1
|
Fatima M, Aqib AI, Faraz H, Talib N, Muneer A, Rab SO, Saeed M. Neutering pathogens through green synthesized nanoparticles. Microb Pathog 2025; 203:107495. [PMID: 40118298 DOI: 10.1016/j.micpath.2025.107495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
The rise of multidrug-resistant (MDR) pathogens in animal diseases poses a severe threat to veterinary care and public health, necessitating the development of alternative therapeutic strategies. Traditional antimicrobial treatments are becoming increasingly less effective, creating an urgent need for innovative solutions. One among several other promising avenues is the use of plant-based nanoparticles (NPs), which exhibit powerful antimicrobial properties while offering a sustainable and low-toxicity approach. These nanoparticles, synthesized via green methods using plant-derived phytochemicals as natural reducing and stabilizing agents, provide an eco-friendly, cost-effective, and biocompatible option for addressing MDR pathogens. Additionally, the physicochemical properties of these nanoparticles, including size, shape, and surface characteristics, can be fine-tuned to enhance their antimicrobial potency and target-specific action. This review explores the potential of plant-based nanoparticles as a groundbreaking strategy for tackling MDR pathogens in animal diseases, focusing on their mechanisms of action, green synthesis techniques, and applications in veterinary medicine. By optimizing synthesis processes, assessing toxicity, and evaluating in vivo efficacy, plant-based nanoparticles could emerge as an essential tool in the fight against antimicrobial resistance (AMR) in animals, with implications for global health.
Collapse
Affiliation(s)
- Mahreen Fatima
- Department of Pharmacology and Toxicology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan.
| | - Habiba Faraz
- Department of Pathology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Namel Talib
- Department of Pathology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Afshan Muneer
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
2
|
Keikhosravani P, Khodaei A, Bollen T, Nazmi K, Bikker FJ, van Steenbergen M, van Nostrum CF, van Strijp J, Weinans H, Amin Yavari S. Developing antibacterial HB43 peptide-loaded chitosan nanoparticles for biofilm treatment. Int J Biol Macromol 2025; 310:143397. [PMID: 40268021 DOI: 10.1016/j.ijbiomac.2025.143397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 04/10/2025] [Accepted: 04/19/2025] [Indexed: 04/25/2025]
Abstract
Biofilm-associated infections on medical devices are challenging to treat. Therefore, innovative treatment approaches are needed to penetrate biofilms and eliminate bacteria. With this study, we developed chitosan nanoparticles (CNPs) encapsulating the antibacterial peptide HB43 at increasing CNP/peptide ratios (from 1 to 4 % for P1-CNP, P2-CNP, and P4-CNP, respectively) using the ion gelation method. Our goal was to enhance antibacterial drug delivery inside a methicillin-resistant Staphylococcus aureus (MRSA) biofilm. Our analysis showed a direct correlation between the encapsulation efficacy of HB43 and the physical properties of the CNPs, such as size and zeta potential. P1-CNP was identified as the optimal formulation, characterized by its small size, high encapsulation efficiency, and cationic surface charge. Release studies indicated that HB43 was released in a sustained manner particularly under acidic conditions, which enhanced therapeutic efficacy. We tested the P1-CNP in culture media with pH levels of 7.4 and 5.5 to assess the pH responsiveness of the CNPs and mimic the infection environment. Both conditions showed that the HB43 loaded-CNPs effectively reduced bacterial populations in a dose-dependent manner, with up to a 99.99 % reduction in bacterial load. This study offers a promising new strategy for managing biofilm-associated infections and addressing antibiotic resistance by using CNPs loaded with HB43.
Collapse
Affiliation(s)
- Pardis Keikhosravani
- Department of Orthopedics, University Medical Center Utrecht, Utrecht 3508 GA, the Netherlands
| | - Azin Khodaei
- Department of Orthopedics, University Medical Center Utrecht, Utrecht 3508 GA, the Netherlands
| | - Tim Bollen
- Department of Orthopedics, University Medical Center Utrecht, Utrecht 3508 GA, the Netherlands
| | - Kamran Nazmi
- Department of Oral Biochemistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam 1081 LA, the Netherlands
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam 1081 LA, the Netherlands
| | - Mies van Steenbergen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3584 CG, the Netherlands
| | - Cornelus F van Nostrum
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3584 CG, the Netherlands
| | - Jos van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht 3508 GA, the Netherlands
| | - Harrie Weinans
- Department of Orthopedics, University Medical Center Utrecht, Utrecht 3508 GA, the Netherlands
| | - Saber Amin Yavari
- Department of Orthopedics, University Medical Center Utrecht, Utrecht 3508 GA, the Netherlands; Regenerative Medicine Centre Utrecht, Utrecht University, 3508 GA Utrecht, the Netherlands.
| |
Collapse
|
3
|
Tarvirdipour S, Abdollahi SN, Köser J, Bina M, Schoenenberger CA, Palivan CG. Enhanced antimicrobial protection through surface immobilization of antibiotic-loaded peptide multicompartment micelles. J Mater Chem B 2025. [PMID: 40227831 PMCID: PMC11996027 DOI: 10.1039/d5tb00246j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/07/2025] [Indexed: 04/15/2025]
Abstract
The escalating global threat of antibiotic-resistant bacterial infections, driven by biofilm formation on medical device surfaces, prompts the need for innovative therapeutic strategies. To address this growing challenge, we develop rifampicin-loaded multicompartment micelles (RIF-MCMs) immobilized on surfaces, offering a dual-functional approach to enhance antimicrobial efficacy for localized therapeutic applications. We first optimize the physicochemical properties of RIF-MCMs, and subsequently coat the optimal formulation onto a glass substrate, as confirmed by quartz crystal microbalance and atomic force microscopy. Surface-immobilized RIF-MCMs facilitate sustained antibiotic release in response to biologically relevant temperatures (37 °C and 42 °C). In addition, their heterogeneous distribution enhances the surface's roughness, contributing to the antibacterial activity through passive mechanisms such as hindering bacterial adhesion and biofilm formation. In vitro antimicrobial testing demonstrates that RIF-MCM-modified surfaces achieve a 98% reduction in Staphylococcus aureus viability and a three-order-of-magnitude decrease in colony formation compared to unmodified surfaces. In contrast, RIF-MCMs exhibit minimal cytotoxicity to mammalian cells, making them suitable candidates for medical device coatings. Our dual-function antimicrobial strategy, combining sustained antibiotic release and enhanced surface roughness, presents a promising approach to locally prevent implant-associated infections and biofilm formation.
Collapse
Affiliation(s)
- Shabnam Tarvirdipour
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel-4058, Switzerland.
- NCCR-Molecular Systems Engineering, Mattenstrasse 24a, Basel-4058, Switzerland
| | - S Narjes Abdollahi
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel-4058, Switzerland.
| | - Joachim Köser
- School of Life Sciences, Institute for Chemistry and Bioanalytics, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, Muttenz-4132, Switzerland
| | - Maryame Bina
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel-4058, Switzerland.
| | | | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel-4058, Switzerland.
- NCCR-Molecular Systems Engineering, Mattenstrasse 24a, Basel-4058, Switzerland
| |
Collapse
|
4
|
Wang X, Zhou H, Li D, Zhao Z, Peng K, Xu X, Wang JJ, Wang Y, Wang J, Zhang JJ, Wan SS, Shi MQ, Chen J, Ding XG, Ji FH. Molecular Targeting of Intracellular Bacteria by Homotypic Recognizing Nanovesicles for Infected Pneumonia Treatment. Biomater Res 2025; 29:0172. [PMID: 40177029 PMCID: PMC11964281 DOI: 10.34133/bmr.0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/21/2025] [Accepted: 03/06/2025] [Indexed: 04/05/2025] Open
Abstract
Although extensive antibiotic regimens have been implemented to address pathogen-infected pneumonia, existing strategies are constrained in their efficacy against intracellular bacteria, a prominent contributor to antibiotic resistance. In addition, the concurrent occurrence of a cytokine storm during antibiotic therapy presents a formidable obstacle in the management of pneumonia caused by pathogens. In the present study, an infection-targeting system that leverages M2-macrophage-derived vesicles [exosomes (Exos)] as vehicles to convey antibiotics (antibiotics@Exos) was developed for effective pneumonia management. The proposed system can enable antibiotics to be specifically delivered to infected macrophages in pneumonia through homotypic recognition and was found to exhibit an exceptional intracellular bactericidal effect. Moreover, M2-type vesicles exhibit a high degree of efficiency in reprogramming inflammatory macrophages toward an anti-inflammatory phenotype. As a result, the administration of antibiotics@Exos was found to substantical decrease the level of the infiltrated inflammatory cells and alleviate the inflammatory factor storm in the lungs of acute lung injury mice. This intervention resulted in the alleviation of reactive-oxygen-species-induced damage, reduction of pulmonary edema, and successful pneumonia treatment. This bioactive vesicle delivery system effectively compensates for the limitations of traditional antibiotic therapy regimens with pluralism effects, paving a new strategy for serious infectious diseases, especially acute pneumonia treatment.
Collapse
Affiliation(s)
- Xu Wang
- Department of Anesthesiology,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hao Zhou
- Department of General Surgery,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu , China
| | - Dan Li
- Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Zhe Zhao
- Suzhou Institute of Nano-Tech and Nano-Bionics, CAS Key Laboratory of Nano-Bio Interface Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Ke Peng
- Department of Anesthesiology & Institute of Anesthesiology,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiang Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jia-Jia Wang
- Department of Pulmonary and Critical Care Medicine,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yang Wang
- Department of Anesthesiology,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jun Wang
- Department of Intensive Care Medicine,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jing-Jing Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors,
Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Shuang-Shuang Wan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors,
Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Mai-Qing Shi
- Department of Anesthesiology,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jun Chen
- Department of Anesthesiology,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xian-Guang Ding
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors,
Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Fu-Hai Ji
- Department of Anesthesiology & Institute of Anesthesiology,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
5
|
Mengesha Y. Nanomedicine approaches to enhance the effectiveness of meropenem: a strategy to tackle antimicrobial resistance. DISCOVER NANO 2025; 20:63. [PMID: 40169425 PMCID: PMC11961837 DOI: 10.1186/s11671-025-04244-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/17/2025] [Indexed: 04/03/2025]
Abstract
Meropenem, a carbapenem typically reserved for treating severe infections, has encountered resistance from certain bacteria, including multidrug-resistant (MDR) strains of Pseudomonas aeruginosa (P. aeruginosa) and Klebsiella pneumonia (K. pneumonia). Nanoparticles (NPs) have emerged as a promising strategy to combat drug-resistant bacteria. By targeting specific biosynthetic and enzymatic pathways and penetrating bacterial membranes, NPs can function as antibiotic delivery systems (nanocarriers) or exhibit intrinsic antibacterial properties. When combined with various types of nanoparticles-such as lipid- and polymer-based NPs, metallic NPs, silica NPs, nanoemulsions, niosomes, carbon NPs, and nanocomposites-meropenem has shown enhanced effectiveness in overcoming resistance to MDR bacteria and reducing adverse effects. However, several challenges persist, including scaling up industrial production, ensuring safety and favorable toxicity profiles, and addressing the limited availability of in vivo evidence. This review explores nanoparticle strategies to combat resistance to meropenem.
Collapse
Affiliation(s)
- Yohannes Mengesha
- Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia.
| |
Collapse
|
6
|
Xie Y, Liu H, Teng Z, Ma J, Liu G. Nanomaterial-enabled anti-biofilm strategies: new opportunities for treatment of bacterial infections. NANOSCALE 2025; 17:5605-5628. [PMID: 39918303 DOI: 10.1039/d4nr04774e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2025]
Abstract
Biofilms play a pivotal role in bacterial pathogenicity and antibiotic resistance, representing a major challenge in the treatment of bacterial infections. The limited diffusion and inactivation efficacy of antibiotics within biofilms hinder their clearance, and while increasing dosage may enhance effectiveness, it also promotes antibiotic resistance. Nano-delivery systems that target antimicrobial agents directly to biofilms offer a promising strategy to overcome this challenge. This review summarizes the resistance mechanisms and therapeutic challenges associated with biofilms, with a focus on recent advances in nano-delivery systems such as liposomes, nanoemulsions, cell membrane vesicles (CMVs), polymers, dendrimers, nanogels, inorganic nanoparticles, and metal-organic frameworks (MOFs). Furthermore, the review explores the potential applications and challenges of nano-delivery systems in biofilm treatment and provides recommendations to guide future research and development in this field.
Collapse
Affiliation(s)
- Yijia Xie
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Huanhuan Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Zihao Teng
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Jiaxin Ma
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
7
|
lawal H, Saeed SI, Gaddafi MS, Kamaruzzaman NF. Green Nanotechnology: Naturally Sourced Nanoparticles as Antibiofilm and Antivirulence Agents Against Infectious Diseases. Int J Microbiol 2025; 2025:8746754. [PMID: 40041153 PMCID: PMC11876540 DOI: 10.1155/ijm/8746754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 02/06/2025] [Indexed: 03/06/2025] Open
Abstract
The escalating threat of infectious diseases, exacerbated by antimicrobial resistance (AMR) and biofilm formation, necessitates innovative therapeutic strategies. This review presents a comprehensive exploration of the potential of nanoparticles synthesized from natural sources, including plant extracts, microbial products, and marine compounds, as antimicrobial agents. These naturally derived nanoparticles demonstrated significant antibiofilm and antivirulence effects, with specific examples revealing their capacity to reduce biofilm mass by up to 78% and inhibit bacterial quorum sensing by 65%. The integration of bioactive compounds, such as polyphenols and chitosan, facilitates nanoparticle stability and enhances antimicrobial efficacy, while green synthesis protocols reduce environmental risks. Notably, the review identifies the potential of silver nanoparticles synthesized using green tea extracts, achieving 85% inhibition of polymicrobial growth in vitro. Despite these promising results, challenges such as standardization of synthesis protocols and scalability persist. This study underscores the transformative potential of leveraging naturally sourced nanoparticles as sustainable alternatives to conventional antimicrobials, offering quantitative insights for their future application in combating mono- and polymicrobial infections.
