1
|
Göritzer K, Melnik S, Schwestka J, Arcalis E, Drapal M, Fraser P, Ma JK, Stoger E. Enhancing quality and yield of recombinant secretory IgA antibodies in Nicotiana benthamiana by endoplasmic reticulum engineering. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1178-1189. [PMID: 39822055 PMCID: PMC11933863 DOI: 10.1111/pbi.14576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/19/2025]
Abstract
The production of complex multimeric secretory immunoglobulins (SIgA) in Nicotiana benthamiana leaves is challenging, with significant reductions in complete protein assembly and consequently yield, being the most important difficulties. Expanding the physical dimensions of the ER to mimic professional antibody-secreting cells can help to increase yields and promote protein folding and assembly. Here, we expanded the ER in N. benthamiana leaves by targeting the enzyme CTP:phosphocholine cytidylyltransferase (CCT), which catalyses the rate-limiting step in the synthesis of the key membrane component phosphatidylcholine (PC). We used CRISPR/Cas to perform site-directed mutagenesis of each of the three endogenous CCT genes in N. benthamiana by introducing frame-shifting indels to remove the auto-inhibitory C-terminal domains. We generated stable homozygous lines of N. benthamiana containing different combinations of the edited genes, including plants where all three isofunctional CCT homologues were modified. Changes in ER morphology in the mutant plants were confirmed by in vivo confocal imaging and substantially increased the yields of two fully assembled SIgAs by prolonging the ER residence time and boosting chaperone accumulation. Through a combination of ER engineering with chaperone overexpression, we increased the yields of fully assembled SIgA by an order of magnitude, reaching almost 1 g/kg fresh leaf weight. This strategy removes a major roadblock to producing SIgA and will likely facilitate the production of other complex multimeric biopharmaceutical proteins in plants.
Collapse
Affiliation(s)
- Kathrin Göritzer
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Stanislav Melnik
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Jennifer Schwestka
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Elsa Arcalis
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | | | | | - Julian K‐C. Ma
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Eva Stoger
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
2
|
Göritzer K, Ruocco V, Vavra U, Izadi S, Bolaños-Martínez OC, Phetphoung T, Pisuttinusart N, Phoolcharoen W, Strasser R. Improving the N-glycosylation occupancy of plant-produced IgG1 by engineering the amino acid environment at Asn297. FRONTIERS IN PLANT SCIENCE 2025; 15:1531710. [PMID: 39911658 PMCID: PMC11794253 DOI: 10.3389/fpls.2024.1531710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/20/2024] [Indexed: 02/07/2025]
Abstract
Monoclonal antibodies are crucial recombinant biopharmaceuticals, with N-glycosylation at Asn297 essential for their functionality. Plants are increasingly used for antibody production, achieving high expression levels and enabling glycoengineering to produce homogenous human-like N-glycan structures. However, plant-produced human IgG1 often shows significant underglycosylation with potential adverse effects for immune functions and stability. This study addressed this limitation of the widely used plant-based expression platform Nicotiana benthamiana by employing protein engineering to enhance N-glycosylation occupancy in plant-produced IgG1. This was achieved through an amino acid mutation near the conserved glycosylation site in the CH2 domain of the heavy chain. The transient expression of trastuzumab and SARS-CoV-2 neutralizing IgG1 antibody COVA2-15 in N. benthamiana, with mutations such as Y300L, resulted in a notable improvement in glycosylation occupancy. While the structural integrity and monodispersity of the IgG1 variant remained unaltered, an improvement in thermal stability was observed. Furthermore, functional assays showed that antigen binding and human hFcRn interaction were unaffected, while FcγRIIIa binding affinity increased. These findings demonstrate the potential of protein-engineering to enhance the quality and functionality of plant-produced IgG1 antibodies, making them comparable to mammalian-produced counterparts.
