionine accumulation.
Collapse
Affiliation(s)
- Doosan Shin
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Veronica C Perez
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL, USA
| | - Gabriella K Dickinson
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL, USA
| | - Haohao Zhao
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Ru Dai
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Breanna Tomiczek
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Keun Ho Cho
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Ning Zhu
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32611, USA
| | - Jin Koh
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32611, USA
| | - Alexander Grenning
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Jeongim Kim
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL, USA
- Genetic Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
34
|
Liu W, Hu X, Fang L, Cai Y. Insights into the Unusual Activity of a Novel Homospermidine Synthase with a Promising Application to Produce Spermidine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13024-13034. [PMID: 37622688 DOI: 10.1021/acs.jafc.3c03037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Spermidine is a naturally occurring polyamine with multiple biological activities and potential food and agricultural applications. However, sustainable and scalable spermidine production has not yet been attained. In this study, a homospermidine synthase (HSS) from Pseudomonas frederiksbergensis (PfHSS) capable of catalyzing the synthesis of spermidine from 1,3-diaminopropane and putrescine was identified based on multiple sequence alignment using Blastochloris viridis HSS (BvHSS) as a template. The optimal reaction pH and temperature for purified PfHSS were determined to be 8.5 and 45 °C, respectively, and K+ was able to promote the enzyme activity. Further analysis of the structural and functional relationships through molecular docking and molecular dynamics simulation indicates that glutamic acid at position 359 is the essential residue for the enzyme-catalyzed synthesis of spermidine. The whole-cell catalytic reaction yielded 1321.4 mg/L spermidine and 678.2 mg/L of homospermidine. This study presents a novel, promising, and sustainable biological method for producing spermidine.
Collapse
Affiliation(s)
- Wenjing Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xiaoxiang Hu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Linghao Fang
- Zhongke Hengji (Hangzhou) Biotechnology Co., 501 Minhe Road, Hangzhou ,Zhejiang 311200, China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
35
|
Álvarez-Herms J, González A, Corbi F, Odriozola I, Odriozola A. Possible relationship between the gut leaky syndrome and musculoskeletal injuries: the important role of gut microbiota as indirect modulator. AIMS Public Health 2023; 10:710-738. [PMID: 37842270 PMCID: PMC10567981 DOI: 10.3934/publichealth.2023049] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 10/17/2023] Open
Abstract
This article aims to examine the evidence on the relationship between gut microbiota (GM), leaky gut syndrome and musculoskeletal injuries. Musculoskeletal injuries can significantly impair athletic performance, overall health, and quality of life. Emerging evidence suggests that the state of the gut microbiota and the functional intestinal permeability may contribute to injury recovery. Since 2007, a growing field of research has supported the idea that GM exerts an essential role maintaining intestinal homeostasis and organic and systemic health. Leaky gut syndrome is an acquired condition where the intestinal permeability is impaired, and different bacteria and/or toxins enter in the bloodstream, thereby promoting systemic endotoxemia and chronic low-grade inflammation. This systemic condition could indirectly contribute to increased local musculoskeletal inflammation and chronificate injuries and pain, thereby reducing recovery-time and limiting sport performance. Different strategies, including a healthy diet and the intake of pre/probiotics, may contribute to improving and/or restoring gut health, thereby modulating both systemically as local inflammation and pain. Here, we sought to identify critical factors and potential strategies that could positively improve gut microbiota and intestinal health, and reduce the risk of musculoskeletal injuries and its recovery-time and pain. In conclusion, recent evidences indicate that improving gut health has indirect consequences on the musculoskeletal tissue homeostasis and recovery through the direct modulation of systemic inflammation, the immune response and the nociceptive pain.
Collapse
Affiliation(s)
- Jesús Álvarez-Herms
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Leioa, Spain
- Phymo Lab, Physiology, and Molecular laboratory, Spain
| | - Adriana González
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Leioa, Spain
| | - Francisco Corbi
- Institut Nacional d'Educació Física de Catalunya (INEFC), Centre de Lleida, Universitat de Lleida (UdL), Lleida, Spain
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Adrian Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Leioa, Spain
| |
Collapse
|
36
|
Agarwal T, Wang X, Mildenhall F, Ibrahim IM, Puthiyaveetil S, Varala K. Chilling stress drives organ-specific transcriptional cascades and dampens diurnal oscillation in tomato. HORTICULTURE RESEARCH 2023; 10:uhad137. [PMID: 37564269 PMCID: PMC10410299 DOI: 10.1093/hr/uhad137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/02/2023] [Indexed: 08/12/2023]
Abstract
Improving chilling tolerance in cold-sensitive crops, e.g. tomato, requires knowledge of the early molecular response to low temperature in these under-studied species. To elucidate early responding processes and regulators, we captured the transcriptional response at 30 minutes and 3 hours in the shoots and at 3 hours in the roots of tomato post-chilling from 24°C to 4°C. We used a pre-treatment control and a concurrent ambient temperature control to reveal that majority of the differential expression between cold and ambient conditions is due to severely compressed oscillation of a large set of diurnally regulated genes in both the shoots and roots. This compression happens within 30 minutes of chilling, lasts for the duration of cold treatment, and is relieved within 3 hours of return to ambient temperatures. Our study also shows that the canonical ICE1/CAMTA-to-CBF cold response pathway is active in the shoots, but not in the roots. Chilling stress induces synthesis of known cryoprotectants (trehalose and polyamines), in a CBF-independent manner, and induction of multiple genes encoding proteins of photosystems I and II. This study provides nuanced insights into the organ-specific response in a chilling sensitive plant, as well as the genes influenced by an interaction of chilling response and the circadian clock.