Collapse
Affiliation(s)
- Habiba lawal
- Nanotechnology in Veterinary Medicine (NanoVet) Research Group, Faculty of Veterinary Medicine, University Malaysia Kelantan, Pengkalan Chepa, Kelantan, Malaysia
- Department of Public Health, Ministry of Animal Health, Husbandry and Fisheries, Birnin Kebbi, Kebbi State, Nigeria
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shamsaldeen Ibrahim Saeed
- Nanotechnology in Veterinary Medicine (NanoVet) Research Group, Faculty of Veterinary Medicine, University Malaysia Kelantan, Pengkalan Chepa, Kelantan, Malaysia
- Department of Microbiology, Faculty of Veterinary Science, University of Nyala, Nyala, Sudan
| | - Mohammed Sani Gaddafi
- Department of Public Health, Ministry of Animal Health, Husbandry and Fisheries, Birnin Kebbi, Kebbi State, Nigeria
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Nor Fadhilah Kamaruzzaman
- Nanotechnology in Veterinary Medicine (NanoVet) Research Group, Faculty of Veterinary Medicine, University Malaysia Kelantan, Pengkalan Chepa, Kelantan, Malaysia
| |
Collapse
|
8
|
Shah SAR, Mumtaz M, Sharif S, Mustafa I, Nayila I. Helicobacter pylori and gastric cancer: current insights and nanoparticle-based interventions. RSC Adv 2025; 15:5558-5570. [PMID: 39967885 PMCID: PMC11834156 DOI: 10.1039/d4ra07886a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
Background: H. pylori is recognized as one of the main causes of gastric cancer, and this type of cancer is considered as one of the leading diseases causing cancer deaths all over the world. Knowledge on the interactions between H. pylori and gastric carcinogenesis is important for designing preventive measures. Objective: the objective of this review is to summarize the available literature on H. pylori and gastric cancer, specifically regarding the molecular mechanisms, nanoparticle-based therapy and clinical developments. Methods: the databases including PubMed, Google Scholar and web of science were searched as well as papers from 2010 to 2024 were considered for review. Research literature on H. pylori, gastric cancer, nanoparticles, nanomedicine, and therapeutic interventions was summarized for current findings and possible treatments. Results: the presence of H. pylori in gastric mucosa causes chronic inflammation and several molecular alterations such as DNA alteration, epigenetic changes and activation of oncogenic signaling pathways which causes gastric carcinogenesis. Conventional antibiotic treatments have some issues because of the constantly rising levels of antibiotic resistance. Lipid based nanoformulations, polymeric and metallic nanoparticles have been delivered in treatment of H. pylori to improve drug delivery and alter immunological responses. Conclusion: nanoparticle based interventions have been widely explored as drug delivery systems by improving the treatment strategies against H. pylori induced gastric cancer. Further studies and clinical trials are required to bring these findings into a clinical setting in order to possibly alter the management of H. pylori related gastric malignancies.
Collapse
Affiliation(s)
- Syed Ali Raza Shah
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore Lahore Pakistan
| | - Maria Mumtaz
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore Lahore Pakistan
| | - Sumaira Sharif
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore Lahore Pakistan
| | - Imtiaz Mustafa
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore Lahore Pakistan
| | - Iffat Nayila
- Department of Pharmacy, The University of Lahore Sargodha Campus Sargodha Pakistan
| |
Collapse
|
9
|
Dokuz S, Coksu I, Acar S, Ozbek T. A precise targeting of Staphylococcus aureus with phage RBP-decorated antibiotic-loaded nanoparticles. Biotechnol J 2025; 20:e2300520. [PMID: 39973473 DOI: 10.1002/biot.202300520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/13/2023] [Accepted: 12/25/2023] [Indexed: 02/21/2025]
Abstract
Resistant strains of Staphylococcus aureus, which have emerged due to the excessive and indiscriminate use of antibiotics, have become one of the most significant causes of hospital-acquired infections, highlighting the necessity for specific and effective alternative methods in combating them. Leveraging the therapeutic potential of bacteriophage receptor binding protein (RBP), which occurs unique and irreversible binding of its host, in recognizing bacteria renders them valuable components in the development of targeted nanoparticle-based drug delivery systems, and offers promising approach to combat antibiotic resistance. In this study, synthesis and characterization of rifampicin-loaded PLGA nanoparticle (RIF-NP) were conducted and for selective targeting of S. aureus, rGp144, the RBP derived from Bacteriophage K, was conjugated onto the surface of the synthesized RIF-NP (RIF144-NP). While RIF-NP initially exhibited approximately a zeta potential of -26 mV and a size of 250 nm, after the conjugation with rGp144 led to an increase in zeta potential to -11 mV and a size to 300 nm. FT-IR analysis after conjugation confirmed the presence of primary amide bands in the regions of 1650 cm-1 and 1550 cm-1. Furthermore, the nanoparticles exhibited an encapsulation efficiency of 35.26% and a drug loading capacity of 26.64%. When the antimicrobial activities were evaluated, it was observed that compared to free RIF, the nano systems reduced the MIC value by twofold for all S. aureus strains. Incorporating a targeting strategy based on phage RBP in decoration to the surface of nanoparticular drug carriers represents a noteworthy and innovative treatment when combating bacterial infections.
Collapse
Affiliation(s)
- Senanur Dokuz
- Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, Turkey
| | - Irem Coksu
- Faculty of Chemical and Metallurgical, Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey
| | - Serap Acar
- Faculty of Chemical and Metallurgical, Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey
| | - Tulin Ozbek
- Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
10
|
Upadhyay A, Jaiswal N, Kumar A. Biofilm battle: New transformative tactics to tackle the bacterial biofilm infections. Microb Pathog 2025; 199:107277. [PMID: 39756524 DOI: 10.1016/j.micpath.2025.107277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/28/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Bacterial biofilm infections are the root cause of persistent infections and the prevalence of resistance to specific or multiple antibiotics. Biofilms have unique features that provide a protective environment for bacteria under various stress conditions and contribute significantly to the pathogenesis of chronic infections. They cover bacterial cells with a self-produced extracellular polymeric matrix, effectively hiding the bacterial cells and their targets. Conventional therapies cannot effectively treat and control bacterial biofilm infections. Therefore, advanced therapeutic means like microneedles, targeted tissue therapy, phage therapy, nanodrug therapy, combination drug therapy, microbial therapy, and immune cell hijacking therapy are needed to tackle the complex issue. These advanced therapies have shown promising results not only in bacterial biofilm infections but also in diseases such as cancer and genetic disorders. Due to their unique features and mechanisms, they significantly contribute to preventing bacterial infections by disrupting biofilm. This article aims to serve as a comprehensive overview of the ongoing battle against biofilms with transformative therapies. This article compiles advancements in new therapies that have demonstrated effective roles in the disruption of bacterial biofilms. We also discuss the current developments and Food and Drug Administration-approved status of these therapies. Additionally, this article summarizes the limitations and future steps needed for these therapies in the field of bacterial biofilm prevention. Thus, these therapies represent the future of preventing bacterial biofilm infections and could be also effective in the reversal of resistance.
Collapse
Affiliation(s)
- Aditya Upadhyay
- Department of Biotechnology, National Institute of Technology, Raipur, 492010, (CG), India
| | - Neha Jaiswal
- Department of Biotechnology, National Institute of Technology, Raipur, 492010, (CG), India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, 492010, (CG), India.
| |
Collapse
|
11
|
Kharga K, Jha S, Vishwakarma T, Kumar L. Current developments and prospects of the antibiotic delivery systems. Crit Rev Microbiol 2025; 51:44-83. [PMID: 38425122 DOI: 10.1080/1040841x.2024.2321480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Antibiotics have remained the cornerstone for the treatment of bacterial infections ever since their discovery in the twentieth century. The uproar over antibiotic resistance among bacteria arising from genome plasticity and biofilm development has rendered current antibiotic therapies ineffective, urging the development of innovative therapeutic approaches. The development of antibiotic resistance among bacteria has further heightened the clinical failure of antibiotic therapy, which is often linked to its low bioavailability, side effects, and poor penetration and accumulation at the site of infection. In this review, we highlight the potential use of siderophores, antibodies, cell-penetrating peptides, antimicrobial peptides, bacteriophages, and nanoparticles to smuggle antibiotics across impermeable biological membranes to achieve therapeutically relevant concentrations of antibiotics and combat antimicrobial resistance (AMR). We will discuss the general mechanisms via which each delivery system functions and how it can be tailored to deliver antibiotics against the paradigm of mechanisms underlying antibiotic resistance.
Collapse
Affiliation(s)
- Kusum Kharga
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Shubhang Jha
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Tanvi Vishwakarma
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| |
Collapse
|
12
|
Ciftci F, Özarslan AC, Kantarci İC, Yelkenci A, Tavukcuoglu O, Ghorbanpour M. Advances in Drug Targeting, Drug Delivery, and Nanotechnology Applications: Therapeutic Significance in Cancer Treatment. Pharmaceutics 2025; 17:121. [PMID: 39861768 PMCID: PMC11769154 DOI: 10.3390/pharmaceutics17010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
In the 21st century, thanks to advances in biotechnology and developing pharmaceutical technology, significant progress is being made in effective drug design. Drug targeting aims to ensure that the drug acts only in the pathological area; it is defined as the ability to accumulate selectively and quantitatively in the target tissue or organ, regardless of the chemical structure of the active drug substance and the method of administration. With drug targeting, conventional, biotechnological and gene-derived drugs target the body's organs, tissues, and cells that can be selectively transported to specific regions. These systems serve as drug carriers and regulate the timing of release. Despite having many advantageous features, these systems have limitations in thoroughly treating complex diseases such as cancer. Therefore, combining these systems with nanoparticle technologies is imperative to treat cancer at both local and systemic levels effectively. The nanocarrier-based drug delivery method involves encapsulating target-specific drug molecules into polymeric or vesicular systems. Various drug delivery systems (DDS) were investigated and discussed in this review article. The first part discussed active and passive delivery systems, hydrogels, thermoplastics, microdevices and transdermal-based drug delivery systems. The second part discussed drug carrier systems in nanobiotechnology (carbon nanotubes, nanoparticles, coated, pegylated, solid lipid nanoparticles and smart polymeric nanogels). In the third part, drug targeting advantages were discussed, and finally, market research of commercial drugs used in cancer nanotechnological approaches was included.
Collapse
Affiliation(s)
- Fatih Ciftci
- Department of Biomedical Engineering, Faculty of Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul 34015, Turkey
- Department of Technology Transfer Office, Fatih Sultan Mehmet Vakıf University, Istanbul 34015, Turkey
| | - Ali Can Özarslan
- Department of Metallurgical and Materials Engineering, Istanbul University-Cerrahpasa, Istanbul 34320, Turkey;
| | - İmran Cagri Kantarci
- Department of Bioengineering, Faculty of Chemistry-Metallurgy, Yildiz Technical University, Istanbul 34210, Turkey;
| | - Aslihan Yelkenci
- Department of Pediatric Dentistry, Faculty of Dentistry, University of Health Sciences, Istanbul 34668, Turkey;
| | - Ozlem Tavukcuoglu
- Department of Biochemistry, Faculty of Hamidiye Pharmacy, University of Health Sciences, Istanbul 34668, Turkey;
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran;
| |
Collapse
|
13
|
Sharma D, Gautam S, Singh S, Srivastava N, Khan AM, Bisht D. Unveiling the nanoworld of antimicrobial resistance: integrating nature and nanotechnology. Front Microbiol 2025; 15:1391345. [PMID: 39850130 PMCID: PMC11754303 DOI: 10.3389/fmicb.2024.1391345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
A significant global health crisis is predicted to emerge due to antimicrobial resistance by 2050, with an estimated 10 million deaths annually. Increasing antibiotic resistance necessitates continuous therapeutic innovation as conventional antibiotic treatments become increasingly ineffective. The naturally occurring antibacterial, antifungal, and antiviral compounds offer a viable alternative to synthetic antibiotics. This review presents bacterial resistance mechanisms, nanocarriers for drug delivery, and plant-based compounds for nanoformulations, particularly nanoantibiotics (nAbts). Green synthesis of nanoparticles has emerged as a revolutionary approach, as it enhances the effectiveness, specificity, and transport of encapsulated antimicrobials. In addition to minimizing systemic side effects, these nanocarriers can maximize therapeutic impact by delivering the antimicrobials directly to the infection site. Furthermore, combining two or more antibiotics within these nanoparticles often exhibits synergistic effects, enhancing the effectiveness against drug-resistant bacteria. Antimicrobial agents are routinely obtained from secondary metabolites of plants, including essential oils, phenols, polyphenols, alkaloids, and others. Integrating plant-based antibacterial agents and conventional antibiotics, assisted by suitable nanocarriers for codelivery, is a potential solution for addressing bacterial resistance. In addition to increasing their effectiveness and boosting the immune system, this synergistic approach provides a safer and more effective method of tackling future bacterial infections.