Collapse
Affiliation(s)
- Kathrin Göritzer
- Department of Applied Genetics and Cell Biology, BOKU University, Vienna, Austria
| | - Valentina Ruocco
- Department of Applied Genetics and Cell Biology, BOKU University, Vienna, Austria
| | - Ulrike Vavra
- Department of Applied Genetics and Cell Biology, BOKU University, Vienna, Austria
| | - Shiva Izadi
- Department of Applied Genetics and Cell Biology, BOKU University, Vienna, Austria
| | | | - Thareeya Phetphoung
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Nuttapat Pisuttinusart
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Waranyoo Phoolcharoen
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, BOKU University, Vienna, Austria
| |
Collapse
|
3
|
Schoberer J, Vavra U, Shin Y, Grünwald‐Gruber C, Strasser R. Elucidation of the late steps in the glycan-dependent ERAD of soluble misfolded glycoproteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17185. [PMID: 39642157 PMCID: PMC11712024 DOI: 10.1111/tpj.17185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 12/08/2024]
Abstract
The endoplasmic reticulum (ER) utilizes ER-associated degradation (ERAD), a highly conserved eukaryotic pathway, to eliminate misfolded or unassembled proteins and maintain protein homeostasis in cells. The clearance of misfolded glycoproteins involves several distinct steps, including the recognition of a specific glycan signal, retrotranslocation to the cytosol, and subsequent degradation of the misfolded protein by the ubiquitin proteasome system. Confocal microscopy was used to track the fate of a well-characterized ERAD substrate via a self-complementing split fluorescent protein assay. The results demonstrate that a misfolded variant of the STRUBBELIG (SUB) extracellular protein domain (SUBEX-C57Y) is retrotranslocated to the cytosol when transiently expressed in Nicotiana benthamiana leaf epidermal cells. Retrotranslocation requires a protein domain with a lesion that is exposed in the lumen of the ER, N-glycan trimming by α-mannosidases, HRD1-mediated ubiquitination, and the ATPase function of CDC48. The retrotranslocated SUBEX-C57Y ERAD substrate undergoes deglycosylation, and proteasomal degradation is blocked by a catalytically inactive cytosolic peptide N-glycanase. These findings define distinct aspects of ERAD that have been elusive until now and may represent the default pathway for degrading misfolded glycoproteins in plants.
Collapse
Affiliation(s)
- Jennifer Schoberer
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| | - Ulrike Vavra
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| | - Yun‐Ji Shin
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| | - Clemens Grünwald‐Gruber
- Core Facility Mass SpectrometryUniversity of Natural Resources and Life SciencesViennaAustria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| |
Collapse
|
4
|
Göritzer K, Strasser R, Ma JKC. Stability Engineering of Recombinant Secretory IgA. Int J Mol Sci 2024; 25:6856. [PMID: 38999969 PMCID: PMC11240955 DOI: 10.3390/ijms25136856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Secretory IgA (SIgA) presents a promising avenue for mucosal immunotherapy yet faces challenges in expression, purification, and stability. IgA exists in two primary isotypes, IgA1 and IgA2, with IgA2 further subdivided into two common allotypes: IgA2m(1) and IgA2m(2). The major differences between IgA1 and IgA2 are located in the hinge region, with IgA1 featuring a 13-amino acid elongation that includes up to six O-glycosylation sites. Furthermore, the IgA2m(1) allotype lacks a covalent disulfide bond between heavy and light chains, which is present in IgA1 and IgA2m(2). While IgA1 demonstrates superior epitope binding and pathogen neutralization, IgA2 exhibits enhanced effector functions and stability against mucosal bacterial degradation. However, the noncovalent linkage in the IgA2m(1) allotype raises production and stability challenges. The introduction of distinct single mutations aims to facilitate an alternate disulfide bond formation to mitigate these challenges. We compare four different IgA2 versions with IgA1 to further develop secretory IgA antibodies against SARS-CoV-2 for topical delivery to mucosal surfaces. Our results indicate significantly improved expression levels and assembly efficacy of SIgA2 (P221R) in Nicotiana benthamiana. Moreover, engineered SIgA2 displays heightened thermal stability under physiological as well as acidic conditions and can be aerosolized using a mesh nebulizer. In summary, our study elucidates the benefits of stability-enhancing mutations in overcoming hurdles associated with SIgA expression and stability.
Collapse
Affiliation(s)
- Kathrin Göritzer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
- Institute for Infection and Immunity, St. George’s University of London, London SW17 0RE, UK;
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| | - Julian K.-C. Ma
- Institute for Infection and Immunity, St. George’s University of London, London SW17 0RE, UK;
| |
Collapse
|
5
|
Kao MR, Karmarkar Saldivar R, Hsieh YSY. Production of therapeutic glycoproteins in glycoengineered plant: old farm for new crops. Curr Opin Biotechnol 2024; 87:103145. [PMID: 38781701 DOI: 10.1016/j.copbio.2024.103145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Plant-based expression systems have emerged as promising avenues for the production of recombinant N-linked glycoproteins. This review offers insights into the evolution and progress of plant glycoengineering. It delves into the distinctive features of plant-derived N-glycans, the diverse range of plant hosts employed for glycoprotein synthesis, and the advancements in glycoengineering strategies aimed at generating glycoproteins with N-glycan structures akin to those produced in mammalian cell lines. Furthermore, alternative strategies for augmenting glycoengineering efforts and the current spectrum of applications for plant-produced N-glycan recombinant proteins are examined, underscoring their potential significance in biopharmaceutical manufacturing.
