1
|
Dolpatcha S, Phong HX, Thanonkeo S, Klanrit P, Boonchot N, Yamada M, Thanonkeo P. Transcriptional Regulation Mechanisms in Adaptively Evolved Pichia kudriavzevii Under Acetic Acid Stress. J Fungi (Basel) 2025; 11:177. [PMID: 40137215 PMCID: PMC11942776 DOI: 10.3390/jof11030177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
Acetic acid, a common weak acid in industrial fermentation processes, occurs naturally in lignocellulosic hydrolysates and is a byproduct of microbial metabolism. As a significant environmental stressor, it triggers the expression of multiple genes involved in various cellular responses, including biological processes, cellular components, and molecular functions. Using the acid-tolerant strain Pichia kudriavzevii PkAC-9, developed through adaptive laboratory evolution under acetic acid stress, we conducted a transcriptional analysis of 70 stress response-associated genes. RT-qPCR analysis revealed significant upregulation of several genes compared with the wild-type strain under acetic acid stress conditions. The most dramatic changes occurred in genes encoding key metabolic enzymes and stress response proteins associated with the TCA cycle (Fum: 18.6-fold, Aco: 17.1-fold, Oxo: 9.0-fold), carbon and energy metabolism (Tdh2: 28.0-fold, Erg2: 2.0-fold), electron transport chain (Gst: 10.6-fold), molecular chaperones (Hsp104: 26.9-fold, Hsp70: 13.0-fold, Sgt2: 10.0-fold), and transcriptional activators. Our findings indicate that the enhanced acetic acid tolerance of P. kudriavzevii PkAC-9 primarily depends on the coordinated upregulation of genes involved in energy metabolism, cellular detoxification mechanisms, and protein quality control systems through heat shock and transcriptional activator proteins.
Collapse
Affiliation(s)
- Sureeporn Dolpatcha
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand; (S.D.); (P.K.); (N.B.)
| | - Huynh Xuan Phong
- Department of Microbial Biotechnology, Institute of Food and Biotechnology, Can Tho University, Can Tho 900000, Vietnam;
| | - Sudarat Thanonkeo
- Walai Rukhavej Botanical Research Institute, Mahasarakham University, Maha Sarakham 44150, Thailand;
| | - Preekamol Klanrit
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand; (S.D.); (P.K.); (N.B.)
- Fermentation Research Center for Value Added Agricultural Products (FerVAAPs), Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nongluck Boonchot
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand; (S.D.); (P.K.); (N.B.)
- Fermentation Research Center for Value Added Agricultural Products (FerVAAPs), Khon Kaen University, Khon Kaen 40002, Thailand
| | - Mamoru Yamada
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan;
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Pornthap Thanonkeo
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand; (S.D.); (P.K.); (N.B.)
- Fermentation Research Center for Value Added Agricultural Products (FerVAAPs), Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
2
|
Li L, Xie Z, Ning J, Zhang Y, Sang Y, Zhang L, Liu F. An acid-tolerant Clostridium sp. BLY-1 strain with high biohydrogen production rate. BIORESOURCE TECHNOLOGY 2024; 409:131227. [PMID: 39117241 DOI: 10.1016/j.biortech.2024.131227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/18/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Screening and isolating acid-tolerant bacteria capable of efficient hydrogen production can mitigate the inhibitory effects on microbial activity caused by rapid pH drops during fermentation. In this study, we isolated an acid-tolerant and highly efficient hydrogen-producing bacterium, named Clostridium sp. BLY-1, from acidic soil. Compared to the model strain Clostridium pasteurianum DSM 525, BLY-1 demonstrates a faster growth rate and superior hydrogen production capabilities. At an initial pH of 4.0, BLY-1's hydrogen production is 7.5 times greater than that of DSM 525, and under optimal conditions (pH=5.0), BLY-1's hydrogen production rate is 42.13% higher than DSM 525. Genomic analysis revealed that BLY-1 possesses a complete CiaRH two-component system and several stress-resistance components absent in DSM 525, which enhance its growth and hydrogen production in acidic environments. These findings provide a novel avenue for boosting the hydrogen production capabilities of Clostridium strains, offering new resources for advancing the green hydrogen industry.