Collapse
Affiliation(s)
- Devesh Sharma
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
- School of Studies in Biochemistry, Jiwaji University, Gwalior, India
| | - Sakshi Gautam
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Sakshi Singh
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Nalini Srivastava
- School of Studies in Biochemistry, Jiwaji University, Gwalior, India
| | - Abdul Mabood Khan
- Division of Clinical Trials and Implementation Research, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Deepa Bisht
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| |
Collapse
|
14
|
Vikal A, Maurya R, Patel P, Kurmi BD. Nano Revolution: Harnessing Nanoparticles to Combat Antibiotic-resistant Bacterial Infections. Curr Pharm Des 2025; 31:498-506. [PMID: 39484761 DOI: 10.2174/0113816128337749241021084050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 11/03/2024]
Abstract
Nanoparticles, defined as particles ranging from 1 to 100 nanometers in size, are revolutionizing the approach to combating bacterial infections amid a backdrop of escalating antibiotic resistance. Bacterial infections remain a formidable global health challenge, causing millions of deaths annually and encompassing a spectrum from common illnesses like Strep throat to severe diseases such as tuberculosis and pneumonia. The misuse of antibiotics has precipitated the rise of resistant strains like methicillin-resistant Staphylococcus aureus (MRSA), multidrug-resistant Mycobacterium tuberculosis (MDR-TB), and carbapenem-resistant Enterobacteriaceae (CRE), underscoring the critical need for innovative therapeutic strategies. Nanotechnology offers a promising avenue in this crisis. Nanoparticles possess unique physical and chemical properties that distinguish them from traditional antibiotics. Their high surface area to volume ratio, ability to be functionalized with various molecules, and distinctive optical, electronic, and magnetic characteristics enable them to exert potent antibacterial effects. Mechanisms include physical disruption of bacterial membranes, generation of reactive oxygen species (ROS), and release of metal ions that disrupt bacterial metabolism. Moreover, nanoparticles penetrate biofilms and bacterial cell walls more effectively than conventional antibiotics and can be precisely targeted to minimize off-target effects. Crucially, nanoparticles mitigate the development of bacterial resistance by leveraging multiple simultaneous mechanisms of action, which make it challenging for bacteria to adapt through single genetic mutations. As research advances, nanotechnology holds immense promise in transforming antibacterial treatments, offering effective solutions that address current infections and combat antibiotic resistance globally. This review provides a comprehensive overview of nanoparticle applications in antibacterial therapies, highlighting their mechanisms, advantages over antibiotics, and future directions in healthcare innovation.
Collapse
Affiliation(s)
- Akash Vikal
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Rashmi Maurya
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| |
Collapse
|
15
|
Mishra A, Jyoti A, Aayush K, Saxena J, Sharma K. Harnessing Nanoparticles to Overcome Antimicrobial Resistance: Promises and Challenges. Curr Pharm Des 2025; 31:292-306. [PMID: 39219123 DOI: 10.2174/0113816128326718240809091654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024]
Abstract
The rise of antimicrobial resistance (AMR) has become a serious global health issue that kills millions of people each year globally. AMR developed in bacteria is difficult to treat and poses a challenge to clinicians. Bacteria develop resistance through a variety of processes, including biofilm growth, targeted area alterations, and therapeutic drug alteration, prolonging the period they remain within cells, where antibiotics are useless at therapeutic levels. This rise in resistance is linked to increased illness and death, highlighting the urgent need for effective solutions to combat this growing challenge. Nanoparticles (NPs) offer unique solutions for fighting AMR bacteria. Being smaller in size with a high surface area, enhancing interaction with bacteria makes the NPs strong antibacterial agents against various infections. In this review, we have discussed the epidemiology and mechanism of AMR development. Furthermore, the role of nanoparticles as antibacterial agents, and their role in drug delivery has been addressed. Additionally, the potential, challenges, toxicity, and future prospects of nanoparticles as antibacterial agents against AMR pathogens have been discussed. The research work discussed in this review links with Sustainable Development Goal 3 (SDG-3), which aims to ensure disease-free lives and promote well-being for all ages.
Collapse
Affiliation(s)
- Akash Mishra
- Department of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Anupam Jyoti
- Department of Life Science, Parul Institute of Applied Science, Parul University, Vadodara, Gujarat, India
| | - Krishna Aayush
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Distt. Solan, H.P., India
| | - Juhi Saxena
- Department of Biotechnology, Parul Institute of Technology, Parul University, Vadodara, Gujarat, India
| | - Kanika Sharma
- Department of Biotechnology, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
16
|
Salikin NH, Keong LC, Azemin WA, Philip N, Yusuf N, Daud SA, Rashid SA. Combating multidrug-resistant (MDR) Staphylococcus aureus infection using terpene and its derivative. World J Microbiol Biotechnol 2024; 40:402. [PMID: 39627623 DOI: 10.1007/s11274-024-04190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/01/2024] [Indexed: 12/13/2024]
Abstract
Multidrug-resistant (MDR) Staphylococcus aureus represents a major global health issue resulting in a wide range of debilitating infections and fatalities. The slow progression of new antibiotics, limited choices for treatment, and scarcity of new drug approvals create immense obstacles in new drug line development. S. aureus poses a significant public health risk, due to the emergence of methicillin-resistant (MRSA) and vancomycin-resistant strains (VRSA), necessitating novel antibiotics for effective control management. Current studies are delving into the terpenes' potential as an antimicrobial agent, indicating positive prospects as promising substitutes or complementary to conventional antibiotics. Concurrent reactions of terpenes with conventional antibiotics create synergistic effects that significantly enhance antibiotic efficacy. Accumulated evidence has shown that while efflux pump (e.g., NorA, TetK, and MepA) is revealed as an essential defense of S. aureus against antibiotics, terpene and its derivative act as its potent inhibitor, suggesting the promising potential of terpenes in combating those infectious pathogens. Furthermore, pronounced cell membrane disruptive activity and antibiofilm properties by terpenes have been exerted, signifying their significance as promising prevention against microbial pathogenesis and antimicrobial resistance. This review provides an overview of the potential of terpenes and their derivatives in combating S. aureus infections, highlighting their potential mechanisms of action (MOA), synergistic effects with conventional antibiotics, and challenges in clinical translation. The unique properties of terpenes offer an opportunity for their use in developing an exceptional defense strategy against antibiotic-resistant S. aureus.
Collapse
Affiliation(s)
- Nor Hawani Salikin
- School of Industrial Technology, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia
| | - Lee Chee Keong
- School of Industrial Technology, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia
| | - Wan-Atirah Azemin
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia
| | - Noraini Philip
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia
| | - Nurhaida Yusuf
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Aceh, Indonesia
| | - Siti Aisyah Daud
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia
| | - Syarifah Ab Rashid
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia.
| |
Collapse
|
17
|
Dahiya A, Chaudhari VS, Bose S. Bone Healing via Carvacrol and Curcumin Nanoparticle on 3D Printed Scaffolds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405642. [PMID: 39463050 PMCID: PMC11636189 DOI: 10.1002/smll.202405642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/22/2024] [Indexed: 10/29/2024]
Abstract
Carvacrol is a potent antimicrobial and anti-inflammatory agent, while curcumin possesses antioxidant, anti-inflammatory, and anticancer properties. These phytochemicals have poor solubility, bioavailability, and stability in their free form. Nanoencapsulation can reduce these limitations with enhanced translational capability. Integrating nanocarriers with 3D-printed calcium phosphate (CaP) scaffolds presents a novel strategy for bone regeneration. Carvacrol and curcumin-loaded nanoparticles (CC-NP) synthesized with melt emulsification produced negatively charged, monodispersed particles with a hydrodynamic diameter of ≈127 nm. Their release from the scaffold shows a biphasic release under physiological and acidic conditions. At pH 5.0, the CC-NP exhibits a 53% release of curcumin and nearly 100% release of carvacrol, compared to 19% and 36% from their respective drug solutions. At pH 7.4, ≈40% of curcumin and 76% of carvacrol releases, highlighting their pH-sensitive release mechanism. In vitro studies demonstrate a 1.4-fold increase in osteoblast cell viability with CC-NP treatment. CC-NP exhibit cytotoxic effects against osteosarcoma cells, reducing cell viability by ≈2.9-fold. The antibacterial efficacy of CC-NP evaluated against Staphylococcus aureus (SA) and Pseudomonas aeruginosa (PA) exhibiting 98% antibacterial efficacy. This approach enhances therapeutic outcomes and minimizes the potential side effects associated with conventional treatments, paving the way for innovative applications in regenerative medicine.
Collapse
Affiliation(s)
- Aditi Dahiya
- W. M. Keck Biomedical Materials Research LaboratorySchool of Mechanical and Materials EngineeringWashington State UniversityPullmanWashington99164USA
- Department of ChemistryWashington State UniversityPullmanWashington99164USA
| | - Vishal Sharad Chaudhari
- W. M. Keck Biomedical Materials Research LaboratorySchool of Mechanical and Materials EngineeringWashington State UniversityPullmanWashington99164USA
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research LaboratorySchool of Mechanical and Materials EngineeringWashington State UniversityPullmanWashington99164USA
- Department of ChemistryWashington State UniversityPullmanWashington99164USA
| |
Collapse
|
18
|
Salmani-Zarchi H, Mousavi-Sagharchi SMA, Sepahdoost N, Ranjbar-Jamalabadi M, Gross JD, Jooya H, Samadi A. Antimicrobial Feature of Nanoparticles in the Antibiotic Resistance Era: From Mechanism to Application. Adv Biomed Res 2024; 13:113. [PMID: 39717242 PMCID: PMC11665187 DOI: 10.4103/abr.abr_92_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 12/25/2024] Open
Abstract
The growth of nanoscale sciences enables us to define and design new methods and materials for a better life. Health and disease prevention are the main issues in the human lifespan. Some nanoparticles (NPs) have antimicrobial properties that make them useful in many applications. In recent years, NPs have been used as antibiotics to overcome drug resistance or as drug carriers with antimicrobial features. They can also serve as antimicrobial coatings for implants in different body areas. The antimicrobial feature of NPs is based on different mechanisms. For example, the oxidative functions of NPs can inhibit nucleic acid replication and destroy the microbial cell membrane as well as interfere with their cellular functions and biochemical cycles. On the other hand, NPs can disrupt the pathogens' lifecycle by interrupting vital points of their life, such as virus uncoating and entry into human cells. Many types of NPs have been tested by different scientists for these purposes. Silver, gold, copper, and titanium have shown the most ability to inhibit and remove pathogens inside and outside the body. In this review, the authors endeavor to comprehensively describe the antimicrobial features of NPs and their applications for different biomedical goals.
Collapse
Affiliation(s)
- Hamed Salmani-Zarchi
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Nafise Sepahdoost
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahdieh Ranjbar-Jamalabadi
- Department of Polymer Engineering, Faculty of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Jeffrey D. Gross
- ReCELLebrate Regenerative Medicine Clinic, Henderson, Nevada, USA
| | - Hossein Jooya
- Biochemistry Group, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Samadi
- Department of Basic Sciences, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| |
Collapse
|
19
|
Diedericks B, Kok AM, Mandiwana V, Gordhan BG, Kana BD, Ray SS, Lall N. Antitubercular Activity of 7-Methyljuglone-Loaded Poly-(Lactide Co-Glycolide) Nanoparticles. Pharmaceutics 2024; 16:1477. [PMID: 39598600 PMCID: PMC11597334 DOI: 10.3390/pharmaceutics16111477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Loading of natural products into poly-(lactide-co-glycolic) acid (PLGA) nanoparticles as drug delivery systems for the treatment of diseases, such as tuberculosis (TB), has been widely explored. The current study investigated the use of PLGA nanoparticles with 7-methyljuglone (7-MJ), an active pure compound, isolated from the roots of Euclea natalensis A. DC. METHODS 7-MJ as well as its respective PLGA nanoparticles were tested for their antimycobacterial activity against Mycobacterium smegmatis (M. smegmatis), drug-susceptible Mycobacterium tuberculosis (M. tuberculosis) (H37Rv), and multi-drug-resistant M. tuberculosis (MDR11). The cytotoxicity of 7-MJ as well as its respective PLGA nanoparticles were tested for their cytotoxic effect against differentiated human histiocytic lymphoma (U937) cells. Engulfment studies were also conducted to determine whether the PLGA nanoparticles are taken up by differentiated U937 cells. RESULTS 7-MJ has been shown to have a minimum inhibitory concentration (MIC) value of 1.6 µg/mL against M. smegmatis and multi-drug-resistant M. tuberculosis and 0.4 µg/mL against drug-susceptible M. tuberculosis. Whilst promising, 7-MJ was associated with cytotoxicity, with a fifty percent inhibition concentration (IC50) of 3.25 µg/mL on differentiated U937 cells. In order to lower the cytotoxic potential, 7-MJ was loaded into PLGA nanoparticles. The 7-MJ PLGA nanoparticles showed an 80-fold decrease in cytotoxic activity compared to free 7-MJ, and the loaded nanoparticles were successfully taken up by differentiated macrophage-like U937 cells. CONCLUSIONS The results of this study suggested the possibility of improved delivery during TB therapy via the use of PLGA nanoparticles.
Collapse
Affiliation(s)
- Bianca Diedericks
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa; (B.D.); (A.-M.K.)
| | - Anna-Mari Kok
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa; (B.D.); (A.-M.K.)
- South African International Maritime Institute (SAIMI), Nelson Mandela University, Gqeberha 6019, South Africa
| | - Vusani Mandiwana
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa; (V.M.); (S.S.R.)
| | - Bhavna Gowan Gordhan
- National Health Laboratory Service, School of Pathology, Faculty of Health Science, University of the Witwatersrand, Johannesburg 2000, South Africa; (B.G.G.); (B.D.K.)
| | - Bavesh Davandra Kana
- National Health Laboratory Service, School of Pathology, Faculty of Health Science, University of the Witwatersrand, Johannesburg 2000, South Africa; (B.G.G.); (B.D.K.)
| | - Suprakas Sinha Ray
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa; (V.M.); (S.S.R.)
- Department of Chemical Sciences, University of Johannesburg, Doornfontein 2028, South Africa
| | - Namrita Lall
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa; (B.D.); (A.-M.K.)