Collapse
Affiliation(s)
- Mu-Rong Kao
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, Sweden
| | - Rebecka Karmarkar Saldivar
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, Sweden
| | - Yves S Y Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, Sweden.
| |
Collapse
|
6
|
Göritzer K, Groppelli E, Grünwald-Gruber C, Figl R, Ni F, Hu H, Li Y, Liu Y, Hu Q, Puligedda RD, Jung JW, Strasser R, Dessain S, Ma JKC. Recombinant neutralizing secretory IgA antibodies for preventing mucosal acquisition and transmission of SARS-CoV-2. Mol Ther 2024; 32:689-703. [PMID: 38268188 PMCID: PMC10928148 DOI: 10.1016/j.ymthe.2024.01.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/16/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024] Open
Abstract
Passive delivery of antibodies to mucosal sites may be a valuable adjunct to COVID-19 vaccination to prevent infection, treat viral carriage, or block transmission. Neutralizing monoclonal IgG antibodies are already approved for systemic delivery, and several clinical trials have been reported for delivery to mucosal sites where SARS-CoV-2 resides and replicates in early infection. However, secretory IgA may be preferred because the polymeric complex is adapted for the harsh, unstable external mucosal environment. Here, we investigated the feasibility of producing neutralizing monoclonal IgA antibodies against SARS-CoV-2. We engineered two class-switched mAbs that express well as monomeric and secretory IgA (SIgA) variants with high antigen-binding affinities and increased stability in mucosal secretions compared to their IgG counterparts. SIgAs had stronger virus neutralization activities than IgG mAbs and were protective against SARS-CoV-2 infection in an in vivo murine model. Furthermore, SIgA1 can be aerosolized for topical delivery using a mesh nebulizer. Our findings provide a persuasive case for developing recombinant SIgAs for mucosal application as a new tool in the fight against COVID-19.
Collapse
Affiliation(s)
- Kathrin Göritzer
- Hotung Molecular Immunology Unit, St. George's University of London, London SW17 0RE, UK.
| | - Elisabetta Groppelli
- Institute for Infection and Immunity, St. George's University of London, London SW17 0RE, UK
| | - Clemens Grünwald-Gruber
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Rudolf Figl
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Fengfeng Ni
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Huimin Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yuncheng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yalan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qinxue Hu
- Institute for Infection and Immunity, St. George's University of London, London SW17 0RE, UK; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | | | - Jae-Wan Jung
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Scott Dessain
- Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA
| | - Julian K-C Ma
- Hotung Molecular Immunology Unit, St. George's University of London, London SW17 0RE, UK.
| |
Collapse
|
7
|
Kogelmann B, Melnik S, Bogner M, Kallolimath S, Stöger E, Sun L, Strasser R, D'Aoust M, Lavoie P, Saxena P, Gach JS, Steinkellner H. A genome-edited N. benthamiana line for industrial-scale production of recombinant glycoproteins with targeted N-glycosylation. Biotechnol J 2024; 19:e2300323. [PMID: 37804142 PMCID: PMC11475529 DOI: 10.1002/biot.202300323] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 10/09/2023]
Abstract
Control over glycosylation is an important quality parameter in recombinant protein production. Here, we demonstrate the generation of a marker-free genome edited Nicotiana benthamiana N-glycosylation mutant (NbXF-KO) carrying inactivated β1,2-xylosyltransferase and α1,3-fucosyltransferase genes. The knockout of seven genes and their stable inheritance was confirmed by DNA sequencing. Mass spectrometric analyses showed the synthesis of N-glycans devoid of plant-specific β1,2-xylose and core α 1,3-fucose on endogenous proteins and a series of recombinantly expressed glycoproteins with different complexities. Further transient glycan engineering towards more diverse human-type N-glycans resulted in the production of recombinant proteins decorated with β1,4-galactosylated and α2,6-sialylated structures, respectively. Notably, a monoclonal antibody expressed in the NbXF-KO displayed glycosylation-dependent activities. Collectively, the engineered plants grow normally and are well suited for upscaling, thereby meeting industrial and regulatory requirements for the production of high-quality therapeutic proteins.
