1
|
Thippani S, Patel NJ, Jathan J, Filush K, Socarras KM, DiLorenzo J, Balasubramanian K, Gupta K, Ortiz Aleman G, Pandya JM, Kavitapu VV, Zeng D, Miller JC, Sapi E. Evidence for the Presence of Borrelia burgdorferi Biofilm in Infected Mouse Heart Tissues. Microorganisms 2024; 12:1766. [PMID: 39338441 PMCID: PMC11434270 DOI: 10.3390/microorganisms12091766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024] Open
Abstract
Borrelia burgdorferi, the bacterium responsible for Lyme disease, has been shown to form antimicrobial-tolerant biofilms, which protect it from unfavorable conditions. Bacterial biofilms are known to significantly contribute to severe inflammation, such as carditis, a common manifestation of Lyme disease. However, the role of B. burgdorferi biofilms in the development of Lyme carditis has not been thoroughly investigated due to the absence of an appropriate model system. In this study, we examined heart tissues from mice infected with B. burgdorferi for the presence of biofilms and inflammatory markers using immunohistochemistry (IHC), combined fluorescence in situ hybridization FISH/IHC, 3D microscopy, and atomic force microscopy techniques. Our results reveal that B. burgdorferi spirochetes form aggregates with a known biofilm marker (alginate) in mouse heart tissues. Furthermore, these biofilms induce inflammation, as indicated by elevated levels of murine C-reactive protein near the biofilms. This research provides evidence that B. burgdorferi can form biofilms in mouse heart tissue and trigger inflammatory processes, suggesting that the mouse model is a valuable tool for future studies on B. burgdorferi biofilms.
Collapse
Affiliation(s)
- Sahaja Thippani
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA; (S.T.); (N.J.P.); (J.J.); (K.F.); (K.M.S.); (J.D.); (K.B.); (K.G.); (G.O.A.); (J.M.P.); (V.V.K.)
| | - Niraj Jatin Patel
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA; (S.T.); (N.J.P.); (J.J.); (K.F.); (K.M.S.); (J.D.); (K.B.); (K.G.); (G.O.A.); (J.M.P.); (V.V.K.)
| | - Jasmine Jathan
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA; (S.T.); (N.J.P.); (J.J.); (K.F.); (K.M.S.); (J.D.); (K.B.); (K.G.); (G.O.A.); (J.M.P.); (V.V.K.)
| | - Kate Filush
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA; (S.T.); (N.J.P.); (J.J.); (K.F.); (K.M.S.); (J.D.); (K.B.); (K.G.); (G.O.A.); (J.M.P.); (V.V.K.)
| | - Kayla M. Socarras
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA; (S.T.); (N.J.P.); (J.J.); (K.F.); (K.M.S.); (J.D.); (K.B.); (K.G.); (G.O.A.); (J.M.P.); (V.V.K.)
| | - Jessica DiLorenzo
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA; (S.T.); (N.J.P.); (J.J.); (K.F.); (K.M.S.); (J.D.); (K.B.); (K.G.); (G.O.A.); (J.M.P.); (V.V.K.)
| | - Kunthavai Balasubramanian
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA; (S.T.); (N.J.P.); (J.J.); (K.F.); (K.M.S.); (J.D.); (K.B.); (K.G.); (G.O.A.); (J.M.P.); (V.V.K.)
| | - Khusali Gupta
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA; (S.T.); (N.J.P.); (J.J.); (K.F.); (K.M.S.); (J.D.); (K.B.); (K.G.); (G.O.A.); (J.M.P.); (V.V.K.)
| | - Geneve Ortiz Aleman
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA; (S.T.); (N.J.P.); (J.J.); (K.F.); (K.M.S.); (J.D.); (K.B.); (K.G.); (G.O.A.); (J.M.P.); (V.V.K.)
| | - Jay M. Pandya
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA; (S.T.); (N.J.P.); (J.J.); (K.F.); (K.M.S.); (J.D.); (K.B.); (K.G.); (G.O.A.); (J.M.P.); (V.V.K.)
| | - Venkata V. Kavitapu
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA; (S.T.); (N.J.P.); (J.J.); (K.F.); (K.M.S.); (J.D.); (K.B.); (K.G.); (G.O.A.); (J.M.P.); (V.V.K.)
| | - Daina Zeng
- Department of Biological Sciences, North Carolina State University, 3510 Thomas Hall, 112 Derieux Pl, Raleigh, NC 27607, USA; (D.Z.); (J.C.M.)
| | - Jennifer C. Miller
- Department of Biological Sciences, North Carolina State University, 3510 Thomas Hall, 112 Derieux Pl, Raleigh, NC 27607, USA; (D.Z.); (J.C.M.)
| | - Eva Sapi
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA; (S.T.); (N.J.P.); (J.J.); (K.F.); (K.M.S.); (J.D.); (K.B.); (K.G.); (G.O.A.); (J.M.P.); (V.V.K.)
| |
Collapse
|
2
|
Horowitz RI, Fallon J, Freeman PR. Combining Double-Dose and High-Dose Pulsed Dapsone Combination Therapy for Chronic Lyme Disease/Post-Treatment Lyme Disease Syndrome and Co-Infections, Including Bartonella: A Report of 3 Cases and a Literature Review. Microorganisms 2024; 12:909. [PMID: 38792737 PMCID: PMC11124288 DOI: 10.3390/microorganisms12050909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Three patients with relapsing and remitting borreliosis, babesiosis, and bartonellosis, despite extended anti-infective therapy, were prescribed double-dose dapsone combination therapy (DDDCT) for 8 weeks, followed by one or several two-week courses of pulsed high-dose dapsone combination therapy (HDDCT). We discuss these patients' cases to illustrate three important variables required for long-term remission. First, diagnosing and treating active co-infections, including Babesia and Bartonella were important. Babesia required rotations of multiple anti-malarial drug combinations and herbal therapies, and Bartonella required one or several 6-day HDDCT pulses to achieve clinical remission. Second, all prior oral, intramuscular (IM), and/or intravenous (IV) antibiotics used for chronic Lyme disease (CLD)/post-treatment Lyme disease syndrome (PTLDS), irrespective of the length of administration, were inferior in efficacy to short-term pulsed biofilm/persister drug combination therapy i.e., dapsone, rifampin, methylene blue, and pyrazinamide, which improved resistant fatigue, pain, headaches, insomnia, and neuropsychiatric symptoms. Lastly, addressing multiple factors on the 16-point multiple systemic infectious disease syndrome (MSIDS) model was important in achieving remission. In conclusion, DDDCT with one or several 6-7-day pulses of HDDCT, while addressing abnormalities on the 16-point MSIDS map, could represent a novel effective clinical and anti-infective strategy in CLD/PTLDS and associated co-infections including Bartonella.