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
- College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
- Bio-Tech R&D Institute, University of the West Indies, Kingston 770, Jamaica
| |
Collapse
|
20
|
Mardikasari SA, Katona G, Budai-Szűcs M, Kiricsi Á, Rovó L, Csóka I. Mucoadhesive in situ nasal gel of amoxicillin trihydrate for improved local delivery: Ex vivo mucosal permeation and retention studies. Eur J Pharm Sci 2024; 202:106897. [PMID: 39243910 DOI: 10.1016/j.ejps.2024.106897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Orally administered amoxicillin is recommended as the first-line treatment of acute bacterial rhinosinusitis (ABR) and given in a high-dose regimen. However, the risk of various systemic adverse reactions and low oral bioavailability are unbearable, increasing the threat of antibiotic resistance. Therefore, nasal delivery of amoxicillin can be a potential approach for effectively treating ABR locally, as well as overcoming those drawbacks. In a way to guarantee the effectiveness for local therapy in nasal cavity, the permeation and retention properties are of significant importance considerations. Accordingly, the present work aimed to investigate the characteristics with respect to the nasal applicability of the in situ gelling amoxicillin trihydrate (AMT) and further evaluate its permeability and retention properties through human nasal mucosa. The lyophilized formulations were characterized utilizing the Differential Scanning Calorimetry (DSC) and X-ray Powder Diffraction (XRPD), and also evaluated for its polarity, reconstitution time, droplet size distribution, mucoadhesive properties, and ex vivo permeability and retention studies. The results confirmed that the in situ gelling AMT formulations possess adequate mucoadhesive behavior, especially the formulation containing 0.3 % of gellan gum. Substantially, the in situ gelling AMT formulations were able to retain the drug on the surface of nasal mucosa instead of permeating across the membrane; thus, suitable for treating nasal infections locally. Altogether, the in situ gelling systems demonstrates promising abilities as a delivery platform to enhance local application of AMT within the nasal cavity.
Collapse
Affiliation(s)
- Sandra Aulia Mardikasari
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, Szeged H-6720, Hungary; Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, Szeged H-6720, Hungary.
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, Szeged H-6720, Hungary
| | - Ágnes Kiricsi
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Szeged, Tisza Lajos krt. 111, Szeged H-6725, Hungary
| | - László Rovó
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Szeged, Tisza Lajos krt. 111, Szeged H-6725, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, Szeged H-6720, Hungary
| |
Collapse
|
21
|
Mayattu K, Rajwade J, Ghormade V. Development of erythromycin loaded PLGA nanoparticles for improved drug efficacy and sustained release against bacterial infections and biofilm formation. Microb Pathog 2024; 197:107083. [PMID: 39454804 DOI: 10.1016/j.micpath.2024.107083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 10/28/2024]
Abstract
Bacterial infections are a common cause of sepsis, often leading to high patient mortality. Such infections are challenging to treat due to bacterial resistance to many existing drugs. Erythromycin (Ery) is a macrolide antibiotic used against bacterial infections with reported resistance. Recently, synthetic poly-lactide co-glycolic acid (PLGA) polymer nanoparticles (NPs) have displayed improved drug delivery characteristics and biocompatibility. In this study, PLGA-Ery NPs were synthesized by the o/w emulsion diffusion method, having a particle size of 159 ± 23 nm and displayed 71.89 % of encapsulation efficiency. The PLGA-Ery NPs showed 1.5, 2.1 and 1.5-fold improved MIC and antibacterial efficacy against E. coli, S. aureus, and P. aeruginosa, respectively than the pure drug. As illustrated by scanning electron microscopy, PLGA-Ery NPs caused damage to the bacterial cell walls. Furthermore, a surface coating with PLGA-Ery NPs on a glass surface showed efficient inhibition (>90 %) of the biofilm formation by P. aeruginosa, as determined by fluorescence microscopy and MTT assay. This study demonstrates that PLGA-Ery NPs can increase the efficiency of erythromycin and can suppress the growth and biofilm formation of P. aeruginosa. Such polymeric nanoparticles drug nanoformulations have potential as an antimicrobial and as a surface coating for medical devices.
Collapse
Affiliation(s)
- Kamal Mayattu
- Nanobioscience Group, Agharkar Research Institute, GG Agarkar Road, Pune, 411004, India
| | - Jyutika Rajwade
- Nanobioscience Group, Agharkar Research Institute, GG Agarkar Road, Pune, 411004, India
| | - Vandana Ghormade
- Nanobioscience Group, Agharkar Research Institute, GG Agarkar Road, Pune, 411004, India.
| |
Collapse
|
22
|
Ansari M, Moradi S, Hosseinzadeh S, Shahlaei M. Computational assessment of lipid facilitated membrane permeation of vancomycin using force-probe molecular dynamic simulation. J Biomol Struct Dyn 2024; 42:8854-8864. [PMID: 37608542 DOI: 10.1080/07391102.2023.2248513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023]
Abstract
In this study the efficacy of different edible lipids for drug permeation enhancement of vancomycin through biological membrane was investigated using molecular dynamic simulation. In this regard, at first the ability of the lipids for complex formation with the drug was evaluated for number of most common edible lipids including tripalmitin (TPA), trimyristin (TMY), labrafil (LAB), glycerol monostearate (GMS), glycerol monooleate (GMO), Distearoylphosphorylethanolamine (DSPE), dipalmitoylphosphatidylethanolamine (DPPE), Dipalmitoylphosphatidylcholine (DPPC), cholesterol (CL), stearic acid (SA), palmitic acid (PA) and oleic acid (OA). Then the complexes were pulled thorough a bilayer membrane while the changes in force were probed. The results showed that besides the SA, PA and OA the other examined lipids were able to perform a perfect molecular complex with the drug. Also the results of pulling simulation revealed that the least of force was needed for drug transmittance through the membrane when it was covered by LAB, TMY and DSPE. These results indicated that these lipids can be the excellent materials of choice as permeation enhancer for preparing a proper oral formulation of vancomycin.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohabbat Ansari
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Simzar Hosseinzadeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Shahlaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
23
|
Mazloumi Jourkouyeh E, Taslimi Eshkalak M, Faezi Ghasemi M, Zahmatkesh H, Rasti B, Zamani H. Diclofenac Sodium and Gentamicin Co-Encapsulated PLGA Nanoparticles: Targeting Extracellular Matrix Components to Combat Biofilm Formation in Pseudomonas aeruginosa PAO1. J CLUST SCI 2024; 35:2475-2488. [DOI: 10.1007/s10876-024-02675-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/23/2024] [Indexed: 01/05/2025]
|
24
|
Khan NA, Alvi A, Alqassim S, Akbar N, Khatoon B, Kawish M, Faizi S, Shah MR, Alawfi BS, Siddiqui R. Nanomedicine: Patuletin-conjugated with zinc oxide exhibit potent effects against Gram-negative and Gram-positive bacterial pathogens. Biometals 2024; 37:1113-1125. [PMID: 38705945 DOI: 10.1007/s10534-024-00595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/02/2024] [Indexed: 05/07/2024]
Abstract
With the emergence of drug-resistance, there is a need for novel anti-bacterials or to enhance the efficacy of existing drugs. In this study, Patuletin (PA), a flavanoid was loaded onto Gallic acid modified Zinc oxide nanoparticles (PA-GA-ZnO), and evaluated for antibacterial properties against Gram-positive (Bacillus cereus and Streptococcus pneumoniae) and Gram-negative (Samonella enterica and Escherichia coli) bacteria. Characterization of PA, GA-ZnO and PA-GA-ZnO' nanoparticles was accomplished utilizing fourier-transform infrared spectroscopy, efficiency of drug entrapment, polydispersity index, zeta potential, size, and surface morphology analysis through atomic force microscopy. Using bactericidal assays, the results revealed that ZnO conjugation displayed remarkable effects and enhanced Patuletin's effects against both Gram-positive and Gram-negative bacteria, with the minimum inhibitory concentration observed at micromolar concentrations. Cytopathogenicity assays exhibited that the drug-nanoconjugates reduced bacterial-mediated human cell death with minimal side effects to human cells. When tested alone, drug-nanoconjugates tested in this study showed limited toxic effects against human cells in vitro. These are promising findings, but future work is needed to understand the molecular mechanisms of effects of drug-nanoconjugates against bacterial pathogens, in addition to in vivo testing to determine their translational value. This study suggests that Patuletin-loaded nano-formulation (PA-GA-ZnO) may be implicated in a multi-target mechanism that affects both Gram-positive and Gram-negative pathogen cell structures, however this needs to be ascertained in future work.
Collapse
Affiliation(s)
- Naveed Ahmed Khan
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey.
| | - Adeelah Alvi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, 505055, UAE
| | - Saif Alqassim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, 505055, UAE.
| | - Noor Akbar
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, 27272, UAE
| | - Bushra Khatoon
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Kawish
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Shaheen Faizi
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Raza Shah
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Bader S Alawfi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, 42353, Madinah, Saudi Arabia
| | - Ruqaiyyah Siddiqui
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, , Edinburgh, EH14 4AS, UK
| |
Collapse
|
25
|
Cocker D, Birgand G, Zhu N, Rodriguez-Manzano J, Ahmad R, Jambo K, Levin AS, Holmes A. Healthcare as a driver, reservoir and amplifier of antimicrobial resistance: opportunities for interventions. Nat Rev Microbiol 2024; 22:636-649. [PMID: 39048837 DOI: 10.1038/s41579-024-01076-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
Antimicrobial resistance (AMR) is a global health challenge that threatens humans, animals and the environment. Evidence is emerging for a role of healthcare infrastructure, environments and patient pathways in promoting and maintaining AMR via direct and indirect mechanisms. Advances in vaccination and monoclonal antibody therapies together with integrated surveillance, rapid diagnostics, targeted antimicrobial therapy and infection control measures offer opportunities to address healthcare-associated AMR risks more effectively. Additionally, innovations in artificial intelligence, data linkage and intelligent systems can be used to better predict and reduce AMR and improve healthcare resilience. In this Review, we examine the mechanisms by which healthcare functions as a driver, reservoir and amplifier of AMR, contextualized within a One Health framework. We also explore the opportunities and innovative solutions that can be used to combat AMR throughout the patient journey. We provide a perspective on the current evidence for the effectiveness of interventions designed to mitigate healthcare-associated AMR and promote healthcare resilience within high-income and resource-limited settings, as well as the challenges associated with their implementation.
Collapse
Affiliation(s)
- Derek Cocker
- David Price Evans Infectious Diseases & Global Health Group, University of Liverpool, Liverpool, UK
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| | - Gabriel Birgand
- Centre d'appui pour la Prévention des Infections Associées aux Soins, Nantes, France
- National Institute for Health and Care Research (NIHR) Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, London, UK
- Cibles et medicaments des infections et de l'immunitée, IICiMed, Nantes Universite, Nantes, France
| | - Nina Zhu
- National Institute for Health and Care Research (NIHR) Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, London, UK
- Department of Infectious Disease, Imperial College London, London, UK
| | - Jesus Rodriguez-Manzano
- National Institute for Health and Care Research (NIHR) Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, London, UK
- Department of Infectious Disease, Imperial College London, London, UK
| | - Raheelah Ahmad
- National Institute for Health and Care Research (NIHR) Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, London, UK
- Department of Health Services Research & Management, City University of London, London, UK
- Dow University of Health Sciences, Karachi, Pakistan
| | - Kondwani Jambo
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Anna S Levin
- Department of Infectious Disease, School of Medicine & Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Alison Holmes
- David Price Evans Infectious Diseases & Global Health Group, University of Liverpool, Liverpool, UK.
- National Institute for Health and Care Research (NIHR) Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, London, UK.
- Department of Infectious Disease, Imperial College London, London, UK.
| |
Collapse
|
26
|
Liu Y, Murphy K, Fernandes N, Moore RET, Pennisi I, Williams R, Rehkämper M, Larrouy-Maumus G. Transition metal homoeostasis is key to metabolism and drug tolerance of Mycobacterium abscessus. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:25. [PMID: 39359892 PMCID: PMC11442307 DOI: 10.1038/s44259-024-00042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 07/24/2024] [Indexed: 10/04/2024]
Abstract
Antimicrobial resistance (AMR) is one of the major challenges humans are facing this century. Understanding the mechanisms behind the rise of AMR is therefore crucial to tackling this global threat. The presence of transition metals is one of the growth-limiting factors for both environmental and pathogenic bacteria, and the mechanisms that bacteria use to adapt to and survive under transition metal toxicity resemble those correlated with the rise of AMR. A deeper understanding of transition metal toxicity and its potential as an antimicrobial agent will expand our knowledge of AMR and assist the development of therapeutic strategies. In this study, we investigate the antimicrobial effect of two transition metal ions, namely cobalt (Co2+) and nickel (Ni2+), on the non-tuberculous environmental mycobacterium and the opportunistic human pathogen Mycobacterium abscessus. The minimum inhibitory concentrations of Co2+ and Ni2+ on M. abscessus were first quantified and their impact on the bacterial intracellular metallome was investigated. A multi-omics strategy that combines transcriptomics, bioenergetics, metabolomics, and phenotypic assays was designed to further investigate the mechanisms behind the effects of transition metals. We show that transition metals induced growth defect and changes in transcriptome and carbon metabolism in M. abscessus, while the induction of the glyoxylate shunt and the WhiB7 regulon in response to metal stresses could be the key response that led to higher AMR levels. Meanwhile, transition metal treatment alters the bacterial response to clinically relevant antibiotics and enhances the uptake of clarithromycin into bacterial cells, leading to increased efficacy. This work provides insights into the tolerance mechanisms of M. abscessus to transition metal toxicity and demonstrates the possibility of using transition metals to adjuvant the efficacy of currently using antimicrobials against M. abscessus infections.