Collapse
Affiliation(s)
- Benjamin Kogelmann
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
- acib – Austrian Centre of Industrial BiotechnologyViennaAustria
| | - Stanislav Melnik
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
- acib – Austrian Centre of Industrial BiotechnologyViennaAustria
| | - Michaela Bogner
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Somanath Kallolimath
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Eva Stöger
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Lin Sun
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Richard Strasser
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | | | | | | | - Johannes S. Gach
- Division of Infectious Diseases, University of California, IrvineIrvineCaliforniaUSA
| | - Herta Steinkellner
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
8
|
Strasser R. Plant glycoengineering for designing next-generation vaccines and therapeutic proteins. Biotechnol Adv 2023; 67:108197. [PMID: 37315875 DOI: 10.1016/j.biotechadv.2023.108197] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
Protein glycosylation has a huge impact on biological processes in all domains of life. The type of glycan present on a recombinant glycoprotein depends on protein intrinsic features and the glycosylation repertoire of the cell type used for expression. Glycoengineering approaches are used to eliminate unwanted glycan modifications and to facilitate the coordinated expression of glycosylation enzymes or whole metabolic pathways to furnish glycans with distinct modifications. The formation of tailored glycans enables structure-function studies and optimization of therapeutic proteins used in different applications. While recombinant proteins or proteins from natural sources can be in vitro glycoengineered using glycosyltransferases or chemoenzymatic synthesis, many approaches use genetic engineering involving the elimination of endogenous genes and introduction of heterologous genes to cell-based production systems. Plant glycoengineering enables the in planta production of recombinant glycoproteins with human or animal-type glycans that resemble natural glycosylation or contain novel glycan structures. This review summarizes key achievements in glycoengineering of plants and highlights current developments aiming to make plants more suitable for the production of a diverse range of recombinant glycoproteins for innovative therapies.
Collapse
Affiliation(s)
- Richard Strasser
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
9
|
Beihammer G, König-Beihammer J, Kogelmann B, Ruocco V, Grünwald-Gruber C, D’Aoust MA, Lavoie PO, Saxena P, Gach JS, Steinkellner H, Strasser R. An oligosaccharyltransferase from Leishmania donovani increases the N-glycan occupancy on plant-produced IgG1. FRONTIERS IN PLANT SCIENCE 2023; 14:1233666. [PMID: 37615026 PMCID: PMC10442823 DOI: 10.3389/fpls.2023.1233666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/17/2023] [Indexed: 08/25/2023]
Abstract
N-Glycosylation of immunoglobulin G1 (IgG1) at the heavy chain Fc domain (Asn297) plays an important role for antibody structure and effector functions. While numerous recombinant IgG1 antibodies have been successfully expressed in plants, they frequently display a considerable amount (up to 50%) of unglycosylated Fc domain. To overcome this limitation, we tested a single-subunit oligosaccharyltransferase from the protozoan Leishmania donovani (LdOST) for its ability to improve IgG1 Fc glycosylation. LdOST fused to a fluorescent protein was transiently expressed in Nicotiana benthamiana and confocal microscopy confirmed the subcellular location at the endoplasmic reticulum. Transient co-expression of LdOST with two different IgG1 antibodies resulted in a significant increase (up to 97%) of Fc glycosylation while leaving the overall N-glycan composition unmodified, as determined by different mass spectrometry approaches. While biochemical and functional features of "glycosylation improved" antibodies remained unchanged, a slight increase in FcγRIIIa binding and thermal stability was observed. Collectively, our results reveal that LdOST expression is suitable to reduce the heterogeneity of plant-produced antibodies and can contribute to improving their stability and effector functions.
Collapse
Affiliation(s)
- Gernot Beihammer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
- acib - Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Julia König-Beihammer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Benjamin Kogelmann
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
- acib - Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Valentina Ruocco
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Clemens Grünwald-Gruber
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | | | | - Johannes S. Gach
- Division of Infectious Diseases, University of California, Irvine, Irvine, CA, United States
| | - Herta Steinkellner
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
10
|
Kallolimath S, Palt R, Föderl-Höbenreich E, Sun L, Chen Q, Pruckner F, Eidenberger L, Strasser R, Zatloukal K, Steinkellner H. Glyco engineered pentameric SARS-CoV-2 IgMs show superior activities compared to IgG1 orthologues. Front Immunol 2023; 14:1147960. [PMID: 37359564 PMCID: PMC10285447 DOI: 10.3389/fimmu.2023.1147960] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Immunoglobulin M (IgM) is the largest antibody isotype with unique features like extensive glycosylation and oligomerization. Major hurdles in characterizing its properties are difficulties in the production of well-defined multimers. Here we report the expression of two SARS-CoV-2 neutralizing monoclonal antibodies in glycoengineered plants. Isotype switch from IgG1 to IgM resulted in the production of IgMs, composed of 21 human protein subunits correctly assembled into pentamers. All four recombinant monoclonal antibodies carried a highly reproducible human-type N-glycosylation profile, with a single dominant N-glycan species at each glycosite. Both pentameric IgMs exhibited increased antigen binding and virus neutralization potency, up to 390-fold, compared to the parental IgG1. Collectively, the results may impact on the future design of vaccines, diagnostics and antibody-based therapies and emphasize the versatile use of plants for the expression of highly complex human proteins with targeted posttranslational modifications.