Collapse
Affiliation(s)
- Liangyan Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300350, PR China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Zhangzhang Xie
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Jiarui Ning
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300350, PR China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Yuechao Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Yuxuan Sang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Liyun Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300350, PR China.
| | - Fanghua Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China.
| |
Collapse
|
3
|
Sharma D, Chetri PB, Ranga V, Sen S, Sarmah BK, Barooah M. Genomic analysis of acid tolerance genes and deciphering the function of ydaG gene in mitigating acid tolerance in Priestia megaterium. Front Microbiol 2024; 15:1414777. [PMID: 38966390 PMCID: PMC11222612 DOI: 10.3389/fmicb.2024.1414777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024] Open
Abstract
Adverse environmental conditions, such as acid stress, induce bacteria to employ several strategies to overcome these stressors. These strategies include forming biofilms and activating specific molecular pathways, such as the general stress response (GSR). The genome of Priestia megaterium strain G18 was sequenced using the Illumina NextSeq 500 system, resulting in a de novo assembly of 80 scaffolds. The scaffolded genome comprises 5,367,956 bp with a GC content of 37.89%, and was compared to related strains using the MiGA web server, revealing high similarity to P. megaterium NBRC 15308 and P. aryabhattai B8W22 with ANI scores of 95.4%. Phylogenetic and ribosomal multilocus sequence typing (rMLST) analyses, based on the 16S rRNA and ribosomal protein-encoding alleles, confirmed close relationships within the P. megaterium species. Functional annotation identified 5,484 protein-coding genes, with 72.31% classified into 22 COG categories, highlighting roles in amino acid transport, transcription, carbohydrate metabolism, and ribosomal structure. An in-depth genome analysis of P. megaterium G18 revealed several key genes associated with acid tolerance. Targeted inactivation of the ydaG gene from SigB regulon, a general stress response gene, significantly reduced growth under acidic conditions compared to the wild type. qRT-PCR analysis showed increased ydaG expression in acidic conditions, further supporting its role in acid stress response. Microscopic analysis revealed no morphological differences between wild-type and mutant cells, suggesting that ydaG is not involved in maintaining cellular morphology but in facilitating acid tolerance through stress protein production. This research contributes to understanding the molecular mechanisms underlying acid tolerance in soil bacteria, P. megaterium, shedding light on potential applications in agriculture and industry.
Collapse
Affiliation(s)
- Darshana Sharma
- DBT—North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Purna Bahadur Chetri
- DBT—North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Vipin Ranga
- DBT—North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Subhajit Sen
- DBT—North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Bidyut Kumar Sarmah
- DBT—North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Madhumita Barooah
- DBT—North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| |
Collapse
|
4
|
Yang L, Wu Z, Ma TY, Zeng H, Chen M, Zhang YA, Zhou Y. Identification of ClpB, a molecular chaperone involved in the stress tolerance and virulence of Streptococcus agalactiae. Vet Res 2024; 55:60. [PMID: 38750480 PMCID: PMC11094935 DOI: 10.1186/s13567-024-01318-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/06/2024] [Indexed: 05/19/2024] Open
Abstract
Bacterial ClpB is an ATP-dependent disaggregate that belongs to the Hsp100/Clp family and facilitates bacterial survival under hostile environmental conditions. Streptococcus agalactiae, which is regarded as the major bacterial pathogen of farmed Nile tilapia (Oreochromis niloticus), is known to cause high mortality and large economic losses. Here, we report a ClpB homologue of S. agalactiae and explore its functionality. S. agalactiae with a clpB deletion mutant (∆clpB) exhibited defective tolerance against heat and acidic stress, without affecting growth or morphology under optimal conditions. Moreover, the ΔclpB mutant exhibited reduced intracellular survival in RAW264.7 cells, diminished adherence to the brain cells of tilapia, increased sensitivity to leukocytes from the head kidney of tilapia and whole blood killing, and reduced mortality and bacterial loads in a tilapia infection assay. Furthermore, the reduced virulence of the ∆clpB mutant was investigated by transcriptome analysis, which revealed that deletion of clpB altered the expression levels of multiple genes that contribute to the stress response as well as certain metabolic pathways. Collectively, our findings demonstrated that ClpB, a molecular chaperone, plays critical roles in heat and acid stress resistance and virulence in S. agalactiae. This finding provides an enhanced understanding of the functionality of this ClpB homologue in gram-positive bacteria and the survival strategy of S. agalactiae against immune clearance during infection.