Collapse
Affiliation(s)
- Yi Liu
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Katy Murphy
- Department of Earth Science and Engineering, Royal School of Mines, Imperial College London, London, UK
| | - Nadia Fernandes
- Imperial BRC Genomics Faculty, Imperial College London, London, UK
| | - Rebekah E T Moore
- Department of Earth Science and Engineering, Royal School of Mines, Imperial College London, London, UK
| | - Ivana Pennisi
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Richard Williams
- Imperial BRC Genomics Faculty, Imperial College London, London, UK
| | - Mark Rehkämper
- Department of Earth Science and Engineering, Royal School of Mines, Imperial College London, London, UK
| | - Gerald Larrouy-Maumus
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| |
Collapse
|
27
|
Krajišnik D, Uskoković-Marković S, Daković A. Chitosan-Clay Mineral Nanocomposites with Antibacterial Activity for Biomedical Application: Advantages and Future Perspectives. Int J Mol Sci 2024; 25:10377. [PMID: 39408707 PMCID: PMC11476839 DOI: 10.3390/ijms251910377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Polymers of natural origin, such as representatives of various polysaccharides (e.g., cellulose, dextran, hyaluronic acid, gellan gum, etc.), and their derivatives, have a long tradition in biomedical applications. Among them, the use of chitosan as a safe, biocompatible, and environmentally friendly heteropolysaccharide has been particularly intensively researched over the last two decades. The potential of using chitosan for medical purposes is reflected in its unique cationic nature, viscosity-increasing and gel-forming ability, non-toxicity in living cells, antimicrobial activity, mucoadhesiveness, biodegradability, as well as the possibility of chemical modification. The intuitive use of clay minerals in the treatment of superficial wounds has been known in traditional medicine for thousands of years. To improve efficacy and overcome the ubiquitous bacterial resistance, the beneficial properties of chitosan have been utilized for the preparation of chitosan-clay mineral bionanocomposites. The focus of this review is on composites containing chitosan with montmorillonite and halloysite as representatives of clay minerals. This review highlights the antibacterial efficacy of chitosan-clay mineral bionanocomposites in drug delivery and in the treatment of topical skin infections and wound healing. Finally, an overview of the preparation, characterization, and possible future perspectives related to the use of these advancing composites for biomedical applications is presented.
Collapse
Affiliation(s)
- Danina Krajišnik
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia
| | - Snežana Uskoković-Marković
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia;
| | - Aleksandra Daković
- Institute for Technology of Nuclear and Other Mineral Raw Materials (ITNMS), 11000 Belgrade, Serbia;
| |
Collapse
|
28
|
Sharma S, Tiwari V. Polyvinylpyrrolidone capped silver nanoparticles enhance the autophagic clearance of Acinetobacter baumannii from human pulmonary cells. DISCOVER NANO 2024; 19:154. [PMID: 39313578 PMCID: PMC11420407 DOI: 10.1186/s11671-024-04107-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
Acinetobacter baumannii, an opportunistic pathogen has shown an upsurge in its multi-drug resistant isolates. OmpA of A. baumannii induces incomplete autophagy and apoptosis in host cells. Various therapeutic alternatives are under investigation against A. baumannii. Here, the major emphasis has been laid on comparing the efficacy of AgNP with different capping agents. OmpA targeted lead, Ivermectin capped AgNP (IVM-AgNP) has been compared with the antibacterial polyvinylpyrrolidone capped AgNP (PVP-AgNP) for their role in the modulations of host autophagy. Upregulation of p62 and LC3B confirmed by real-time PCR analysis indicated an increased autophagic flux upon the treatment with AgNPs. The elongation and closure of autophagic vacuoles was also supported by upregulated Atg genes (Atg4, Atg3, Atg5) in A. baumannii infected cells after treatment with AgNP. Autophagic flux increased on treatment with PVP-AgNP as suggested by the rise in mcherryLC3B fluorescence in A549 cells treated with PVP-AgNP as compared to the GFP-LC3B of IVM-AgNP. This suggests that PVP-AgNP treatment more effectively promotes the elongation and maturation stages of autophagy by increasing autophagic flux. These results indicate that capped AgNPs have the efficiency to revert the incomplete autophagy induced by A. baumannii back to normal autophagic levels.
Collapse
Affiliation(s)
- Saroj Sharma
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, India.
| |
Collapse
|
29
|
Abedin S, Adeleke OA. State of the art in pediatric nanomedicines. Drug Deliv Transl Res 2024; 14:2299-2324. [PMID: 38324166 DOI: 10.1007/s13346-024-01532-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
In recent years, the continuous development of innovative nanopharmaceuticals is expanding their biomedical and clinical applications. Nanomedicines are being revolutionized to circumvent the limitations of unbound therapeutic agents as well as overcome barriers posed by biological interfaces at the cellular, organ, system, and microenvironment levels. In many ways, the use of nanoconfigured delivery systems has eased challenges associated with patient differences, and in our opinion, this forms the foundation for their potential usefulness in developing innovative medicines and diagnostics for special patient populations. Here, we present a comprehensive review of nanomedicines specifically designed and evaluated for disease management in the pediatric population. Typically, the pediatric population has distinguishing needs relative to those of adults majorly because of their constantly growing bodies and age-related physiological changes, which often need specialized drug formulation interventions to provide desirable therapeutic effects and outcomes. Besides, child-centric drug carriers have unique delivery routes, dosing flexibility, organoleptic properties (e.g., taste, flavor), and caregiver requirements that are often not met by traditional formulations and can impact adherence to therapy. Engineering pediatric medicines as nanoconfigured structures can potentially resolve these limitations stemming from traditional drug carriers because of their unique capabilities. Consequently, researchers from different specialties relentlessly and creatively investigate the usefulness of nanomedicines for pediatric disease management as extensively captured in this compilation. Some examples of nanomedicines covered include nanoparticles, liposomes, and nanomicelles for cancer; solid lipid and lipid-based nanostructured carriers for hypertension; self-nanoemulsifying lipid-based systems and niosomes for infections; and nanocapsules for asthma pharmacotherapy.
Collapse
Affiliation(s)
- Saba Abedin
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Oluwatoyin A Adeleke
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
30
|
Racca L, Liuzzi E, Comparato S, Giordano G, Pignochino Y. Nanoparticles-Delivered Circular RNA Strategy as a Novel Antitumor Approach. Int J Mol Sci 2024; 25:8934. [PMID: 39201617 PMCID: PMC11354327 DOI: 10.3390/ijms25168934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/18/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Anticancer therapy urgently needs the development of novel strategies. An innovative molecular target is represented by circular RNAs (circRNAs), single-strand RNA molecules with the 5' and 3' ends joined, characterized by a high stability. Although circRNA properties and biological functions have only been partially elucidated, their relationship and involvement in the onset and progression of cancer have emerged. Specific targeting of circRNAs may be obtained with antisense oligonucleotides and silencing RNAs. Nanotechnology is at the forefront of research for perfecting their delivery. Continuous efforts have been made to develop novel nanoparticles (NPs) and improve their performance, materials, and properties regarding biocompatibility and targeting capabilities. Applications in various fields, from imaging to gene therapy, have been explored. This review sums up the smart strategies developed to directly target circRNAs with the fruitful application of NPs in this context.
Collapse
Affiliation(s)
- Luisa Racca
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (L.R.); (S.C.)
- Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Università del Piemonte Orientale, 28100 Novara, Italy
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Elisabetta Liuzzi
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands;
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy;
| | - Simona Comparato
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (L.R.); (S.C.)
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy;
| | - Giorgia Giordano
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy;
- Department of Oncology, University of Turin, 10060 Turin, Italy
| | - Ymera Pignochino
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (L.R.); (S.C.)
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy;
| |
Collapse
|
31
|
Ladva DN, Selvadoss PP, Chitroda GK, Dhanasekaran S, Nellore J, Tippabathani J, Solomon SM. Maleimide conjugated PEGylated liposomal antibiotic to combat multi-drug resistant Escherichia coli and Klebsiella pneumoniae with enhanced wound healing potential. Sci Rep 2024; 14:18361. [PMID: 39112534 PMCID: PMC11306640 DOI: 10.1038/s41598-024-68647-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Antibiotic resistance is a significant threat, leaving us vulnerable to bacterial infections. Novel strategies are needed to combat bacterial resistance beyond discovering new antibiotics. This research focuses on using maleimide conjugated PEGylated liposomes (Mal-PL-Ab) to individually encapsulate a variety of antibiotics (ceftriaxone, cephalexin, doxycycline, piperacillin, ampicillin, and ceftazidime) and enhance their delivery against multi-drug resistant (MDR) bacteria like Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae). Mal-PL-Ab, with an average size of 84.2 nm ± 4.32 nm, successfully encapsulated these antibiotics with an encapsulation efficiency of 37.73 ± 3.19%. Compared to non-PEGylated liposomes (L-Ab), Mal-PL-Ab exhibited reduced toxicity in human dermal cells, emphasizing the importance of PEGylation in minimizing adverse effects. Mal-PL-Ab significantly decreased the minimum inhibitory concentration (MIC) values against both E. coli and K. pneumoniae by 9.33-fold and eightfold reduction (compared to non-PEGylated liposomes with 2.33-fold and 2.33fold reduction), respectively, indicating enhanced efficacy against MDR strains. Furthermore, in vitro scratch assay and gene expression analysis of human dermal fibroblast revealed that Mal-PL-Ab promoted cell proliferation, migration, and wound healing through upregulation of cell cycle, DNA repair, and angiogenesis-related genes. Harnessing the power of encapsulation, Mal-PL-Ab presents a novel avenue for enhanced antibiotic delivery and wound healing, potentially transcending the limitations of traditional options.
Collapse
Affiliation(s)
- Darshan Narendrabhai Ladva
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, 382426, India
| | - Pradeep Pushparaj Selvadoss
- Department of Biotechnology, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, 382426, India.
| | - Grishma Kantibhai Chitroda
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, 382426, India
| | - Sivaraman Dhanasekaran
- Department of Biotechnology, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, 382426, India
| | - Jayshree Nellore
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | | | - Sundar Manoharan Solomon
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, 382426, India.
- Department of Biotechnology, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, 382426, India.
| |
Collapse
|
32
|
Asaftei M, Lucidi M, Anton SR, Trompeta AF, Hristu R, Tranca DE, Fiorentis E, Cirtoaje C, Lazar V, Stanciu GA, Cincotti G, Ayala P, Charitidis CA, Holban A, Visca P, Stanciu SG. Antibacterial Interactions of Ethanol-Dispersed Multiwalled Carbon Nanotubes with Staphylococcus aureus and Pseudomonas aeruginosa. ACS OMEGA 2024; 9:33751-33764. [PMID: 39130555 PMCID: PMC11307305 DOI: 10.1021/acsomega.4c03044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 08/13/2024]
Abstract
Infectious diseases are acknowledged as one of the leading causes of death worldwide. Statistics show that the annual death toll caused by bacterial infections has reached 14 million, most of which are caused by drug-resistant strains. Bacterial antibiotic resistance is currently regarded as a compelling problem with dire consequences, which motivates the urgent identification of alternative ways of fighting bacteria. Various types of nanomaterials have been reported to date as efficient antibacterial solutions. Among these, carbon-based nanomaterials, such as carbon nanodots, carbon graphene oxide, and carbon nanotubes (CNTs), have been shown to be effective in killing a wide panel of pathogenic bacteria. With this study, we aim to provide additional insights into this topic of research by investigating the antibacterial activity of a specific type of multiwalled CNTs, with diameters from 50 to 150 nm, against two representative opportunistic pathogens, i.e., the Gram-positive bacterium Staphylococcus aureus and the Gram-negative bacterium Pseudomonas aeruginosa, both included among the top antibiotic-resistant pathogens. We also test the synergistic effect of CNTs with different antibiotics commonly used in the treatment of infections caused by S. aureus and/or P. aeruginosa. Additionally, a novel approach for quantitatively analyzing bacterial aggregation in brightfield microscopy images was implemented. This method was utilized to assess the effectiveness of CNTs, either alone or in combination with antibiotics, in dispersing bacterial aggregates. Finally, atomic force microscopy coupled with a newly devised image analysis pipeline was used to examine any potential morphological changes in bacterial cells following exposure to CNTs and antibiotics.
Collapse
Affiliation(s)
- Mihaela Asaftei
- Center
for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica
Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
- Department
of Microbiology and Immunology, Faculty of Biology, Research Institute
of the University of Bucharest, University
of Bucharest, 060101 Bucharest, Romania
| | - Massimiliano Lucidi
- Department
of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
- NBFC,
National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy
| | - Stefan Razvan Anton
- Center
for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica
Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Aikaterini-Flora Trompeta
- Research
Lab of Advanced, Composite, Nano-Materials and Nanotechnology (R-NanoLab),
School of Chemical Engineering, National
Technical University of Athens, 9 Heroon Polytechniou, 15773 Athens, Greece
| | - Radu Hristu
- Center
for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica
Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Denis E. Tranca
- Center
for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica
Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Efstathios Fiorentis
- Center
for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica
Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Cristina Cirtoaje
- Center
for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica
Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Veronica Lazar
- Department
of Microbiology and Immunology, Faculty of Biology, Research Institute
of the University of Bucharest, University
of Bucharest, 060101 Bucharest, Romania
| | - George A. Stanciu
- Center
for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica
Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Gabriella Cincotti
- Department
of Engineering, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Paola Ayala
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Costas A. Charitidis
- Research
Lab of Advanced, Composite, Nano-Materials and Nanotechnology (R-NanoLab),
School of Chemical Engineering, National
Technical University of Athens, 9 Heroon Polytechniou, 15773 Athens, Greece
| | - Alina Holban
- Department
of Microbiology and Immunology, Faculty of Biology, Research Institute
of the University of Bucharest, University
of Bucharest, 060101 Bucharest, Romania
| | - Paolo Visca
- Department
of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Stefan G. Stanciu
- Center
for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica
Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| |
Collapse
|
33
|
Zhu X, Tang Q, Zhou X, Momeni MR. Antibiotic resistance and nanotechnology: A narrative review. Microb Pathog 2024; 193:106741. [PMID: 38871198 DOI: 10.1016/j.micpath.2024.106741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
The rise of antibiotic resistance poses a significant threat to public health worldwide, leading researchers to explore novel solutions to combat this growing problem. Nanotechnology, which involves manipulating materials at the nanoscale, has emerged as a promising avenue for developing novel strategies to combat antibiotic resistance. This cutting-edge technology has gained momentum in the medical field by offering a new approach to combating infectious diseases. Nanomaterial-based therapies hold significant potential in treating difficult bacterial infections by circumventing established drug resistance mechanisms. Moreover, their small size and unique physical properties enable them to effectively target biofilms, which are commonly linked to resistance development. By leveraging these advantages, nanomaterials present a viable solution to enhance the effectiveness of existing antibiotics or even create entirely new antibacterial mechanisms. This review article explores the current landscape of antibiotic resistance and underscores the pivotal role that nanotechnology plays in augmenting the efficacy of traditional antibiotics. Furthermore, it addresses the challenges and opportunities within the realm of nanotechnology for combating antibiotic resistance, while also outlining future research directions in this critical area. Overall, this comprehensive review articulates the potential of nanotechnology in addressing the urgent public health concern of antibiotic resistance, highlighting its transformative capabilities in healthcare.