Collapse
Affiliation(s)
- Tina Agarwal
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Xiaojin Wang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Frederick Mildenhall
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Iskander M Ibrahim
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Sujith Puthiyaveetil
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Kranthi Varala
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
37
|
Souza MR, Brito ECB, Furtado LS, Barco VS, Cruz LLD, Moraes-Souza RQ, Monteiro GC, Lima GPP, Damasceno DC, Volpato GT. Maternal-fetal toxicity of Strychnos pseudoquina extract treatment during pregnancy. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116459. [PMID: 37023837 DOI: 10.1016/j.jep.2023.116459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plants and herbs have been used by women throughout history for therapeutic purposes. Strychnos pseudoquina, a plant used in the treatment of various diseases, can also function as an abortive herb. There is no scientific confirmation of its effects during pregnancy, and the activity of this plant needs to be substantiated or refuted with experimental evidence. AIM OF THE STUDY Evaluating the effect of the S. pseudoquina aqueous extract on maternal reproductive toxicity and fetal development. MATERIALS AND METHODS The aqueous extract of S. pseudoquina bark was evaluated in Wistar rats. Pregnant rats were distributed into four experimental groups (n = 12 rats/group): Control = treated with water (vehicle); Treated 75, Treated 150, and Treated 300 = treated with S. pseudoquina at dose 75, 150 and 300 mg/kg, respectively. The rats were treated by an intragastric route (gavage) from day 0 to day 21 of pregnancy. At the end of pregnancy, maternal reproductive outcomes, organs, biochemical and hematological profiles, fetuses, and placentas were analyzed. Maternal toxicity was evaluated through body weight gain, water, and food intake. With knowledge of the harmful dosage of the plant, other rats were used on gestational day 4 for the evaluation of morphological analyses before embryo implantation. P < 0.05 was considered as statistically significant. RESULTS The S. pseudoquina treatment showed elevated liver enzymatic activities. The Treated 300 group presented toxicity with reduced maternal body weight, water and food intake, and increased kidney relative weight compared to those of the Control group. At a high dosage, the plant presents an abortifacient activity, confirmed by embryo losses before and after implantation and degenerated blastocysts. In addition, the treatment contributed to an increased percentage of fetal visceral anomalies, decreased ossification sites, and intrauterine growth restriction (300 mg/kg dose). CONCLUSION In general, our study showed that an aqueous extract of S. pseudoquina bark caused significant abortifacient activity that testified to its traditional use. Furthermore, the S. pseudoquina extract caused maternal toxicity that contributed to impaired embryofetal development. Therefore, the use of this plant should be completely avoided during pregnancy to prevent unintended abortion and risks to maternal-fetal health.
Collapse
Affiliation(s)
- Maysa Rocha Souza
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso - Barra do Garças, Mato Grosso State, Brazil; Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Univ Estadual Paulista (Unesp), Botucatu Medical School, Botucatu, São Paulo State, Brazil
| | - Evelyn Caroline Barbosa Brito
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso - Barra do Garças, Mato Grosso State, Brazil
| | - Linne Stephane Furtado
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso - Barra do Garças, Mato Grosso State, Brazil
| | - Vinícius Soares Barco
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Univ Estadual Paulista (Unesp), Botucatu Medical School, Botucatu, São Paulo State, Brazil
| | - Larissa Lopes da Cruz
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso - Barra do Garças, Mato Grosso State, Brazil; Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Univ Estadual Paulista (Unesp), Botucatu Medical School, Botucatu, São Paulo State, Brazil
| | - Rafaianne Queiroz Moraes-Souza
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso - Barra do Garças, Mato Grosso State, Brazil; Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Univ Estadual Paulista (Unesp), Botucatu Medical School, Botucatu, São Paulo State, Brazil
| | - Gean Charles Monteiro
- Department of Chemical and Biological Sciences, Institute of Bioscience, São Paulo State University, Botucatu, São Paulo State, Brazil
| | - Giuseppina Pace Pereira Lima
- Department of Chemical and Biological Sciences, Institute of Bioscience, São Paulo State University, Botucatu, São Paulo State, Brazil
| | - Débora Cristina Damasceno
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Univ Estadual Paulista (Unesp), Botucatu Medical School, Botucatu, São Paulo State, Brazil
| | - Gustavo Tadeu Volpato
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso - Barra do Garças, Mato Grosso State, Brazil.
