1
|
Ilbeigi K, Mabille D, Matheeussen A, Hendrickx R, Claes M, Van Reet N, Anthonissen R, Hulpia F, Lin C, Maes L, Regnault C, Whitfield P, Roy R, Ungogo MA, Sterckx YGJ, De Winter H, Mertens B, Bundschuh M, De Koning HP, Van Calenbergh S, Caljon G. Discovery and Development of an Advanced Lead for the Treatment of African Trypanosomiasis. ACS Infect Dis 2025; 11:131-143. [PMID: 39665421 DOI: 10.1021/acsinfecdis.4c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
African trypanosomiasis is a widespread disease of human and veterinary importance caused by various Trypanosoma spp. with a globally devastating impact and a need for novel treatment options. We here provide a comprehensive preclinical evaluation of nucleoside analogues, 6-thioether-modified tubercidins, with curative activity against African trypanosomiasis. Promising hits were identified following in vitro screening against the most relevant trypanosome species. Selected hit compounds were extensively tested for in vitro metabolic stability, potency in in vivo mouse models for the various species, genotoxicity in an in vitro testing battery, and mode of action studies (i.e., genome-wide RNA interference library screening and metabolomics). Among the nucleoside analogues, analogue 3 was curative in mouse models with no indication of genotoxicity and a low ecotoxicological footprint. Mode-of-action studies revealed that P1-type nucleoside transporters and adenosine kinase are involved in the uptake and activation, respectively. Analogue 3 represents a potent, advanced lead fitting the preferred target product profile for a broad-spectrum trypanocide regardless of the causative species.
Collapse
Affiliation(s)
- Kayhan Ilbeigi
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - Dorien Mabille
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - An Matheeussen
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - Rik Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - Mathieu Claes
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - Nick Van Reet
- Protozoology Research Group, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Roel Anthonissen
- Sciensano, SD Chemical and Physical Health Risks, 1050 Brussels, Belgium
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, B-9000 Gent, Belgium
| | - Cai Lin
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, B-9000 Gent, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - Clement Regnault
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, Garscube Campus, University of Glasgow, Glasgow G61 1BD, U.K
| | - Phillip Whitfield
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, Garscube Campus, University of Glasgow, Glasgow G61 1BD, U.K
| | - Rajdeep Roy
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), 76829 Landau, Germany
| | - Marzuq A Ungogo
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, U.K
| | - Yann G-J Sterckx
- Laboratory of Medical Biochemistry (LMB), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, 2610 Wilrijk, Belgium
| | - Hans De Winter
- Laboratory of Medicinal Chemistry, Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - Birgit Mertens
- Sciensano, SD Chemical and Physical Health Risks, 1050 Brussels, Belgium
| | - Mirco Bundschuh
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), 76829 Landau, Germany
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Harry P De Koning
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, U.K
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, B-9000 Gent, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
2
|
Ungogo MA, de Koning HP. Drug resistance in animal trypanosomiases: Epidemiology, mechanisms and control strategies. Int J Parasitol Drugs Drug Resist 2024; 25:100533. [PMID: 38555795 PMCID: PMC10990905 DOI: 10.1016/j.ijpddr.2024.100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024]
Abstract
Animal trypanosomiasis (AT) is a complex of veterinary diseases known under various names such as nagana, surra, dourine and mal de caderas, depending on the country, the infecting trypanosome species and the host. AT is caused by parasites of the genus Trypanosoma, and the main species infecting domesticated animals are T. brucei brucei, T. b. rhodesiense, T. congolense, T. simiae, T. vivax, T. evansi and T. equiperdum. AT transmission, again depending on species, is through tsetse flies or common Stomoxys and tabanid flies or through copulation. Therefore, the geographical spread of all forms of AT together is not restricted to the habitat of a single vector like the tsetse fly and currently includes almost all of Africa, and most of South America and Asia. The disease is a threat to millions of companion and farm animals in these regions, creating a financial burden in the billions of dollars to developing economies as well as serious impacts on livestock rearing and food production. Despite the scale of these impacts, control of AT is neglected and under-resourced, with diagnosis and treatments being woefully inadequate and not improving for decades. As a result, neither the incidence of the disease, nor the effectiveness of treatment is documented in most endemic countries, although it is clear that there are serious issues of resistance to the few old drugs that are available. In this review we particularly look at the drugs, their application to the various forms of AT, and their mechanisms of action and resistance. We also discuss the spread of veterinary trypanocide resistance and its drivers, and highlight current and future strategies to combat it.
Collapse
Affiliation(s)
- Marzuq A Ungogo
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom; School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Harry P de Koning
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
3
|
Okello I, Nzalawahe J, Mafie E, Eastwood G. Seasonal variation in tsetse fly apparent density and Trypanosoma spp. infection rate and occurrence of drug-resistant trypanosomes in Lambwe, Kenya. Parasitol Res 2023; 123:46. [PMID: 38095710 DOI: 10.1007/s00436-023-08081-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023]
Abstract
Tsetse flies are major arthropod vectors of trypanosomes that cause debilitating African animal trypanosomiasis. The emergence of drug-resistant trypanosomes is a common problem in sub-Saharan Africa. This study aimed to identify tsetse flies' seasonal variation in apparent densities and their infection rates and the occurrence of drug-resistant trypanosomes. Tsetse flies were collected from Lambwe, Kenya, during May and September 2021. Genomic DNA was extracted from them, and the ITS1 gene was amplified to detect Trypanosoma infection with subsequent species determination. Transporter genes DMT, E6M6, TbAT/P2, and TcoAde2 were targeted to detect polymorphisms associated with drug-resistance, using sequencing and comparison to drug-sensitive trypanosome species referenced in Genbank. A total of 498 tsetse flies and 29 non-tsetse flies were collected. The apparent density of flies was higher in wet season 6.2 fly per trap per density (FTD) than in the dry season 2.3 FTD (P = 0.001), with n = 386 and n = 141 flies caught in each season, respectively. Male tsetse flies (n = 311) were more numerous than females (n = 187) (P = 0.001). Non-tsetse flies included Tabanids and Stomoxys spp. Overall, Trypanosoma infection rate in tsetse was 5% (25/498) whereby Trypanosoma vivax was 4% (11/25), Trypanosoma congolense 36% (9/25), and Trypanosoma brucei 20% (5/25) (P = 0.186 for the distribution of the species), with infections being higher in females (P = 0.019) and during the wet season (P < 0.001). Numerous polymorphisms and insertions associated with drug resistance were detected in DMT and E6M6 genes in two T. congolense isolates while some isolates lacked these genes. T. brucei lacked TbAT/P2 genes. TcoAde2 sequences in three T. congolense isolates were related to those observed in trypanosomes from cattle blood in our previous study, supporting tsetse fly involvement in transmission in the region. We report Trypanosoma associated with trypanocidal drug-resistance in tsetse flies from Lambwe, Kenya. Female tsetse flies harbored more Trypanosoma infections than males. Tsetse transmission of trypanosomes is common in Lambwe. Risk of trypanosome infection would seem higher in the wet season, when tsetse flies and Trypanosoma infections are more prevalent than during the dry season. More efforts to control animal trypanosome vectors in the region are needed, with particular focus on wet seasons.