Collapse
Affiliation(s)
- Xunxian Zhu
- Huaqiao University Hospital, Quanzhou, Fujian, 362021, China.
| | - Qiuhua Tang
- Quanzhou First Hospital, Quanzhou, Fujian, 362000, China
| | - Xiaohang Zhou
- Mudanjiang Medical University, Mu Danjiang, Hei Longjiang, 157012, China
| | | |
Collapse
|
34
|
Alotaibi G. Prevalence, pandemic, preventions and policies to overcome antimicrobial resistance. Saudi J Biol Sci 2024; 31:104032. [PMID: 38854892 PMCID: PMC11157277 DOI: 10.1016/j.sjbs.2024.104032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/11/2024] Open
Abstract
Antimicrobial resistance (AMR) is a growing concern in Asia, and it is essential to understand the prevalence, pandemic, prevention, and policies to overcome it. According to the World Health Organization (WHO), AMR is one of the main causes of death; in 2019, it was linked to 4.95 million fatalities and caused about 1.27 million deaths. A core package of actions has been provided by WHO to help countries prioritize their needs when creating, carrying out, and overseeing national action plans on antimicrobial resistance. Using a people-cantered approach to AMR, the interventions address the needs and obstacles that individuals and patients encounter when trying to obtain healthcare. The people-cantered core package of AMR treatments seeks to improve public and policymakers; awareness and comprehension of AMR by changing the narrative of AMR to emphasize the needs of people and systemic impairments. Additionally, it backs a more comprehensive and programmatic national response to AMR, which emphasizes the value of fair and inexpensive access to high-quality healthcare services for the avoidance, identification, and management of drug-resistant diseases. The report signals increasing resistance to antibiotics in bacterial infections in humans and the need for better data. In conclusion, the prevalence of AMR in Asia is a significant public health concern, and it is crucial to implement policies and interventions to overcome it.
Collapse
Affiliation(s)
- Ghallab Alotaibi
- Department of Pharmacology, College of Pharmacy, Shaqra University, Riyadh 11961, Saudi Arabia
| |
Collapse
|
35
|
Ilie CI, Spoiala A, Chircov C, Dolete G, Oprea OC, Vasile BS, Crainiceanu SA, Nicoara AI, Marinas IC, Stan MS, Ditu LM, Ficai A, Oprea E. Antioxidant, Antitumoral, Antimicrobial, and Prebiotic Activity of Magnetite Nanoparticles Loaded with Bee Pollen/Bee Bread Extracts and 5-Fluorouracil. Antioxidants (Basel) 2024; 13:895. [PMID: 39199141 PMCID: PMC11351729 DOI: 10.3390/antiox13080895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
The gut microbiota dysbiosis that often occurs in cancer therapy requires more efficient treatment options to be developed. In this concern, the present research approach is to develop drug delivery systems based on magnetite nanoparticles (MNPs) as nanocarriers for bioactive compounds. First, MNPs were synthesized through the spraying-assisted coprecipitation method, followed by loading bee pollen or bee bread extracts and an antitumoral drug (5-fluorouracil/5-FU). The loaded-MNPs were morphologically and structurally characterized through transmission electron microscopy (TEM), selected area electron diffraction (SAED), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Dynamic Light Scattering (DLS), and thermogravimetric analysis. UV-Vis spectroscopy was applied to establish the release profiles and antioxidant activity. Furthermore, the antibacterial and antitumoral activity of loaded-MNPs was assessed. The results demonstrate that MNPs with antioxidant, antibacterial, antiproliferative, and prebiotic properties are obtained. Moreover, the data highlight the improvement of 5-FU antibacterial activity by loading on the MNPs' surface and the synergistic effects between the anticancer drug and phenolic compounds (PCs). In addition, the prolonged release behavior of PCs for many hours (70-75 h) after the release of 5-FU from the developed nanocarriers is an advantage, at least from the point of view of the antioxidant activity of PCs. Considering the enhancement of L. rhamnosus MF9 growth and antitumoral activity, this study developed promising drug delivery alternatives for colorectal cancer therapy.
Collapse
Affiliation(s)
- Cornelia-Ioana Ilie
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
| | - Angela Spoiala
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
- Research Center for Advanced Materials, Products and Processes, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
| | - Georgiana Dolete
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
- Research Center for Advanced Materials, Products and Processes, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- Academy of Romanian Scientists, 010719 Bucharest, Romania;
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
| | - Bogdan-Stefan Vasile
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
- Research Center for Advanced Materials, Products and Processes, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 010719 Bucharest, Romania;
| | - Simona Adriana Crainiceanu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
| | - Adrian-Ionut Nicoara
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
| | | | - Miruna Silvia Stan
- The Research Institute, University of Bucharest, 050663 Bucharest, Romania (M.S.S.)
- Department of Biochemistry, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Lia-Mara Ditu
- The Research Institute, University of Bucharest, 050663 Bucharest, Romania (M.S.S.)
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania;
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
- Academy of Romanian Scientists, 010719 Bucharest, Romania;
| | - Eliza Oprea
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania;
| |
Collapse
|
36
|
Kong X, Vishwanath V, Neelakantan P, Ye Z. Harnessing antimicrobial peptides in endodontics. Int Endod J 2024; 57:815-840. [PMID: 38441321 DOI: 10.1111/iej.14043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 06/13/2024]
Abstract
Endodontic therapy includes various procedures such as vital pulp therapy, root canal treatment and retreatment, surgical endodontic treatment and regenerative endodontic procedures. Disinfection and tissue repair are crucial for the success of these therapies, necessitating the development of therapeutics that can effectively target microbiota, eliminate biofilms, modulate inflammation and promote tissue repair. However, no current endodontic agents can achieve these goals. Antimicrobial peptides (AMPs), which are sequences of amino acids, have gained attention due to their unique advantages, including reduced susceptibility to drug resistance, broad-spectrum antibacterial properties and the ability to modulate the immune response of the organism effectively. This review systematically discusses the structure, mechanisms of action, novel designs and limitations of AMPs. Additionally, it highlights the efforts made by researchers to overcome peptide shortcomings and emphasizes the potential applications of AMPs in endodontic treatments.
Collapse
Affiliation(s)
- Xinzi Kong
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong S.A.R., China
| | - Vijetha Vishwanath
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong S.A.R., China
| | - Prasanna Neelakantan
- Department of Endodontics, University of the Pacific Arthur A. Dugoni School of Dentistry, San Francisco, California, USA
| | - Zhou Ye
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong S.A.R., China
| |
Collapse
|
37
|
Balto H, Bekhit MS, Auda SH, Elansary A, Bhat RS, Marraiki N, Al-Hadlaq S. Synergistic effect of Salvadora persica and chitosan nanoparticles against oropharyngeal microorganisms. Sci Rep 2024; 14:12997. [PMID: 38844768 PMCID: PMC11156879 DOI: 10.1038/s41598-024-63636-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/30/2024] [Indexed: 06/09/2024] Open
Abstract
Herbal medicine combined with nanoparticles has caught much interest in clinical dental practice, yet the incorporation of chitosan with Salvadora persica (S. persica) extract as an oral care product has not been explored. The aim of this study was to evaluate the combined effectiveness of Salvadora persica(S. persica) and Chitosan nanoparticles (ChNPs) against oropharyngeal microorganisms. Agar well diffusion, minimum inhibitory concentration, and minimal lethal concentration assays were used to assess the antimicrobial activity of different concentrations of ethanolic extracts of S. persica and ChNPs against selected fungal strains, Gram-positive, and Gram-negative bacteria. A mixture of 10% S. persica and 0.5% ChNPs was prepared (SChNPs) and its synergistic effect against the tested microbes was evaluated. Furthermore, the strain that was considered most sensitive was subjected to a 24-h treatment with SChNPs mixture; and examined using SEM, FT-IR and GC-MS analysis. S. persica extract and ChNPs exhibited concentration-dependent antimicrobial activities against all tested strains. S. persica extract and ChNPs at 10% were most effective against S. pneumoni, K. pneumoni, and C. albicans. SEM images confirmed the synergistic effect of the SChNPs mixture, revealing S. pneumonia cells with increased irregularity and higher cell lysis compared to the individual solutions. GC-MS and FT-IR analysis of SChNPs showed many active antimicrobial phytocompounds and some additional peaks, respectively. The synergy of the mixture of SChNPs in the form of mouth-rinsing solutions can be a promising approach for the control of oropharyngeal microbes that are implicated in viral secondary bacterial infections.
Collapse
Affiliation(s)
- Hanan Balto
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, P.O. Box 62645, 11595, Riyadh, Saudi Arabia
| | - Mounir Salim Bekhit
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 12372, Riyadh, Saudi Arabia
| | - Sayed H Auda
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 12372, Riyadh, Saudi Arabia
| | - Afaf Elansary
- Central Research Laboratory, Female Campus, King Saud University, Riyadh, Saudi Arabia
| | - Ramesa Shafi Bhat
- Department of Biochemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Najat Marraiki
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Solaiman Al-Hadlaq
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, P.O. Box 62645, 11595, Riyadh, Saudi Arabia.
| |
Collapse
|
38
|
Cui X, Liu F, Cai S, Wang T, Zheng S, Zou X, Wang L, He S, Li Y, Zhang Z. Charge adaptive phytochemical-based nanoparticles for eradication of methicillin-resistant staphylococcus aureus biofilms. Asian J Pharm Sci 2024; 19:100923. [PMID: 38948398 PMCID: PMC11214180 DOI: 10.1016/j.ajps.2024.100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/07/2024] [Accepted: 03/06/2024] [Indexed: 07/02/2024] Open
Abstract
The intrinsic resistance of MRSA coupled with biofilm antibiotic tolerance challenges the antibiotic treatment of MRSA biofilm infections. Phytochemical-based nanoplatform is a promising emerging approach for treatment of biofilm infection. However, their therapeutic efficacy was restricted by the low drug loading capacity and lack of selectivity. Herein, we constructed a surface charge adaptive phytochemical-based nanoparticle with high isoliquiritigenin (ISL) loading content for effective treatment of MRSA biofilm. A dimeric ISL prodrug (ISL-G2) bearing a lipase responsive ester bond was synthesized, and then encapsulated into the amphiphilic quaternized oligochitosan. The obtained ISL-G2 loaded NPs possessed positively charged surface, which allowed cis-aconityl-d-tyrosine (CA-Tyr) binding via electrostatic interaction to obtain ISL-G2@TMDCOS-Tyr NPs. The NPs maintained their negatively charged surface, thus prolonging the blood circulation time. In response to low pH in the biofilms, the fast removal of CA-Tyr led to a shift in their surface charge from negative to positive, which enhanced the accumulation and penetration of NPs in the biofilms. Sequentially, the pH-triggered release of d-tyrosine dispersed the biofilm and lipase-triggered released of ISL effectively kill biofilm MRSA. An in vivo study was performed on a MRSA biofilm infected wound model. This phytochemical-based system led to ∼2 log CFU (>99 %) reduction of biofilm MRSA as compared to untreated wound (P < 0.001) with negligible biotoxicity in mice. This phytochemical dimer nanoplatform shows great potential for long-term treatment of resistant bacterial infections.
Collapse
Affiliation(s)
- Xilong Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Fanhui Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Shuang Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Tingting Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Sidi Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Xinshu Zou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Linlin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Siqi He
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Yanhua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Zhiyun Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| |
Collapse
|
39
|
Ghawanmeh AA. Polymeric nanoparticles delivery circumvents bacterial resistance to ciprofloxacin. Daru 2024; 32:455-459. [PMID: 38097860 PMCID: PMC11087412 DOI: 10.1007/s40199-023-00498-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/05/2023] [Indexed: 05/12/2024] Open
Abstract
OBJECTIVE The efficient inhibition of bacteria and their by-products from infected root canals is hampered by the limitations of traditional root canal disinfection strategies, bacterial resistance to antibiotic drugs, and regenerative endodontics. Polymeric nanoparticles nanocarrier for controlling antibiotic drug delivery were used to overcome the limitations encountered in endodontics treatment. BACKGROUND Several polymeric nanoparticles have been used for the delivery of ciprofloxacin drug. The application of poly (ethylene glycol) methyl ether-block-poly(lactide-co-glycolide) (PEG-PLGA) nanoparticles has highlighted the clean and safe delivery of ciprofloxacin (CIP) hydrophilic drug for endodontics treatment. PEG/PLGA was prepared using the solid/oil/water method and the CIP was loaded into polymeric nanoparticles via an ion pairing agent. RESULTS The CIP-loaded PEG-PLGA nanoparticles have a spherical shape with a 120 ± 0.43 nm size, the CIP encapsulating efficiency was 63.26 ± 9.24% with a loading content of 7.75 ± 1.13%, and sustained release was achieved over 168 h which followed Higuchi model with a non-Fickian mechanism. Moreover, CIP-loaded PEG-PLGA had low cytotoxicity to the stem cells of the apical papilla. CONCLUSION The results conclude invigorating future perspectives of polymeric nanoparticles for a wide range of drug delivery for various disease treatments. It's anticipated that these polymeric nanoparticles may divert new expectations in the future for topical antibiotic drug delivery with discrete intracellular medicament, and a safe and clean environment.