| |
Collapse
|
38
|
Lindinger S, Bauer S, Dicakova Z, Pilz B, Paulsen P. Microflora, Contents of Polyamines, Biogenic Amines, and TVB-N in Bovine Offal and Game Meat for the Raw-Feeding of Adult Dogs. Animals (Basel) 2023; 13:1987. [PMID: 37370497 DOI: 10.3390/ani13121987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Microflora and contents of biogenic amines/polyamines and total volatile basic nitrogen (TVB-N) in 99 samples of bovine offal (red offal, n = 41 and other offal and mixes, n = 45) and wild game meat (n = 13) for raw meat-based diets (RMBD) for dogs were analyzed. Samples were bought in 11 local pet food shops and in one game-handling establishment in Austria (Lower Austria, Styria, and Vienna) in September and October 2022. Median contents (first and third quartiles in brackets) of cadaverine, histamine, tyramine, spermidine, and spermine were 20.7 [16.7; 28.6]; 25.4 [17.1; 47.2]; 18.9 [13.6; 38.9]; 15.2 [11.2; 21.2]; and 41.9 [<limit of detection; 64.5] mg/kg wet weight, respectively. The sum of putrescine + cadaverine + histamine + tyramine was >50 mg/kg in 85.9% of samples, indicating the use of low-quality ingredients or inappropriate storage conditions. However, only 10.1% of samples were determined to be not compliant with a maximum amine content proposed for pet food. Median contents of the total aerobic bacteria counts (TACs), Pseudomonas, and Enterobacteriaceae were 7.4 [6.4; 8.0]; 6.5 [5.5; 7.7]; and 4.8 [3.9; 5.6] log CFU/g, respectively, with significantly lower counts in red offal RMBD (p < 0.05). TVB-N exceeded 150 mg/kg in 87.9% of samples. The TACs and Enterobacteriaceae numbers in red offal RMBD were comparable to those in food-grade red offal after 6 days of aerobic storage at 7 °C, i.e., temperatures higher than required for food-grade offal, but acceptable for animal by-products intended for RMBD production. In 80.8% of samples, numbers of Enterobacteriaceae exceeded the EU legal limit. From 12 of these samples, Salmonellae was able to be isolated, with counts from 0.03 MPN/g to 110 MPN/g. Salmonella enterica ser. Montevideo (n = 3), and S. enterica ser. Give and S. enterica ssp. Diarizonae (n = 2 each) were the most frequently isolated, while Listeria monocytogenes was rarely recovered (2%). Whilst exposure of humans handling such pet food can be reduced by hygiene precautions, the risk remains that dogs can acquire a feed-borne salmonellosis and shed the pathogen.
Collapse
Affiliation(s)
- Sarah Lindinger
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Susanne Bauer
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Zuzana Dicakova
- Department of Food Hygiene, Technology and Safety, University of Veterinary Medicine and Pharmacy in Košice, Komenskeho 73, 04181 Košice, Slovakia
| | - Brigitte Pilz
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Peter Paulsen
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| |
Collapse
|
39
|
Galasso L, Cappella A, Mulè A, Castelli L, Ciorciari A, Stacchiotti A, Montaruli A. Polyamines and Physical Activity in Musculoskeletal Diseases: A Potential Therapeutic Challenge. Int J Mol Sci 2023; 24:9798. [PMID: 37372945 DOI: 10.3390/ijms24129798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Autophagy dysregulation is commonplace in the pathogenesis of several invalidating diseases, such as musculoskeletal diseases. Polyamines, as spermidine and spermine, are small aliphatic cations essential for cell growth and differentiation, with multiple antioxidant, anti-inflammatory, and anti-apoptotic effects. Remarkably, they are emerging as natural autophagy regulators with strong anti-aging effects. Polyamine levels were significantly altered in the skeletal muscles of aged animals. Therefore, supplementation of spermine and spermidine may be important to prevent or treat muscle atrophy. Recent in vitro and in vivo experimental studies indicate that spermidine reverses dysfunctional autophagy and stimulates mitophagy in muscles and heart, preventing senescence. Physical exercise, as polyamines, regulates skeletal muscle mass inducing proper autophagy and mitophagy. This narrative review focuses on the latest evidence regarding the efficacy of polyamines and exercise as autophagy inducers, alone or coupled, in alleviating sarcopenia and aging-dependent musculoskeletal diseases. A comprehensive description of overall autophagic steps in muscle, polyamine metabolic pathways, and effects of the role of autophagy inducers played by both polyamines and exercise has been presented. Although literature shows few data in regard to this controversial topic, interesting effects on muscle atrophy in murine models have emerged when the two "autophagy-inducers" were combined. We hope these findings, with caution, can encourage researchers to continue investigating in this direction. In particular, if these novel insights could be confirmed in further in vivo and clinical studies, and the two synergic treatments could be optimized in terms of dose and duration, then polyamine supplementation and physical exercise might have a clinical potential in sarcopenia, and more importantly, implications for a healthy lifestyle in the elderly population.
Collapse
Affiliation(s)
- Letizia Galasso
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Annalisa Cappella
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- U.O. Laboratorio di Morfologia Umana Applicata, I.R.C.C.S. Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Antonino Mulè
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Lucia Castelli
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Andrea Ciorciari
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Alessandra Stacchiotti
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- U.O. Laboratorio di Morfologia Umana Applicata, I.R.C.C.S. Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Angela Montaruli
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- I.R.C.C.S. Ospedale Galeazzi-Sant'Ambrogio, 20157 Milan, Italy
| |
Collapse
|
40
|
Shin D, Perez VC, Dickinson GK, Zhao H, Dai R, Tomiczek B, Cho KH, Zhu N, Koh J, Grenning A, Kim J. Altered methionine metabolism impacts phenylpropanoid production and plant development in Arabidopsis thaliana. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.542770. [PMID: 37398371 PMCID: PMC10312446 DOI: 10.1101/2023.05.29.542770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Phenylpropanoids are specialized metabolites derived from phenylalanine. Glucosinolates are defense compounds derived mainly from methionine and tryptophan in Arabidopsis. It was previously shown that the phenylpropanoid pathway and glucosinolate production are metabolically linked. The accumulation of indole-3-acetaldoxime (IAOx), the precursor of tryptophan-derived glucosinolates, represses phenylpropanoid biosynthesis through accelerated degradation of phenylalanine-ammonia lyase (PAL). As PAL functions at the entry point of the phenylpropanoid pathway which produces indispensable specialized metabolites such as lignin, aldoxime-mediated phenylpropanoid repression is detrimental to plant survival. Although methionine-derived glucosinolates in Arabidopsis are abundant, any impact of aliphatic aldoximes (AAOx) derived from aliphatic amino acids such as methionine on phenylpropanoid production remains unclear. Here, we investigate the impact of AAOx accumulation on phenylpropanoid production using Arabidopsis aldoxime mutants, ref2 and ref5 . REF2 and REF5 metabolize aldoximes to respective nitrile oxides redundantly, but with different substrate specificities. ref2 and ref5 mutants have decreased phenylpropanoid contents due to the accumulation of aldoximes. As REF2 and REF5 have high substrate specificity toward AAOx and IAOx respectively, it was assumed that ref2 accumulates AAOx, not IAOx. Our study indicates that ref2 accumulates both AAOx and IAOx. Removing IAOx partially restored phenylpropanoid production in ref2 , but not to the wild-type level. However, when AAOx biosynthesis was silenced, phenylpropanoid production and PAL activity in ref2 were completely restored, suggesting an inhibitory effect of AAOx on phenylpropanoid production. Further feeding studies revealed that the abnormal growth phenotype commonly observed in Arabidopsis mutants lacking AAOx production is a consequence of methionine accumulation. Significance Statement Aliphatic aldoximes are precursors of various specialized metabolites including defense compounds. This study reveals that aliphatic aldoximes repress phenylpropanoid production and that altered methionine metabolism affects plant growth and development. As phenylpropanoids include vital metabolites such as lignin, a major sink of fixed carbon, this metabolic link may contribute to available resource allocation during defense.