Collapse
Affiliation(s)
- Ivy Okello
- Department of Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, Chuo Kikuu, P.O. Box 3019, Morogoro, Tanzania.
- Africa Centre of Excellence for Infectious Diseases of Humans and Animals in Eastern and Southern Africa, SACIDS Foundation for One Health, P.O. Box 3297, Morogoro, Tanzania.
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| | - Jahashi Nzalawahe
- Department of Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, Chuo Kikuu, P.O. Box 3019, Morogoro, Tanzania
| | - Eliakunda Mafie
- Department of Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, Chuo Kikuu, P.O. Box 3019, Morogoro, Tanzania
| | - Gillian Eastwood
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- The Global Change Center at Virginia Tech, Blacksburg, VA, 24061, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens (CeZAP), Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
4
|
Bemba I, Lenga A, Awono-Ambene HP, Antonio-Nkondjio C. Tsetse Flies Infected with Trypanosomes in Three Active Human African Trypanosomiasis Foci of the Republic of Congo. Pathogens 2022; 11:1275. [PMID: 36365026 PMCID: PMC9699545 DOI: 10.3390/pathogens11111275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 09/29/2024] Open
Abstract
INTRODUCTION Human African trypanosomiasis (HAT) is a neglected tropical disease still endemic in the Republic of Congo. Despite the continuous detection of HAT cases in the country, there is still not enough data on trypanosome infections in tsetse flies, trypanosome species and tsetse flies' species distribution in endemic foci. The present study was intended to fill this gap and improve understanding of trypanosome circulation in three active foci in the centre and south of Congo. METHODS Pyramid traps were set in various places in villages to collect tsetse flies both during the rainy and dry seasons. Once collected, tsetse flies were identified using morphological keys. DNA extracted from flies was processed by PCR for species identification and for detection of trypanosome presence. A second PCR was run for different trypanosome species identification. RESULTS A total of 1291 tsetse flies were collected. The average apparent density of flies per day was 0.043 in Mpouya, 0.73 in Ngabé and 2.79 in Loudima. Glossina fuscipes quazensis was the predominant tsetse fly collected in Ngabé and Mpouya, while Glossina palpalis palpalis was the only tsetse fly found in Loudima. A total of 224 (17.7%) flies were detected infected by trypanosomes; 100 (7.91%) by Trypanosoma congolense savannah, 22 (1.74%) by Trypanosoma congolense forest, 15 (1.19%) by Trypanosoma vivax, 83 (6.56%) by Trypanosoma brucei (s.l.) and 2 (0.16%) undetermined species. No T Trypanosoma brucei gambiense was found. A total of 57 co-infections between T. brucei (s.l.) and T. congolense savannah or T. brucei (s.l.) and T. congolense forest were found only in G. p. palpalis. Loudima recorded the highest number of infected tsetse flies. CONCLUSION The study provided updated information on the distribution of tsetse fly populations as well as on Trypanosoma species circulating in tsetse flies in the different active HAT foci in Congo. These data suggested a high risk of potential transmission of animal trypanosomes in these foci, thus stressing the need for active surveillance in this endemic area.
Collapse
Affiliation(s)
- Irina Bemba
- Laboratory of Animal Biology and Ecology, Faculty of Science and Technology, Marien Ngouabi University, Brazzaville B.P. 69, Congo
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), Yaoundé B.P. 288, Cameroon
| | - Arsene Lenga
- Laboratory of Animal Biology and Ecology, Faculty of Science and Technology, Marien Ngouabi University, Brazzaville B.P. 69, Congo
| | - Herman Parfait Awono-Ambene
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), Yaoundé B.P. 288, Cameroon
| | - Christophe Antonio-Nkondjio
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), Yaoundé B.P. 288, Cameroon
| |
Collapse
|
5
|
Mabille D, Ilbeigi K, Hendrickx S, Ungogo MA, Hulpia F, Lin C, Maes L, de Koning HP, Van Calenbergh S, Caljon G. Nucleoside analogues for the treatment of animal trypanosomiasis. Int J Parasitol Drugs Drug Resist 2022; 19:21-30. [PMID: 35567803 PMCID: PMC9111543 DOI: 10.1016/j.ijpddr.2022.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 11/21/2022]
Abstract
Animal trypanosomiasis (AT) is a parasitic disease with high socio-economic impact. Given the limited therapeutic options and problems of toxicity and drug resistance, this study assessed redirecting our previously identified antitrypanosomal nucleosides for the treatment of AT. Promising hits were identified with excellent in vitro activity across all important animal trypanosome species. Compound 7, an inosine analogue, and our previously described lead compound, 3'-deoxytubercidin (8), showed broad spectrum anti-AT activity, metabolic stability in the target host species and absence of toxicity, but with variable efficacy ranging from limited activity to full cure in mouse models of Trypanosoma congolense and T. vivax infection. Several compounds show promise against T. evansi (surra) and T. equiperdum (dourine). Given the preferred target product profile for a broad-spectrum compound against AT, this study emphasizes the need to include T. vivax in the screening cascade given its divergent susceptibility profile and provides a basis for lead optimization towards such broad spectrum anti-AT compound.
Collapse
Affiliation(s)
- Dorien Mabille
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium.
| | - Kayhan Ilbeigi
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium.
| | - Sarah Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium.
| | - Marzuq A Ungogo
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom.
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry, Ghent University, Ghent, Belgium.
| | - Cai Lin
- Laboratory for Medicinal Chemistry, Ghent University, Ghent, Belgium.
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium.
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom.
| | | | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium.
| |
Collapse
|
6
|
Prevalence and Associated Risk Factors of African Animal Trypanosomiasis in Cattle in Lambwe, Kenya. J Parasitol Res 2022; 2022:5984376. [PMID: 35872666 PMCID: PMC9303511 DOI: 10.1155/2022/5984376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 12/03/2022] Open
Abstract
Background African animal trypanosomiasis (AAT) affects livestock productivity in sub-Saharan Africa. This study aimed to determine cattle AAT's prevalence and associated risk factors in Lambwe Valley, Kenya. Methods In a cross-sectional survey, livestock owners were recruited from four villages of Lambwe in Homa Bay, Kenya. Blood samples were collected from the jugular veins of cattle, and buffy coat smears were examined under a microscope. Parasites were further detected using polymerase chain reaction (PCR). Using a semistructured questionnaire, livestock owners were interviewed on their knowledge of AAT and control practices. Chi-square and multilevel models were used for the analysis. Results The overall prevalence was 15.63% (71/454). Trypanosoma vivax 10.31% and T. congolense Savannah 6.01% were the common species and subspecies. A total of 61 livestock keepers were involved in the study. Of these, 91.80% (56/61) knew AAT, and 90.16% (55/61) could describe the symptoms well and knew tsetse fly bite as transmission mode. Self-treatment (54.09%; 33/61) was common, with up to 50.00% of the farmers using drugs frequently. Isometamidium (72.13%; 44/61) and diminazene (54.09%; 33/61) were drugs frequently used. Although 16.39% (10/61) of the farmers claimed to use chemoprophylactic treatment, 6/10 did not use the right drugs. Animals (92.1%; 58/63) with clinical signs had positive infections. Villages closer to the national park recorded a higher prevalence. Infections were higher in cattle owned by those self-treating (27.23%; 58/213), those using drug treatment without vector control (27.62%; 50/181), those using single-drug therapy, and those practicing communal grazing (20.00%; 59/295). Clinical signs strongly associate with positive infections under multilevel modeling. Conclusion Cattle trypanosomiasis is prevalent in the Lambwe region of Kenya. This is influenced by inappropriate control practices, communal grazing, and the proximity of farms to the national park. In addition, clinical signs of the disease have a strong association with infections.
