1
|
Liu LL, Liu L, Wang CY, Zhang L, Feng JJ, Gao YJ, Wang AJ. Strong coupling Fe 2VO 4 nanoparticles/3D N-doped interconnected porous carbon derived from MOFs by confined adsorption-assembly-pyrolysis for greatly boosting oxygen reduction. J Colloid Interface Sci 2025; 684:10-20. [PMID: 39813908 DOI: 10.1016/j.jcis.2025.01.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/21/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
Low-cost and effective electrocatalysts are critical for energy storage and conversion. Herein, iron(III) and vanadium(III) acetylacetonates were first adsorbed and confined in porous zeolitic imidazolate framework-8 (ZIF-8), which further cross-linked together by the methanol-induced-assembly. Following the pyrolysis, the Fe2VO4 nanoparticles were efficiently encapsulated within three-dimensional (3D) N-doped interconnected porous carbon, termed Fe2VO4/NIPC. The obtained Fe2VO4/NIPC displayed outstanding catalytic properties in the alkaline media for oxygen reduction reaction with a half-wave potential of 0.86 V. In the parallel, density functional theory (DFT) calculations were performed to illustrate the catalytic mechanism. Moreover, the Fe2VO4/NIPC assembled Zn-air battery showed a high peak power density of 107.7 mW cm-2 and excellent long-cycle stability over a duration of 250 h, which outperformed commercial Pt/C catalyst in the control group. The strong coupling and synergistic effects between the Fe2VO4 nanoparticles and N-doped carbon improved the catalytic performance, coupled by promoting the stability. This study opens a prospect way to develop high-efficiency carbon-based electrocatalysts in energy storage and conversion devices.
Collapse
Affiliation(s)
- Ling-Ling Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 PR China
| | - Lu Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 PR China; Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University 321004 Jinhua, PR China
| | - Chen-Yang Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 PR China
| | - Lu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 PR China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 PR China
| | - Yi-Jing Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 PR China; Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University 321004 Jinhua, PR China.
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 PR China.
| |
Collapse
|
2
|
Mohd Shumiri MAI, Mohd Najib AS, Fadil NA. Current status and advances in zinc anodes for rechargeable aqueous zinc-air batteries. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2025; 26:2448418. [PMID: 40071165 PMCID: PMC11896022 DOI: 10.1080/14686996.2024.2448418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/04/2024] [Accepted: 12/27/2024] [Indexed: 03/14/2025]
Abstract
To promote sustainable development and reduce fossil fuel consumption, there is a growing demand for high-performance, cost-effective, safe and environmentally friendly batteries for large-scale energy storage systems. Among the emerging technologies, zinc-air batteries (ZABs) have attracted significant interest. By integrating the principles of traditional zinc-ion batteries and fuel cells, ZABs offer remarkably high theoretical energy density at lower production cost compared to the current state-of-the-art lithium-ion batteries (LIBs). However, the critical challenge remains in developing high-performance zinc anode. Herein, this review provides a comprehensive analysis of the current status and advancements in zinc anodes for rechargeable aqueous ZABs. We begin by highlighting the major challenges and underlying mechanisms associated with zinc anodes including issues such as uneven zinc deposition, dendrite growth and hydrogen evolution reaction. Then, this review discusses the recent advancements in zinc anode modifications, focusing on strategies such as alloying, surface porosity and zincophilicity. By reviewing the latest research, we also identify existing gaps and pose critical questions that need further exploration to push the field forward. The goal of this review is to inspire new research directions and promote the development of more efficient zinc anodes.
Collapse
Affiliation(s)
- Muhammad Afiq Irfan Mohd Shumiri
- Materials Research and Consultancy Group, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Abdillah Sani Mohd Najib
- Materials Research and Consultancy Group, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
- Department of Materials, Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Nor Akmal Fadil
- Materials Research and Consultancy Group, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
- Department of Materials, Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| |
Collapse
|
3
|
Bai L, Wang D, Wang W, Yan W. An Overview and Future Perspectives of Rechargeable Flexible Zn-Air Batteries. CHEMSUSCHEM 2024; 17:e202400080. [PMID: 38533691 DOI: 10.1002/cssc.202400080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 03/28/2024]
Abstract
Environmental friendliness and low-cost zinc-air batteries for flexible rechargeable applications have great potential in the field of flexible electronics and smart wearables owing to high energy density and long service life. However, the current technology of flexible rechargeable zinc-air batteries to meet the commercialization needs still facing enormous challenges due to the poor adaptability of each flexible component of the zinc-air batteries. This review focused on the latest progress over the past 5 years in designing and fabricating flexible self-standing air electrodes, flexible electrolytes and zinc electrodes of flexible Zn-air batteries, meanwhile the basic working principle of each component of flexible rechargeable zinc-air batteries and battery structures optimization are also described. Finally, challenges and prospects for the future development of flexible rechargeable zinc-air batteries are discussed. This work is intended to provide insights and general guidance for future exploration of the design and fabrication on high-performance flexible rechargeable zinc-air batteries.
Collapse
Affiliation(s)
- Linming Bai
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Dan Wang
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Wenlong Wang
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Wei Yan
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| |
Collapse
|
4
|
Deckenbach D, Schneider JJ. Toward a Metal Anode-Free Zinc-Air Battery for Next-Generation Energy Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311065. [PMID: 38319023 DOI: 10.1002/smll.202311065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/07/2024] [Indexed: 02/07/2024]
Abstract
Rechargeable aqueous zinc-air batteries (ZABs) promise high energy density and safety. However, the use of conventional zinc anodes affects the energy output from the battery, so that the theoretical energy density is not achievable under operation conditions. A large portion of the zinc is shielded by anode passivation during the discharge process and remains electrochemically unused, making the operation of rechargeable ZABs inefficient up to date. In a metal anode-free ZAB, there is no unnecessary excess zinc if the zinc reservoir can be precisely adjusted by electrodeposition of zinc from the electrolyte. In this respect, an anode-free battery uses the electrolyte offering a dual-mode functionality not only providing ionic conductivity but also being the source of zinc. In addition, it is shown that a defined porous anode architecture is crucial for high rechargeability in this new type of ZAB. 3D-spatially arranged carbon nanotubes as geometrically defined host structures allow a homogeneous zinc deposition from the electrolyte. Together with carbon nanohorns as an active 2e- catalyst on the cathode side, the rechargeability of this new concept reaches up to 92%.