Collapse
Affiliation(s)
- Lan Yang
- National Key Laboratory of Agricultural Microbiology; Hubei Hongshan Laboratory; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, 430000, China
| | - Zhihao Wu
- National Key Laboratory of Agricultural Microbiology; Hubei Hongshan Laboratory; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, 430000, China
| | - Tian-Yu Ma
- National Key Laboratory of Agricultural Microbiology; Hubei Hongshan Laboratory; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, 430000, China
| | - Hui Zeng
- National Key Laboratory of Agricultural Microbiology; Hubei Hongshan Laboratory; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, 430000, China
| | - Ming Chen
- National Key Laboratory of Agricultural Microbiology; Hubei Hongshan Laboratory; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, 430000, China
| | - Yong-An Zhang
- National Key Laboratory of Agricultural Microbiology; Hubei Hongshan Laboratory; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, 430000, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510000, China.
| | - Yang Zhou
- National Key Laboratory of Agricultural Microbiology; Hubei Hongshan Laboratory; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, 430000, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510000, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture,, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China.
| |
Collapse
|
5
|
Bourrel AS, Picart A, Fernandez JC, Hays C, Mignon V, Saubaméa B, Poyart C, Fouet A, Tazi A, Guignot J. Specific interaction between Group B Streptococcus CC17 hypervirulent clone and phagocytes. Infect Immun 2024; 92:e0006224. [PMID: 38514466 PMCID: PMC11003227 DOI: 10.1128/iai.00062-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
Streptococcus agalactiae also named Group B Streptococcus (GBS) is the most significant pathogen causing invasive infections, such as bacteremia and meningitis, in neonates. Worldwide epidemiological studies have shown that a particular clonal complex (CC) of capsular serotype III, the CC17, is strongly associated with meningitis in neonates and is therefore, designated as the hypervirulent clone. Macrophages are a permissive niche for intracellular bacteria of all GBS clones. In this study, we deciphered the specific interaction of GBS CC17 strains with macrophages. Our study revealed that CC17 strains are phagocytosed at a higher rate than GBS non-CC17 strains by human monocytes and macrophages both in cellular models and in primary cells. CC17-enhanced phagocytosis is due to an initial enhanced-attachment step to macrophages mediated by the CC17-specific surface protein HvgA and the PI-2b pilus (Spb1). We showed that two different inhibitors of scavenger receptors (fucoidan and poly(I)) specifically inhibited CC17 adhesion and phagocytosis while not affecting those of non-CC17 strains. Once phagocytosed, both CC17 and non-CC17 strains remained in a LAMP-1 positive vacuole that ultimately fuses with lysosomes where they can survive at similar rates. Finally, both strains displayed a basal egress which occurs independently from actin and microtubule networks. Our findings provide new insights into the interplay between the hypervirulent GBS CC17 and major players of the host's innate immune response. This enhanced adhesion, leading to increased phagocytosis, could reflect a peculiar capacity of the CC17 lineage to subvert the host immune defenses, establish a niche for persistence or disseminate.
Collapse
Affiliation(s)
- Anne-Sophie Bourrel
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
- Hôpitaux Universitaires Paris Centre, Cochin, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Amandine Picart
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | | | - Constantin Hays
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
- Hôpitaux Universitaires Paris Centre, Cochin, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Virginie Mignon
- Plateforme PICMO, US25 INSERM, UAR3612 CNRS, Faculté de Pharmacie, Université Paris Cité, Paris, France
| | - Bruno Saubaméa
- Plateforme PICMO, US25 INSERM, UAR3612 CNRS, Faculté de Pharmacie, Université Paris Cité, Paris, France
| | - Claire Poyart
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
- Hôpitaux Universitaires Paris Centre, Cochin, Assistance Publique Hôpitaux de Paris, Paris, France
- Centre National de Référence des Streptocoques, Paris, France
| | - Agnès Fouet
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Asmaa Tazi
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
- Hôpitaux Universitaires Paris Centre, Cochin, Assistance Publique Hôpitaux de Paris, Paris, France
- Centre National de Référence des Streptocoques, Paris, France
| | - Julie Guignot
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| |
Collapse
|
6
|
Sullivan MJ, Terán I, Goh KG, Ulett GC. Resisting death by metal: metabolism and Cu/Zn homeostasis in bacteria. Emerg Top Life Sci 2024; 8:45-56. [PMID: 38362914 PMCID: PMC10903455 DOI: 10.1042/etls20230115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/17/2024]
Abstract
Metal ions such as zinc and copper play important roles in host-microbe interactions and their availability can drastically affect the survival of pathogenic bacteria in a host niche. Mechanisms of metal homeostasis protect bacteria from starvation, or intoxication, defined as when metals are limiting, or in excess, respectively. In this mini-review, we summarise current knowledge on the mechanisms of resistance to metal stress in bacteria, focussing specifically on the homeostasis of cellular copper and zinc. This includes a summary of the factors that subvert metal stress in bacteria, which are independent of metal efflux systems, and commentary on the role of small molecules and metabolic systems as important mediators of metal resistance.