Collapse
|
7
|
Okello I, Mafie E, Eastwood G, Nzalawahe J, Mboera LEG. African Animal Trypanosomiasis: A Systematic Review on Prevalence, Risk Factors and Drug Resistance in Sub-Saharan Africa. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1099-1143. [PMID: 35579072 DOI: 10.1093/jme/tjac018] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 06/15/2023]
Abstract
African animal trypanosomiasis (AAT) a parasitic disease of livestock in sub-Saharan Africa causing tremendous loses. Sub-Saharan continental estimation of mean prevalence in both large and small domestic animals, risk factors, tsetse and non-tsetse prevalence and drug resistance is lacking. A review and meta-analysis was done to better comprehend changes in AAT prevalence and drug resistance. Publish/Perish software was used to search and extract peer-reviewed articles in Google scholar, PubMed and CrossRef. In addition, ResearchGate and African Journals Online (AJOL) were used. Screening and selection of articles from 2000-2021 was performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Articles 304 were retrieved; on domestic animals 192, tsetse and non-tsetse vectors 44, risk factors 49 and trypanocidal drug resistance 30. Prevalence varied by, host animals in different countries, diagnostic methods and species of Trypanosoma. Cattle had the highest prevalence with Ethiopia and Nigeria leading, T. congolense (11.80-13.40%) and T. vivax (10.50-18.80%) being detected most. This was followed by camels and pigs. Common diagnostic method used was buffy coat microscopy. However; polymerase chain reaction (PCR), CATT and ELISA had higher detection rates. G. pallidipes caused most infections in Eastern regions while G. palpalis followed by G. mortisans in Western Africa. Eastern Africa reported more non-tsetse biting flies with Stomoxys leading. Common risk factors were, body conditions, breed type, age, sex and seasons. Ethiopia and Nigeria had the highest trypanocidal resistance 30.00-35.00% and highest AAT prevalence. Isometamidium and diminazene showed more resistance with T. congolense being most resistant species 11.00-83.00%.
Collapse
Affiliation(s)
- Ivy Okello
- SACIDS Africa Centre of Excellence for Infectious Diseases of Humans and Animals in East and Southern Africa, P.O. Box 3297, Morogoro, Tanzania
- Sokoine University of Agriculture, Department of Veterinary Microbiology, Parasitology and Biotechnology, Chuo Kikuu, Morogoro, Tanzania
| | - Eliakunda Mafie
- Sokoine University of Agriculture, Department of Veterinary Microbiology, Parasitology and Biotechnology, Chuo Kikuu, Morogoro, Tanzania
| | - Gillian Eastwood
- Virginia Polytechnic Institute & State University, College of Agriculture & Life Sciences, Blacksburg, VA, USA
| | - Jahashi Nzalawahe
- Sokoine University of Agriculture, Department of Veterinary Microbiology, Parasitology and Biotechnology, Chuo Kikuu, Morogoro, Tanzania
| | - Leonard E G Mboera
- SACIDS Africa Centre of Excellence for Infectious Diseases of Humans and Animals in East and Southern Africa, P.O. Box 3297, Morogoro, Tanzania
| |
Collapse
|
8
|
Kimenyi NN, Kimenyi KM, Amugune NO, Getahun MN. Genetic connectivity of trypanosomes between tsetse-infested and tsetse-free areas of Kenya. Parasitology 2022; 149:285-297. [PMID: 35264263 PMCID: PMC11010566 DOI: 10.1017/s0031182021001815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/24/2021] [Accepted: 10/17/2021] [Indexed: 11/05/2022]
Abstract
The prevalence rates of trypanosomes, including those that require cyclical transmission by tsetse flies, are widely distributed in Africa. Trypanosoma brucei and Trypanosoma congolense are actively maintained in regions where there are no tsetse flies although at low frequencies. Whether this could be due to an independent evolutionary origin or multiple introduction of trypanosomes due to continuous movement of livestock between tsetse-free and -infested areas is not known. Thus, the aim of the study was to carry out microsatellite genotyping to explore intra-specific genetic diversity between T. (Trypanozoon), T. congolense and Trypanosoma vivax from the two regions: tsetse infested and tsetse free. Microsatellite genotyping showed geographical origin-based structuring among T. (Trypanozoon) isolates. There was a clear separation between isolates from the two regions signalling the potential of microsatellite markers as diagnostic markers for T. brucei and Trypanosoma evansi isolates. Trypanosoma vivax isolates also clustered largely based on the sampling location with a significant differentiation between the two locations. However, our results revealed that T. congolense isolates from Northern Kenya are not genetically separated from those from Coastal Kenya. Therefore, these isolates are likely introduced in the region through animal movement. Our results demonstrate the occurrence of both genetic connectivity as well as independent evolutionary origin, depending on the trypanosome species between the two ecologies.
Collapse
Affiliation(s)
- Naomi N. Kimenyi
- International Center for Insect Physiology and Ecology (icipe), P. O. Box 30772, Nairobi00100, Kenya
- School of Biological Sciences, The University of Nairobi, Nairobi, Kenya
| | - Kelvin M. Kimenyi
- Center for Biotechnology and Bioinformatics (CEBIB), The University of Nairobi, Nairobi, Kenya
| | - Nelson O. Amugune
- School of Biological Sciences, The University of Nairobi, Nairobi, Kenya
| | - Merid N. Getahun
- International Center for Insect Physiology and Ecology (icipe), P. O. Box 30772, Nairobi00100, Kenya
| |
Collapse
|
9
|
de Obeso Fernandez del Valle A, Scheckhuber CQ. Superoxide Dismutases in Eukaryotic Microorganisms: Four Case Studies. Antioxidants (Basel) 2022; 11:antiox11020188. [PMID: 35204070 PMCID: PMC8868140 DOI: 10.3390/antiox11020188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/12/2022] [Accepted: 01/16/2022] [Indexed: 01/08/2023] Open
Abstract
Various components in the cell are responsible for maintaining physiological levels of reactive oxygen species (ROS). Several different enzymes exist that can convert or degrade ROS; among them are the superoxide dismutases (SODs). If left unchecked, ROS can cause damage that leads to pathology, can contribute to aging, and may, ultimately, cause death. SODs are responsible for converting superoxide anions to hydrogen peroxide by dismutation. Here we review the role of different SODs on the development and pathogenicity of various eukaryotic microorganisms relevant to human health. These include the fungal aging model, Podospora anserina; various members of the genus Aspergillus that can potentially cause aspergillosis; the agents of diseases such as Chagas and sleeping disease, Trypanosoma cruzi and Trypanosoma brucei, respectively; and, finally, pathogenic amoebae, such as Acanthamoeba spp. In these organisms, SODs fulfill essential and often regulatory functions that come into play during processes such as the development, host infection, propagation, and control of gene expression. We explore the contribution of SODs and their related factors in these microorganisms, which have an established role in health and disease.