Collapse
Affiliation(s)
- Daniel Deckenbach
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Peter-Grünberg-Straße 12, 64287, Darmstadt, Germany
| | - Jörg J Schneider
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Peter-Grünberg-Straße 12, 64287, Darmstadt, Germany
| |
Collapse
|
5
|
Fu L, Yao Y, Ma J, Zhang Z, Wang G, Wei W. Nanoflower-like NiCo 2O 4 Composite Graphene Oxide as a Bifunctional Catalyst for Zinc-Air Battery Cathode. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6990-7000. [PMID: 38512056 DOI: 10.1021/acs.langmuir.4c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Developing efficient bifunctional catalysts for nonprecious metal-based oxygen reduction (ORR) and oxygen evolution (OER) is crucial to enhance the practical application of zinc-air batteries. The study harnessed electrostatic forces to anchor the nanoflower-like NiCo2O4 onto graphene oxide, mitigating the poor inherent conductivity in NiCo2O4 as a transition metal oxide and preventing excessive agglomeration of the nanoflower-like structures during catalysis. Consequently, the resulting composite, NiCo2O4-GO/C, exhibited notably superior ORR and OER catalytic performance compared to pure nanoflower-like NiCo2O4. Notably, it excelled in OER catalytic activity of the OER relative to the precious metal RuO2. As a bifunctional catalyst for ORR and OER, NiCo2O4-GO/C displayed a potential difference of 0.88 V between the ORR half-wave potential and the OER potential at 10 mA·cm-2, significantly lower than the 1.08 V observed for pure flower-like NiCo2O4 and comparable to the 0.88 V exhibited by precious metal catalysts Pt/C + RuO2. The NiCo2O4-GO/C-based zinc-air battery demonstrated a discharge capacity of 817.3 mA h·g-1, surpassing that of precious metal-based zinc-air batteries. Moreover, charge-discharge cycling tests indicated the superior stability of the NiCo2O4-GO/C-based zinc-air battery compared to its precious metal-based counterparts.
Collapse
Affiliation(s)
- Lixiang Fu
- Research Center for High Purity Materials, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Yifan Yao
- Research Center for High Purity Materials, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Jingling Ma
- Research Center for High Purity Materials, Henan University of Science and Technology, Luoyang 471023, PR China
- Provincial and Ministerial Co-construction of Collaborative Innovation Center for Non-ferrous Metal New Materials and Advanced Processing Technology, Luoyang 471023, PR China
| | - Zhikang Zhang
- Research Center for High Purity Materials, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Guangxin Wang
- Research Center for High Purity Materials, Henan University of Science and Technology, Luoyang 471023, PR China
- Provincial and Ministerial Co-construction of Collaborative Innovation Center for Non-ferrous Metal New Materials and Advanced Processing Technology, Luoyang 471023, PR China
| | - Weifeng Wei
- Research Center for High Purity Materials, Henan University of Science and Technology, Luoyang 471023, PR China
| |
Collapse
|
6
|
Cen H, Gao Y, He S, Peng Z, Wu C, Chen Z. Synergistic effect of surfactant and 1,10-decanedithiol as corrosion inhibitor for zinc anode in alkaline electrolyte of zinc-air batteries. J Colloid Interface Sci 2024; 659:160-177. [PMID: 38160645 DOI: 10.1016/j.jcis.2023.12.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/01/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The self-discharge by corrosion of zinc-air batteries (ZABs) will result in the reduced coulombic efficiency and lower energy efficiency. The additives in electrolyte should not only inhibit the occurrence of self-corrosion during battery dormancy, but also achieve a stable cycle of adsorption-desorption during battery operation, improving the durability of discharge cycles. But the former requires strong binding between additives and zinc to form a dense protective film, while the latter requires easy desorption of additives and zinc without affecting discharge power, which is contradictory to balance. In this study, a dynamic combination of additives and zinc, as well as a design of multi-channel strategy for the corresponding protective layer, have been proposed to solve the issues of self-corrosion and discharge cycle stability. Specifically, the surfactant (octylphenol polyoxyethylene ether phosphate (OP-10P)) and 1,10-decanedithiol (DD) have been selected as the combined anti-corrosion additives in ZABs with concentrated alkaline solution. The synergistic inhibition mechanism and the stabilization mechanism in zinc-air full cells have been studied systematically. The results indicated that the combined inhibitors inhibited the self-corrosion of Zn efficiently in the dormancy, and the inhibition efficiency reached 99.9 % at the optimized proportion. OP-10P achieve the preferential adsorption on the zinc surface, and then the chelates of DD with Zn2+ deposit on the outer layer to form the protective film with fine hydrophobic performance. The stability of ZABs in discharge and charging cycles has been improved owing to the multilayer adsorption film on zinc surface, which retains ion transport channels with the homogeneously pores to weaken the dendrites and side reactions during galvanostatic cycles. A probable model on zinc surface was established to discuss the actual working mechanism.
Collapse
Affiliation(s)
- Hongyu Cen
- Hubei Provincial Key Laboratory of Green Materials for Light Industry and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Yijian Gao
- Hubei Provincial Key Laboratory of Green Materials for Light Industry and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Shasha He
- Hubei Provincial Key Laboratory of Green Materials for Light Industry and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Zhuo Peng
- Hubei Provincial Key Laboratory of Green Materials for Light Industry and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Chonggang Wu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Zhenyu Chen
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
7
|
Lv XW, Wang Z, Lai Z, Liu Y, Ma T, Geng J, Yuan ZY. Rechargeable Zinc-Air Batteries: Advances, Challenges, and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306396. [PMID: 37712176 DOI: 10.1002/smll.202306396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/27/2023] [Indexed: 09/16/2023]
Abstract
Rechargeable zinc-air batteries (Re-ZABs) are one of the most promising next-generation batteries that can hold more energy while being cost-effective and safer than existing devices. Nevertheless, zinc dendrites, non-portability, and limited charge-discharge cycles have long been obstacles to the commercialization of Re-ZABs. Over the past 30 years, milestone breakthroughs have been made in technical indicators (safety, high energy density, and long battery life), battery components (air cathode, zinc anode, and gas diffusion layer), and battery configurations (flexibility and portability), however, a comprehensive review on advanced design strategies for Re-ZABs system from multiple angles is still lacking. This review underscores the progress and strategies proposed so far to pursuit the high-efficiency Re-ZABs system, including the aspects of rechargeability (from primary to rechargeable), air cathode (from unifunctional to bifunctional), zinc anode (from dendritic to stable), electrolytes (from aqueous to non-aqueous), battery configurations (from non-portable to portable), and industrialization progress (from laboratorial to practical). Critical appraisals of the advanced modification approaches (such as surface/interface modulation, nanoconfinement catalysis, defect electrochemistry, synergistic electrocatalysis, etc.) are highlighted for cost-effective flexible Re-ZABs with good sustainability and high energy density. Finally, insights are further rendered properly for the future research directions of advanced zinc-air batteries.