Collapse
|
41
|
Ghorbani A, Ghasemi-Omran VO, Chen M. The Effect of Glycine Betaine on Nitrogen and Polyamine Metabolisms, Expression of Glycoside-Related Biosynthetic Enzymes, and K/Na Balance of Stevia under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:1628. [PMID: 37111852 PMCID: PMC10141388 DOI: 10.3390/plants12081628] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
The beneficial role of glycine betaine (GB) in the adaptation of plants to abiotic stresses is well known; therefore, the study of physiological and molecular responses induced by exogenous GB under NaCl stress can provide a suitable reference for the application of this compound to enhance the adaptation of plants to salinity. The present study was conducted under in vitro conditions to evaluate the effect of GB (25 and 50 mM) on the growth, physiological, and molecular traits of Stevia rebaudiana during NaCl toxicity (50 mM). The results showed that applying NaCl treatment increased Na accumulation, induced oxidative stress, and disrupted N metabolism and K/Na homeostasis, which, as a result, decreased the stevia plant's growth and biomass. However, application of GB improved the adaptation of NaCl-stressed plants by improving N metabolism and modulating the metabolism of polyamines. By increasing the activity of antioxidant enzymes, GB diminished oxidative stress, protected the plasma membrane, and restored photosynthetic pigments under NaCl toxicity. By reducing Na accumulation and increasing K accumulation, GB maintained the K/Na balance and reduced the effects of toxicity caused by the high Na concentration in stevia leaves. GB increased the leaf accumulation of rebaudioside A in NaCl-stressed plants by modulating the expression of genes (KAH, UGT74G1, UGT76G1, and UGT85C2) involved in the sugar compounds of the stevia plants. Our results provide a broad understanding of GB-induced responses in NaCl-stressed plants, which can help increase our knowledge of the role of GB in the defense mechanisms of plants under abiotic stresses.
Collapse
Affiliation(s)
- Abazar Ghorbani
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Vali Ollah Ghasemi-Omran
- Department of Agronomy, Genetics and Agricultural Biotechnology Institute of Tabarestan, Sari Agricultural Science and Natural Resources University, Sari 68984, Iran
| | - Moxian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
42
|
Young AR, Minocha R, Long S, Drake JE, Yanai RD. Patterns of physical, chemical, and metabolic characteristics of sugar maple leaves with depth in the crown and in response to nitrogen and phosphorus addition. TREE PHYSIOLOGY 2023:tpad043. [PMID: 37040317 DOI: 10.1093/treephys/tpad043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/28/2022] [Indexed: 06/19/2023]
Abstract
Few previous studies have described patterns of leaf characteristics in response to nutrient availability and depth in the crown. Sugar maple has been studied for both sensitivity to light, as a shade-tolerant species, and sensitivity to soil nutrient availability, as a species in decline due to acid rain. To explore leaf characteristics from the top to bottom of the canopy, we collected leaves along a vertical gradient within mature sugar maple crowns in a full-factorial nitrogen by phosphorus addition experiment in three forest stands in central New Hampshire, USA. Thirty-two of the 44 leaf characteristics had significant relationships with depth in the crown, with the effect of depth in the crown strongest for leaf area, photosynthetic pigments, and polyamines. Nitrogen addition had a strong impact on the concentration of foliar N, chlorophyll, carotenoids, alanine, and glutamate. For several other elements and amino acids, N addition changed patterns with depth in the crown. Phosphorus addition increased foliar P and B; it also caused a steeper increase of P and B with depth in the crown. Since most of these leaf characteristics play a direct or indirect role in photosynthesis, metabolic regulation, or cell division, studies that ignore the vertical gradient may not accurately represent whole-canopy performance.