Collapse
|
10
|
Borges AR, Link F, Engstler M, Jones NG. The Glycosylphosphatidylinositol Anchor: A Linchpin for Cell Surface Versatility of Trypanosomatids. Front Cell Dev Biol 2021; 9:720536. [PMID: 34790656 PMCID: PMC8591177 DOI: 10.3389/fcell.2021.720536] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/06/2021] [Indexed: 11/20/2022] Open
Abstract
The use of glycosylphosphatidylinositol (GPI) to anchor proteins to the cell surface is widespread among eukaryotes. The GPI-anchor is covalently attached to the C-terminus of a protein and mediates the protein’s attachment to the outer leaflet of the lipid bilayer. GPI-anchored proteins have a wide range of functions, including acting as receptors, transporters, and adhesion molecules. In unicellular eukaryotic parasites, abundantly expressed GPI-anchored proteins are major virulence factors, which support infection and survival within distinct host environments. While, for example, the variant surface glycoprotein (VSG) is the major component of the cell surface of the bloodstream form of African trypanosomes, procyclin is the most abundant protein of the procyclic form which is found in the invertebrate host, the tsetse fly vector. Trypanosoma cruzi, on the other hand, expresses a variety of GPI-anchored molecules on their cell surface, such as mucins, that interact with their hosts. The latter is also true for Leishmania, which use GPI anchors to display, amongst others, lipophosphoglycans on their surface. Clearly, GPI-anchoring is a common feature in trypanosomatids and the fact that it has been maintained throughout eukaryote evolution indicates its adaptive value. Here, we explore and discuss GPI anchors as universal evolutionary building blocks that support the great variety of surface molecules of trypanosomatids.
Collapse
Affiliation(s)
- Alyssa R Borges
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Fabian Link
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Nicola G Jones
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
11
|
Campbell PC, de Graffenried CL. Alternate histories of cytokinesis: lessons from the trypanosomatids. Mol Biol Cell 2021; 31:2631-2639. [PMID: 33180676 PMCID: PMC7927182 DOI: 10.1091/mbc.e19-12-0696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Popular culture has recently produced several “alternate histories” that describe worlds where key historical events had different outcomes. Beyond entertainment, asking “could this have happened a different way?” and “what would the consequences be?” are valuable approaches for exploring molecular mechanisms in many areas of research, including cell biology. Analogous to alternate histories, studying how the evolutionary trajectories of related organisms have been selected to provide a range of outcomes can tell us about the plasticity and potential contained within the genome of the ancestral cell. Among eukaryotes, a group of model organisms has been employed with great success to identify a core, conserved framework of proteins that segregate the duplicated cellular organelles into two daughter cells during cell division, a process known as cytokinesis. However, these organisms provide relatively sparse sampling across the broad evolutionary distances that exist, which has limited our understanding of the true potential of the ancestral eukaryotic toolkit. Recent work on the trypanosomatids, a group of eukaryotic parasites, exemplifies alternate historical routes for cytokinesis that illustrate the range of eukaryotic diversity, especially among unicellular organisms.
Collapse
Affiliation(s)
- Paul C Campbell
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912
| | | |
Collapse
|
12
|
Signaboubo D, Payne VK, Moussa IMA, Hassane HM, Berger P, Kelm S, Simo G. Diversity of tsetse flies and trypanosome species circulating in the area of Lake Iro in southeastern Chad. Parasit Vectors 2021; 14:293. [PMID: 34078431 PMCID: PMC8173974 DOI: 10.1186/s13071-021-04782-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND African trypanosomiases are vector-borne diseases that affect humans and livestock in sub-Saharan Africa. Although data have been collected on tsetse fauna as well as trypanosome infections in tsetse flies and mammals in foci of sleeping sickness in Chad, the situation of tsetse fly-transmitted trypanosomes remains unknown in several tsetse-infested areas of Chad. This study was designed to fill this epidemiological knowledge gap by determining the tsetse fauna as well as the trypanosomes infecting tsetse flies in the area of Lake Iro in southeastern Chad. METHODS Tsetse flies were trapped along the Salamat River using biconical traps. The proboscis and tsetse body were removed from each fly. DNA was extracted from the proboscis using proteinase K and phosphate buffer and from the tsetse body using Chelex 5%. Tsetse flies were identified by amplifying and sequencing the cytochrome c oxydase I gene of each tsetse fly. Trypanosome species were detected by amplifying and sequencing the internal transcribed spacer 1 of infecting trypanosomes. RESULTS A total of 617 tsetse flies were trapped; the apparent density of flies per trap per day was 2. 6. Of the trapped flies, 359 were randomly selected for the molecular identification and for the detection of infecting trypanosomes. Glossina morsitans submorsitans (96.1%) was the dominant tsetse fly species followed by G. fuscipes fuscipes (3.1%) and G. tachinoides (0.8%). Four trypanosome species, including Trypanosoma vivax, T. simiae, T. godfreyi and T. congolense savannah, were detected. Both single infection (56.7%) and mixed infections of trypanosomes (4.6%) were detected in G. m. submorsitans. The single infection included T. simiae (20.5%), T. congolense savannah (16.43%), T. vivax (11.7%) and T. godfreyi (9.8%). The trypanosome infection rate was 61.4% in G. m. submorsitans, 72.7% in G. f. fuscipes and 66.6% in G. tachinoides. Trypanosome infections were more prevalent in tsetse bodies (40.6%) than in the proboscis (16.3%). CONCLUSION This study revealed the presence of different tsetse species and a diversity of trypanosomes pathogenic to livestock in the area of Lake Iro. The results highlight the risks and constraints that animal African trypanosomiasis pose to livestock breeding and the importance of assessing trypanosome infections in livestock in this area.