Collapse
Affiliation(s)
- Xian-Wei Lv
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Material Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Zhongli Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Material Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Zhuangzhuang Lai
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuping Liu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), School of Materials Science and Engineering, College of Chemistry, Nankai University, Tianjin, 300350, China
| | - Tianyi Ma
- School of Science, RMIT University Melbourne, Melbourne, Victoria, 3000, Australia
| | - Jianxin Geng
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Material Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Zhong-Yong Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), School of Materials Science and Engineering, College of Chemistry, Nankai University, Tianjin, 300350, China
| |
Collapse
|
8
|
Jia H, Meng X, Lin Y, Wang D, Li G, Zhang G. P-doped binary Ni/Fe-N-C for enhanced oxygen electrocatalysis performance. Phys Chem Chem Phys 2023; 25:28841-28847. [PMID: 37853815 DOI: 10.1039/d3cp03049k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Adjusting the micro-environment of highly dispersive metals on carbon supports has been proved to be effective for achieving enhanced electrocatalysis performance. Herein, we delicately design a phosphorus-doped binary NiFe-nitrogen-carbon material (denoted as P-NiFe-NC), taking advantage of the coupling reaction between phenylphosphonamide (P dopant) and formamide (the carbon and nitrogen sources). The XPS N 1s fine scan reveals the strong interplay of N and P by the positively shifted binding energy of pyridinic N species after P incorporation, and the chemical state of Fe species is influenced accordingly. In addition, the P doping can enlarge the specific surface area and increase the meso/macroporosity of NiFe-NC, thus contributing to the enhancement of mass transfer inside the pores. The P-NiFe-NC sample exhibits favorable bifunctional oxygen electrocatalysis performance, rendering an ORR half-wave potential of 0.85 V and an OER potential of 1.69 V@10.0 mA cm-2, superior to those of P-free NiFe-NC. Assembled into Zn-air batteries, P-NiFe-NC delivers a high specific power of 161.36 mW cm-2 and stable charge/discharge for over 100 h (corresponding to 300 cycles).
Collapse
Affiliation(s)
- Hongrui Jia
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| | - Xiangshe Meng
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| | - Yan Lin
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| | - Danni Wang
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| | - Guoqiang Li
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| | - Guoxin Zhang
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| |
Collapse
|
9
|
Adhikari A, Chhetri K, Rai R, Acharya D, Kunwar J, Bhattarai RM, Jha RK, Kandel D, Kim HY, Kandel MR. (Fe-Co-Ni-Zn)-Based Metal-Organic Framework-Derived Electrocatalyst for Zinc-Air Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2612. [PMID: 37764640 PMCID: PMC10534837 DOI: 10.3390/nano13182612] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Zinc-air batteries (ZABs) have garnered significant interest as a viable substitute for lithium-ion batteries (LIBs), primarily due to their impressive energy density and low cost. However, the efficacy of zinc-air batteries is heavily dependent on electrocatalysts, which play a vital role in enhancing reaction efficiency and stability. This scholarly review article highlights the crucial significance of electrocatalysts in zinc-air batteries and explores the rationale behind employing Fe-Co-Ni-Zn-based metal-organic framework (MOF)-derived hybrid materials as potential electrocatalysts. These MOF-derived electrocatalysts offer advantages such as abundancy, high catalytic activity, tunability, and structural stability. Various synthesis methods and characterization techniques are employed to optimize the properties of MOF-derived electrocatalysts. Such electrocatalysts exhibit excellent catalytic activity, stability, and selectivity, making them suitable for applications in ZABs. Furthermore, they demonstrate notable capabilities in the realm of ZABs, encompassing elevated energy density, efficacy, and prolonged longevity. It is imperative to continue extensively researching and developing this area to propel the advancement of ZAB technology forward and pave the way for its practical implementation across diverse fields.
Collapse
Affiliation(s)
- Anup Adhikari
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (A.A.); (J.K.)
| | - Kisan Chhetri
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea; (D.A.); (H.Y.K.)
| | - Rajan Rai
- Department of Chemistry, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu 44618, Nepal;
| | - Debendra Acharya
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea; (D.A.); (H.Y.K.)
| | - Jyotendra Kunwar
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (A.A.); (J.K.)
| | - Roshan Mangal Bhattarai
- Department of Chemical Engineering, Jeju National University, Jeju 690-756, Republic of Korea;
| | | | | | - Hak Yong Kim
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea; (D.A.); (H.Y.K.)
| | - Mani Ram Kandel
- Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu 44613, Nepal
| |
Collapse
|
10
|
Wang Q, Kaushik S, Xiao X, Xu Q. Sustainable zinc-air battery chemistry: advances, challenges and prospects. Chem Soc Rev 2023; 52:6139-6190. [PMID: 37565571 DOI: 10.1039/d2cs00684g] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Sustainable zinc-air batteries (ZABs) are considered promising energy storage devices owing to their inherent safety, high energy density, wide operating temperature window, environmental friendliness, etc., showing great prospect for future large-scale applications. Thus, tremendous efforts have been devoted to addressing the critical challenges associated with sustainable ZABs, aiming to significantly improve their energy efficiency and prolong their operation lifespan. The growing interest in sustainable ZABs requires in-depth research on oxygen electrocatalysts, electrolytes, and Zn anodes, which have not been systematically reviewed to date. In this review, the fundamentals of ZABs, oxygen electrocatalysts for air cathodes, physicochemical properties of ZAB electrolytes, and issues and strategies for the stabilization of Zn anodes are systematically summarized from the perspective of fundamental characteristics and design principles. Meanwhile, significant advances in the in situ/operando characterization of ZABs are highlighted to provide insights into the reaction mechanism and dynamic evolution of the electrolyte|electrode interface. Finally, several critical thoughts and perspectives are provided regarding the challenges and opportunities for sustainable ZABs. Therefore, this review provides a thorough understanding of the advanced sustainable ZAB chemistry, hoping that this timely and comprehensive review can shed light on the upcoming research horizons of this prosperous area.
Collapse
Affiliation(s)
- Qichen Wang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| | - Shubham Kaushik
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| | - Xin Xiao
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| |
Collapse
|
11
|
Liu N, Liang Z, Yang F, Wang X, Zhong J, Gui X, Yang G, Zeng Z, Yu D. Flexible Solid-State Metal-Air Batteries: The Booming of Portable Energy Supplies. CHEMSUSCHEM 2023; 16:e202202192. [PMID: 36567256 DOI: 10.1002/cssc.202202192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The rapid development of portable and wearable electronics has given rise to new challenges and provoked research in flexible, lightweight, and affordable energy storage devices. Flexible solid-state metal-air batteries (FSSMABs) are considered promising candidates, owing to their large energy density, mechanical flexibility, and durability. However, the practical applications of FSSMABs require further improvement to meet the demands of long-term stability, high power density, and large operating voltage. This Review presents a detailed discussion of innovative electrocatalysts for the air cathode, followed by a sequential overview of high-performance solid-state electrolytes and metal anodes, and a summary of the current challenges and future perspectives of FSSMABs to promote practical application and large-scale commercialization in the near future.