Collapse
Affiliation(s)
- Richard I. Horowitz
- New York State Department of Health Tick-Borne Working Group, Albany, NY 12224, USA
- Hudson Valley Healing Arts Center, Hyde Park, NY 12538, USA; (J.F.); (P.R.F.)
| | - John Fallon
- Hudson Valley Healing Arts Center, Hyde Park, NY 12538, USA; (J.F.); (P.R.F.)
| | - Phyllis R. Freeman
- Hudson Valley Healing Arts Center, Hyde Park, NY 12538, USA; (J.F.); (P.R.F.)
| |
Collapse
|
3
|
Willems R, Verhaeghe N, Perronne C, Borgermans L, Annemans L. Cost of illness in patients with post-treatment Lyme disease syndrome in Belgium. Eur J Public Health 2023; 33:668-674. [PMID: 36972275 PMCID: PMC10393486 DOI: 10.1093/eurpub/ckad045] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND A proportion of patients with Lyme borreliosis (LB) report long-term persisting signs and symptoms, even after recommended antibiotic treatment, which is termed post-treatment Lyme disease syndrome (PTLDS). Consensus on guidance regarding diagnosis and treatment is currently lacking. Consequently, patients suffer and are left searching for answers, negatively impacting their quality of life and healthcare expenditure. Yet, health economic data on PTLDS remain scarce. The aim of this article is therefore to assess the cost-of-illness related to PTLDS, including the patient perspective. METHODS PTLDS patients (N = 187) with confirmed diagnosis of LB were recruited by a patient organization. Patients completed a self-reported questionnaire on LB-related healthcare utilization, absence from work and unemployment. Unit costs (reference year 2018) were obtained from national databases and published literature. Mean costs and uncertainty intervals were calculated via bootstrapping. Data were extrapolated to the Belgian population. Generalized linear models were used to determine associated covariates with total direct costs and out-of-pocket expenditures. RESULTS Mean annual direct costs amounted to €4618 (95% CI €4070-5152), of which 49.5% were out-of-pocket expenditures. Mean annual indirect costs amounted to €36 081 (€31 312-40 923). Direct and indirect costs at the population level were estimated at €19.4 and 151.5 million, respectively. A sickness or disability benefit as source of income was associated with higher direct and out-of-pocket costs. CONCLUSIONS The economic burden associated with PTLDS on patients and society is substantial, with patients consuming large amounts of non-reimbursed healthcare resources. Guidance on adequate diagnosis and treatment of PTLDS is needed.
Collapse
Affiliation(s)
- Ruben Willems
- Department of Public Health and Primary Care, Interuniversity Centre for Health Economics Research (I-CHER), Ghent University, Gent, Belgium
| | - Nick Verhaeghe
- Department of Public Health and Primary Care, Interuniversity Centre for Health Economics Research (I-CHER), Ghent University, Gent, Belgium
| | - Christian Perronne
- Infectious Diseases Department, University Hospital Raymond Poincaré, APHP, Université de Versailles Saint-Quentin-Paris Saclay, Garches, France
| | - Liesbeth Borgermans
- Department of Public Health and Primary Care, Interuniversity Centre for Health Economics Research (I-CHER), Ghent University, Gent, Belgium
| | - Lieven Annemans
- Department of Public Health and Primary Care, Interuniversity Centre for Health Economics Research (I-CHER), Ghent University, Gent, Belgium
| |
Collapse
|
4
|
Mohseni N, Chang M, Garcia K, Weakley M, Do T, Mir S. Development of a Syndromic Molecular Diagnostic Assay for Tick-Borne Pathogens Using Barcoded Magnetic Bead Technology. Microbiol Spectr 2023; 11:e0439522. [PMID: 37166314 PMCID: PMC10269837 DOI: 10.1128/spectrum.04395-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/22/2023] [Indexed: 05/12/2023] Open
Abstract
Infectious disease diagnostics often depend on costly serological testing with poor sensitivity, low specificity, and long turnaround time. Here, we demonstrate proof of the principle for simultaneous detection of two tick-borne pathogens from a single test sample using barcoded magnetic bead technology on the BioCode 2500 system. Specific primer sets complementary to the conserved genes of Anaplasma phagocytophilum and Borrelia burgdorferi were used in PCR amplification of the target, followed by the hybridization of the resulting biotinylated PCR products with specific probes tethered to the barcoded magnetic beads for simultaneous detection, using a fluorophore with high quantum yield. The assay has an extremely high signal to background ratio, with a limit of detection (LOD) of 2.81 50% tissue culture infection dose (TCID50)/mL and 1 CFU/mL for A. phagocytophilum and B. burgdorferi, respectively. The observed LOD for gene blocks was 1.8 copies/reaction for both the pathogens. The assay demonstrated 100% positive and negative agreement on performance evaluation using patient specimens and blood samples spiked with 1 × LOD of pathogen stock. No cross-reactivity was observed with other related tick-borne pathogens and genomic DNA of human, cattle, and canine origin. The assay can be upgraded to a sensitive and cost-effective multiplex diagnostic approach that can simultaneously detect multiple clinically important tick-borne pathogens in a single sample with a short turnaround time. IMPORTANCE The low pathogen load in the tick-borne disease test samples and the lack of highly sensitive multiplex diagnostic approaches have impacted diagnosis during clinical testing and limited surveillance studies to gauge prior insight about the prevalence of tick-borne infections in a geographical area. This article demonstrates proof of the principle for simultaneous detection of two important tick-borne pathogens from a single test sample using digital barcoded magnetic bead technology. Using a fluorophore of high quantum yield, the diagnostic approach showed high sensitivity and specificity. The LOD was 1.8 genome copies per reaction for both A. phagocytophilum and B. burgdorferi. The assay can be upgraded for the detection of all clinically important tick-borne pathogens from a single patient sample with high sensitivity and specificity. The assay can provide a diagnostic answer to the clinician in a short turnaround time to facilitate speedy therapeutic intervention to infected patients and implement public health measures to prevent community spread.