Collapse
Affiliation(s)
- Djoukzoumka Signaboubo
- Molecular Parasitology and Applied Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, PO Box 67, Dschang, Cameroon
- Centre for Biomolecular Interaction Bremen, Department of Biology and Chemistry, University of Bremen, Bremen, Germany
- Laboratory of Biology and Ecology (LABEA), Department of Animal Biology, Faculty of Science, University of Dschang, PO Box 067, Dschang, Cameroon
| | - Vincent Khan Payne
- Laboratory of Biology and Ecology (LABEA), Department of Animal Biology, Faculty of Science, University of Dschang, PO Box 067, Dschang, Cameroon
| | - Ibrahim Mahamat Alhadj Moussa
- Centre for Biomolecular Interaction Bremen, Department of Biology and Chemistry, University of Bremen, Bremen, Germany
| | | | - Petra Berger
- Centre for Biomolecular Interaction Bremen, Department of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Soerge Kelm
- Centre for Biomolecular Interaction Bremen, Department of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Gustave Simo
- Molecular Parasitology and Applied Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, PO Box 67, Dschang, Cameroon.
| |
Collapse
|
13
|
Salivarian Trypanosomes Have Adopted Intricate Host-Pathogen Interaction Mechanisms That Ensure Survival in Plain Sight of the Adaptive Immune System. Pathogens 2021; 10:pathogens10060679. [PMID: 34072674 PMCID: PMC8229994 DOI: 10.3390/pathogens10060679] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 12/21/2022] Open
Abstract
Salivarian trypanosomes are extracellular parasites affecting humans, livestock and game animals. Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense are human infective sub-species of T. brucei causing human African trypanosomiasis (HAT—sleeping sickness). The related T. b. brucei parasite lacks the resistance to survive in human serum, and only inflicts animal infections. Animal trypanosomiasis (AT) is not restricted to Africa, but is present on all continents. T. congolense and T. vivax are the most widespread pathogenic trypanosomes in sub-Saharan Africa. Through mechanical transmission, T. vivax has also been introduced into South America. T. evansi is a unique animal trypanosome that is found in vast territories around the world and can cause atypical human trypanosomiasis (aHT). All salivarian trypanosomes are well adapted to survival inside the host’s immune system. This is not a hostile environment for these parasites, but the place where they thrive. Here we provide an overview of the latest insights into the host-parasite interaction and the unique survival strategies that allow trypanosomes to outsmart the immune system. In addition, we review new developments in treatment and diagnosis as well as the issues that have hampered the development of field-applicable anti-trypanosome vaccines for the implementation of sustainable disease control.
Collapse
|
14
|
Meharenet B, Shitu D. Concurrent Infection of Fascioliasis andTrypanosomosis and Associated Risk Factors in Local Zebu Breed Cattle of Western Ethiopia. VETERINARY MEDICINE-RESEARCH AND REPORTS 2021; 12:15-22. [PMID: 33564623 PMCID: PMC7866923 DOI: 10.2147/vmrr.s285165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/11/2021] [Indexed: 11/23/2022]
Abstract
Background A cross-sectional study was conducted from late October 2016 to June 2017, with the primary objective of estimating and analyzing the concurrent occurrence of both fascioliasis and trypanosomosis infections and associated risk factors along the tsetse-infested Didessa river basin. Methods The methodology applied was based on stratified sampling for the parasitological study, with entomological and malacological surveys, including fly dissection. Results The result of variance-ratio testing between trypanosomosis and fascioliasis infections (mean prevalence 0.117±0.322 and 0.283±0.451, respectively), was statistically significant (P[F>f]=0), with higher observed fascioliasis infection (n=147, 28.27%). Severe anemia was observed in trypanosomosis infection, with mean packed cell volume of 19.57 (OR=0.71, P>|z|=0.000), and vast fascioliasis infections identified among cattle with medium and poor body condition in terms of weight (n=91 [32.73%] and n=38 [21.47%]). On entomological study, 578 (62.62%) and 345 (37.38%) female and male Glossina tachinoides fly species were cached, respectively, with overall mean flies/trap/day of 5.19 (n=923). Despite the prevalence of trypanosomosis in infected cattle, of 130 G. tachinoides flies dissected, only three were found to be positive for an infection rate of 2.31%. Malacological study identified three snail species known to maintain fascioliasis: Lymnea truncatula (n=28, 45.16%), Lymnea natalensis (n=23, 37.10%), and Biomphalaria (n=11, 17.74%). Concurrent infection with fascioliasis and trypanosomosis was mainly associated with the co-occurrence of their intermediate host snails and Glossina flies, respectively, with 4.42% (n=23) prevalence. Conclusion This study clearly demonstrated that the former parasite was highly associated with emaciation, whereas the second was responsible for anemia. In future,researchers should focus solely on estimating meat and milk production of local cattle to assess the economic impact of the study parasites.
Collapse
Affiliation(s)
- Behablom Meharenet
- National Institute for the Control and Eradication of Tsetse Fly and Trypanosomosis, Addis Ababa, Ethiopia
| | - Dessalew Shitu
- National Institute for the Control and Eradication of Tsetse Fly and Trypanosomosis, Addis Ababa, Ethiopia
| |
Collapse
|
15
|
Durante IM, Butenko A, Rašková V, Charyyeva A, Svobodová M, Yurchenko V, Hashimi H, Lukeš J. Large-Scale Phylogenetic Analysis of Trypanosomatid Adenylate Cyclases Reveals Associations with Extracellular Lifestyle and Host-Pathogen Interplay. Genome Biol Evol 2020; 12:2403-2416. [PMID: 33104188 PMCID: PMC7719234 DOI: 10.1093/gbe/evaa226] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
Receptor adenylate cyclases (RACs) on the surface of trypanosomatids are important players in the host–parasite interface. They detect still unidentified environmental signals that affect the parasites’ responses to host immune challenge, coordination of social motility, and regulation of cell division. A lesser known class of oxygen-sensing adenylate cyclases (OACs) related to RACs has been lost in trypanosomes and expanded mostly in Leishmania species and related insect-dwelling trypanosomatids. In this work, we have undertaken a large-scale phylogenetic analysis of both classes of adenylate cyclases (ACs) in trypanosomatids and the free-living Bodo saltans. We observe that the expanded RAC repertoire in trypanosomatids with a two-host life cycle is not only associated with an extracellular lifestyle within the vertebrate host, but also with a complex path through the insect vector involving several life cycle stages. In Trypanosoma brucei, RACs are split into two major clades, which significantly differ in their expression profiles in the mammalian host and the insect vector. RACs of the closely related Trypanosoma congolense are intermingled within these two clades, supporting early RAC diversification. Subspecies of T. brucei that have lost the capacity to infect insects exhibit high numbers of pseudogenized RACs, suggesting many of these proteins have become redundant upon the acquisition of a single-host life cycle. OACs appear to be an innovation occurring after the expansion of RACs in trypanosomatids. Endosymbiont-harboring trypanosomatids exhibit a diversification of OACs, whereas these proteins are pseudogenized in Leishmania subgenus Viannia. This analysis sheds light on how ACs have evolved to allow diverse trypanosomatids to occupy multifarious niches and assume various lifestyles.