Collapse
Affiliation(s)
- Somanath Kallolimath
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Roman Palt
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Lin Sun
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Qiang Chen
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Florian Pruckner
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Lukas Eidenberger
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Richard Strasser
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Kurt Zatloukal
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Herta Steinkellner
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
11
|
Eidenberger L, Kogelmann B, Steinkellner H. Plant-based biopharmaceutical engineering. NATURE REVIEWS BIOENGINEERING 2023; 1:426-439. [PMID: 37317690 PMCID: PMC10030082 DOI: 10.1038/s44222-023-00044-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 03/24/2023]
Abstract
Plants can be engineered to recombinantly produce high-quality proteins such as therapeutic proteins and vaccines, also known as molecular farming. Molecular farming can be established in various settings with minimal cold-chain requirements and could thus ensure rapid and global-scale deployment of biopharmaceuticals, promoting equitable access to pharmaceuticals. State of the art plant-based engineering relies on rationally assembled genetic circuits, engineered to enable the high-throughput and rapid expression of multimeric proteins with complex post-translational modifications. In this Review, we discuss the design of expression hosts and vectors, including Nicotiana benthamiana, viral elements and transient expression vectors, for the production of biopharmaceuticals in plants. We examine engineering of post-translational modifications and highlight the plant-based expression of monoclonal antibodies and nanoparticles, such as virus-like particles and protein bodies. Techno-economic analyses suggest a cost advantage of molecular farming compared with mammalian cell-based protein production systems. However, regulatory challenges remain to be addressed to enable the widespread translation of plant-based biopharmaceuticals.
Collapse
Affiliation(s)
- Lukas Eidenberger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Benjamin Kogelmann
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
- acib — Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Herta Steinkellner
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
12
|
Margolin E, Allen JD, Verbeek M, Chapman R, Meyers A, van Diepen M, Ximba P, Motlou T, Moore PL, Woodward J, Strasser R, Crispin M, Williamson AL, Rybicki EP. Augmenting glycosylation-directed folding pathways enhances the fidelity of HIV Env immunogen production in plants. Biotechnol Bioeng 2022; 119:2919-2937. [PMID: 35781691 PMCID: PMC9544252 DOI: 10.1002/bit.28169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022]
Abstract
Heterologous glycoprotein production relies on host glycosylation-dependent folding. When the biosynthetic machinery differs from the usual expression host, there is scope to remodel the assembly pathway to enhance glycoprotein production. Here we explore the integration of chaperone coexpression with glyco-engineering to improve the production of a model HIV-1 envelope antigen. Calreticulin was coexpressed to support protein folding together with Leishmania major STT3D oligosaccharyltransferase, to improve glycan occupancy, RNA interference to suppress the formation of truncated glycans, and Nicotiana benthamiana plants lacking α1,3-fucosyltransferase and β1,2-xylosyltransferase was used as an expression host to prevent plant-specific complex N-glycans forming. This approach reduced the formation of undesired aggregates, which predominated in the absence of glyco-engineering. The resulting antigen also exhibited increased glycan occupancy, albeit to a slightly lower level than the equivalent mammalian cell-produced protein. The antigen was decorated almost exclusively with oligomannose glycans, which were less processed compared with the mammalian protein. Immunized rabbits developed comparable immune responses to the plant-produced and mammalian cell-derived antigens, including the induction of autologous neutralizing antibodies when the proteins were used to boost DNA and modified vaccinia Ankara virus-vectored vaccines. This study demonstrates that engineering glycosylation-directed folding offers a promising route to enhance the production of complex viral glycoproteins in plants.