Collapse
Affiliation(s)
- Abdullah A Ghawanmeh
- Department of Pharmaceutical Technology and Cosmetics, Faculty of Pharmacy, Middle East University, Amman, Jordan.
| |
Collapse
|
40
|
Mosallam FM, Elshimy R. Eradication of Klebsiella pneumoniae pulmonary infection by silver oxytetracycline nano-structure. AMB Express 2024; 14:62. [PMID: 38811509 PMCID: PMC11136936 DOI: 10.1186/s13568-024-01720-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Targeted bactericidal nanosystems hold significant promise to improve the efficacy of existing antimicrobials for treatment of severe bacterial infections by minimizing the side effects and lowering the risk of antibiotic resistance development. In this work, Silver Oxytetracycline Nano-structure (Ag-OTC-Ns) was developed for selective and effective eradication of Klebsiella pneumoniae pulmonary infection. Ag-OTC-Ns were prepared by simple homogenization-ultrasonication method and were characterized by DLS, Zeta potential, TEM and FT-IR. The antimicrobial activity of Ag-OTC-Ns was evaluated in vitro using broth micro-dilution technique and time-kill methods. Our study showed that MICs of AgNO3, OTC, AgNPs and Ag-OTC-Ns were 100, 100, 50 and 6.25 µg/ml, respectively. Ag-OTC-Ns demonstrated higher bactericidal efficacy against the targeted Klebsiella pneumoniae at 12.5 µg/ml compared to the free Oxytetracycline, AgNO3 and AgNPs. In vivo results confirmed that, Ag-OTC-Ns could significantly eradicate K. pneumoniae from mice lung in compare with free Oxytetracycline, AgNO3 and AgNPs. In addition, Ag-OTC-Ns could effectually diminish the inflammatory biomarkers levels of Interferon Gamma and IL-12, and as a result it could effectively lower lung damage in K. pneumoniae infected mice. Ag-OTC-Ns has no significant toxicity on tested mice along the experimental period, there was no sign of behavioral abnormality in the surviving mice indicating that the Ag-OTC-Ns is safe at the used concentration. Furthermore, capability of 5 kGy Gamma ray to sterilize Ag-OTC-Ns solution without affecting it stability was proven.
Collapse
Affiliation(s)
- Farag M Mosallam
- Drug Radiation Research Department, Microbiology Lab, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Rana Elshimy
- Microbiology and Immunology, Faculty of Pharmacy, AL-Aharm Canadian University (ACU), Giza, Egypt
- Microbiology and Immunology, Egyptian Drug Authority, Cairo, Egypt
| |
Collapse
|
41
|
Ilieş BD, Yildiz I, Abbas M. Peptide-conjugated Nanoparticle Platforms for Targeted Delivery, Imaging, and Biosensing Applications. Chembiochem 2024; 25:e202300867. [PMID: 38551557 DOI: 10.1002/cbic.202300867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/09/2024] [Indexed: 04/24/2024]
Abstract
Peptides have become an indispensable tool in engineering of multifunctional nanostructure platforms for biomedical applications such as targeted drug and gene delivery, imaging and biosensing. They can be covalently incorporated into a variety of nanoparticles (NPs) including polymers, metallic nanoparticles, and others. Using different bioconjugation techniques, multifunctional peptide-modified NPs can be formulated to produce therapeutical and diagnostic platforms offering high specificity, lower toxicity, biocompatibility, and stimuli responsive behavior. Targeting peptides can direct the nanoparticles into specific tissues for targeted drug and gene delivery and imaging applications due to their specificity towards certain receptors. Furthermore, due to their stimuli-responsive features, they can offer controlled release of therapeutics into desired sites of disease. In addition, peptide-based biosensors and imaging agents can provide non-invasive detection and monitoring of diseases including cancer, infectious diseases, and neurological disorders. In this review, we covered the design and formulation of recent peptide-based NP platforms, as well as their utilization in in vitro and in vivo applications such as targeted drug and gene delivery, targeting, sensing, and imaging applications. In the end, we provided the future outlook to design new peptide conjugated nanomaterials for biomedical applications.
Collapse
Affiliation(s)
- Bogdan Dragoş Ilieş
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
- Functional Biomaterials Group, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
| | - Ibrahim Yildiz
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
- Functional Biomaterials Group, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
| | - Manzar Abbas
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
- Functional Biomaterials Group, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
| |
Collapse
|
42
|
Andima M, Boese A, Paul P, Koch M, Loretz B, Lehr CM. Targeting Intracellular Bacteria with Dual Drug-loaded Lactoferrin Nanoparticles. ACS Infect Dis 2024; 10:1696-1710. [PMID: 38577780 PMCID: PMC11091908 DOI: 10.1021/acsinfecdis.4c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Treatment of microbial infections is becoming daunting because of widespread antimicrobial resistance. The treatment challenge is further exacerbated by the fact that certain infectious bacteria invade and localize within host cells, protecting the bacteria from antimicrobial treatments and the host's immune response. To survive in the intracellular niche, such bacteria deploy surface receptors similar to host cell receptors to sequester iron, an essential nutrient for their virulence, from host iron-binding proteins, in particular lactoferrin and transferrin. In this context, we aimed to target lactoferrin receptors expressed by macrophages and bacteria; as such, we prepared and characterized lactoferrin nanoparticles (Lf-NPs) loaded with a dual drug combination of antimicrobial natural alkaloids, berberine or sanguinarine, with vancomycin or imipenem. We observed increased uptake of drug-loaded Lf-NPs by differentiated THP-1 cells with up to 90% proportion of fluorescent cells, which decreased to about 60% in the presence of free lactoferrin, demonstrating the targeting ability of Lf-NPs. The encapsulated antibiotic drug cocktail efficiently cleared intracellular Staphylococcus aureus (Newman strain) compared to the free drug combinations. However, the encapsulated drugs and the free drugs alike exhibited a bacteriostatic effect against the hard-to-treat Mycobacterium abscessus (smooth variant). In conclusion, the results of this study demonstrate the potential of lactoferrin nanoparticles for the targeted delivery of antibiotic drug cocktails for the treatment of intracellular bacteria.
Collapse
Affiliation(s)
- Moses Andima
- Department
of Drug Delivery (DDEL), Helmholtz Institute
for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for
Infection Research, Campus E8.1, Saarbrücken 66123, Germany
- Department
of Chemistry, Faculty of Science and Education, Busitema University, P.O Box 236, Tororo 21435, Uganda
| | - Annette Boese
- Department
of Drug Delivery (DDEL), Helmholtz Institute
for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for
Infection Research, Campus E8.1, Saarbrücken 66123, Germany
| | - Pascal Paul
- Department
of Drug Delivery (DDEL), Helmholtz Institute
for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for
Infection Research, Campus E8.1, Saarbrücken 66123, Germany
| | - Marcus Koch
- INM-Leibniz
Institute for New Materials, Campus D2 2, Saarbrücken 66123, Germany
| | - Brigitta Loretz
- Department
of Drug Delivery (DDEL), Helmholtz Institute
for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for
Infection Research, Campus E8.1, Saarbrücken 66123, Germany
| | - Claus-Micheal Lehr
- Department
of Drug Delivery (DDEL), Helmholtz Institute
for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for
Infection Research, Campus E8.1, Saarbrücken 66123, Germany
- Department
of Pharmacy, Saarland University, Saarbrücken 66123, Germany
| |
Collapse
|
43
|
Rasheed R, Bhat A, Singh B, Tian F. Biogenic Synthesis of Selenium and Copper Oxide Nanoparticles and Inhibitory Effect against Multi-Drug Resistant Biofilm-Forming Bacterial Pathogens. Biomedicines 2024; 12:994. [PMID: 38790956 PMCID: PMC11117875 DOI: 10.3390/biomedicines12050994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Antimicrobial resistance (AMR), caused by microbial infections, has become a major contributor to morbid rates of mortality worldwide and a serious threat to public health. The exponential increase in resistant pathogen strains including Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) poses significant hurdles in the health sector due to their greater resistance to traditional treatments and medicines. Efforts to tackle infectious diseases caused by resistant microbes have prompted the development of novel antibacterial agents. Herein, we present selenium and copper oxide monometallic nanoparticles (Se-MMNPs and CuO-MMNPs), characterized using various techniques and evaluated for their antibacterial potential via disc diffusion, determination of minimum inhibitory concentration (MIC), antibiofilm, and killing kinetic action. Dynamic light scattering (DLS), scanning electron microscopy (SEM/EDX), and X-ray diffraction (XRD) techniques confirmed the size-distribution, spherical-shape, stability, elemental composition, and structural aspects of the synthesized nanoparticles. The MIC values of Se-MMNPs and CuO-MMNPs against S. aureus and E. coli were determined to be 125 μg/mL and 100 μg/mL, respectively. Time-kill kinetics studies revealed that CuO-MMNPs efficiently mitigate the growth of S. aureus and E. coli within 3 and 3.5 h while Se-MMNPs took 4 and 5 h, respectively. Moreover, CuO-MMNPs demonstrated better inhibition compared to Se-MMNPs. Overall, the proposed materials exhibited promising antibacterial activity against S. aureus and E. coli pathogens.
Collapse
Affiliation(s)
- Rida Rasheed
- University of Wah, Wah Cantonment 47040, Pakistan;
| | - Abhijnan Bhat
- School of Food Science & Environmental Health, Technological University Dublin (TU Dublin), Grangegorman, D07 ADY7 Dublin, Ireland; (A.B.); (B.S.)
| | - Baljit Singh
- School of Food Science & Environmental Health, Technological University Dublin (TU Dublin), Grangegorman, D07 ADY7 Dublin, Ireland; (A.B.); (B.S.)
- MiCRA Biodiagnostics Technology Gateway and Health, Engineering & Materials Sciences (HEMS) Hub, Technological University Dublin (TU Dublin), D24 FKT9 Dublin, Ireland
| | - Furong Tian
- School of Food Science & Environmental Health, Technological University Dublin (TU Dublin), Grangegorman, D07 ADY7 Dublin, Ireland; (A.B.); (B.S.)
- Nanolab Research Centre, FOCAS Research Institute, Technological University Dublin (TU Dublin), Camden Row, D08 CKP1 Dublin, Ireland
| |
Collapse
|
44
|
Rahman S, Sadaf S, Hoque ME, Mishra A, Mubarak NM, Malafaia G, Singh J. Unleashing the promise of emerging nanomaterials as a sustainable platform to mitigate antimicrobial resistance. RSC Adv 2024; 14:13862-13899. [PMID: 38694553 PMCID: PMC11062400 DOI: 10.1039/d3ra05816f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
The emergence and spread of antibiotic-resistant (AR) bacterial strains and biofilm-associated diseases have heightened concerns about exploring alternative bactericidal methods. The WHO estimates that at least 700 000 deaths yearly are attributable to antimicrobial resistance, and that number could increase to 10 million annual deaths by 2050 if appropriate measures are not taken. Therefore, the increasing threat of AR bacteria and biofilm-related infections has created an urgent demand for scientific research to identify novel antimicrobial therapies. Nanomaterials (NMs) have emerged as a promising alternative due to their unique physicochemical properties, and ongoing research holds great promise for developing effective NMs-based treatments for bacterial and viral infections. This review aims to provide an in-depth analysis of NMs based mechanisms combat bacterial infections, particularly those caused by acquired antibiotic resistance. Furthermore, this review examines NMs design features and attributes that can be optimized to enhance their efficacy as antimicrobial agents. In addition, plant-based NMs have emerged as promising alternatives to traditional antibiotics for treating multidrug-resistant bacterial infections due to their reduced toxicity compared to other NMs. The potential of plant mediated NMs for preventing AR is also discussed. Overall, this review emphasizes the importance of understanding the properties and mechanisms of NMs for the development of effective strategies against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Sazedur Rahman
- Department of Mechanical and Production Engineering, Ahsanullah University of Science and Technology Dhaka Bangladesh
| | - Somya Sadaf
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra Ranchi 835215 Jharkhand India
| | - Md Enamul Hoque
- Department of Biomedical Engineering, Military Institute of Science and Technology Dhaka Bangladesh
| | - Akash Mishra
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra Ranchi 835215 Jharkhand India
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei Bandar Seri Begawan BE1410 Brunei Darussalam
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University Jalandhar Punjab India
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute Urutaí GO Brazil
| | - Jagpreet Singh
- Department of Chemistry, University Centre for Research and Development, Chandigarh University Mohali-140413 India
| |
Collapse
|
45
|
Mardikasari SA, Katona G, Sipos B, Csóka I. Essential considerations towards development of effective nasal antibiotic formulation: features, strategies, and future directions. Expert Opin Drug Deliv 2024; 21:611-625. [PMID: 38588551 DOI: 10.1080/17425247.2024.2341184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
INTRODUCTION Intranasal antibiotic products are gaining popularity as a promising method of administering antibiotics, which provide numerous benefits, e.g. enhancing drug bioavailability, reducing adverse effects, and potentially minimizing resistance threats. However, some issues related to the antibiotic substances and nasal route challenges must be addressed to prepare effective formulations. AREAS COVERED This review focuses on the valuable points of nasal delivery as an alternative route for administering antibiotics, coupled with the challenges in the nasal cavity that might affect the formulations. Moreover, this review also highlights the application of nasal delivery to introduce antibiotics for local therapy, brain targeting, and systemic effects that have been conducted. In addition, this viewpoint provides strategies to maintain antibiotic stability and several crucial aspects to be considered for enabling effective nasal formulation. EXPERT OPINION In-depth knowledge and understanding regarding various key considerations with respect to the antibiotic substances and nasal route delivery requirement in preparing effective nasal antibiotic formulation would greatly improve the development of nasally administered antibiotic products, enabling better therapeutic outcomes of antibiotic treatment and establishing appropriate use of antibiotics, which in turn might reduce the chance of antibiotic resistance and enhance patient comfort.