Collapse
Affiliation(s)
- Ignacio Miguel Durante
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia
| | - Anzhelika Butenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia.,Life Science Research Centre, Faculty of Science, University of Ostrava, Czechia
| | - Vendula Rašková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia.,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czechia
| | - Arzuv Charyyeva
- Life Science Research Centre, Faculty of Science, University of Ostrava, Czechia
| | - Michaela Svobodová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Czechia.,Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russian Federation
| | - Hassan Hashimi
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia.,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czechia
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia.,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czechia
| |
Collapse
|
16
|
Bertiaux E, Mallet A, Rotureau B, Bastin P. Intraflagellar transport during assembly of flagella of different length in Trypanosoma brucei isolated from tsetse flies. J Cell Sci 2020; 133:jcs248989. [PMID: 32843573 DOI: 10.1242/jcs.248989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/10/2020] [Indexed: 11/20/2022] Open
Abstract
Multicellular organisms assemble cilia and flagella of precise lengths differing from one cell to another, yet little is known about the mechanisms governing these differences. Similarly, protists assemble flagella of different lengths according to the stage of their life cycle. Trypanosoma brucei assembles flagella of 3 to 30 µm during its development in the tsetse fly. This provides an opportunity to examine how cells naturally modulate organelle length. Flagella are constructed by addition of new blocks at their distal end via intraflagellar transport (IFT). Immunofluorescence assays, 3D electron microscopy and live-cell imaging revealed that IFT was present in all T. brucei life cycle stages. IFT proteins are concentrated at the base, and IFT trains are located along doublets 3-4 and 7-8 and travel bidirectionally in the flagellum. Quantitative analysis demonstrated that the total amount of flagellar IFT proteins correlates with the length of the flagellum. Surprisingly, the shortest flagellum exhibited a supplementary large amount of dynamic IFT material at its distal end. The contribution of IFT and other factors to the regulation of flagellum length is discussed.
Collapse
Affiliation(s)
- Eloïse Bertiaux
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France
- Sorbonne Université école doctorale complexité du vivant, ED 515, 7, quai Saint-Bernard, case 32, 75252 Paris Cedex 05, France
| | - Adeline Mallet
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France
- Sorbonne Université école doctorale complexité du vivant, ED 515, 7, quai Saint-Bernard, case 32, 75252 Paris Cedex 05, France
- Ultrastructural Bio Imaging Unit, C2RT, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France
| | - Brice Rotureau
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France
| |
Collapse
|
17
|
Szöőr B, Silvester E, Matthews KR. A Leap Into the Unknown - Early Events in African Trypanosome Transmission. Trends Parasitol 2020; 36:266-278. [PMID: 32014419 DOI: 10.1016/j.pt.2019.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/19/2019] [Accepted: 12/25/2019] [Indexed: 01/09/2023]
Abstract
African trypanosomes are mainly transmitted by tsetse flies. In recent years there has been good progress in understanding how the parasites prepare for transmission, detect their changed environment through the perception of different environmental cues, and respond by changing their developmental gene expression. In this review, we discuss the different signals and signaling mechanisms used by the parasites to carry out the early events necessary for their establishment in the fly. We also compare Trypanosoma brucei and Trypanosoma congolense, parasites that share a common pathway in the early stages of fly colonization but apparently use different mechanisms to achieve this.
Collapse
Affiliation(s)
- Balázs Szöőr
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK.
| | - Eleanor Silvester
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK.
| |
Collapse
|
18
|
Hammarton TC. Who Needs a Contractile Actomyosin Ring? The Plethora of Alternative Ways to Divide a Protozoan Parasite. Front Cell Infect Microbiol 2019; 9:397. [PMID: 31824870 PMCID: PMC6881465 DOI: 10.3389/fcimb.2019.00397] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/06/2019] [Indexed: 01/21/2023] Open
Abstract
Cytokinesis, or the division of the cytoplasm, following the end of mitosis or meiosis, is accomplished in animal cells, fungi, and amoebae, by the constriction of an actomyosin contractile ring, comprising filamentous actin, myosin II, and associated proteins. However, despite this being the best-studied mode of cytokinesis, it is restricted to the Opisthokonta and Amoebozoa, since members of other evolutionary supergroups lack myosin II and must, therefore, employ different mechanisms. In particular, parasitic protozoa, many of which cause significant morbidity and mortality in humans and animals as well as considerable economic losses, employ a wide diversity of mechanisms to divide, few, if any, of which involve myosin II. In some cases, cell division is not only myosin II-independent, but actin-independent too. Mechanisms employed range from primitive mechanical cell rupture (cytofission), to motility- and/or microtubule remodeling-dependent mechanisms, to budding involving the constriction of divergent contractile rings, to hijacking host cell division machinery, with some species able to utilize multiple mechanisms. Here, I review current knowledge of cytokinesis mechanisms and their molecular control in mammalian-infective parasitic protozoa from the Excavata, Alveolata, and Amoebozoa supergroups, highlighting their often-underappreciated diversity and complexity. Billions of people and animals across the world are at risk from these pathogens, for which vaccines and/or optimal treatments are often not available. Exploiting the divergent cell division machinery in these parasites may provide new avenues for the treatment of protozoal disease.
Collapse
Affiliation(s)
- Tansy C Hammarton
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
19
|
Weber JS, Ngomtcho SCH, Shaida SS, Chechet GD, Gbem TT, Nok JA, Mamman M, Achukwi DM, Kelm S. Genetic diversity of trypanosome species in tsetse flies (Glossina spp.) in Nigeria. Parasit Vectors 2019; 12:481. [PMID: 31610794 PMCID: PMC6792248 DOI: 10.1186/s13071-019-3718-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/14/2019] [Indexed: 12/29/2022] Open
Abstract
Background Trypanosomes cause disease in humans and livestock in sub-Saharan Africa and rely on tsetse flies as their main insect vector. Nigeria is the most populous country in Africa; however, only limited information about the occurrence and diversity of trypanosomes circulating in the country is available. Methods Tsetse flies were collected from five different locations in or adjacent to protected areas, i.e. national parks and game reserves, in Nigeria. Proboscis and gut samples were analysed for trypanosome DNA by molecular amplification of the internal transcribed spacer 1 (ITS1) region and part of the trypanosome specific glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) gene. Results The most abundant Trypanosoma species found in the tsetse gut was T. grayi, a trypanosome infecting crocodiles. It was ubiquitously distributed throughout the country, accounting for over 90% of all cases involving trypanosomes. Trypanosoma congolense was detected in gut samples from all locations except Cross River National Park, but not in the proboscis, while T. brucei (sensu lato) was not detected at all. In proboscis samples, T. vivax was the most prominent. The sequence diversity of gGAPDH suggests that T. vivax and T. grayi represent genetically diverse species clusters. This implies that they are highly dynamic populations. Conclusions The prevalence of animal pathogenic trypanosomes throughout Nigeria emphasises the role of protected areas as reservoirs for livestock trypanosomes. The genetic diversity observed within T. vivax and T. grayi populations might be an indication for changing pathogenicity or host range and the origin and consequences of this diversity has to be further investigated.![]()
Collapse
Affiliation(s)
- Judith Sophie Weber
- Centre for Biomolecular Interactions, Department of Biology and Chemistry, University of Bremen, Bremen, Germany.
| | - Sen Claudine Henriette Ngomtcho
- Department of Biological Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon.,Ministry of Public Health, Yaoundé, Cameroon
| | | | - Gloria Dada Chechet
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria.,Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria
| | - Thaddeus Terlumun Gbem
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria.,Department of Biology, Ahmadu Bello University, Zaria, Nigeria
| | - Jonathan Andrew Nok
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria.,Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria
| | - Mohammed Mamman
- Nigerian Institute for Trypanosomiasis Research, Kaduna, Nigeria.,Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria
| | | | - Sørge Kelm
- Centre for Biomolecular Interactions, Department of Biology and Chemistry, University of Bremen, Bremen, Germany. .,Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria.
| |
Collapse
|
20
|
Abstract
Trypanosomes have complex life cycles within which there are both proliferative and differentiation cell divisions. The coordination of the cell cycle to achieve these different divisions is critical for the parasite to infect both host and vector. From studying the regulation of the proliferative cell cycle of the Trypanosoma brucei procyclic life cycle stage, three subcycles emerge that control the duplication and segregation of (a) the nucleus, (b) the kinetoplast, and (c) a set of cytoskeletal structures. We discuss how the clear dependency relationships within these subcycles, and the potential for cross talk between them, are likely required for overall cell cycle coordination. Finally, we look at the implications this interdependence has for proliferative and differentiation divisions through the T. brucei life cycle and in related parasitic trypanosomatid species.