Collapse
Affiliation(s)
- Emmanuel Margolin
- Department of Pathology, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Trust Centre for Infectious Disease Research in Africa, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Matthew Verbeek
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Ros Chapman
- Department of Pathology, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ann Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Michiel van Diepen
- Department of Pathology, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Phindile Ximba
- Department of Pathology, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Thopisang Motlou
- National Institute for Communicable Diseases of the National Health Laboratory Service, Centre for HIV and STIs, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Penny L Moore
- National Institute for Communicable Diseases of the National Health Laboratory Service, Centre for HIV and STIs, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, Durban, South Africa
| | - Jeremy Woodward
- Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Anna-Lise Williamson
- Department of Pathology, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Trust Centre for Infectious Disease Research in Africa, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Edward P Rybicki
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
13
|
Chincinska IA. Leaf infiltration in plant science: old method, new possibilities. PLANT METHODS 2021; 17:83. [PMID: 34321022 PMCID: PMC8316707 DOI: 10.1186/s13007-021-00782-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/11/2021] [Indexed: 05/07/2023]
Abstract
The penetration of substances from the surface to deep inside plant tissues is called infiltration. Although various plant tissues may be effectively saturated with externally applied fluid, most described infiltration strategies have been developed for leaves. The infiltration process can be spontaneous (under normal atmospheric pressure) or forced by a pressure difference generated between the lamina surface and the inside of the leaf. Spontaneous infiltration of leaf laminae is possible with the use of liquids with sufficiently low surface tension. Forced infiltration is most commonly performed using needle-less syringes or vacuum pumps.Leaf infiltration is widely used in plant sciences for both research and application purposes, usually as a starting technique to obtain plant material for advanced experimental procedures. Leaf infiltration followed by gentle centrifugation allows to obtain the apoplastic fluid for further analyses including various omics. In studies of plant-microorganism interactions, infiltration is used for the controlled introduction of bacterial suspensions into leaf tissues or for the isolation of microorganisms inhabiting apoplastic spaces of leaves. The methods based on infiltration of target tissues allow the penetration of dyes, fixatives and other substances improving the quality of microscopic imaging. Infiltration has found a special application in plant biotechnology as a method of transient transformation with the use of Agrobacterium suspension (agroinfiltration) enabling genetic modifications of mature plant leaves, including the local induction of mutations using genome editing tools. In plant nanobiotechnology, the leaves of the target plants can be infiltrated with suitably prepared nanoparticles, which can act as light sensors or increase the plant resistance to environmental stress. In addition the infiltration has been also intensively studied due to the undesirable effects of this phenomenon in some food technology sectors, such as accidental contamination of leafy greens with pathogenic bacteria during the vacuum cooling process.This review, inspired by the growing interest of the scientists from various fields of plant science in the phenomenon of infiltration, provides the description of different infiltration methods and summarizes the recent applications of this technique in plant physiology, phytopathology and plant (nano-)biotechnology.
Collapse
Affiliation(s)
- Izabela Anna Chincinska
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland.
| |
Collapse
|
14
|
Shin YJ, König-Beihammer J, Vavra U, Schwestka J, Kienzl NF, Klausberger M, Laurent E, Grünwald-Gruber C, Vierlinger K, Hofner M, Margolin E, Weinhäusel A, Stöger E, Mach L, Strasser R. N-Glycosylation of the SARS-CoV-2 Receptor Binding Domain Is Important for Functional Expression in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:689104. [PMID: 34211491 PMCID: PMC8239413 DOI: 10.3389/fpls.2021.689104] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/20/2021] [Indexed: 05/17/2023]
Abstract
Nicotiana benthamiana is used worldwide as production host for recombinant proteins. Many recombinant proteins such as monoclonal antibodies, growth factors or viral antigens require posttranslational modifications like glycosylation for their function. Here, we transiently expressed different variants of the glycosylated receptor binding domain (RBD) from the SARS-CoV-2 spike protein in N. benthamiana. We characterized the impact of variations in RBD-length and posttranslational modifications on protein expression, yield and functionality. We found that a truncated RBD variant (RBD-215) consisting of amino acids Arg319-Leu533 can be efficiently expressed as a secreted soluble protein. Purified RBD-215 was mainly present as a monomer and showed binding to the conformation-dependent antibody CR3022, the cellular receptor angiotensin converting enzyme 2 (ACE2) and to antibodies present in convalescent sera. Expression of RBD-215 in glycoengineered ΔXT/FT plants resulted in the generation of complex N-glycans on both N-glycosylation sites. While site-directed mutagenesis showed that the N-glycans are important for proper RBD folding, differences in N-glycan processing had no effect on protein expression and function.