Collapse
Affiliation(s)
- Sandra Aulia Mardikasari
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
- Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Bence Sipos
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| |
Collapse
|
46
|
Abruzzo A, Pucci R, Abruzzo PM, Canaider S, Parolin C, Vitali B, Valle F, Brucale M, Cerchiara T, Luppi B, Bigucci F. Azithromycin-loaded liposomes and niosomes for the treatment of skin infections: Influence of excipients and preparative methods on the functional properties. Eur J Pharm Biopharm 2024; 197:114233. [PMID: 38387849 DOI: 10.1016/j.ejpb.2024.114233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
The aim of this study was to develop azithromycin (AZT)-loaded liposomes (LP) and niosomes (NS) useful for the treatment of bacterial skin infections and acne. LP based on phosphatidylcholine from egg yolk (EPC) or from soybean lecithin (SPC), and NS composed of sorbitan monopalmitate (Span 40) or sorbitan monostearate (Span 60) were prepared through the thin film hydration (TFH) and the ethanol injection (EI) methods. The formulations were subsequently characterized for their physico-chemical and functional properties. Vesicles prepared through TFH showed higher average sizes than the corresponding formulations obtained by EI. All the vesicles presented adequate encapsulation efficiency and a negative ζ potential, which assured good stability during the storage period (except for LP-SPC). Formulations prepared with TFH showed a more prolonged AZT release than those prepared through EI, due to their lower surface area and multilamellar structure, as confirmed by atomic force microscopy nanomechanical characterization. Finally, among all the formulations, NS-Span 40-TFH and LP-EPC-TFH allowed the highest drug accumulation in the skin, retained the antimicrobial activity and did not alter fibroblast metabolism and viability. Overall, they could ensure to minimize the dosing and the administration frequency, thus representing promising candidates for the treatment of bacterial skin infections and acne.
Collapse
Affiliation(s)
- A Abruzzo
- Department of Pharmacy and Biotechnology, Via San Donato 19/2, University of Bologna, 40127 Bologna, Italy.
| | - R Pucci
- Department of Pharmacy and Biotechnology, Via San Donato 19/2, University of Bologna, 40127 Bologna, Italy.
| | - P M Abruzzo
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - S Canaider
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - C Parolin
- Department of Pharmacy and Biotechnology, Via San Donato 19/2, University of Bologna, 40127 Bologna, Italy.
| | - B Vitali
- Department of Pharmacy and Biotechnology, Via San Donato 19/2, University of Bologna, 40127 Bologna, Italy.
| | - F Valle
- Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), via Gobetti 101, 40129 Bologna, Italy.
| | - M Brucale
- Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), via Gobetti 101, 40129 Bologna, Italy.
| | - T Cerchiara
- Department of Pharmacy and Biotechnology, Via San Donato 19/2, University of Bologna, 40127 Bologna, Italy.
| | - B Luppi
- Department of Pharmacy and Biotechnology, Via San Donato 19/2, University of Bologna, 40127 Bologna, Italy.
| | - F Bigucci
- Department of Pharmacy and Biotechnology, Via San Donato 19/2, University of Bologna, 40127 Bologna, Italy.
| |
Collapse
|
47
|
Metryka O, Wasilkowski D, Dulski M, Adamczyk-Habrajska M, Augustyniak M, Mrozik A. Metallic nanoparticle actions on the outer layer structure and properties of Bacillus cereus and Staphylococcus epidermidis. CHEMOSPHERE 2024; 354:141691. [PMID: 38484999 DOI: 10.1016/j.chemosphere.2024.141691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Although the antimicrobial activity of nanoparticles (NPs) penetrating inside the cell is widely recognised, the toxicity of large NPs (>10 nm) that cannot be translocated across bacterial membranes remains unclear. Therefore, this study was performed to elucidate the direct effects of Ag-NPs, Cu-NPs, ZnO-NPs and TiO2-NPs on relative membrane potential, permeability, hydrophobicity, structural changes within chemical compounds at the molecular level and the distribution of NPs on the surfaces of the bacteria Bacillus cereus and Staphylococcus epidermidis. Overall analysis of the results indicated the different impacts of individual NPs on the measured parameters in both strains depending on their type and concentration. B. cereus proved to be more resistant to the action of NPs than S. epidermidis. Generally, Cu-NPs showed the most substantial toxic effect on both strains; however, Ag-NPs exhibited negligible toxicity. All NPs had a strong affinity for cell surfaces and showed strain-dependent characteristic dispersion. ATR-FTIR analysis explained the distinctive interactions of NPs with bacterial functional groups, leading to macromolecular structural modifications. The results presented provide new and solid evidence for the current understanding of the interactions of metallic NPs with bacterial membranes.
Collapse
Affiliation(s)
- Oliwia Metryka
- Doctoral School, University of Silesia, Bankowa 14, 40-032, Katowice, Poland.
| | - Daniel Wasilkowski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland
| | - Mateusz Dulski
- Institute of Materials Science, Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500, Chorzów, Poland
| | - Małgorzata Adamczyk-Habrajska
- Institute of Materials Science, Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500, Chorzów, Poland
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland
| | - Agnieszka Mrozik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland.
| |
Collapse
|
48
|
Chen SY, Chen YL, Li PC, Cheng TS, Chu YS, Shen YS, Chen HT, Tsai WN, Huang CL, Sieber M, Yeh YC, Liu HS, Chiang CL, Chang CH, Lee AS, Tseng YH, Lee LJ, Liao HJ, Yip HK, Huang CYF. Engineered extracellular vesicles carrying let-7a-5p for alleviating inflammation in acute lung injury. J Biomed Sci 2024; 31:30. [PMID: 38500170 PMCID: PMC10949767 DOI: 10.1186/s12929-024-01019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/05/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Acute lung injury (ALI) is a life-threatening respiratory condition characterized by severe inflammation and lung tissue damage, frequently causing rapid respiratory failure and long-term complications. The microRNA let-7a-5p is involved in the progression of lung injury, inflammation, and fibrosis by regulating immune cell activation and cytokine production. This study aims to use an innovative cellular electroporation platform to generate extracellular vesicles (EVs) carring let-7a-5p (EV-let-7a-5p) derived from transfected Wharton's jelly-mesenchymal stem cells (WJ-MSCs) as a potential gene therapy for ALI. METHODS A cellular nanoporation (CNP) method was used to induce the production and release of EV-let-7a-5p from WJ-MSCs transfected with the relevant plasmid DNA. EV-let-7a-5p in the conditioned medium were isolated using a tangential flow filtration (TFF) system. EV characterization followed the minimal consensus guidelines outlined by the International Society for Extracellular Vesicles. We conducted a thorough set of therapeutic assessments, including the antifibrotic effects using a transforming growth factor beta (TGF-β)-induced cell model, the modulation effects on macrophage polarization, and the influence of EV-let-7a-5p in a rat model of hyperoxia-induced ALI. RESULTS The CNP platform significantly increased EV secretion from transfected WJ-MSCs, and the encapsulated let-7a-5p in engineered EVs was markedly higher than that in untreated WJ-MSCs. These EV-let-7a-5p did not influence cell proliferation and effectively mitigated the TGF-β-induced fibrotic phenotype by downregulating SMAD2/3 phosphorylation in LL29 cells. Furthermore, EV-let-7a-5p regulated M2-like macrophage activation in an inflammatory microenvironment and significantly induced interleukin (IL)-10 secretion, demonstrating their modulatory effect on inflammation. Administering EVs from untreated WJ-MSCs slightly improved lung function and increased let-7a-5p expression in plasma in the hyperoxia-induced ALI rat model. In comparison, EV-let-7a-5p significantly reduced macrophage infiltration and collagen deposition while increasing IL-10 expression, causing a substantial improvement in lung function. CONCLUSION This study reveals that the use of the CNP platform to stimulate and transfect WJ-MSCs could generate an abundance of let-7a-5p-enriched EVs, which underscores the therapeutic potential in countering inflammatory responses, fibrotic activation, and hyperoxia-induced lung injury. These results provide potential avenues for developing innovative therapeutic approaches for more effective interventions in ALI.
Collapse
Affiliation(s)
- Sin-Yu Chen
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833401, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833401, Taiwan
| | - Po-Chen Li
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Tai-Shan Cheng
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City, 220216, Taiwan
| | - Yeh-Shiu Chu
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Yi-Shan Shen
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City, 220216, Taiwan
- Department of Biomedical Engineering, National Taiwan University, Taipei, 106319, Taiwan
| | - Hsin-Tung Chen
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Wei-Ni Tsai
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Chien-Ling Huang
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | | | - Yuan-Chieh Yeh
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, 204201, Taiwan
- Program in Molecular Medicine, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Hsiao-Sheng Liu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, 701401, Taiwan
- Center for Cancer Research, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
- Teaching and Research Center, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 812015, Taiwan
| | - Chi-Ling Chiang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Chih-Hung Chang
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City, 220216, Taiwan
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, 320315, Taiwan
| | | | - Yen-Han Tseng
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
| | - Ly James Lee
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan.
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA.
- Spot Biosystems Ltd., Palo Alto, CA, 94305, USA.
| | - Hsiu-Jung Liao
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan.
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City, 220216, Taiwan.
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833401, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833401, Taiwan.
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833401, Taiwan.
- Department of Nursing, Asia University, Taichung, 413305, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 404328, Taiwan.
| | - Chi-Ying F Huang
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan.
- Department of Biochemistry, School of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan.
| |
Collapse
|
49
|
Maurya S, Gaur M, Akhtar MS, Yadav AB. Evaluation of Drug-Loaded and Surface-Adsorbed DNase/Tween-80 Solid Lipid Nanoparticles against Staphylococcus aureus Biofilms. ACS APPLIED BIO MATERIALS 2024; 7:1501-1512. [PMID: 38418375 DOI: 10.1021/acsabm.3c00887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
The aim of this study was to explore the suitability of Tween-80 or DNase I adsorbed onto the surface of gentamicin-loaded solid lipid nanoparticles (SLNs) to disrupt Staphylococcus aureus biofilms in vitro. We hypothesized that surface-adsorbed DNase I or Tween-80 of SLNs will degrade the biofilm component, extracellular DNA (e-DNA), and extracellular matrix (ECM) of S. aureus biofilms. The SLNs loaded with drug (core) and surface-adsorbed disruptors (Tween-80 or DNase I) to deliver biofilm disruptors first at the site of action, which will help to break down the biofilm, and further drug release from the core will easily penetrate the biofilm and facilitate the killing of bacteria residing in S. aureus biofilms. The SLNs were synthesized by the double emulsion method; the size was 287.3 ± 7.4 nm for blank SLNs and 292.4 ± 2.36 nm for drug-loaded SLNs. The ζ-potential of blank SLNs was -25.6 ± 0.26 mV and that of drug-loaded SLNs was -13.16 ± 0.51 mV, respectively. The successful adsorption of DNase I or Tween-80 was confirmed by the activity of DNase I in blank surface-adsorbed SLNs and the change in the ζ-potential of SLNs after adsorbing DNase I or Tween-80. The surface morphology and size of the SLNs were further characterized using scanning electron microscopy. The encapsulation efficiency of the drug was 16.85 ± 0.84%. The compatibility of the drug with the excipient was confirmed by Fourier transform infrared spectroscopy and the degree of crystallinity was confirmed by X-ray diffraction (XRD) analysis. SLNs showed a sustained release of the drug up to 360 h. SLNs were easily taken up by A549 cells with minimal or no toxicity. The present study showed that Tween-80- or DNase I-adsorbed SLNs efficiently disrupt S. aureus biofilms and possess no or minimal toxicity against cells and red blood cells (RBCs).
Collapse
Affiliation(s)
- Sarita Maurya
- Center of Biotechnology, University of Allahabad, Prayagraj, UP 211002, India
| | - Manish Gaur
- Center of Biotechnology, University of Allahabad, Prayagraj, UP 211002, India
| | - Mohd Sohail Akhtar
- Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Awadh Bihari Yadav
- Center of Biotechnology, University of Allahabad, Prayagraj, UP 211002, India
| |
Collapse
|
50
|
Lingamgunta S, Xiao Y, Choi H, Christie G, Fruk L. Microwave-enhanced antibacterial activity of polydopamine-silver hybrid nanoparticles. RSC Adv 2024; 14:8331-8340. [PMID: 38469191 PMCID: PMC10926840 DOI: 10.1039/d3ra07543e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
The ever-increasing risks posed by antibiotic-resistant bacteria have stimulated considerable interest in the development of novel antimicrobial strategies, including the use of nanomaterials that can be activated on demand and result in irreversible damage to pathogens. Microwave electric field-assisted bactericidal effects on representative Gram-negative and Gram-positive bacterial strains were achieved in the presence of hybrid polydopamine-silver nanoparticles (PDA-Ag NPs) under low-power microwave irradiation using a resonant cavity (1.3 W, 2.45 GHz). A 3-log reduction in the viability of bacterial populations was observed within 30 minutes which was attributed to the attachment of PDA-Ag NPs and associated membrane disruption in conjunction with the production of intra-bacterial reactive oxygen species (ROS). A synergistic effect between PDA and Ag has been demonstrated whereby PDA acts both as an Ag NP carrier and a microwave enhancer. These properties together with the remarkable adhesivity of PDA are opening a route to design of antibacterial adhesives and surface coatings for prevention of biofilm formation.
Collapse
Affiliation(s)
- Swetha Lingamgunta
- Department of Chemical Engineering and Biotechnology, University of Cambridge Cambridge UK
| | - Yao Xiao
- Department of Chemical Engineering and Biotechnology, University of Cambridge Cambridge UK
| | | | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge Cambridge UK
| | - Ljiljana Fruk
- Department of Chemical Engineering and Biotechnology, University of Cambridge Cambridge UK
| |
Collapse
|