Collapse
Affiliation(s)
- Richard J Wheeler
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, United Kingdom;
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom;
| | - Jack D Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom;
| |
Collapse
|
21
|
Abeywickrema M, Vachova H, Farr H, Mohr T, Wheeler RJ, Lai DH, Vaughan S, Gull K, Sunter JD, Varga V. Non-equivalence in old- and new-flagellum daughter cells of a proliferative division in Trypanosoma brucei. Mol Microbiol 2019; 112:1024-1040. [PMID: 31286583 PMCID: PMC6771564 DOI: 10.1111/mmi.14345] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2019] [Indexed: 12/15/2022]
Abstract
Differentiation of Trypanosoma brucei, a flagellated protozoan parasite, between life cycle stages typically occurs through an asymmetric cell division process, producing two morphologically distinct daughter cells. Conversely, proliferative cell divisions produce two daughter cells, which look similar but are not identical. To examine in detail differences between the daughter cells of a proliferative division of procyclic T. brucei we used the recently identified constituents of the flagella connector. These segregate asymmetrically during cytokinesis allowing the new‐flagellum and the old‐flagellum daughters to be distinguished. We discovered that there are distinct morphological differences between the two daughters, with the new‐flagellum daughter in particular re‐modelling rapidly and extensively in early G1. This re‐modelling process involves an increase in cell body, flagellum and flagellum attachment zone length and is accompanied by architectural changes to the anterior cell end. The old‐flagellum daughter undergoes a different G1 re‐modelling, however, despite this there was no difference in G1 duration of their respective cell cycles. This work demonstrates that the two daughters of a proliferative division of T. brucei are non‐equivalent and enables more refined morphological analysis of mutant phenotypes. We suggest all proliferative divisions in T. brucei and related organisms will involve non‐equivalence.
Collapse
Affiliation(s)
- Movin Abeywickrema
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Hana Vachova
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic
| | - Helen Farr
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Timm Mohr
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Richard J Wheeler
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX1 3SY, UK
| | - De-Hua Lai
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Jack D Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Vladimir Varga
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic
| |
Collapse
|
22
|
Channumsin M, Ciosi M, Masiga D, Turner CMR, Mable BK. Sodalis glossinidius presence in wild tsetse is only associated with presence of trypanosomes in complex interactions with other tsetse-specific factors. BMC Microbiol 2018; 18:163. [PMID: 30470184 PMCID: PMC6251152 DOI: 10.1186/s12866-018-1285-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Susceptibility of tsetse flies (Glossina spp.) to trypanosomes of both humans and animals has been associated with the presence of the endosymbiont Sodalis glossinidius. However, intrinsic biological characteristics of the flies and environmental factors can influence the presence of both S. glossinidius and the parasites. It thus remains unclear whether it is the S. glossinidius or other attributes of the flies that explains the apparent association. The objective of this study was to test whether the presence of Trypanosoma vivax, T. congolense and T. brucei are related to the presence of S. glossinidius in tsetse flies when other factors are accounted for: geographic location, species of Glossina, sex or age of the host flies. Results Flies (n = 1090) were trapped from four sites in the Shimba Hills and Nguruman regions in Kenya. Sex and species of tsetse (G. austeni, G. brevipalpis, G. longipennis and G. pallidipes) were determined based on external morphological characters and age was estimated by a wing fray score method. The presence of trypanosomes and S. glossinidius was detected using PCR targeting the internal transcribed spacer region 1 and the haemolysin gene, respectively. Sequencing was used to confirm species identification. Generalised Linear Models (GLMs) and Multiple Correspondence Analysis (MCA) were applied to investigate multivariable associations. The overall prevalence of trypanosomes was 42.1%, but GLMs revealed complex patterns of associations: the presence of S. glossinidius was associated with trypanosome presence but only in interactions with other factors and only in some species of trypanosomes. The strongest association was found for T. congolense, and no association was found for T. vivax. The MCA also suggested only a weak association between the presence of trypanosomes and S. glossinidius. Trypanosome-positive status showed strong associations with sex and age while S. glossinidius-positive status showed a strong association with geographic location and species of fly. Conclusions We suggest that previous conclusions about the presence of endosymbionts increasing probability of trypanosome presence in tsetse flies may have been confounded by other factors, such as community composition of the tsetse flies and the specific trypanosomes found in different regions. Electronic supplementary material The online version of this article (10.1186/s12866-018-1285-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manun Channumsin
- Institute of Biodiversity, Animal Health and Comparative Medicine (BAHCM), Graham Kerr Building, University of Glasgow, University Place, Glasgow, G12 8QQ, UK. .,Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-Ok, Chonburi, 20110, Thailand.
| | - Marc Ciosi
- Institute of Biodiversity, Animal Health and Comparative Medicine (BAHCM), Graham Kerr Building, University of Glasgow, University Place, Glasgow, G12 8QQ, UK. .,International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, 00100, Kenya.
| | - Dan Masiga
- International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, 00100, Kenya
| | - C Michael R Turner
- Institute of Infection, Immunity and Inflammation, Sir Graeme Davis Building, University of Glasgow, University Place, Glasgow, G12 0PT, UK
| | - Barbara K Mable
- Institute of Biodiversity, Animal Health and Comparative Medicine (BAHCM), Graham Kerr Building, University of Glasgow, University Place, Glasgow, G12 8QQ, UK
| |
Collapse
|
23
|
Borges AR, Toledo DA, Fermino BR, de Oliveira JC, Silber AM, Elias MC, D'Avila H, Scopel KKG. In Vitro Cellular Division of Trypanosoma abeli Reveals Two Pathways for Organelle Replication. J Eukaryot Microbiol 2018; 66:385-392. [PMID: 30076737 DOI: 10.1111/jeu.12678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/07/2018] [Accepted: 07/22/2018] [Indexed: 11/28/2022]
Abstract
Since the observation of the great pleomorphism of fish trypanosomes, in vitro culture has become an important tool to support taxonomic studies investigating the biology of cultured parasites, such as their structure, growth dynamics, and cellular cycle. Relative to their biology, ex vivo and in vitro studies have shown that these parasites, during the multiplication process, duplicate and segregate the kinetoplast before nucleus replication and division. However, the inverse sequence (the nucleus divides before the kinetoplast) has only been documented for a species of marine fish trypanosomes on a single occasion. Now, this previously rare event was observed in Trypanosoma abeli, a freshwater fish trypanosome. Specifically, from 376 cultured parasites in the multiplication process, we determined the sequence of organelle division for 111 forms; 39% exhibited nucleus duplication prior to kinetoplast replication. Thus, our results suggest that nucleus division before the kinetoplast may not represent an accidental or erroneous event occurring in the main pathway of parasite reproduction, but instead could be a species-specific process of cell biology in trypanosomes, such as previously noticed for Leishmania. This "alternative" pathway for organelle replication is a new field to be explored concerning the biology of marine and freshwater fish trypanosomes.