Collapse
Affiliation(s)
- Nazleeen Mohseni
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Mariann Chang
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Kathryn Garcia
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Mina Weakley
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Tram Do
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Sheema Mir
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
5
|
Sun J, Liu H, Yao XY, Zhang YQ, Lv ZH, Shao JW. Circulation of four species of Anaplasmataceae bacteria in ticks in Harbin, northeastern China. Ticks Tick Borne Dis 2023; 14:102136. [PMID: 36736131 DOI: 10.1016/j.ttbdis.2023.102136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
Ticks play an important role in the evolution and transmission of Anaplasmataceae bacteria which are agents of emerging infectious diseases. In this study, a total of 1286 adult ticks belonging to five species were collected from cattle, goats, horses and vegetation in Harbin area, Heilongjiang province, northeastern China. The tick-borne Anaplasmataceae bacteria were identified by amplifying and sequencing the 16S rRNA (rrs) and heat shock protein-60 encoding (groEL) genes. The results showed that Ixodes persulcatus was dominant (38.8%, 499/1283) among the five tick species, and Anaplasmataceae bacteria were detected in all tick species with an overall prevalence of 7.4%. Four species of Anaplasmataceae bacteria (Anaplasma phagocytophilum, Anaplasma ovis, Anaplasma bovis, and "Candidatus Neoehrlichia mikurensis"), which are pathogenic to humans and/or animals, were identified from tick samples by phylogenetic analyzes of the rrs and groEL gene sequences. Interestingly, the cluster 1 strains were first identified in Asian, and a novel cluster was also detected in this study. These data revealed the genetic diversity of Anaplasmataceae bacteria circulating in ticks in Harbin area, highlighting the need to investigate these tick-borne pathogens and their risks to human and animal health.
Collapse
Affiliation(s)
- Jing Sun
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong Province, China
| | - Hong Liu
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong Province, China
| | - Xin-Yan Yao
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong Province, China
| | - Yu-Qian Zhang
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong Province, China
| | - Zhi-Hang Lv
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong Province, China
| | - Jian-Wei Shao
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong Province, China.
| |
Collapse
|
6
|
Socarras KM, Haslund-Gourley BS, Cramer NA, Comunale MA, Marconi RT, Ehrlich GD. Large-Scale Sequencing of Borreliaceae for the Construction of Pan-Genomic-Based Diagnostics. Genes (Basel) 2022; 13:1604. [PMID: 36140772 PMCID: PMC9498496 DOI: 10.3390/genes13091604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
The acceleration of climate change has been associated with an alarming increase in the prevalence and geographic range of tick-borne diseases (TBD), many of which have severe and long-lasting effects-particularly when treatment is delayed principally due to inadequate diagnostics and lack of physician suspicion. Moreover, there is a paucity of treatment options for many TBDs that are complicated by diagnostic limitations for correctly identifying the offending pathogens. This review will focus on the biology, disease pathology, and detection methodologies used for the Borreliaceae family which includes the Lyme disease agent Borreliella burgdorferi. Previous work revealed that Borreliaceae genomes differ from most bacteria in that they are composed of large numbers of replicons, both linear and circular, with the main chromosome being the linear with telomeric-like termini. While these findings are novel, additional gene-specific analyses of each class of these multiple replicons are needed to better understand their respective roles in metabolism and pathogenesis of these enigmatic spirochetes. Historically, such studies were challenging due to a dearth of both analytic tools and a sufficient number of high-fidelity genomes among the various taxa within this family as a whole to provide for discriminative and functional genomic studies. Recent advances in long-read whole-genome sequencing, comparative genomics, and machine-learning have provided the tools to better understand the fundamental biology and phylogeny of these genomically-complex pathogens while also providing the data for the development of improved diagnostics and therapeutics.
Collapse
Affiliation(s)
- Kayla M. Socarras
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Benjamin S. Haslund-Gourley
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Nicholas A. Cramer
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, 1112 East Clay Street, Room 101 Health Sciences Research Building, Richmond, VA 23298, USA
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Mary Ann Comunale
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Richard T. Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, 1112 East Clay Street, Room 101 Health Sciences Research Building, Richmond, VA 23298, USA
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Garth D. Ehrlich
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, 1112 East Clay Street, Room 101 Health Sciences Research Building, Richmond, VA 23298, USA
- Center for Surgical Infections and Biofilms, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
7
|
Guo J, Song S, Cao S, Sun Z, Zhou Q, Deng X, Zhao T, Chai Y, Zhu D, Chen C, Baryshnikov PI, Blair HT, Wang Z, Wang Y, Zhang H. Molecular Detection of Zoonotic and Veterinary Pathogenic Bacteria in Pet Dogs and Their Parasitizing Ticks in Junggar Basin, North-Western China. Front Vet Sci 2022; 9:895140. [PMID: 35898544 PMCID: PMC9311330 DOI: 10.3389/fvets.2022.895140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the recognized epidemiological importance of ticks as vectors for pathogens that cause numerous zoonotic and veterinary diseases, data regarding the pathogens of pet dogs and their parasitic ticks in the Junggar Basin are scarce. In this study, a total of 178 blood samples and 436 parasitic ticks were collected from pet dogs in Junggar Basin, Xinjiang Uygur Autonomous Region (XUAR), north-western China. All ticks were identified as Rhipicephalus turanicus sensu stricto (s.s.) according to morphological and molecular characteristics. Rh. turanicus s.s. ticks were collected from pet dogs in China for the first time. Seven tick-borne pathogens, such as Ehrlichia chaffeensis, Anaplasma phagocytophilum, Rickettsia massiliae, Candidatus R. barbariae, Brucella spp., Rickettsia sibirica, and Anaplasma ovis, were detected from ticks, whereas the first five bacteria were detected from blood samples of dogs. Brucella spp. was the most predominant pathogen in both blood samples and ticks of pet dogs, with the detection rates of 16.29 and 16.74%, respectively. Moreover, 17 ticks and 1 blood sample were co-infected with two pathogens, and 1 tick was co-infected with three pathogens. This study provided molecular evidence for the occurrence of Anaplasma spp., Ehrlichia spp., Rickettsia spp., and Brucella spp. circulating in pet dogs and their parasitic ticks in Junggar Basin, north-western China. These findings extend our knowledge of the tick-borne pathogens in pet dogs and their parasitic ticks in Central Asia; therefore, further research on these pathogens and their role in human and animal diseases is required.