Collapse
Affiliation(s)
- Yun-Ji Shin
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Julia König-Beihammer
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Ulrike Vavra
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Jennifer Schwestka
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Nikolaus F. Kienzl
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Miriam Klausberger
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Elisabeth Laurent
- Department of Biotechnology, Core Facility Biomolecular and Cellular Analysis, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Clemens Grünwald-Gruber
- Department of Chemistry, Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Klemens Vierlinger
- Competence Unit Molecular Diagnostics, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Manuela Hofner
- Competence Unit Molecular Diagnostics, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Emmanuel Margolin
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Andreas Weinhäusel
- Competence Unit Molecular Diagnostics, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Eva Stöger
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Lukas Mach
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| |
Collapse
|
15
|
Hansen AL, Reily C, Novak J, Renfrow MB. Immunoglobulin A Glycosylation and Its Role in Disease. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:433-477. [PMID: 34687019 DOI: 10.1007/978-3-030-76912-3_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Human IgA is comprised of two subclasses, IgA1 and IgA2. Monomeric IgA (mIgA), polymeric IgA (pIgA), and secretory IgA (SIgA) are the main molecular forms of IgA. The production of IgA rivals all other immunoglobulin isotypes. The large quantities of IgA reflect the fundamental roles it plays in immune defense, protecting vulnerable mucosal surfaces against invading pathogens. SIgA dominates mucosal surfaces, whereas IgA in circulation is predominately monomeric. All forms of IgA are glycosylated, and the glycans significantly influence its various roles, including antigen binding and the antibody effector functions, mediated by the Fab and Fc portions, respectively. In contrast to its protective role, the aberrant glycosylation of IgA1 has been implicated in the pathogenesis of autoimmune diseases, such as IgA nephropathy (IgAN) and IgA vasculitis with nephritis (IgAVN). Furthermore, detailed characterization of IgA glycosylation, including its diverse range of heterogeneity, is of emerging interest. We provide an overview of the glycosylation observed for each subclass and molecular form of IgA as well as the range of heterogeneity for each site of glycosylation. In many ways, the role of IgA glycosylation is in its early stages of being elucidated. This chapter provides an overview of the current knowledge and research directions.
Collapse
Affiliation(s)
- Alyssa L Hansen
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Colin Reily
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
16
|
Göritzer K, Strasser R. Glycosylation of Plant-Produced Immunoglobulins. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:519-543. [PMID: 34687021 DOI: 10.1007/978-3-030-76912-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Many economically important protein-based therapeutics like monoclonal antibodies are glycosylated. Due to the recognized importance of this type of posttranslational modification, glycoengineering of expression systems to obtain highly active and homogenous therapeutics is an emerging field. Although most of the monoclonal antibodies on the market are still produced in mammalian expression platforms, plants are emerging as an alternative cost-effective and scalable production platform that allows precise engineering of glycosylation to produce targeted human glycoforms at large homogeneity. Apart from producing more effective antibodies, pure glycoforms are required in efforts to link biological functions to specific glycan structures. Much is already known about the role of IgG1 glycosylation and this antibody class is the dominant recombinant format that has been expressed in plants. By contrast, little attention has been paid to the glycoengineering of recombinant IgG subtypes and the other four classes of human immunoglobulins (IgA, IgD, IgE, and IgM). Except for IgD, all these antibody classes have been expressed in plants and the glycosylation has been analyzed in a site-specific manner. Here, we summarize the current data on glycosylation of plant-produced monoclonal antibodies and discuss the findings in the light of known functions for these glycans.
Collapse
Affiliation(s)
| | - Richard Strasser
- University of Natural Resources and Life Sciences Vienna, Vienna, Austria.