Collapse
Affiliation(s)
- Alexander R Young
- SUNY College of Environmental Science and Forestry. Syracuse, NY, 13210
| | - Rakesh Minocha
- USDA Forest Service, Northern Research Station, Durham, NH, 03824
| | - Stephanie Long
- USDA Forest Service, Northern Research Station, Durham, NH, 03824
| | - John E Drake
- SUNY College of Environmental Science and Forestry. Syracuse, NY, 13210
| | - Ruth D Yanai
- SUNY College of Environmental Science and Forestry. Syracuse, NY, 13210
| |
Collapse
|
43
|
Nishio T, Shimada Y, Yoshikawa Y, Kenmotsu T, Schiessel H, Yoshikawa K. The Anticancer Drug Daunomycin Directly Affects Gene Expression and DNA Structure. Int J Mol Sci 2023; 24:ijms24076631. [PMID: 37047603 PMCID: PMC10095590 DOI: 10.3390/ijms24076631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Daunomycin (DM), an anthracycline antibiotic, is frequently used to treat various cancers, but the direct effects of DM on gene expression and DNA structure are unclear. We used an in vitro cell-free system, optimized with spermine (SP), to study the effect of DM on gene expression. A bimodal effect of DM on gene expression, weak promotion followed by inhibition, was observed with increasing concentration of DM. We also performed atomic force microscopy observation to measure how DM affects the higher-order structure of DNA induced with SP. DM destroyed SP-induced flower-like conformations of DNA by generating double-strand breaks, and this destructive conformational change of DNA corresponded to the inhibitory effect on gene expression. Interestingly, the weakly enhanced cell-free gene expression occurred as DNA conformations were elongated or relaxed at lower DM concentrations. We expect these newly unveiled DM effects on gene expression and the higher-order structure of DNA will contribute further to the development and refinement of useful anticancer therapy chemicals.
Collapse
Affiliation(s)
- Takashi Nishio
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
- Cluster of Excellence Physics of Life, TU Dresden, 01307 Dresden, Germany
| | - Yohji Shimada
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
| | - Yuko Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
| | - Takahiro Kenmotsu
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
| | - Helmut Schiessel
- Cluster of Excellence Physics of Life, TU Dresden, 01307 Dresden, Germany
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
44
|
Spermidine Rescues Bioenergetic and Mitophagy Deficits Induced by Disease-Associated Tau Protein. Int J Mol Sci 2023; 24:ijms24065297. [PMID: 36982371 PMCID: PMC10049002 DOI: 10.3390/ijms24065297] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/23/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Abnormal tau build-up is a hallmark of Alzheimer’s disease (AD) and more than 20 other serious neurodegenerative diseases. Mitochondria are paramount organelles playing a predominant role in cellular bioenergetics, namely by providing the main source of cellular energy via adenosine triphosphate generation. Abnormal tau impairs almost every aspect of mitochondrial function, from mitochondrial respiration to mitophagy. The aim of our study was to investigate the effects of spermidine, a polyamine which exerts neuroprotective effects, on mitochondrial function in a cellular model of tauopathy. Recent evidence identified autophagy as the main mechanism of action of spermidine on life-span prolongation and neuroprotection, but the effects of spermidine on abnormal tau-induced mitochondrial dysfunction have not yet been investigated. We used SH-SY5Y cells stably expressing a mutant form of human tau protein (P301L tau mutation) or cells expressing the empty vector (control cells). We showed that spermidine improved mitochondrial respiration, mitochondrial membrane potential as well as adenosine triphosphate (ATP) production in both control and P301L tau-expressing cells. We also showed that spermidine decreased the level of free radicals, increased autophagy and restored P301L tau-induced impairments in mitophagy. Overall, our findings suggest that spermidine supplementation might represent an attractive therapeutic approach to prevent/counteract tau-related mitochondrial impairments.
Collapse
|
45
|
LeWitt PA, Li J, Wu KH, Lu M. Diagnostic metabolomic profiling of Parkinson's disease biospecimens. Neurobiol Dis 2023; 177:105962. [PMID: 36563791 DOI: 10.1016/j.nbd.2022.105962] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Reliable and sensitive biomarkers are needed for enhancing and predicting Parkinson's disease (PD) diagnosis. OBJECTIVE To investigate comprehensive metabolomic profiling of biochemicals in CSF and serum for determining diagnostic biomarkers of PD. METHODS Fifty subjects, symptomatic with PD for ≥5 years, were matched to 50 healthy controls (HCs). We used ultrahigh-performance liquid chromatography linked to tandem mass spectrometry (UHPLC-MS/MS) for measuring relative concentrations of ≤1.5 kDalton biochemicals. A reference library created from authentic standards facilitated chemical identifications. Analytes underwent univariate analysis for PD association, with false discovery rate-adjusted p-value (≤0.05) determinations. Multivariate analysis (for identifying a panel of biochemicals discriminating PD from HCs) used several biostatistical methods, including logistic LASSO regression. RESULTS Comparing PD and HCs, strong differentiation was achieved from CSF but not serum specimens. With univariate analysis, 21 CSF compounds exhibited significant differential concentrations. Logistic LASSO regression led to selection of 23 biochemicals (11 shared with those determined by the univariate analysis). The selected compounds, as a group, distinguished PD from HCs, with Area-Under-the-Receiver-Operating-Characteristic (ROC) curve of 0.897. With optimal cutoff, logistic LASSO achieved 100% sensitivity and 96% specificity (and positive and negative predictive values of 96% and 100%). Ten-fold cross-validation gave 84% sensitivity and 82% specificity (and 82% positive and 84% negative predictive values). From the logistic LASSO-chosen regression model, 2 polyamine metabolites (N-acetylcadaverine and N-acetylputrescine) were chosen and had the highest fold-changes in comparing PD to HCs. Another chosen biochemical, acisoga (N-(3-acetamidopropyl)pyrrolidine-2-one), also is a polyamine metabolism derivative. CONCLUSIONS UHPLC-MS/MS assays provided a metabolomic signature highly predictive of PD. These findings provide further evidence for involvement of polyamine pathways in the neurodegeneration of PD.