Collapse
Affiliation(s)
- Jia Guo
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Shengnan Song
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Shuzhu Cao
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Zhihua Sun
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Qiyue Zhou
- College of Pharmacy, Shihezi University, Shihezi, China
| | - Xingmei Deng
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Tianyi Zhao
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yingjin Chai
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Dexin Zhu
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Chuangfu Chen
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - P. I. Baryshnikov
- College of Veterinary, Altai National Agricultural University, Barnaul, Russia
| | - Hugh T. Blair
- International Sheep Research Center, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Zhen Wang
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- *Correspondence: Zhen Wang
| | - Yuanzhi Wang
- School of Medicine, Shihezi University, Shihezi, China
- Yuanzhi Wang
| | - Hui Zhang
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Hui Zhang
| |
Collapse
|
8
|
Trevisan G, Cinco M, Trevisini S, di Meo N, Chersi K, Ruscio M, Forgione P, Bonin S. Borreliae Part 1: Borrelia Lyme Group and Echidna-Reptile Group. BIOLOGY 2021; 10:biology10101036. [PMID: 34681134 PMCID: PMC8533607 DOI: 10.3390/biology10101036] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 12/17/2022]
Abstract
Simple Summary Borreliae are spirochaetes, which represent a heterogeneous phylum within bacteria. Spirochaetes are indeed distinguished from other bacteria for their spiral shape, which also characterizes Borreliae. This review describes briefly the organization of the phylum Spirocheteales with a digression about its pathogenicity and historical information about bacteria isolation and characterization. Among spirochaetes, Borrelia genus is here divided into three groups, namely the Lyme group (LG), the Echidna-Reptile group (REPG) and the Relapsing Fever group (RFG). Borreliae Part 1 deals with Lyme group and Echidna-Reptile group Borreliae, while the subject of Borreliae Part 2 is Relapsing Fever group and unclassified Borreliae. Lyme group Borreliae is organized here in sections describing ecology, namely tick vectors and animal hosts, epidemiology, microbiology, and Borrelia genome organization and antigen characterization. Furthermore, the main clinical manifestations in Lyme borreliosis are also described. Although included in the Lyme group due to their particular clinical features, Borrelia causing Baggio Yoshinari syndrome and Borrelia mayonii are described in dedicated paragraphs. The Borrelia Echidna-Reptile group has been recently characterized including spirochaetes that apparently are not pathogenic to humans, but infect reptiles and amphibians. The paragraph dedicated to this group of Borreliae describes their vectors, hosts, geographical distribution and their characteristics. Abstract Borreliae are divided into three groups, namely the Lyme group (LG), the Echidna-Reptile group (REPG) and the Relapsing Fever group (RFG). Currently, only Borrelia of the Lyme and RF groups (not all) cause infection in humans. Borreliae of the Echidna-Reptile group represent a new monophyletic group of spirochaetes, which infect amphibians and reptiles. In addition to a general description of the phylum Spirochaetales, including a brief historical digression on spirochaetosis, in the present review Borreliae of Lyme and Echidna-Reptile groups are described, discussing the ecology with vectors and hosts as well as microbiological features and molecular characterization. Furthermore, differences between LG and RFG are discussed with respect to the clinical manifestations. In humans, LG Borreliae are organotropic and cause erythema migrans in the early phase of the disease, while RFG Borreliae give high spirochaetemia with fever, without the development of erythema migrans. With respect of LG Borreliae, recently Borrelia mayonii, with intermediate characteristics between LG and RFG, has been identified. As part of the LG, it gives erythema migrans but also high spirochaetemia with fever. Hard ticks are vectors for both LG and REPG groups, but in LG they are mostly Ixodes sp. ticks, while in REPG vectors do not belong to that genus.
Collapse
Affiliation(s)
- Giusto Trevisan
- DSM—Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (G.T.); (N.d.M.)
| | - Marina Cinco
- DSV—Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Sara Trevisini
- ASUGI—Azienda Sanitaria Universitaria Giuliano Isontina, 34129 Trieste, Italy; (S.T.); (K.C.); (M.R.)
| | - Nicola di Meo
- DSM—Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (G.T.); (N.d.M.)
- ASUGI—Azienda Sanitaria Universitaria Giuliano Isontina, 34129 Trieste, Italy; (S.T.); (K.C.); (M.R.)
| | - Karin Chersi
- ASUGI—Azienda Sanitaria Universitaria Giuliano Isontina, 34129 Trieste, Italy; (S.T.); (K.C.); (M.R.)
| | - Maurizio Ruscio
- ASUGI—Azienda Sanitaria Universitaria Giuliano Isontina, 34129 Trieste, Italy; (S.T.); (K.C.); (M.R.)
| | - Patrizia Forgione
- UOSD Dermatologia, Centro Rif. Regionale Malattia di Hansen e Lyme, P.O. dei Pellegrini, ASL Napoli 1 Centro, 80145 Naples, Italy;
| | - Serena Bonin
- DSM—Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (G.T.); (N.d.M.)
- Correspondence: ; Tel.: +39-040-3993266
| |
Collapse
|
9
|
Pascal C, Arquembourg J, Vorilhon P, Lesens O. Emergence of Lyme disease as a social problem: analysis of discourse using the media content. Eur J Public Health 2021; 30:504-510. [PMID: 31688903 DOI: 10.1093/eurpub/ckz198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Chronic Lyme disease (LD) is a matter of debate worldwide and has emerged as a social problem. We aim to analyze the media content and describe the transformation process of a collective pain into a social problem in France. METHODS Using social science methodology, a corpus of articles from 20 newspapers and videos from seven major TV stations from 1987 to 2017 were analyzed for discourse content. The speaking times and the frequency of interventions between doctors supporting the official guidelines and those against them were compared using the Mann-Whitney test and the Chi-square test, respectively. RESULTS In France, the media discourse is carried through testimonials from patient organizations and a professor of infectiology who acted as a whistleblower (WB). We showed that the emergence of the LD alert in the media corresponds to the process described by social sciences as 'naming, blaming, claiming'. Since his first article in 2014, the WB has featured in 24% (22/89) of newspaper articles compared with 20% (18/89) for doctors defending the official guidelines (P = 0.52). Since his first appearance on a TV newscast in 2014, the WB has appeared in 45% (22/49) of news reports on LD with 24% of the speaking time compared with 22% (11/49) for doctors defending the official guidelines (P = 0.018). CONCLUSIONS Media coverage of LD has been unbalanced since 2014 and promotes associations as well as the WB, who seems to be better identified than any of the different doctors defending the official guidelines.