Collapse
Affiliation(s)
- Ning Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zhanhao Liang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Fan Yang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High-Performance Polymer-Based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 528478, P. R. China
| | - Xiaotong Wang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High-Performance Polymer-Based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Junjie Zhong
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xuchun Gui
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zhiping Zeng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Dingshan Yu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High-Performance Polymer-Based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
12
|
Xiao X, Zheng Z, Zhong X, Gao R, Piao Z, Jiao M, Zhou G. Rational Design of Flexible Zn-Based Batteries for Wearable Electronic Devices. ACS NANO 2023; 17:1764-1802. [PMID: 36716429 DOI: 10.1021/acsnano.2c09509] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The advent of 5G and the Internet of Things has spawned a demand for wearable electronic devices. However, the lack of a suitable flexible energy storage system has become the "Achilles' Heel" of wearable electronic devices. Additional problems during the transformation of the battery structure from conventional to flexible also present a severe challenge to the battery design. Flexible Zn-based batteries, including Zn-ion batteries and Zn-air batteries, have long been considered promising candidates due to their high safety, eco-efficiency, substantial reserve, and low cost. In the past decade, researchers have come up with elaborate designs for each portion of flexible Zn-based batteries to improve the ionic conductivities, mechanical properties, environment adaptabilities, and scalable productions. It would be helpful to summarize the reported strategies and compare their pros and cons to facilitate further research toward the commercialization of flexible Zn-based batteries. In this review, the current progress in developing flexible Zn-based batteries is comprehensively reviewed, including their electrolytes, cathodes, and anodes, and discussed in terms of their synthesis, characterization, and performance validation. By clarifying the challenges in flexible Zn-based battery design, we summarize the methodology from previous investigations and propose challenges for future development. In the end, a research paradigm of Zn-based batteries is summarized to fit the burgeoning requirement of wearable electronic devices in an iterative process, which will benefit the future development of Zn-based batteries.
Collapse
Affiliation(s)
- Xiao Xiao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Zhiyang Zheng
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Xiongwei Zhong
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Runhua Gao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Zhihong Piao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Miaolun Jiao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| |
Collapse
|
13
|
Zhang J, Huang Y, Yang Q, Venkatesh V, Synodis M, Pikul JH, Bidstrup Allen SA, Allen MG. High-Energy-Density Zinc-Air Microbatteries with Lean PVA-KOH-K 2CO 3 Gel Electrolytes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6807-6816. [PMID: 36700920 DOI: 10.1021/acsami.2c19970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Small-scale, primary electrochemical energy storage devices ("microbatteries") are critical power sources for microelectromechanical system (MEMS)-based sensors and actuators. However, the achievable volumetric and gravimetric energy densities of microbatteries are typically insufficient for intermediate-term applications of MEMS-enabled distributed internet-connected devices. Further, in the increasing subset of Internet of Things (IoT) nodes, where actuation is desired, the peak power density of the microbattery must be simultaneously considered. Metal-air approaches to achieving microbatteries are attractive, as the anode and cathode are amenable to miniaturization; however, further improvements in energy density can be obtained by minimizing the electrolyte volume. To investigate these potential improvements, this work studied very lean hydrogel electrolytes based on poly(vinyl alcohol) (PVA). Integration of high potassium hydroxide (KOH) loading into the PVA hydrogel improved electrolyte performance. The addition of potassium carbonate (K2CO3) to the KOH-PVA gel decreased the carbonation consumption rate of KOH in the gel electrolyte by 23.8% compared to PVA-KOH gel alone. To assess gel performance, a microbattery was formed from a zinc (Zn) anode layer, a gel electrolyte layer, and a carbon-platinum (C-Pt) air cathode layer. Volumetric energy densities of approximately 1400 Wh L-1 and areal peak power densities of 139 mW cm-2 were achieved with a PVA-KOH-K2CO3 electrolyte. Further structural optimization, including using multilayer gel electrolytes and thinning the air cathode, resulted in volumetric and gravimetric energy densities of 1576 Wh L-1 and 420 Wh kg-1, respectively. The batteries described in this work are manufactured in an open environment and fabricated using a straightforward layer-by-layer method, enabling the potential for high fabrication throughput in a MEMS-compatible fashion.
Collapse
Affiliation(s)
- Jingwen Zhang
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Yanghang Huang
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Qi Yang
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Vishal Venkatesh
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Michael Synodis
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - James H Pikul
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Sue Ann Bidstrup Allen
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Mark G Allen
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| |
Collapse
|
14
|
Rase D, Illathvalappil R, Singh HD, Shekhar P, Leo LS, Chakraborty D, Haldar S, Shelke A, Ajithkumar TG, Vaidhyanathan R. Hydroxide ion-conducting viologen-bakelite organic frameworks for flexible solid-state zinc-air battery applications. NANOSCALE HORIZONS 2023; 8:224-234. [PMID: 36511297 DOI: 10.1039/d2nh00455k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Adaptable polymer-based solid-state electrolytes can be a game-changer toward safe, lightweight flexible batteries. We present a robust Bakelite-type organic polymer covalently decked with viologen, triazine, and phenolic moieties. Its flexible structure with cationic viologen centers incorporates counter-balancing free hydroxide ions into the polymeric framework. By design, the aromatic groups and heteroatoms in the framework can be activated under an applied potential to prompt a push-pull drive, setting off the towing of hydroxide ions via weak electrostatic, van der Waals, and hydrogen-bond interactions. The frontier orbitals from a DFT-modeled structure certify this. The hydroxyl-polymer requires minimal KOH wetting to maintain a humid environment for Grotthuss-type transport. The hydroxide ion conductivity reaches a value of 1.4 × 10-2 S cm-1 at 80 °C and 95% RH, which is retained for over 15 h. We enhanced its practical utility by coating it as a thin solid-state separator-cum-electrolyte on readily available filter paper. The composite exhibits a conductivity of 4.5 × 10-3 S cm-1 at 80 °C and 95% RH. A zinc-air battery (ZAB) constructed using this polymer-coated paper as electrolyte yields a maximum power density of 115 mW cm-2 and high specific capacitance of 435 mA h g-1. The power density recorded for our ZAB is among the best reported for polymer electrolyte-based batteries. Subsequently, the flexible battery fabricated with IISERP-POF11_OH@FilterPaper exhibits an OCV of 1.44 V, and three batteries in series power a demo traffic signal. To underscore the efficiency of hydroxide ion transport through the complex multifunctional backbone of the polymer, we calculated the diffusion coefficient for OH- (Exp: 2.9 × 10-5 cm2 s-1; Comp. 5.2 × 10-6 cm2 s-1) using electrochemical methods and MD simulations. Climbing-edge NEB calculations reveal a large energy barrier of 2.11 eV for Zn2+ to penetrate the polymer and identify hydroxide ions within the polymer, suggesting no undesirable Zn2+ crossover. Our findings assert the readily accessible C-C-linked cationic polymer's capacity as a solid-state electrolyte for ZABs and any anion-conducting membrane.