Collapse
Affiliation(s)
- Matthew J. Sullivan
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, U.K
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - Ignacio Terán
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, U.K
| | - Kelvin G.K. Goh
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - Glen C. Ulett
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| |
Collapse
|
7
|
Dubinkina V, Bhogale S, Hsieh PH, Dibaeinia P, Nambiar A, Maslov S, Yoshikuni Y, Sinha S. A transcriptomic atlas of acute stress response to low pH in multiple Issatchenkia orientalis strains. Microbiol Spectr 2024; 12:e0253623. [PMID: 38018981 PMCID: PMC10783018 DOI: 10.1128/spectrum.02536-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/27/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE Issatchenkia orientalis is a promising industrial chassis to produce biofuels and bioproducts due to its high tolerance to multiple environmental stresses such as low pH, heat, and other chemicals otherwise toxic for the most widely used microbes. Yet, little is known about specific mechanisms of such tolerance in this organism, hindering our ability to engineer this species to produce valuable biochemicals. Here, we report a comprehensive study of the mechanisms of acidic tolerance in this species via transcriptome profiling across variable pH for 12 different strains with different phenotypes. We found multiple regulatory mechanisms involved in tolerance to low pH in different strains of I. orientalis, marking potential targets for future gene editing and perturbation experiments.
Collapse
Affiliation(s)
- Veronika Dubinkina
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- The Gladstone Institute of Data Science and Biotechnology, San Francisco, California, USA
| | - Shounak Bhogale
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Ping-Hung Hsieh
- Center for Advanced Bioenergy and Bioproducts Innovation, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Payam Dibaeinia
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Ananthan Nambiar
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Sergei Maslov
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Yasuo Yoshikuni
- Center for Advanced Bioenergy and Bioproducts Innovation, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Global Institution for Collaborative Research and Education, Hokkaido University, Hokkaido, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Saurabh Sinha
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Biomedical Engineering at Georgia Tech and Emory University, Atlanta, Georgia, USA
- Department of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
8
|
Bhattacharya A, Das S, Bhattacharjee MJ, Mukherjee AK, Khan MR. Comparative pangenomic analysis of predominant human vaginal lactobacilli strains towards population-specific adaptation: understanding the role in sustaining a balanced and healthy vaginal microenvironment. BMC Genomics 2023; 24:565. [PMID: 37740204 PMCID: PMC10517566 DOI: 10.1186/s12864-023-09665-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/09/2023] [Indexed: 09/24/2023] Open
Abstract
The vaginal microenvironment of healthy women has a predominance of Lactobacillus crispatus, L. iners, L. gasseri, and L. jensenii. The genomic repertoire of the strains of each of the species associated with the key attributes thereby regulating a healthy vaginal environment needs a substantial understanding.We studied all available human strains of the four lactobacilli across different countries, isolated from vaginal and urinal sources through phylogenetic and pangenomic approaches. The findings showed that L. iners has the highest retention of core genes, and L. crispatus has more gene gain in the evolutionary stratum. Interestingly, L. gasseri and L. jensenii demonstrated major population-specific gene-cluster gain/loss associated with bacteriocin synthesis, iron chelating, adherence, zinc and ATP binding proteins, and hydrolase activity. Gene ontology enrichment analysis revealed that L. crispatus strains showed greater enrichment of functions related to plasma membrane integrity, biosurfactant, hydrogen peroxide synthesis, and iron sequestration as an ancestral derived core function, while bacteriocin and organic acid biosynthesis are strain-specific accessory enriched functions. L. jensenii showed greater enrichment of functions related to adherence, aggregation, and exopolysaccharide synthesis. Notably, the key functionalities are heterogeneously enriched in some specific strains of L. iners and L. gasseri.This study shed light on the genomic features and their variability that provides advantageous attributes to predominant vaginal Lactobacillus species maintaining vaginal homeostasis. These findings evoke the need to consider region-specific candidate strains of Lactobacillus to formulate prophylactic measures against vaginal dysbiosis for women's health.