Collapse
Affiliation(s)
- Clélia Pascal
- Infectious and Tropical Diseases Department, CRIOA, CHU Clermont-Ferrand, Clermont-Ferrand, France.,UMR CNRS 6023, Laboratoire Microorganismes: Génome Environnement (LMGE), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jocelyne Arquembourg
- Sciences de l'Information et de la Communication, Université Sorbonne Nouvelle - Paris3, Paris, France
| | - Philippe Vorilhon
- Department of General Practice, Institut Pascal, CNRS, SIGMA Clermont, Clermont Auvergne University, Clermont-Ferrand, France
| | - Olivier Lesens
- Infectious and Tropical Diseases Department, CRIOA, CHU Clermont-Ferrand, Clermont-Ferrand, France.,UMR CNRS 6023, Laboratoire Microorganismes: Génome Environnement (LMGE), Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
10
|
Wei W, Li J, Wang YW, Jiang BG, Liu HB, Wei R, Jiang RR, Cui XM, Li LF, Yuan TT, Wang Q, Zhao L, Xia LY, Jiang JF, Qiu YF, Jia N, Cao WC, Hu YL. Anaplasma platys-Like Infection in Goats, Beijing, China. Vector Borne Zoonotic Dis 2020; 20:755-762. [PMID: 32679008 DOI: 10.1089/vbz.2019.2597] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
As one of the important tick-borne zoonotic pathogens, Anaplasma has both veterinary and public health significance. Here, we performed a survey of Anaplasma infection in the goats from a farm in Beijing, China, and found 44.6% (41/92) were infected with Anaplasma capra, and 22.8% (21/92) were infected with Anaplasma sp. This Anaplasma sp. bacterium was close to a recently emerging Anaplasma platys strain based on gltA and groEL gene phylogenetic analysis. As to further understand the characteristics of Anaplasma sp., we raised a couple of positive goats (n = 2) in the laboratory with tick-free settings. We observed inappetence, vomiting, high fever, and weakness of limbs in the goat's offspring (n = 3). In addition, the blood samples from all offspring were all positive of this Anaplasma spp. We did not see any intracellular morulae in neutrophils, monocytes, and erythrocytes, but we identified some in the platelets of the blood smears from the positive goats by light microscopy. We named it A. platys-like and suggested it may infect platelets and be transmitted vertically through the placenta of goats. These findings deserve further evaluation.
Collapse
Affiliation(s)
- Wei Wei
- Life Sciences Institute, Guangxi Medical University, Nanning, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jie Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ya-Wei Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Bao-Gui Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hong-Bo Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,Center for Disease Control and Prevention of PLA, Beijing, China
| | - Ran Wei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Rui-Ruo Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,Institute of NBC Defense, Yangfang, Beijing, China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lian-Feng Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,School of Information and Management, Guangxi Medical University, Nanning, China
| | - Ting-Ting Yuan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai, China
| | - Qian Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lin Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Luo-Yuan Xia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ye-Feng Qiu
- Laboratory Animal Center, Academy of Military Medical Sciences, Beijing, China
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wu-Chun Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yan-Ling Hu
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| |
Collapse
|
11
|
Relationships Between the Spread of Pathogens and the Migratory Connectivity of European Wild Birds. FOLIA VETERINARIA 2020. [DOI: 10.2478/fv-2020-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Among emerging infectious diseases, 75 % are zoonotic. Migratory birds are important to public health because they carry emerging zoonotic pathogens or infected arthropod vectors. Disease is an important factor in the evolution of avian migrations and patterns of migratory connectivity. Research suggests that pathogen densities and diseases may influence the evolution of migratory behaviour. During the annual life cycle, European migratory birds spend: 2—4 months at the breeding locality, approximately 6 months on the wintering grounds, and several months (3 and more) on migration routes. There are many factors which determine when and where an outbreak of a disease may occur. Therefore, a complete understanding of the avian migratory systems has a high priority in the prevention of future outbreaks.
Collapse
|
12
|
Serra V, Krey V, Daschkin C, Cafiso A, Sassera D, Maxeiner HG, Modeo L, Nicolaus C, Bandi C, Bazzocchi C. Seropositivity to Midichloria mitochondrii (order Rickettsiales) as a marker to determine the exposure of humans to tick bite. Pathog Glob Health 2019; 113:167-172. [PMID: 31397213 DOI: 10.1080/20477724.2019.1651568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ixodes ricinus is the most common tick species parasitizing humans in Europe, and the main vector of Borrelia burgdorferi sensu lato, the causative agent of Lyme disease in the continent. This tick species also harbors the endosymbiont Midichloria mitochondrii, and there is strong evidence that this bacterium is inoculated into the vertebrate host during the blood meal. A high proportion of tick bites remains unnoticed due to rarity of immediate symptoms, implying the risk of occult tick-borne infections in turn a potential risk factor for the onset of chronic-degenerative diseases. Since suitable tools to determine the previous exposure to I. ricinus bites are needed, this work investigated whether seropositivity toward a protein of M. mitochondrii (rFliD) could represent a marker for diagnosis of I. ricinus bite. We screened 274 sera collected from patients from several European countries, at different risk of tick bite, using an ELISA protocol. Our results show a clear trend indicating that positivity to rFliD is higher where the tick bite can be regarded as certain/almost certain, and lower where there is an uncertainty on the bite, with the highest positivity in Lyme patients (47.30%) and the lowest (2.00%) in negative controls. According to the obtained results, M. mitochondrii can be regarded as a useful source of antigens, with the potential to be used to assess the exposure to ticks harboring this bacterium. In prospect, additional antigens from M. mitochondrii and tick salivary glands should be investigated and incorporated in a multi-antigen test for tick bite diagnosis.
Collapse
Affiliation(s)
- Valentina Serra
- Department of Veterinary Medicine, University of Milan , Milan , Italy
| | - Viktoria Krey
- BCA-research, BCA-clinic Betriebs GmbH & Co. KG , Augsburg , Germany
| | - Christina Daschkin
- BCA-research, BCA-clinic Betriebs GmbH & Co. KG , Augsburg , Germany.,CRELUX GmbH - a WuXi AppTec company , Martinsried , Germany
| | - Alessandra Cafiso
- Department of Veterinary Medicine, University of Milan , Milan , Italy
| | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia , Pavia , Italy
| | - Horst-Günter Maxeiner
- Department of Laboratory Medicine, St. Gertrauden Khs, Teaching Hospital of the Charite , Berlin , Germany
| | - Letizia Modeo
- Department of Biology, University of Pisa , Pisa , Italy
| | - Carsten Nicolaus
- BCA-research, BCA-clinic Betriebs GmbH & Co. KG , Augsburg , Germany
| | - Claudio Bandi
- Department of Biosciences, University of Milan , Milan , Italy.,Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan , Milan , Italy
| | - Chiara Bazzocchi
- Department of Veterinary Medicine, University of Milan , Milan , Italy.,Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan , Milan , Italy.,Coordinated Research Center "EpiSoMI", University of Milan , Milan , Italy
| |
Collapse
|
13
|
Guo WP, Huang B, Zhao Q, Xu G, Liu B, Wang YH, Zhou EM. Human-pathogenic Anaplasma spp., and Rickettsia spp. in animals in Xi'an, China. PLoS Negl Trop Dis 2018; 12:e0006916. [PMID: 30419024 PMCID: PMC6258427 DOI: 10.1371/journal.pntd.0006916] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/26/2018] [Accepted: 10/10/2018] [Indexed: 01/07/2023] Open
Abstract
In China, thirteen species of tick-borne rickettsiales bacteria pathogenic to human have been reported in ticks and host animals, and human patients caused by them also has been identified. However, investigation for rickettsiales bacteria circulating in Xi'an wasn't performed although diseases resembling human diseases caused by these organisms have been found. In this study, domestic animals and ticks in Xi'an, China, were tested for the presence of rickettsiales bacteria pathogenic to humans. Besides A. ovis, a high prevalence of A. capra was observed suggesting a high public health risk exists. In addition, two novel Anaplasma species closely related to A. phagocytophilum were identified and formed distinct lineages in the phylogenetic trees, with more than 98.3% identities for rrs gene, while divergences up to 20.2% and 37.0% for groEL and gltA genes, respectively. Both of these two novel Anaplasma species were found to circulate in goats and further assessment of their pathogenicity is needed. Ca. R. jingxinensis, with potential pathogenicity, was also detected in H. longicomis ticks with high prevalence. However, other causative agents were not identified although they were distributed in other areas of China.