Collapse
Affiliation(s)
- Deepak Rase
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
- Centre for Energy Science, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Rajith Illathvalappil
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
- Centre for Energy Science, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Himan Dev Singh
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
- Centre for Energy Science, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Pragalbh Shekhar
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
- Centre for Energy Science, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Liya S Leo
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
- Centre for Energy Science, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Debanjan Chakraborty
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Sattwick Haldar
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
- Centre for Energy Science, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Ankita Shelke
- Central NMR Facility and Physical/Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008, India
| | - Thalasseril G Ajithkumar
- Central NMR Facility and Physical/Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008, India
| | - Ramanathan Vaidhyanathan
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
- Centre for Energy Science, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
15
|
Bhoyate SD, Kim J, de Souza FM, Lin J, Lee E, Kumar A, Gupta RK. Science and engineering for non-noble-metal-based electrocatalysts to boost their ORR performance: A critical review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
16
|
Liu Y, Lu J, Xu S, Zhang W, Gao D. Carbon-based composites for rechargeable zinc-air batteries: A mini review. Front Chem 2022; 10. [PMID: 36465872 PMCID: PMC9709201 DOI: 10.3389/fchem.2022.1074984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
Rechargeable zinc-air batteries (ZABs) have gained a significant amount of attention as next-generation energy conversion and storage devices owing to their high energy density and environmental friendliness, as well as their safety and low cost. The performance of ZABs is dominated by oxygen electrocatalysis, which includes the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). Therefore, it is crucial to develop effective bifunctional oxygen electrocatalysts that are both highly active and stable. Carbon-based materials are regarded as reliable candidates because of their superior electrical conductivity, low price, and high durability. In this Review, we briefly introduce the configuration of ZABs and the reaction mechanism of bifunctional ORR/OER catalysts. Then, the most recent developments in carbon-based bifunctional catalysts are summarized in terms of carbon-based metal composites, carbon-based metal oxide composites, and other carbon-based composites. In the final section, we go through the significant obstacles and potential future developments for carbon-based bifunctional oxygen catalysts for ZABs.
Collapse
|
17
|
Jing Z, Yan Z, Wang X, Che R, Wang E. Reducing Water Exchange by Polyacrylic Acid Based Water‐Vapor‐Resistant Membrane in Zinc/Air Battery. ChemistrySelect 2022. [DOI: 10.1002/slct.202203470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ziheng Jing
- Chinese Academy of Sciences Dalian Institute of Chemical Physics Dalian Liaoning 116023 China
- Dalian Jiaotong University Environmental and Chemical Engineering Dalian Liaoning 116028 China
| | - Zhao Yan
- Chinese Academy of Sciences Dalian Institute of Chemical Physics Dalian Liaoning 116023 China
| | - Xueliang Wang
- Chinese Academy of Sciences Dalian Institute of Chemical Physics Dalian Liaoning 116023 China
| | - Ruxin Che
- Dalian Jiaotong University Environmental and Chemical Engineering Dalian Liaoning 116028 China
| | - Erdong Wang
- Chinese Academy of Sciences Dalian Institute of Chemical Physics Dalian Liaoning 116023 China
| |
Collapse
|
18
|
Development of electrolytes for rechargeable zinc-air batteries: current progress, challenges, and future outlooks. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-022-05156-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
AbstractThis review presents the current developments of various electrolyte systems for secondary zinc air batteries (SZABs). The challenges and advancements in aqueous electrolytes (e.g., alkaline, acidic and neutral) and non-aqueous electrolytes (e.g., solid polymer electrolyte, ionic liquids, gel polymer electrolyte, and deep eutectic solvents) development have been reviewed. Moreover, chemical and physical characteristics of electrolytes such as power density, capacity, rate performance, cyclic ability, and safety that play a vital role in recital of the SZABs have been reviewed. Finally, the challenges and limitations that must be investigated and possible future research areas of SZABs electrolytes are discussed.
Collapse
|
19
|
Lu J, Yang J, Zhang Z, Wang C, Xu J, Wang T. Silk Fibroin Coating Enables Dendrite-free Zinc Anode for Long-Life Aqueous Zinc-Ion Batteries. CHEMSUSCHEM 2022; 15:e202200656. [PMID: 35587611 DOI: 10.1002/cssc.202200656] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Due to the advantages of the low cost of Zn and the safety of aqueous electrolytes, the aqueous Zn ion battery (AZIB) is expected to become the next-generation battery after lithium-ion batteries. However, the problems of Zn anode dendrite growth, self-corrosion, and passivation in AZIBs lead to short cycle life and short circuit of the battery. In this work, uniform and stable Silk II-silk fibroin (Silk II-SF) coating was prepared on the surface of Zn anode by a simple method. Experiments showed that the SF coating could prevent dendritic growth and hydrogen evolution corrosion. Therefore, symmetric cells using Silk II-SF@Zn anode achieved a cycle life over 3300 and 1500 h at current densities of 10 and 20 mA cm-2 , respectively. Using Silk II-SF coating to protect Zn anode is a simple and effective strategy to realize dendrite-free Zn anode and long-cycle-life AZIBs.