Collapse
Affiliation(s)
- Peter A LeWitt
- Departments of Neurology, Henry Ford Hospital, West Bloomfield, MI, USA; Wayne State University School of Medicine, West Bloomfield, MI, USA.
| | - Jia Li
- The Department of Public Health Science, Henry Ford Health System, Detroit, MI, USA
| | - Kuan-Han Wu
- The Department of Public Health Science, Henry Ford Health System, Detroit, MI, USA
| | - Mei Lu
- The Department of Public Health Science, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
46
|
Gao J, Chen Y, Wang H, Li X, Li K, Xu Y, Xie X, Guo Y, Yang N, Zhang X, Ma D, Lu HS, Shen YH, Liu Y, Zhang J, Chen YE, Daugherty A, Wang DW, Zheng L. Gasdermin D Deficiency in Vascular Smooth Muscle Cells Ameliorates Abdominal Aortic Aneurysm Through Reducing Putrescine Synthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204038. [PMID: 36567267 PMCID: PMC9929270 DOI: 10.1002/advs.202204038] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/16/2022] [Indexed: 06/17/2023]
Abstract
Abdominal aortic aneurysm (AAA) is a common vascular disease associated with significant phenotypic alterations in vascular smooth muscle cells (VSMCs). Gasdermin D (GSDMD) is a pore-forming effector of pyroptosis. In this study, the role of VSMC-specific GSDMD in the phenotypic alteration of VSMCs and AAA formation is determined. Single-cell transcriptome analyses reveal Gsdmd upregulation in aortic VSMCs in angiotensin (Ang) II-induced AAA. VSMC-specific Gsdmd deletion ameliorates Ang II-induced AAA in apolipoprotein E (ApoE)-/- mice. Using untargeted metabolomic analysis, it is found that putrescine is significantly reduced in the plasma and aortic tissues of VSMC-specific GSDMD deficient mice. High putrescine levels trigger a pro-inflammatory phenotype in VSMCs and increase susceptibility to Ang II-induced AAA formation in mice. In a population-based study, a high level of putrescine in plasma is associated with the risk of AAA (p < 2.2 × 10-16 ), consistent with the animal data. Mechanistically, GSDMD enhances endoplasmic reticulum stress-C/EBP homologous protein (CHOP) signaling, which in turn promotes the expression of ornithine decarboxylase 1 (ODC1), the enzyme responsible for increased putrescine levels. Treatment with the ODC1 inhibitor, difluoromethylornithine, reduces AAA formation in Ang II-infused ApoE-/- mice. The findings suggest that putrescine is a potential biomarker and target for AAA treatment.
Collapse
Affiliation(s)
- Jianing Gao
- The Institute of Cardiovascular Sciences and Institute of Systems BiomedicineSchool of Basic Medical SciencesKey Laboratory of Molecular Cardiovascular Science of Ministry of EducationNHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchHealth Science CenterPeking UniversityBeijing100191P. R. China
| | - Yanghui Chen
- Division of CardiologyDepartment of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic DisordersTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue NO.1095, Qiaokou DistrictWuhan430000P. R. China
| | - Huiqing Wang
- The Institute of Cardiovascular Sciences and Institute of Systems BiomedicineSchool of Basic Medical SciencesKey Laboratory of Molecular Cardiovascular Science of Ministry of EducationNHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchHealth Science CenterPeking UniversityBeijing100191P. R. China
| | - Xin Li
- The Institute of Cardiovascular Sciences and Institute of Systems BiomedicineSchool of Basic Medical SciencesKey Laboratory of Molecular Cardiovascular Science of Ministry of EducationNHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchHealth Science CenterPeking UniversityBeijing100191P. R. China
| | - Ke Li
- Beijing Tiantan HospitalChina National Clinical Research Center for Neurological DiseasesAdvanced Innovation Center for Human Brain ProtectionBeijing Institute of Brain DisordersThe Capital Medical UniversityBeijing100050P. R. China
| | - Yangkai Xu
- The Institute of Cardiovascular Sciences and Institute of Systems BiomedicineSchool of Basic Medical SciencesKey Laboratory of Molecular Cardiovascular Science of Ministry of EducationNHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchHealth Science CenterPeking UniversityBeijing100191P. R. China
| | - Xianwei Xie
- Department of CardiologyShengli Clinical Medical College of Fujian Medical UniversityFujian Provincial HospitalFuzhou350001P. R. China
| | - Yansong Guo
- Department of CardiologyShengli Clinical Medical College of Fujian Medical UniversityFujian Provincial HospitalFujian Provincial Key Laboratory of Cardiovascular DiseaseFujian Provincial Center for GeriatricsFujian Clinical Medical Research Center for Cardiovascular DiseasesFujian Heart Failure Center AllianceFuzhou350001P. R. China
| | - Nana Yang
- Weifang Key Laboratory of Animal Model Research on Cardiovascular and Cerebrovascular DiseasesWeifang Medical UniversityWeifang261053P. R. China
| | - Xinhua Zhang
- Department of Biochemistry and Molecular BiologyThe Key Laboratory of Neural and Vascular BiologyMinistry of EducationHebei Medical UniversityZhongshan East Road No. 361Shijiazhuang050017P. R. China
| | - Dong Ma
- Department of Biochemistry and Molecular BiologyThe Key Laboratory of Neural and Vascular BiologyChina Administration of EducationHebei Medical UniversityHebei050017P. R. China
| | - Hong S. Lu
- Department of PhysiologySaha Cardiovascular Research CenterUniversity of KentuckySouth LimestoneLexingtonKY40536‐0298USA
| | - Ying H. Shen
- Division of Cardiothoracic SurgeryMichael E. DeBakey Department of SurgeryBaylor College of MedicineDepartment of Cardiovascular SurgeryTexas Heart InstituteHoustonTX77030USA
| | - Yong Liu
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesInstitute for Advanced StudiesWuhan UniversityWuhan430072P. R. China
| | - Jifeng Zhang
- Department of Internal MedicineUniversity of Michigan Medical CenterAnn ArborMI48109USA
| | - Y. Eugene Chen
- Department of Internal MedicineUniversity of Michigan Medical CenterAnn ArborMI48109USA
| | - Alan Daugherty
- Department of PhysiologySaha Cardiovascular Research CenterUniversity of KentuckySouth LimestoneLexingtonKY40536‐0298USA
| | - Dao Wen Wang
- Division of CardiologyDepartment of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic DisordersTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue NO.1095, Qiaokou DistrictWuhan430000P. R. China