Collapse
Affiliation(s)
- Anupam Bhattacharya
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Sushmita Das
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, 781035, Assam, India
- Department of Biotechnology, Gauhati University, Guwahati, 781014, Assam, India
| | - Maloyjo Joyraj Bhattacharjee
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, 781035, Assam, India.
| | - Ashis K Mukherjee
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Mojibur Rohman Khan
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, 781035, Assam, India.
| |
Collapse
|
9
|
Ngom NS, Gassama O, Dieng A, Diakhaby EB, Ndiaye SML, Tine A, Karam F, Lo G, Ba-Diallo A, Boye CSB, Toure-Kane C, Seck A, Diop-Ndiaye H, Camara M. Vaginal Carriage of Group B Streptococcus (GBS) in Pregnant Women, Antibiotic Sensitivity and Associated Risk Factors in Dakar, Senegal. Microbiol Insights 2023; 16:11786361231174419. [PMID: 37275206 PMCID: PMC10233617 DOI: 10.1177/11786361231174419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/20/2023] [Indexed: 06/07/2023] Open
Abstract
The eradication of neonatal Group B Streptococcus (GBS) infections, considered as a major public health priority, necessarily requires a mastery of the data on vaginal carriage in pregnant women. The aims of this study were to determine the prevalence of vaginal carriage of GBS in pregnant women, antibiotic susceptibility, and associated risk factors. This was a cross-sectional, descriptive study conducted over a period of 9 months (July 2020 to March 2021) in pregnant women between 34 and 38 weeks of gestation (WG) followed at the Nabil Choucair health center in Dakar. Identification and antibiotic susceptibility of GBS isolates were performed on the Vitek 2 from vaginal swabs cultured on Granada medium. Demographic and obstetric interview data were collected and analyzed on SPSS (version 25). The level of significance for all statistical tests was set at P < .05. The search of GBS vaginal carriage had involved 279 women aged 16 to 46 years, with a median pregnancy age of 34 (34-37) weeks' gestation. GBS was found in 43 women, for a vaginal carriage rate of 15.4%. In 27.9% (12/43) of volunteers screened, this carriage was monomicrobial, while in 72.1% (31/43) of women, GBS was associated with other pathogens such as Candida spp. (60.5%), Trichomonas vaginalis (2.3%), Gardnerella vaginalis (34.9%) and/or Mobiluncus spp. (11.6%). The level of resistance was 27.9% (12/43) for penicillin G, 53.5% (23/43) for erythromycin, 25.6% (11/43) for clindamycin and 100% for tetracycline. However, the strains had retained fully susceptible to vancomycin and teicoplanin. The main risk factor associated with maternal GBS carriage were ectocervical inflammation associated with contact bleeding (OR = 3.55; P = .005). The high rate of maternal vaginal GBS carriage and the levels of resistance to the various antibiotics tested confirm the importance of continuous GBS surveillance in our resource-limited countries.
Collapse
Affiliation(s)
- Ndeye Safietou Ngom
- Bacteriology-Virology Laboratory,
National University Hospital Center Aristide Le Dantec, Dakar, Senegal
| | - Omar Gassama
- Gynecological and Obstetrical Clinic,
National University Hospital Center Aristide Le Dantec, Dakar, Senegal
| | - Assane Dieng
- Bacteriology-Virology Laboratory,
National University Hospital Center Aristide Le Dantec, Dakar, Senegal
| | - Elhadji Bambo Diakhaby
- Bacteriology-Virology Laboratory,
National University Hospital Center Aristide Le Dantec, Dakar, Senegal
| | - Serigne Mbaye Lo Ndiaye
- Bacteriology-Virology Laboratory,
National University Hospital Center Aristide Le Dantec, Dakar, Senegal
| | - Alioune Tine
- Bacteriology-Virology Laboratory,
National University Hospital Center Aristide Le Dantec, Dakar, Senegal
| | - Farba Karam
- Bacteriology-Virology Laboratory,
National University Hospital Center Aristide Le Dantec, Dakar, Senegal