Collapse
Affiliation(s)
- Wen-Ping Guo
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Baicheng Huang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Gang Xu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Baoyuan Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yi-Han Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, China
| |
Collapse
|
14
|
Yang J, Liu Z, Niu Q, Liu J, Han R, Guan G, Hassan MA, Liu G, Luo J, Yin H. A novel zoonotic Anaplasma species is prevalent in small ruminants: potential public health implications. Parasit Vectors 2017; 10:264. [PMID: 28558749 PMCID: PMC5450374 DOI: 10.1186/s13071-017-2182-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/09/2017] [Indexed: 12/02/2022] Open
Abstract
Background Tick-borne diseases currently represent an important issue for global health. A number of emerging tick-transmitted microbes continue to be discovered, and some of these are already identified as the cause of human infections. Over the past two decades, Anaplasma phagocytophilum is considered to be mainly responsible for human anaplasmosis. However, a novel zoonotic pathogen provisionally named “Anaplasma capra” has recently been identified in China. In this study, we did an active surveillance of A. capra in goats and sheep in different geographical regions of China. Methods The presence of A. capra was determined by nested PCR in 547 blood samples collected from goats and sheep from 24 counties distributed in 12 provinces in China. The molecular characterization of A. capra isolates in sheep and goats was achieved based on four conventional genetic markers (16S rRNA, gltA, groEL and msp4 genes). Results Anaplasma capra was identified in 75 of 547 animals, with an overall prevalence of 13.7%. The infection rates in the survey sites ranged from 0 to 78.6%, and were significantly different (P < 0.01). Phylogenetic analysis revealed that the isolates obtained from goats, sheep, Ixodes persulcatus ticks and humans create a separate clade within the genus Anaplasma and distinct from other recognized Anaplasma species. These findings indicated that these A. capra isolates possess the same molecular characteristics, suggesting that this organism could be a substantial health threat to both animals and humans. Conclusions Anaplasma capra is an emerging tick-transmitted zoonotic pathogen. This novel Anaplasna species is widespread across China with an overall prevalence of 13.7% in goats and sheep with isolates indistinguishable from those found in humans. These findings warrant increased public health awareness for human anaplasmosis.
Collapse
Affiliation(s)
- Jifei Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Zhijie Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Qingli Niu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Junlong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Rong Han
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Muhammad Adeel Hassan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Guangyuan Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
15
|
Hamšíková Z, Coipan C, Mahríková L, Minichová L, Sprong H, Kazimírová M. Borrelia miyamotoi and Co-Infection with Borrelia afzelii in Ixodes ricinus Ticks and Rodents from Slovakia. MICROBIAL ECOLOGY 2017; 73:1000-1008. [PMID: 27995301 DOI: 10.1007/s00248-016-0918-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/12/2016] [Indexed: 06/06/2023]
Abstract
Borrelia miyamotoi causes relapsing fever in humans. The occurrence of this spirochete has been reported in Ixodes ricinus and wildlife, but there are still gaps in the knowledge of its eco-epidemiology and public health impact. In the current study, questing I. ricinus (nymphs and adults) and skin biopsies from rodents captured in Slovakia were screened for the presence of B. miyamotoi and Borrelia burgdorferi s.l. DNA. The prevalence of B. miyamotoi and B. burgdorferi s.l. in questing ticks was 1.7 and 16.9%, respectively. B. miyamotoi was detected in Apodemus flavicollis (9.3%) and Myodes glareolus (4.4%). In contrast, B. burgdorferi s.l. was identified in 11.9% of rodents, with the highest prevalence in Microtus arvalis (68.4%) and a lower prevalence in Apodemus spp. (8.4%) and M. glareolus (12.4%). Borrelia afzelii was the prevailing genospecies infecting questing I. ricinus (37.9%) and rodents (72.2%). Co-infections of B. miyamotoi and B. burgdorferi s.l. were found in 24.1 and 9.3% of the questing ticks and rodents, respectively, whereas the proportion of ticks and rodents co-infected with B. miyamotoi and B. afzelii was 6.9 and 7.0%, respectively. The results suggest that B. miyamotoi and B. afzelii share amplifying hosts. The sequences of the B. miyamotoi glpQ gene fragment from our study showed a high degree of identity with sequences of the gene amplified from ticks and human patients in Europe. The results seem to suggest that humans in Slovakia are at risk of contracting tick-borne relapsing fever, and in some cases together with Lyme borreliosis.
Collapse
Affiliation(s)
- Zuzana Hamšíková
- Slovak Academy of Sciences, Institute of Zoology, Dúbravská cesta 9, 84506, Bratislava, Slovakia
| | - Claudia Coipan
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and Environment, 9 Antonie van Leeuwenhoeklaan, P.O. Box 1, Bilthoven, The Netherlands
| | - Lenka Mahríková
- Slovak Academy of Sciences, Institute of Zoology, Dúbravská cesta 9, 84506, Bratislava, Slovakia
| | - Lenka Minichová
- Biomedical Research Center, Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 84505, Bratislava, Slovakia
| | - Hein Sprong
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and Environment, 9 Antonie van Leeuwenhoeklaan, P.O. Box 1, Bilthoven, The Netherlands
| | - Mária Kazimírová
- Slovak Academy of Sciences, Institute of Zoology, Dúbravská cesta 9, 84506, Bratislava, Slovakia.