Collapse
Affiliation(s)
- Jiahui Lu
- College of Chemistry and Chemical Engineering, Yangzhou University, 225009, Yangzhou, Jiangsu, P. R. China
| | - Jian Yang
- College of Chemistry and Chemical Engineering, Yangzhou University, 225009, Yangzhou, Jiangsu, P. R. China
| | - Zhihao Zhang
- College of Chemistry and Chemical Engineering, Yangzhou University, 225009, Yangzhou, Jiangsu, P. R. China
| | - Chengyin Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, 225009, Yangzhou, Jiangsu, P. R. China
| | - Jing Xu
- School of Electrical Engineering, Zhengzhou University, 450001, Zhengzhou, Henan, P. R. China
| | - Tianyi Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, 225009, Yangzhou, Jiangsu, P. R. China
| |
Collapse
|
20
|
Díaz‒Patiño L, Béjar J, Ortiz‒Ortega E, Trejo G, Guerra‒Balcázar M, Noé Arjona N, Alvarez-Contreras L. A Zn−air battery operated with Modified−Zn electrodes/gel polymer electrolytes. ChemElectroChem 2022. [DOI: 10.1002/celc.202200222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lucia Díaz‒Patiño
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica SC: Centro de Investigacion y Desarrollo Tecnologico en Electroquimica SC Posgrado Parque Tecnológico Querétaro S/N, Sanfandila, Pedro Escobedo, Querétaro, C.P. 76 MEXICO
| | - José Béjar
- Centro de Investigación en Materiales Avanzados SC: Centro de Investigacion en Materiales Avanzados SC Ingeniería y Química de Materiales MEXICO
| | - Euth Ortiz‒Ortega
- Instituto Tecnológico y de Estudios Superiores de Monterrey: Instituto Tecnologico y de Estudios Superiores de Monterrey Escuela de Ingeniería y Ciencias MEXICO
| | - Gabriel Trejo
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica SC: Centro de Investigacion y Desarrollo Tecnologico en Electroquimica SC Investigación MEXICO
| | - Minerva Guerra‒Balcázar
- Universidad Autónoma de Querétaro: Universidad Autonoma de Queretaro Facultad de Ingeniería, División de Investigación y Posgrado MEXICO
| | - Noé Noé Arjona
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica SC: Centro de Investigacion y Desarrollo Tecnologico en Electroquimica SC Investigación MEXICO
| | - Lorena Alvarez-Contreras
- Centro de Investigación en Materiales Avanzados SC Departamento de Ingeniería y Química de Materiales Av. Miguel de Cervantes 120Complejo Industrial Chihuahua 31136 Chihuahua MEXICO
| |
Collapse
|
21
|
Zheng Q, Zhang Y, Su C, Zhao L, Guo Y. Nonnoble metal oxides for high‐performance Zn‐air batteries: Design strategies and future challenges. ASIA-PAC J CHEM ENG 2022. [DOI: 10.1002/apj.2776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qilong Zheng
- School of Materials Science and Technology Anhui University Hefei China
| | - Yidan Zhang
- School of Materials Science and Technology Anhui University Hefei China
- School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan China
| | - Chao Su
- School of Energy and Power Jiangsu University of Science and Technology Zhenjiang China
| | - Ling Zhao
- Faculty of Materials Science and Chemistry China University of Geosciences Wuhan China
| | - Youmin Guo
- School of Materials Science and Technology Anhui University Hefei China
| |
Collapse
|
22
|
Chen Y, Li W, Yao Y, Gogoi P, Deng X, Xie Y, Yang Z, Wang Y, Li YC. Enabling Acidic Oxygen Reduction Reaction in a Zinc-Air Battery with Bipolar Membrane. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12257-12263. [PMID: 35234453 DOI: 10.1021/acsami.1c24328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Zinc-air batteries are a promising alternative to lithium ion batteries due to their large energy density, safety, and low production cost. However, the stability of the zinc-air battery is often low due to the formation of dendrite which causes short circuiting and the CO2 adsorption from the air which causes carbonate formation on the air electrode. In this work, we demonstrate a zinc-air battery design with acidic oxygen reduction reaction for the first time via the incorporation of a bipolar membrane. The bipolar membrane creates a locally acidic environment in the air cathode which could lead to a higher oxygen reduction reaction activity and a better 4-electron selectivity toward water instead of the 2-electron pathway toward peroxide. Locally acidic air cathode is also effective at improving the cell's durability by preventing carbonate formation. Gas chromatography confirms that CO2 adsorption is 7 times lower in the bipolar membrane compared to a conventional battery separator. A stable cycling of 300+ hours is achieved at 5 mA/cm2. Dendrite formation is also mitigated due to the mechanical strength of the membrane. The insights from this work could be leveraged to develop a better zinc-air battery design for long-term energy storage applications.
Collapse
Affiliation(s)
- Yingjie Chen
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Wangzu Li
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Yu Yao
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Pratahdeep Gogoi
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Xuebiao Deng
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yi Xie
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Zhenyu Yang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Ying Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Yuguang C Li
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
23
|
Zhang T, Wu N, Zhao Y, Zhang X, Wu J, Weng J, Li S, Huo F, Huang W. Frontiers and Structural Engineering for Building Flexible Zinc-Air Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103954. [PMID: 34939351 PMCID: PMC8867139 DOI: 10.1002/advs.202103954] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/15/2021] [Indexed: 05/04/2023]
Abstract
With the development of flexible devices, the demand for wearable power sources has increased and gradually become imperative. Zinc-air batteries (ZABs) have attracted lots of research interest due to their high theoretical energy density and excellent safety properties, which can meet the wearable energy supply requirements. Here, the flexibility of energy storage devices is discussed first, followed by the chemistries and development of flexible ZABs. The design of flexible electrodes, the properties of solid-state electrolytes (SSEs), and the construction of deformable structures are discussed in depth. The researchers working on flexible energy storage devices will benefit from the work.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory of Flexible ElectronicsInstitute of Advanced MaterialsNanjing Tech UniversityNanjing211816China
| | - Ningxiang Wu
- Key Laboratory of Flexible ElectronicsInstitute of Advanced MaterialsNanjing Tech UniversityNanjing211816China
| | - Yanhua Zhao
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE)Xi'an Institute of Biomedical Materials & EngineeringNorthwestern Polytechnical University127 West Youyi RoadXi'an710072China
| | - Xinglong Zhang
- Key Laboratory of Flexible ElectronicsInstitute of Advanced MaterialsNanjing Tech UniversityNanjing211816China
| | - Jiansheng Wu
- Key Laboratory of Flexible ElectronicsInstitute of Advanced MaterialsNanjing Tech UniversityNanjing211816China
| | - Jiena Weng
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE)Xi'an Institute of Biomedical Materials & EngineeringNorthwestern Polytechnical University127 West Youyi RoadXi'an710072China
| | - Sheng Li
- Key Laboratory of Flexible ElectronicsInstitute of Advanced MaterialsNanjing Tech UniversityNanjing211816China
| | - Fengwei Huo
- Key Laboratory of Flexible ElectronicsInstitute of Advanced MaterialsNanjing Tech UniversityNanjing211816China
| | - Wei Huang
- Key Laboratory of Flexible ElectronicsInstitute of Advanced MaterialsNanjing Tech UniversityNanjing211816China
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE)Xi'an Institute of Biomedical Materials & EngineeringNorthwestern Polytechnical University127 West Youyi RoadXi'an710072China
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for BiosensorsInstitute of Advanced MaterialsNanjing University of Posts and TelecommunicationsNanjing210023China
| |
Collapse
|
24
|
Wang L, Xu Z, Peng T, Liu M, Zhang L, Zhang J. Bifunctional Single-Atom Cobalt Electrocatalysts with Dense Active Sites Prepared via a Silica Xerogel Strategy for Rechargeable Zinc-Air Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:381. [PMID: 35159726 PMCID: PMC8840332 DOI: 10.3390/nano12030381] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 12/21/2022]
Abstract
The N-doped cobalt-based (Co) bifunctional single atom catalyst (SAC) has emerged as one of the most promising candidates to substitute noble metal-based catalysts for highly efficient bifunctionality. Herein, a facile silica xerogel strategy is elaborately designed to synthesize uniformly dispersed and dense Co-Nx active sites on N-doped highly porous carbon networks (Co-N-C SAC) using economic biomass materials. This strategy promotes the generation of massive mesopores and micropores for substantially improving the formation of Co-Nx moieties and unique network architecture. The Co-N-C SAC electrocatalysts exhibit an excellent bifunctional activity with a potential gap (ΔE) of 0.81 V in alkaline medias, outperforming those of the most highly active bifunctional electrocatalysts. On top of that, Co-N-C SAC also possesses outstanding performance in ZABs with superior power density/specific capacity. This proposed synthetic method will provide a new inspiration for fabricating various high-content SACs for varied applications.