| | - Gora Lo
- Bacteriology-Virology Laboratory,
National University Hospital Center Aristide Le Dantec, Dakar, Senegal
| | - Awa Ba-Diallo
- Bacteriology-Virology Laboratory,
National University Hospital Center Aristide Le Dantec, Dakar, Senegal
| | - Cheikh Saad Bouh Boye
- Bacteriology-Virology Laboratory,
National University Hospital Center Aristide Le Dantec, Dakar, Senegal
| | - Coumba Toure-Kane
- Bacteriology-Virology Laboratory,
National University Hospital Center Aristide Le Dantec, Dakar, Senegal
| | - Abdoulaye Seck
- Laboratory of Medical Biology, Pasteur
Institute of Dakar, Senegal
| | - Halimatou Diop-Ndiaye
- Bacteriology-Virology Laboratory,
National University Hospital Center Aristide Le Dantec, Dakar, Senegal
| | - Makhtar Camara
- Bacteriology-Virology Laboratory,
National University Hospital Center Aristide Le Dantec, Dakar, Senegal
| |
Collapse
|
10
|
Wu J, McAuliffe O, O'Byrne CP. Manganese uptake mediated by the NRAMP-type transporter MntH is required for acid tolerance in Listeria monocytogenes. Int J Food Microbiol 2023; 399:110238. [PMID: 37148667 DOI: 10.1016/j.ijfoodmicro.2023.110238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
Listeria monocytogenes is a foodborne pathogen that is characterized by its ability to withstand mild stresses (i.e. cold, acid, salt) often encountered in food products or food processing environments. In the previous phenotypic and genotypic characterization of a collection of L. monocytogenes strains, we have identified one strain 1381, originally obtained from EURL-lm, as acid sensitive (reduced survival at pH 2.3) and extremely acid intolerant (no growth at pH 4.9, which supports the growth of most strains). In this study, we investigated the cause of acid intolerance in strain 1381 by isolating and sequencing reversion mutants that were capable of growth at low pH (pH 4.8) to a similar extent as another strain (1380) from the same MLST clonal complex (CC2). Whole genome sequencing showed that a truncation in mntH, which encodes a homologue of an NRAMP (Natural Resistance-Associated Macrophage Protein) type Mn2+ transporter, is responsible for the acid intolerance phenotype observed in strain 1381. However, the mntH truncation alone was not sufficient to explain the acid sensitivity of strain 1381 at lethal pH values as strain 1381R1 (a mntH+ revertant) exhibited similar acid survival to its parental strain at pH 2.3. Further growth experiments demonstrated that Mn2+ (but not Fe2+, Zn2+, Cu2+, Ca2+, or Mg2+) supplementation fully rescues the growth of strain 1381 under low pH conditions, suggesting that a Mn2+ limitation is the likely cause of growth arrest in the mntH- background. Consistent with the important role of Mn2+ in the acid stress response was the finding that mntH and mntB (both encoding Mn2+ transporters) had higher transcription levels following exposure to mild acid stress (pH 5). Taken together, these results provide evidence that MntH-mediated Mn2+ uptake is essential for the growth of L. monocytogenes under low pH conditions. Moreover, since strain 1381 was recommended for conducting food challenge studies by the European Union Reference Laboratory, the use of this strain in evaluating the growth of L. monocytogenes in low pH environments where Mn2+ is scarce should be reconsidered. Furthermore, since it is unknown when strain 1381 acquired the mntH frameshift mutation, the ability of the strains used for challenge studies to grow under food-related stresses needs to be routinely validated.
Collapse
Affiliation(s)
- Jialun Wu
- Bacterial Stress Response Group, Microbiology, Ryan Institute, School of Biological & Chemical Sciences, University of Galway, Galway H91 TK33, Ireland
| | | | - Conor P O'Byrne
- Bacterial Stress Response Group, Microbiology, Ryan Institute, School of Biological & Chemical Sciences, University of Galway, Galway H91 TK33, Ireland..