| |
Collapse
|
16
|
Beaujean DJMA, Gassner F, Wong A, Steenbergen JE, Crutzen R, Ruwaard D. Education on tick bite and Lyme borreliosis prevention, aimed at schoolchildren in the Netherlands: comparing the effects of an online educational video game versus a leaflet or no intervention. BMC Public Health 2016; 16:1163. [PMID: 27852247 PMCID: PMC5112636 DOI: 10.1186/s12889-016-3811-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 11/02/2016] [Indexed: 11/23/2022] Open
Abstract
Background Lyme disease or Lyme borreliosis (LB) is the most common tick-borne disease both in the United States and Europe. Children, in particular, are at high risk of contracting LB. Since child-specific educational tools on ticks, tick bites and LB are lacking, we developed an online educational video game. In this study, we compared the effectiveness of an online educational video game versus a newly developed leaflet aimed to improve prevention of tick bites and LB among Dutch schoolchildren. Methods A total of 887 children, aged 9–13 years and attending the two final years of primary schooling, were recruited from 25 primary schools in June and July 2012. They were assigned through cluster randomization to one of three intervention groups: ‘game’ (22.4%), ‘leaflet’ (35.6%) or ‘control’ (41.9%). Prior to and directly following intervention, the children were asked to complete a short questionnaire. The main outcome measures were knowledge, perception (perceived susceptibility and importance) and preventive behavior in relation to tick bites and LB. Generalized linear mixed models were used to analyze the data. Results In the game group, the leaflet group and the control group, knowledge about ticks and tick bites improved significantly. The game was also an effective tool for improving preventive behavior; the frequency of checking for ticks increased significantly. However, there were no significant differences in knowledge improvement between the interventions. The game outperformed the leaflet in terms of improving preventive behavior, whereas the frequency of tick checks increased significantly. But this frequency didn’t increase more than in the control group. Conclusions The positive knowledge effects observed in the control group suggests the presence of a mere measurement effect related to completion of the questionnaire. The game did not outperform the leaflet or control group on all outcome measures. Therefore, the game may be of value as a complementary role, in addition to other media, in child-specific public health education programs on ticks and LB. This trial was retrospectively registered on October 21, 2016 (trial registration number: ISRCTN15142369). Electronic supplementary material The online version of this article (doi:10.1186/s12889-016-3811-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- D J M A Beaujean
- National Institute for Public Health and the Environment, Centre for Infectious Disease Control, P.O. Box 1, 3720, BA, Bilthoven, The Netherlands.
| | - F Gassner
- National Institute for Public Health and the Environment, Centre for Infectious Disease Control, P.O. Box 1, 3720, BA, Bilthoven, The Netherlands
| | - A Wong
- Department of Statistics, Informatics and Mathematical Modeling, National Institute for Public Health and the Environment, P.O. Box 1, 3720, BA, Bilthoven, The Netherlands
| | - J E Steenbergen
- National Institute for Public Health and the Environment, Centre for Infectious Disease Control, P.O. Box 1, 3720, BA, Bilthoven, The Netherlands.,Department of Infectious Diseases, Leiden University Medical Center, P.O. Box 9600, 2300, Leiden, The Netherlands
| | - R Crutzen
- Department of Health Promotion, Faculty of Health, Medicine and Life Sciences, CAPHRI School for Public Health and Primary Care, Maastricht University, P.O. Box 616, 6200, Maastricht, MD, The Netherlands
| | - D Ruwaard
- Department of Health Services Research, Faculty of Health, Medicine and Life Sciences, CAPHRI School for Public Health and Primary Care, Maastricht University, P.O. Box 616, 6200, Maastricht, MD, The Netherlands
| |
Collapse
|
17
|
Vayssier-Taussat M, Kazimirova M, Hubalek Z, Hornok S, Farkas R, Cosson JF, Bonnet S, Vourch G, Gasqui P, Mihalca AD, Plantard O, Silaghi C, Cutler S, Rizzoli A. Emerging horizons for tick-borne pathogens: from the 'one pathogen-one disease' vision to the pathobiome paradigm. Future Microbiol 2015; 10:2033-43. [PMID: 26610021 DOI: 10.2217/fmb.15.114] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ticks, as vectors of several notorious zoonotic pathogens, represent an important and increasing threat for human and animal health in Europe. Recent applications of new technology revealed the complexity of the tick microbiome, which may affect its vectorial capacity. Appreciation of these complex systems is expanding our understanding of tick-borne pathogens, leading us to evolve a more integrated view that embraces the 'pathobiome'; the pathogenic agent integrated within its abiotic and biotic environments. In this review, we will explore how this new vision will revolutionize our understanding of tick-borne diseases. We will discuss the implications in terms of future research approaches that will enable us to efficiently prevent and control the threat posed by ticks.
Collapse
Affiliation(s)
| | - Maria Kazimirova
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zdenek Hubalek
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic
| | - Sándor Hornok
- Department of Parasitology & Zoology, Faculty of Veterinary Science, Szent István University, Budapest, Hungary
| | - Robert Farkas
- Department of Parasitology & Zoology, Faculty of Veterinary Science, Szent István University, Budapest, Hungary
| | | | - Sarah Bonnet
- INRA, UMR BIPAR, INRA, ANSES, ENVA Maisons-Alfort, France
| | - Gwenaël Vourch
- INRA, UR 346 Epidémiologie Animale, Saint Genès Champanelle, France
| | - Patrick Gasqui
- INRA, UR 346 Epidémiologie Animale, Saint Genès Champanelle, France
| | - Andrei Daniel Mihalca
- University of Agricultural Sciences & Veterinary Medicine Cluj-Napoca, Department of Parasitology & Parasitic Diseases, Cluj-Napoca, Romania
| | | | - Cornelia Silaghi
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse-Faculty, University of Zurich, Zürich, Switzerland
| | - Sally Cutler
- University of East London, School of Health, Sport & Bioscience, London, UK
| | - Annapaola Rizzoli
- Fondazione Edmund Mach, Research & Innovation Centre, San Michele all'Adige, Trento, Italy
| |
Collapse
|
18
|
Ixodes ricinus and Its Endosymbiont Midichloria mitochondrii: A Comparative Proteomic Analysis of Salivary Glands and Ovaries. PLoS One 2015; 10:e0138842. [PMID: 26398775 PMCID: PMC4580635 DOI: 10.1371/journal.pone.0138842] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/03/2015] [Indexed: 01/21/2023] Open
Abstract
Hard ticks are hematophagous arthropods that act as vectors of numerous pathogenic microorganisms of high relevance in human and veterinary medicine. Ixodes ricinus is one of the most important tick species in Europe, due to its role of vector of pathogenic bacteria such as Borrelia burgdorferi and Anaplasma phagocytophilum, of viruses such as tick borne encephalitis virus and of protozoans as Babesia spp. In addition to these pathogens, I. ricinus harbors a symbiotic bacterium, Midichloria mitochondrii. This is the dominant bacteria associated to I. ricinus, but its biological role is not yet understood. Most M. mitochondrii symbionts are localized in the tick ovaries, and they are transmitted to the progeny. M. mitochondrii bacteria have however also been detected in the salivary glands and saliva of I. ricinus, as well as in the blood of vertebrate hosts of the tick, prompting the hypothesis of an infectious role of this bacterium. To investigate, from a proteomic point of view, the tick I. ricinus and its symbiont, we generated the protein profile of the ovary tissue (OT) and of salivary glands (SG) of adult females of this tick species. To compare the OT and SG profiles, 2-DE profiling followed by LC-MS/MS protein identification were performed. We detected 21 spots showing significant differences in the relative abundance between the OT and SG, ten of which showed 4- to 18-fold increase/decrease in density. This work allowed to establish a method to characterize the proteome of I. ricinus, and to detect multiple proteins that exhibit a differential expression profile in OT and SG. Additionally, we were able to use an immunoproteomic approach to detect a protein from the symbiont. Finally, the method here developed will pave the way for future studies on the proteomics of I. ricinus, with the goals of better understanding the biology of this vector and of its symbiont M. mitochondrii.