Collapse
Affiliation(s)
- Lijuan Wang
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (L.W.); (Z.X.)
| | - Zixiang Xu
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (L.W.); (Z.X.)
| | - Tingyu Peng
- Instrumental Analysis Center, Jiangsu University, Zhenjiang 212013, China;
| | - Maosong Liu
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (L.W.); (Z.X.)
| | - Long Zhang
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (L.W.); (Z.X.)
| | - Jianming Zhang
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (L.W.); (Z.X.)
| |
Collapse
|
25
|
Velez AAI, Reyes E, Diaz-Barrios A, Santos F, Fernández Romero AJ, Tafur JP. Properties of the PVA-VAVTD KOH Blend as a Gel Polymer Electrolyte for Zinc Batteries. Gels 2021; 7:gels7040256. [PMID: 34940316 PMCID: PMC8702166 DOI: 10.3390/gels7040256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
Rechargeable zinc-air batteries are promising for energy storage and portable electronic applications because of their good safety, high energy density, material abundance, low cost, and environmental friendliness. A series of alkaline gel polymer electrolytes formed from polyvinyl alcohol (PVA) and different amounts of terpolymer composed of butyl acrylate, vinyl acetate, and vinyl neodecanoate (VAVTD) was synthesized applying a solution casting technique. The thin films were doped with KOH 12M, providing a higher amount of water and free ions inside the electrolyte matrix. The inclusion of VAVTD together with the PVA polymer improved several of the electrical properties of the PVA-based gel polymer electrolytes (GPEs). X-ray diffraction (XRD), thermogravimetric analysis (TGA), and attenuated total reflectance- Fourier-transform infrared spectroscopy (ATR-FTIR) tests, confirming that PVA chains rearrange depending on the VAVTD content and improving the amorphous region. The most conducting electrolyte film was the test specimen 1:4 (PVA-VAVTD) soaked in KOH solution, reaching a conductivity of 0.019 S/cm at room temperature. The temperature dependence of the conductivity agrees with the Arrhenius equation and activation energy of ~0.077 eV resulted, depending on the electrolyte composition. In addition, the cyclic voltammetry study showed a current intensity increase at higher VAVTD content, reaching values of 310 mA. Finally, these gel polymer electrolytes were tested in Zn-air batteries, obtaining capacities of 165 mAh and 195 mAh for PVA-T4 and PVA-T5 sunk in KOH, respectively, at a discharge current of -5 mA.
Collapse
Affiliation(s)
- Alisson A. Iles Velez
- School of Chemical Science and Engineering, Yachay Tech University, Yachay City of Knowledge, Urcuqui 100650, Ecuador; (A.A.I.V.); (E.R.); (A.D.-B.)
| | - Edwin Reyes
- School of Chemical Science and Engineering, Yachay Tech University, Yachay City of Knowledge, Urcuqui 100650, Ecuador; (A.A.I.V.); (E.R.); (A.D.-B.)
| | - Antonio Diaz-Barrios
- School of Chemical Science and Engineering, Yachay Tech University, Yachay City of Knowledge, Urcuqui 100650, Ecuador; (A.A.I.V.); (E.R.); (A.D.-B.)
| | - Florencio Santos
- Grupo de Materiales Avanzados para la Producción y Almacenamiento de Energía, Universidad Politécnica de Cartagena, Aulario II, Campus de Alfonso XIII, 30203 Cartagena, Spain;
| | - Antonio J. Fernández Romero
- Grupo de Materiales Avanzados para la Producción y Almacenamiento de Energía, Universidad Politécnica de Cartagena, Aulario II, Campus de Alfonso XIII, 30203 Cartagena, Spain;
- Correspondence: (A.J.F.R.); (J.P.T.)
| | - Juan P. Tafur
- School of Chemical Science and Engineering, Yachay Tech University, Yachay City of Knowledge, Urcuqui 100650, Ecuador; (A.A.I.V.); (E.R.); (A.D.-B.)
- Grupo de Materiales Avanzados para la Producción y Almacenamiento de Energía, Universidad Politécnica de Cartagena, Aulario II, Campus de Alfonso XIII, 30203 Cartagena, Spain;
- Correspondence: (A.J.F.R.); (J.P.T.)
| |
Collapse
|
26
|
Arandiyan H, S Mofarah S, Sorrell CC, Doustkhah E, Sajjadi B, Hao D, Wang Y, Sun H, Ni BJ, Rezaei M, Shao Z, Maschmeyer T. Defect engineering of oxide perovskites for catalysis and energy storage: synthesis of chemistry and materials science. Chem Soc Rev 2021; 50:10116-10211. [PMID: 34542117 DOI: 10.1039/d0cs00639d] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Oxide perovskites have emerged as an important class of materials with important applications in many technological areas, particularly thermocatalysis, electrocatalysis, photocatalysis, and energy storage. However, their implementation faces numerous challenges that are familiar to the chemist and materials scientist. The present work surveys the state-of-the-art by integrating these two viewpoints, focusing on the critical role that defect engineering plays in the design, fabrication, modification, and application of these materials. An extensive review of experimental and simulation studies of the synthesis and performance of oxide perovskites and devices containing these materials is coupled with exposition of the fundamental and applied aspects of defect equilibria. The aim of this approach is to elucidate how these issues can be integrated in order to shed light on the interpretation of the data and what trajectories are suggested by them. This critical examination has revealed a number of areas in which the review can provide a greater understanding. These include considerations of (1) the nature and formation of solid solutions, (2) site filling and stoichiometry, (3) the rationale for the design of defective oxide perovskites, and (4) the complex mechanisms of charge compensation and charge transfer. The review concludes with some proposed strategies to address the challenges in the future development of oxide perovskites and their applications.