| |
Collapse
|
11
|
Mallick S, Das S. Acid-tolerant bacteria and prospects in industrial and environmental applications. Appl Microbiol Biotechnol 2023; 107:3355-3374. [PMID: 37093306 DOI: 10.1007/s00253-023-12529-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
Acid-tolerant bacteria such as Streptococcus mutans, Acidobacterium capsulatum, Escherichia coli, and Propionibacterium acidipropionici have developed several survival mechanisms to sustain themselves in various acid stress conditions. Some bacteria survive by minor changes in the environmental pH. In contrast, few others adapt different acid tolerance mechanisms, including amino acid decarboxylase acid resistance systems, mainly glutamate-dependent acid resistance (GDAR) and arginine-dependent acid resistance (ADAR) systems. The cellular mechanisms of acid tolerance include cell membrane alteration in Acidithiobacillus thioxidans, proton elimination by F1-F0-ATPase in Streptococcus pyogenes, biofilm formation in Pseudomonas aeruginosa, cytoplasmic urease activity in Streptococcus mutans, synthesis of the protective cloud of ammonia, and protection or repair of macromolecules in Bacillus caldontenax. Apart from cellular mechanisms, there are several acid-tolerant genes such as gadA, gadB, adiA, adiC, cadA, cadB, cadC, speF, and potE that help the bacteria to tolerate the acidic environment. This acid tolerance behavior provides new and broad prospects for different industrial applications and the bioremediation of environmental pollutants. The development of engineered strains with acid-tolerant genes may improve the efficiency of the transgenic bacteria in the treatment of acidic industrial effluents. KEY POINTS: • Bacteria tolerate the acidic stress by methylating unsaturated phospholipid tail • The activity of decarboxylase systems for acid tolerance depends on pH • Genetic manipulation of acid-tolerant genes improves acid tolerance by the bacteria.
Collapse
Affiliation(s)
- Souradip Mallick
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| |
Collapse
|
12
|
Alterations of Vaginal Microbiota and Chlamydia trachomatis as Crucial Co-Causative Factors in Cervical Cancer Genesis Procured by HPV. Microorganisms 2023; 11:microorganisms11030662. [PMID: 36985236 PMCID: PMC10053692 DOI: 10.3390/microorganisms11030662] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Chlamydia trachomatis and human papillomavirus (HPV) are the most common pathogens found in sexually transmitted infections (STIs), and both are known to increase the risk of cervical cancer (CC) and infertility. HPV is extremely common worldwide, and scientists use it to distinguish between low-risk and high-risk genotypes. In addition, HPV transmission can occur via simple contact in the genital area. From 50 to 80% of sexually active individuals become infected with both C. trachomatis and HPV viruses during their lifetime, and up to 50% become infected with an HPV oncogenic genotype. The natural history of this coinfection is strongly conditioned by the balance between the host microbiome and immune condition and the infecting agent. Though the infection often regresses, it tends to persist throughout adult life asymptomatically and silently. The partnership between HPV and C. trachomatis is basically due to their similarities: common transmission routes, reciprocal advantages, and the same risk factors. C. trachomatis is a Gram-negative bacteria, similar to HPV, and an intracellular bacterium, which shows a unique biphasic development that helps the latter continue its steady progression into the host throughout the entire life. Indeed, depending on the individual’s immune condition, the C. trachomatis infection tends to migrate toward the upper genital tract and spread to the uterus, and the fallopian tubes open up a pathway to HPV invasion. In addition, most HPV and C. trachomatis infections related to the female genital tract are facilitated by the decay of the first line of defense in the vaginal environment, which is constituted by a healthy vaginal microbiome that is characterized by a net equilibrium of all its components. Thus, the aim of this paper was to highlight the complexity and fragility of the vaginal microenvironment and accentuate the fundamental role of all elements and systems involved, including the Lactobacillus strains (Lactobacillus gasseri, Lactobacillus jensenii, Lactobacillus crispatus) and the immune–endocrine system, in preserving it from oncogenic mutation. Therefore, age, diet, and genetic predisposition together with an unspecific, persistent low-grade inflammatory state were found to be implicated in a high frequency and severity grade of disease, potentially resulting in pre-cancerous and cancerous cervical lesions.
Collapse
|
13
|
In Vivo Role of Two-Component Regulatory Systems in Models of Urinary Tract Infections. Pathogens 2023; 12:pathogens12010119. [PMID: 36678467 PMCID: PMC9861413 DOI: 10.3390/pathogens12010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/23/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023] Open
Abstract
Two-component signaling systems (TCSs) are finely regulated mechanisms by which bacteria adapt to environmental conditions by modifying the expression of target genes. In bacterial pathogenesis, TCSs play important roles in modulating adhesion to mucosal surfaces, resistance to antibiotics, and metabolic adaptation. In the context of urinary tract infections (UTI), one of the most common types infections causing significant health problems worldwide, uropathogens use TCSs for adaptation, survival, and establishment of pathogenicity. For example, uropathogens can exploit TCSs to survive inside bladder epithelial cells, sense osmolar variations in urine, promote their ascension along the urinary tract or even produce lytic enzymes resulting in exfoliation of the urothelium. Despite the usefulness of studying the function of TCSs in in vitro experimental models, it is of primary necessity to study bacterial gene regulation also in the context of host niches, each displaying its own biological, chemical, and physical features. In light of this, the aim of this review is to provide a concise description of several bacterial TCSs, whose activity has been described in mouse models of UTI.