Collapse
|
19
|
Affiliation(s)
- Christian Perronne
- AP-HP, hôpitaux universitaires Paris-Île-de-France Ouest, University of Versailles Saint-Quentin, département d'infectiologie, 92380 Garches, France.
| |
Collapse
|
20
|
Kolb P, Vorreiter J, Habicht J, Bentrop D, Wallich R, Nassal M. Soluble cysteine-rich tick saliva proteins Salp15 and Iric-1 from E. coli. FEBS Open Bio 2014; 5:42-55. [PMID: 25628987 PMCID: PMC4305620 DOI: 10.1016/j.fob.2014.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 12/19/2014] [Accepted: 12/19/2014] [Indexed: 01/11/2023] Open
Abstract
Tick saliva proteins Salp15 and Iric-1 promote tick feeding and pathogen transmission. We established the first bacterial expression system for soluble Salp15 and Iric-1. Using this system we mapped monoclonal antibody epitopes on Salp15 and Iric-1. We defined the interaction sites with Borrelia outer surface protein C (OspC). We elucidated first secondary structure features in Iric-1 by NMR.
Ticks transmit numerous pathogens, including borreliae, which cause Lyme disease. Tick saliva contains a complex mix of anti-host defense factors, including the immunosuppressive cysteine-rich secretory glycoprotein Salp15 from Ixodes scapularis ticks and orthologs like Iric-1 from Ixodesricinus. All tick-borne microbes benefit from the immunosuppression at the tick bite site; in addition, borreliae exploit the binding of Salp15 to their outer surface protein C (OspC) for enhanced transmission. Hence, Salp15 proteins are attractive targets for anti-tick vaccines that also target borreliae. However, recombinant Salp proteins are not accessible in sufficient quantity for either vaccine manufacturing or for structural characterization. As an alternative to low-yield eukaryotic systems, we investigated cytoplasmic expression in Escherichia coli, even though this would not result in glycosylation. His-tagged Salp15 was efficiently expressed but insoluble. Among the various solubility-enhancing protein tags tested, DsbA was superior, yielding milligram amounts of soluble, monomeric Salp15 and Iric-1 fusions. Easily accessible mutants enabled epitope mapping of two monoclonal antibodies that, importantly, cross-react with glycosylated Salp15, and revealed interaction sites with OspC. Free Salp15 and Iric-1 from protease-cleavable fusions, despite limited solubility, allowed the recording of 1H–15N 2D NMR spectra, suggesting partial folding of the wild-type proteins but not of Cys-free variants. Fusion to the NMR-compatible GB1 domain sufficiently enhanced solubility to reveal first secondary structure elements in 13C/15N double-labeled Iric-1. Together, E. coli expression of appropriately fused Salp15 proteins may be highly valuable for the molecular characterization of the function and eventually the 3D structure of these medically relevant tick proteins.
Collapse
Affiliation(s)
- Philipp Kolb
- University Hospital Freiburg, Internal Medicine 2/Molecular Biology, Hugstetter Str. 55, D-79106 Freiburg, Germany ; University of Freiburg, Biological Faculty, Schänzlestr. 1, D-79104 Freiburg, Germany
| | - Jolanta Vorreiter
- University Hospital Freiburg, Internal Medicine 2/Molecular Biology, Hugstetter Str. 55, D-79106 Freiburg, Germany
| | - Jüri Habicht
- University Hospital Heidelberg, Institute of Immunology, Im Neuenheimer Feld 305, D-69120 Heidelberg, Germany
| | - Detlef Bentrop
- University of Freiburg, Institute of Physiology, Hermann-Herder-Str. 7, D-79104 Freiburg, Germany
| | - Reinhard Wallich
- University Hospital Heidelberg, Institute of Immunology, Im Neuenheimer Feld 305, D-69120 Heidelberg, Germany
| | - Michael Nassal
- University Hospital Freiburg, Internal Medicine 2/Molecular Biology, Hugstetter Str. 55, D-79106 Freiburg, Germany
| |
Collapse
|
21
|
Borgermans L, Goderis G, Vandevoorde J, Devroey D. Relevance of chronic lyme disease to family medicine as a complex multidimensional chronic disease construct: a systematic review. INTERNATIONAL JOURNAL OF FAMILY MEDICINE 2014; 2014:138016. [PMID: 25506429 PMCID: PMC4258916 DOI: 10.1155/2014/138016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 11/12/2014] [Indexed: 06/04/2023]
Abstract
Lyme disease has become a global public health problem and a prototype of an emerging infection. Both treatment-refractory infection and symptoms that are related to Borrelia burgdorferi infection remain subject to controversy. Because of the absence of solid evidence on prevalence, causes, diagnostic criteria, tools and treatment options, the role of autoimmunity to residual or persisting antigens, and the role of a toxin or other bacterial-associated products that are responsible for the symptoms and signs, chronic Lyme disease (CLD) remains a relatively poorly understood chronic disease construct. The role and performance of family medicine in the detection, integrative treatment, and follow-up of CLD are not well studied either. The purpose of this paper is to describe insights into the complexity of CLD as a multidimensional chronic disease construct and its relevance to family medicine by means of a systematic literature review.
Collapse
Affiliation(s)
- Liesbeth Borgermans
- Department of Family Medicine & Chronic Care, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Geert Goderis
- Department of General Practice and University Hospitals Leuven, Katholieke Universiteit Leuven (KUL), Kapucijnenvoer 33, 3000 Leuven, Belgium
| | - Jan Vandevoorde
- Department of Family Medicine & Chronic Care, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Dirk Devroey
- Department of Family Medicine & Chronic Care, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| |
Collapse
|