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems BiomedicineSchool of Basic Medical SciencesKey Laboratory of Molecular Cardiovascular Science of Ministry of EducationNHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchHealth Science CenterPeking UniversityBeijing100191P. R. China
- Beijing Tiantan HospitalChina National Clinical Research Center for Neurological DiseasesAdvanced Innovation Center for Human Brain ProtectionBeijing Institute of Brain DisordersThe Capital Medical UniversityBeijing100050P. R. China
- Hangzhou Qianjiang Distinguished ExpertHangzhou Institute of Advanced TechnologyHangzhou310026P. R. China
| |
Collapse
|
47
|
Rodríguez LC, Foressi NN, Celej MS. Modulation of α-synuclein phase separation by biomolecules. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140885. [PMID: 36481455 DOI: 10.1016/j.bbapap.2022.140885] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Liquid-liquid phase separation (LLPS) is currently recognized as a common mechanism involved in the regulation of a number of cellular functions. On the other hand, aberrant phase separation has been linked to the biogenesis of several neurodegenerative disorders since many proteins that undergo LLPS are also found in pathological aggregates. The formation of mixed protein coacervates may constitute a risk factor in overlapping neuropathologies, such as Parkinson's (PD) and Alzheimer's (AD) diseases. In this work, we evaluated the homotypic and heterotypic phase behaviour of the PD-related protein α-synuclein (AS) in the presence of the biologically relevant molecules ATP, polyamines, and the AD-related protein Tau. We found that AS exhibits a low propensity to form homotypic liquid droplets, yet phase separates into liquid-like or solid-like phases depending on the interacting biomolecule. We further demonstrated the synergistic droplet formation of AS and Tau providing support for a mechanism in which mixed condensates might contribute to the biogenesis of AS/Tau pathologies.
Collapse
Affiliation(s)
- Leandro Cruz Rodríguez
- Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Nahuel N Foressi
- Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - M Soledad Celej
- Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina.
| |
Collapse
|
48
|
Xie C, Wang P, Gu Z, Yang R. Spermidine alleviates oxidative damage and enhances phenolic compounds accumulation in barley seedlings under UV-B stress. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:648-656. [PMID: 36053964 DOI: 10.1002/jsfa.12176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Ultraviolet B (UV-B) radiation can enhance the accumulation of phenolic compounds (PCs) in barley seedling, although this may result in severe oxidative damage. In the present study, the role of spermidine in alleviating oxidative damage and regulating synthesis of PCs in barley seedlings under UV-B stress was investigated. RESULTS Exogenous spermidine increased the length and fresh weight as well as PCs contents of barley seedlings under UV-B stress. Application of dicyclohexylamine, an inhibitor of endogenous spermidine synthesis, significantly inhibited the growth and PC accumulation of barley seedlings under UV-B stress, although this inhibitory effect can be alleviated by exogenous spermidine. Exogenous spermidine increased the contents of vanillic acid, syringic acid, protocatechuic acid and p-coumaric acid in barley seedlings under UV-B stress by 20-200% through enhancing the activities of enzymes related to synthesis of these acids. In addition, exogenous spermidine enhanced activities and gene expression of antioxidant enzymes in barley seedlings under UV-B stress, including peroxidase, glutathione reductase and glutathione S-transferase. CONCLUSION Spermidine can alleviate oxidative damage of barley seedlings under UV-B stress and enhance the accumulation of PCs. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chong Xie
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Pei Wang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Zhenxin Gu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Runqiang Yang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
49
|
Silveira PTDS, Glória MBA, Tonin IP, Martins MOP, Efraim P. Varietal Influence on the Formation of Bioactive Amines during the Processing of Fermented Cocoa with Different Pulp Contents. Foods 2023; 12:foods12030495. [PMID: 36766023 PMCID: PMC9914241 DOI: 10.3390/foods12030495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
During cocoa processing, there can be the formation of bioactive amines, which are compounds that play relevant roles not only in plant development but also in human health. Thus, we aimed to investigate the presence and levels of bioactive amines during the processing of two important varieties of cocoa (PS 1319 and Parazinho). The seeds were fermented using five different pulp proportions: 100% (E1), 80% (E2), 60% (E3), and 0% (total pulp removal) (E4). The beans were fermented and dried on a farm following traditional procedures. Soon after, they were roasted and processed into chocolates with 60% cocoa in the laboratory. Bioactive amine contents were determined by ion-pair reversed-phase HPLC and fluorometric detection in the samples before, during, and after fermentation, after drying and roasting (nibs), and in the liquor and chocolate. The only amines found before processing in PS 1319 and Parazinho, respectively, in dry weight basis (dwb), were putrescine (pulp, 13.77 and 12.31; seed, 5.88 and 4.58) and serotonin (seed, 2.70 and 2.54). Fermentation was shorter for Parazinho (156 h) compared to PS 1319 (180 h). The changes in amines were affected by the cocoa variety. During drying, the presence of cadaverine stood out, appearing in all treatments of the PS 1319 variety, reaching 17.96 mg/kg dwb, and in two treatments of the Parazinho variety (100 and 60% pulp). During roasting, most of the amines decreased, except for phenylethylamine, which increased up to 2.47 mg/kg dwb for Parazinho and 1.73 mg/kg dwb for PS 1319. Most of the amines formed and built up (e.g., tyramine, putrescine, and cadaverine) during fermentation were not available or were at low levels in the nibs. Most of the amines found during processing did not reach the final product (chocolate), except for cadaverine in PS 1319 without pulp (7.54 mg/kg dwb). Finally, we confirmed how pulp content, processing, and variety influence the content of bioactive amines in cocoa and chocolate. These changes can be better demonstrated through a heatmap and principal component analysis.