Collapse
Affiliation(s)
- Hamidreza Arandiyan
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia. .,Centre for Applied Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, 124 La Trobe Street, Melbourne, VIC, Australia.
| | - Sajjad S Mofarah
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia.
| | - Charles C Sorrell
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia.
| | - Esmail Doustkhah
- National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Baharak Sajjadi
- Department of Chemical Engineering, University of Mississippi, University, MS, 38677, USA
| | - Derek Hao
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yuan Wang
- Centre for Applied Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, 124 La Trobe Street, Melbourne, VIC, Australia. .,School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Hongyu Sun
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Mehran Rezaei
- Catalyst and Nanomaterials Research Laboratory (CNMRL), School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA 6845, Australia. .,State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Thomas Maschmeyer
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
27
|
Wu M, Zhang G, Du L, Yang D, Yang H, Sun S. Defect Electrocatalysts and Alkaline Electrolyte Membranes in Solid-State Zinc-Air Batteries: Recent Advances, Challenges, and Future Perspectives. SMALL METHODS 2021; 5:e2000868. [PMID: 34927810 DOI: 10.1002/smtd.202000868] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/05/2020] [Indexed: 06/14/2023]
Abstract
Rechargeable zinc-air batteries (ZABs) have attracted much attention due to their promising capability for offering high energy density while maintaining a long operational lifetime. One of the biggest challenges in developing all-solid-state ZABs is to design suitable bifunctional air-electrodes, which can efficiently catalyze the key oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) electrochemical processes. The other one is to develop robust electrolyte membranes with high ionic conductivity and superb water retention capability. In this review, an in-depth discussion of the challenges, mechanisms, and design strategies for the defect electrocatalyst and the electrolyte membrane in all-solid-state ZABs will be offered. In particular, the crucial defect engineering strategies to tune the ORR/OER catalysts are summarized, including direct controllable strategies: 1) atomically dispersed metal sites control, 2) vacancy defects control, and 3) lattice-strain control, and the indirect strategies: 4) crystallographic structure control and 5) metal-carbon support interaction control. Moreover, the most recent progress in designing electrolyte membranes, including polyvinyl alcohol-based membranes and gel polymer electrolyte membranes, is presented. Finally, the perspectives are proposed for rational design and fabrication of the desired air electrode and electrolyte membrane to improve the performance and prolong the lifetime of all-solid-state ZABs.
Collapse
Affiliation(s)
- Mingjie Wu
- Institut National de la Recherche Scientifique (INRS)-Énergie Matériaux et Télécommunications, Varennes, Quebec, J3X 1S2, Canada
| | - Gaixia Zhang
- Institut National de la Recherche Scientifique (INRS)-Énergie Matériaux et Télécommunications, Varennes, Quebec, J3X 1S2, Canada
| | - Lei Du
- Institut National de la Recherche Scientifique (INRS)-Énergie Matériaux et Télécommunications, Varennes, Quebec, J3X 1S2, Canada
| | - Dachi Yang
- Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education and College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300350, China
| | - Huaming Yang
- Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Shuhui Sun
- Institut National de la Recherche Scientifique (INRS)-Énergie Matériaux et Télécommunications, Varennes, Quebec, J3X 1S2, Canada
| |
Collapse
|
28
|
Lorca S, Santos F, Fernández Romero AJ. A Review of the Use of GPEs in Zinc-Based Batteries. A Step Closer to Wearable Electronic Gadgets and Smart Textiles. Polymers (Basel) 2020; 12:E2812. [PMID: 33260984 PMCID: PMC7761133 DOI: 10.3390/polym12122812] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/14/2020] [Accepted: 11/15/2020] [Indexed: 01/08/2023] Open
Abstract
With the flourish of flexible and wearable electronics gadgets, the need for flexible power sources has become essential. The growth of this increasingly diverse range of devices boosted the necessity to develop materials for such flexible power sources such as secondary batteries, fuel cells, supercapacitors, sensors, dye-sensitized solar cells, etc. In that context, comprehensives studies on flexible conversion and energy storage devices have been released for other technologies such Li-ion standing out the importance of the research done lately in GPEs (gel polymer electrolytes) for energy conversion and storage. However, flexible zinc batteries have not received the attention they deserve within the flexible batteries field, which are destined to be one of the high rank players in the wearable devices future market. This review presents an extensive overview of the most notable or prominent gel polymeric materials, including biobased polymers, and zinc chemistries as well as its practical or functional implementation in flexible wearable devices. The ultimate aim is to highlight zinc-based batteries as power sources to fill a segment of the world flexible batteries future market.
Collapse
Affiliation(s)
| | - Florencio Santos
- Grupo de Materiales Avanzados para la Producción y Almacenamiento de Energía (MAPA), Campus de Alfonso XIII, Universidad Politécnica de Cartagena, Cartagena, 30203 Murcia, Spain;
| | - Antonio J. Fernández Romero
- Grupo de Materiales Avanzados para la Producción y Almacenamiento de Energía (MAPA), Campus de Alfonso XIII, Universidad Politécnica de Cartagena, Cartagena, 30203 Murcia, Spain;
| |
Collapse
|
29
|
Khezri R, Hosseini S, Lahiri A, Motlagh SR, Nguyen MT, Yonezawa T, Kheawhom S. Enhanced Cycling Performance of Rechargeable Zinc-Air Flow Batteries Using Potassium Persulfate as Electrolyte Additive. Int J Mol Sci 2020; 21:E7303. [PMID: 33023274 PMCID: PMC7582734 DOI: 10.3390/ijms21197303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 11/16/2022] Open
Abstract
Zinc-air batteries (ZABs) offer high specific energy and low-cost production. However, rechargeable ZABs suffer from a limited cycle life. This paper reports that potassium persulfate (KPS) additive in an alkaline electrolyte can effectively enhance the performance and electrochemical characteristics of rechargeable zinc-air flow batteries (ZAFBs). Introducing redox additives into electrolytes is an effective approach to promote battery performance. With the addition of 450 ppm KPS, remarkable improvement in anodic currents corresponding to zinc (Zn) dissolution and limited passivation of the Zn surface is observed, thus indicating its strong effect on the redox reaction of Zn. Besides, the addition of 450 ppm KPS reduces the corrosion rate of Zn, enhances surface reactions and decreases the solution resistance. However, excess KPS (900 and 1350 ppm) has a negative effect on rechargeable ZAFBs, which leads to a shorter cycle life and poor cyclability. The rechargeable ZAFB, using 450 ppm KPS, exhibits a highly stable charge/discharge voltage for 800 cycles. Overall, KPS demonstrates great promise for the enhancement of the charge/discharge performance of rechargeable ZABs.
Collapse
Affiliation(s)
- Ramin Khezri
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (R.K.); (S.H.)
| | - Soraya Hosseini
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (R.K.); (S.H.)
| | - Abhishek Lahiri
- Department of Chemical Engineering, Brunel University London, London UB8 3PH, UK;
| | - Shiva Rezaei Motlagh
- Department of Chemical Engineering, Faculty of Engineering, Universiti Putra Malaysia, Selangor 43300, Malaysia;
| | - Mai Thanh Nguyen
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Hokkaido 060-8628, Japan; (M.T.N.); (T.Y.)
| | - Tetsu Yonezawa
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Hokkaido 060-8628, Japan; (M.T.N.); (T.Y.)
- Institute for the Promotion of Business-Regional Collaboration, Hokkaido University, Sapporo 001-0021, Japan
| | - Soorathep Kheawhom
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (R.K.); (S.H.)
- Research Unit of Advanced Materials for Energy Storage, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|