Collapse
Affiliation(s)
- Alyssa R Borges
- Laboratory of Parasitology, Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Rua José Lourenço Kelmer s/n - Campus Universitário, São Pedro, Juiz de Fora, MG, 36036-900, Brazil
| | - Daniel A Toledo
- Laboratory of Cellular Biology, Department of Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, Rua José Lourenço Kelmer s/n - Campus Universitário, São Pedro, Juiz de Fora, MG, 36036-900, Brazil
| | - Bruno R Fermino
- Department of Parasitology, Institute of Biomedical Sciences, São Paulo University, Av. Prof. Lineu Prestes 1374 - Cidade Universitária, São Paulo, SP, 05508-900, Brazil
| | - José Carlos de Oliveira
- Department of Zoology, Institute of Biological Sciences, Federal University of Juiz de Fora, Rua José Lourenço Kelmer s/n - Campus Universitário, São Pedro, Juiz de Fora, MG, 36036-900, Brazil
| | - Ariel Mariano Silber
- Laboratory of Biochemistry of Tryps - LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374 - Cidade Universitária, São Paulo, SP, 05508-000, Brazil
| | - Maria Carolina Elias
- Laboratório Especial de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, Av. Vital Brasil 1500 - Butantã, São Paulo, SP, 05503-900, Brazil
| | - Heloisa D'Avila
- Laboratory of Cellular Biology, Department of Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, Rua José Lourenço Kelmer s/n - Campus Universitário, São Pedro, Juiz de Fora, MG, 36036-900, Brazil
| | - Kézia K G Scopel
- Laboratory of Parasitology, Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Rua José Lourenço Kelmer s/n - Campus Universitário, São Pedro, Juiz de Fora, MG, 36036-900, Brazil
| |
Collapse
|
24
|
Peacock L, Kay C, Bailey M, Gibson W. Shape-shifting trypanosomes: Flagellar shortening followed by asymmetric division in Trypanosoma congolense from the tsetse proventriculus. PLoS Pathog 2018; 14:e1007043. [PMID: 29772025 PMCID: PMC5957336 DOI: 10.1371/journal.ppat.1007043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/18/2018] [Indexed: 11/18/2022] Open
Abstract
Trypanosomatids such as Leishmania and Trypanosoma are digenetic, single-celled, parasitic flagellates that undergo complex life cycles involving morphological and metabolic changes to fit them for survival in different environments within their mammalian and insect hosts. According to current consensus, asymmetric division enables trypanosomatids to achieve the major morphological rearrangements associated with transition between developmental stages. Contrary to this view, here we show that the African trypanosome Trypanosoma congolense, an important livestock pathogen, undergoes extensive cell remodelling, involving shortening of the cell body and flagellum, during its transition from free-swimming proventricular forms to attached epimastigotes in vitro. Shortening of the flagellum was associated with accumulation of PFR1, a major constituent of the paraflagellar rod, in the mid-region of the flagellum where it was attached to the substrate. However, the PFR1 depot was not essential for attachment, as it accumulated several hours after initial attachment of proventricular trypanosomes. Detergent and CaCl2 treatment failed to dislodge attached parasites, demonstrating the robust nature of flagellar attachment to the substrate; the PFR1 depot was also unaffected by these treatments. Division of the remodelled proventricular trypanosome was asymmetric, producing a small daughter cell. Each mother cell went on to produce at least one more daughter cell, while the daughter trypanosomes also proliferated, eventually resulting in a dense culture of epimastigotes. Here, by observing the synchronous development of the homogeneous population of trypanosomes in the tsetse proventriculus, we have been able to examine the transition from proventricular forms to attached epimastigotes in detail in T. congolense. This transition is difficult to observe in vivo as it happens inside the mouthparts of the tsetse fly. In T. brucei, this transition is achieved by asymmetric division of long trypomastigotes in the proventriculus, yielding short epimastigotes, which go on to colonise the salivary glands. Thus, despite their close evolutionary relationship and shared developmental route within the vector, T. brucei and T. congolense have evolved different ways of accomplishing the same developmental transition from proventricular form to attached epimastigote.
Collapse
Affiliation(s)
- Lori Peacock
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
- Bristol Veterinary School, University of Bristol, Langford, Bristol, United Kingdom
| | - Christopher Kay
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Mick Bailey
- Bristol Veterinary School, University of Bristol, Langford, Bristol, United Kingdom
| | - Wendy Gibson
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
25
|
Schorderet-Weber S, Noack S, Selzer PM, Kaminsky R. Blocking transmission of vector-borne diseases. Int J Parasitol Drugs Drug Resist 2017; 7:90-109. [PMID: 28189117 PMCID: PMC5302141 DOI: 10.1016/j.ijpddr.2017.01.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/22/2017] [Indexed: 12/16/2022]
Abstract
Vector-borne diseases are responsible for significant health problems in humans, as well as in companion and farm animals. Killing the vectors with ectoparasitic drugs before they have the opportunity to pass on their pathogens could be the ideal way to prevent vector borne diseases. Blocking of transmission might work when transmission is delayed during blood meal, as often happens in ticks. The recently described systemic isoxazolines have been shown to successfully prevent disease transmission under conditions of delayed pathogen transfer. However, if the pathogen is transmitted immediately at bite as it is the case with most insects, blocking transmission becomes only possible if ectoparasiticides prevent the vector from landing on or, at least, from biting the host. Chemical entities exhibiting repellent activity in addition to fast killing, like pyrethroids, could prevent pathogen transmission even in cases of immediate transfer. Successful blocking depends on effective action in the context of the extremely diverse life-cycles of vectors and vector-borne pathogens of medical and veterinary importance which are summarized in this review. This complexity leads to important parameters to consider for ectoparasiticide research and when considering the ideal drug profile for preventing disease transmission.
Collapse
Affiliation(s)
| | - Sandra Noack
- Boehringer Ingelheim Animal Health GmbH, Binger Str. 173, 55216 Ingelheim, Germany.
| | - Paul M Selzer
- Boehringer Ingelheim Animal Health GmbH, Binger Str. 173, 55216 Ingelheim, Germany.
| | - Ronald Kaminsky
- ParaC Consulting for Parasitology and Drug Discovery, Altenstein 13, 79685 Haeg-Ehrsberg, Germany.
| |
Collapse
|