Collapse
Affiliation(s)
| | | | | | | | - Priscilla Efraim
- School of Food Engineering, Universidade Estadual de Campinas, Campinas 13083-970, Brazil
- Correspondence: ; Tel.: +55-19-35214006
| |
Collapse
|
50
|
Ranilla LG, Zolla G, Afaray-Carazas A, Vera-Vega M, Huanuqueño H, Begazo-Gutiérrez H, Chirinos R, Pedreschi R, Shetty K. Integrated metabolite analysis and health-relevant in vitro functionality of white, red, and orange maize ( Zea mays L.) from the Peruvian Andean race Cabanita at different maturity stages. Front Nutr 2023; 10:1132228. [PMID: 36925963 PMCID: PMC10011086 DOI: 10.3389/fnut.2023.1132228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/09/2023] [Indexed: 03/04/2023] Open
Abstract
The high maize (Zea mays L.) diversity in Peru has been recognized worldwide, but the investigation focused on its integral health-relevant and bioactive characterization is limited. Therefore, this research aimed at studying the variability of the primary and the secondary (free and dietary fiber-bound phenolic, and carotenoid compounds) metabolites of three maize types (white, red, and orange) from the Peruvian Andean race Cabanita at different maturity stages (milk-S1, dough-S2, and mature-S3) using targeted and untargeted methods. In addition, their antioxidant potential, and α-amylase and α-glucosidase inhibitory activities relevant for hyperglycemia management were investigated using in vitro models. Results revealed a high effect of the maize type and the maturity stage. All maize types had hydroxybenzoic and hydroxycinnamic acids in their free phenolic fractions, whereas major bound phenolic compounds were ferulic acid, ferulic acid derivatives, and p-coumaric acid. Flavonoids such as luteolin derivatives and anthocyanins were specific in the orange and red maize, respectively. The orange and red groups showed higher phenolic ranges (free + bound) (223.9-274.4 mg/100 g DW, 193.4- 229.8 mg/100 g DW for the orange and red maize, respectively) than the white maize (162.2-225.0 mg/100 g DW). Xanthophylls (lutein, zeaxanthin, neoxanthin, and a lutein isomer) were detected in all maize types. However, the orange maize showed the highest total carotenoid contents (3.19-5.87 μg/g DW). Most phenolic and carotenoid compounds decreased with kernel maturity in all cases. In relation to the primary metabolites, all maize types had similar fatty acid contents (linoleic acid > oleic acid > palmitic acid > α-linolenic acid > stearic acid) which increased with kernel development. Simple sugars, alcohols, amino acids, free fatty acids, organic acids, amines, and phytosterols declined along with grain maturity and were overall more abundant in white maize at S1. The in vitro functionality was similar among Cabanita maize types, but it decreased with the grain development, and showed a high correlation with the hydrophilic free phenolic fraction. Current results suggest that the nutraceutical characteristics of orange and white Cabanita maize are better at S1 and S2 stages while the red maize would be more beneficial at S3.
Collapse
Affiliation(s)
- Lena Gálvez Ranilla
- Laboratory of Research in Food Science, Universidad Catolica de Santa Maria, Arequipa, Perú.,Escuela Profesional de Ingeniería de Industria Alimentaria, Departamento de Ciencias e Ingenierías Biológicas y Químicas, Facultad de Ciencias e Ingenierías Biológicas y Químicas, Universidad Catolica de Santa Maria, Arequipa, Perú
| | - Gastón Zolla
- Laboratorio de Fisiología Molecular de Plantas, PIPS de Cereales y Granos Nativos, Facultad de Agronomía, Universidad Nacional Agraria La Molina, Lima, Perú
| | - Ana Afaray-Carazas
- Laboratory of Research in Food Science, Universidad Catolica de Santa Maria, Arequipa, Perú
| | - Miguel Vera-Vega
- Laboratorio de Fisiología Molecular de Plantas, PIPS de Cereales y Granos Nativos, Facultad de Agronomía, Universidad Nacional Agraria La Molina, Lima, Perú
| | - Hugo Huanuqueño
- Programa de Investigación y Proyección Social en Maíz, Facultad de Agronomía, Universidad Nacional Agraria La Molina, Lima, Perú
| | - Huber Begazo-Gutiérrez
- Estación Experimental Agraria Arequipa, Instituto Nacional de Innovación Agraria (INIA), Arequipa, Perú
| | - Rosana Chirinos
- Instituto de Biotecnología, Universidad Nacional Agraria La Molina, Lima, Perú
| | - Romina Pedreschi
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.,Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
| | - Kalidas Shetty
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| |
Collapse
|