| |
Collapse
|
17
|
Margolin E, Allen JD, Verbeek M, van Diepen M, Ximba P, Chapman R, Meyers A, Williamson AL, Crispin M, Rybicki E. Site-Specific Glycosylation of Recombinant Viral Glycoproteins Produced in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2021; 12:709344. [PMID: 34367227 PMCID: PMC8341435 DOI: 10.3389/fpls.2021.709344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/24/2021] [Indexed: 05/03/2023]
Abstract
There is an urgent need to establish large scale biopharmaceutical manufacturing capacity in Africa where the infrastructure for biologics production is severely limited. Molecular farming, whereby pharmaceuticals are produced in plants, offers a cheaper alternative to mainstream expression platforms, and is amenable to rapid large-scale production. However, there are several differences along the plant protein secretory pathway compared to mammalian systems, which constrain the production of complex pharmaceuticals. Viral envelope glycoproteins are important targets for immunization, yet in some cases they accumulate poorly in plants and may not be properly processed. Whilst the co-expression of human chaperones and furin proteases has shown promise, it is presently unclear how plant-specific differences in glycosylation impact the production of these proteins. In many cases it may be necessary to reproduce features of their native glycosylation to produce immunologically relevant vaccines, given that glycosylation is central to the folding and immunogenicity of these antigens. Building on previous work, we transiently expressed model glycoproteins from HIV and Marburg virus in Nicotiana benthamiana and mammalian cells. The proteins were purified and their site-specific glycosylation was determined by mass-spectrometry. Both glycoproteins yielded increased amounts of protein aggregates when produced in plants compared to the equivalent mammalian cell-derived proteins. The glycosylation profiles of the plant-produced glycoproteins were distinct from the mammalian cell produced proteins: they displayed lower levels of glycan occupancy, reduced complex glycans and large amounts of paucimannosidic structures. The elucidation of the site-specific glycosylation of viral glycoproteins produced in N. benthamiana is an important step toward producing heterologous viral glycoproteins in plants with authentic human-like glycosylation.
Collapse
Affiliation(s)
- Emmanuel Margolin
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Trust Centre for Infectious Disease Research in Africa, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
- *Correspondence: Emmanuel Margolin,
| | - Joel D. Allen
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Matthew Verbeek
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Michiel van Diepen
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Phindile Ximba
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rosamund Chapman
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ann Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Anna-Lise Williamson
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Trust Centre for Infectious Disease Research in Africa, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
- Max Crispin,
| | - Edward Rybicki
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
18
|
Margolin E, Crispin M, Meyers A, Chapman R, Rybicki EP. A Roadmap for the Molecular Farming of Viral Glycoprotein Vaccines: Engineering Glycosylation and Glycosylation-Directed Folding. FRONTIERS IN PLANT SCIENCE 2020; 11:609207. [PMID: 33343609 PMCID: PMC7744475 DOI: 10.3389/fpls.2020.609207] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/09/2020] [Indexed: 05/03/2023]
Abstract
Immunization with recombinant glycoprotein-based vaccines is a promising approach to induce protective immunity against viruses. However, the complex biosynthetic maturation requirements of these glycoproteins typically necessitate their production in mammalian cells to support their folding and post-translational modification. Despite these clear advantages, the incumbent costs and infrastructure requirements with this approach can be prohibitive in developing countries, and the production scales and timelines may prove limiting when applying these production systems to the control of pandemic viral outbreaks. Plant molecular farming of viral glycoproteins has been suggested as a cheap and rapidly scalable alternative production system, with the potential to perform post-translational modifications that are comparable to mammalian cells. Consequently, plant-produced glycoprotein vaccines for seasonal and pandemic influenza have shown promise in clinical trials, and vaccine candidates against the newly emergent severe acute respiratory syndrome coronavirus-2 have entered into late stage preclinical and clinical testing. However, many other viral glycoproteins accumulate poorly in plants, and are not appropriately processed along the secretory pathway due to differences in the host cellular machinery. Furthermore, plant-derived glycoproteins often contain glycoforms that are antigenically distinct from those present on the native virus, and may also be under-glycosylated in some instances. Recent advances in the field have increased the complexity and yields of biologics that can be produced in plants, and have now enabled the expression of many viral glycoproteins which could not previously be produced in plant systems. In contrast to the empirical optimization that predominated during the early years of molecular farming, the next generation of plant-made products are being produced by developing rational, tailor-made approaches to support their production. This has involved the elimination of plant-specific glycoforms and the introduction into plants of elements of the biosynthetic machinery from different expression hosts. These approaches have resulted in the production of mammalian N-linked glycans and the formation of O-glycan moieties in planta. More recently, plant molecular engineering approaches have also been applied to improve the glycan occupancy of proteins which are not appropriately glycosylated, and to support the folding and processing of viral glycoproteins where the cellular machinery differs from the usual expression host of the protein. Here we highlight recent achievements and remaining challenges in glycoengineering and the engineering of glycosylation-directed folding pathways in plants, and discuss how these can be applied to produce recombinant viral glycoproteins vaccines.
Collapse
Affiliation(s)
- Emmanuel Margolin
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Trust Centre for Infectious Disease Research in Africa, University of Cape Town, Cape Town, South Africa
- Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Ann Meyers
- Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Ros Chapman
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Edward P. Rybicki
- Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|