Collapse
|
14
|
Molecular Epidemiology of Group B Streptococcus Colonization in Egyptian Women. Microorganisms 2022; 11:microorganisms11010038. [PMID: 36677330 PMCID: PMC9861799 DOI: 10.3390/microorganisms11010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
(1) Background: Streptococcus agalactiae or Group B Streptococcus (GBS) causes severe neonatal infections with a high burden of disease, especially in Africa. Maternal vaginal colonization and perinatal transmissions represent the common mode of acquiring the infection. Development of an effective maternal vaccine against GBS relies on molecular surveillance of the maternal GBS population to better understand the global distribution of GBS clones and serotypes. (2) Methods: Here, we present genomic data from a collection of colonizing GBS strains from Ismailia, Egypt that were sequenced and characterized within the global JUNO project. (3) Results: A large proportion of serotype VI, ST14 strains was discovered, a serotype which is rarely found in strain collections from the US and Europe and typically not included in the current vaccine formulations. (4) Conclusions: The molecular epidemiology of these strains clearly points to the African origin with the detection of several sequence types (STs) that have only been observed in Africa. Our data underline the importance of continuous molecular surveillance of the GBS population for future vaccine implementations.
Collapse
|
15
|
Roux AE, Robert S, Bastat M, Rosinski-Chupin I, Rong V, Holbert S, Mereghetti L, Camiade E. The Role of Regulator Catabolite Control Protein A (CcpA) in Streptococcus agalactiae Physiology and Stress Response. Microbiol Spectr 2022; 10:e0208022. [PMID: 36264242 PMCID: PMC9784791 DOI: 10.1128/spectrum.02080-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/21/2022] [Indexed: 01/06/2023] Open
Abstract
Streptococcus agalactiae is a leading cause of infections in neonates. This opportunistic pathogen colonizes the vagina, where it has to cope with acidic pH and hydrogen peroxide produced by lactobacilli. Thus, in the host, this bacterium possesses numerous adaptation mechanisms in which the pleiotropic regulators play a major role. The transcriptional regulator CcpA (catabolite control protein A) has previously been shown to be the major regulator involved in carbon catabolite repression in Gram-positive bacteria but is also involved in other functions. By transcriptomic analysis, we characterized the CcpA-dependent gene regulation in S. agalactiae. Approximately 13.5% of the genome of S. agalactiae depends on CcpA for regulation and comprises genes involved in sugar uptake and fermentation, confirming the role of CcpA in carbon metabolism. We confirmed by electrophoretic mobility shift assays (EMSAs) that the DNA binding site called cis-acting catabolite responsive element (cre) determined for other streptococci was effective in S. agalactiae. We also showed that CcpA is of capital importance for survival under acidic and oxidative stresses and is implicated in macrophage survival by regulating several genes putatively or already described as involved in stress response. Among them, we focused our study on SAK_1689, which codes a putative UspA protein. We demonstrated that SAK_1689, highly downregulated by CcpA, is overexpressed under oxidative stress conditions, this overexpression being harmful for the bacterium in a ΔccpA mutant. IMPORTANCE Streptococcus agalactiae is a major cause of disease burden leading to morbidity and mortality in neonates worldwide. Deciphering its adaptation mechanisms is essential to understand how this bacterium manages to colonize its host. Here, we determined the regulon of the pleiotropic regulator CcpA in S. agalactiae. Our findings reveal that CcpA is not only involved in carbon catabolite repression, but is also important for acidic and oxidative stress resistance and survival in macrophages.
Collapse
Affiliation(s)
| | | | | | - Isabelle Rosinski-Chupin
- Unité Écologie et Évolution de la Résistance aux Antibiotiques, CNRS UMR3525, Institut Pasteur, Paris, France
| | | | | | - Laurent Mereghetti
- ISP, Université de Tours, INRAE, Tours, France
- CHRU Tours, Service de Bactériologie-Virologie-Hygiène, Tours, France
| | | |
Collapse
|
16
|
Shabayek S, Abdellah AM, Salah M, Ramadan M, Fahmy N. Alterations of the vaginal microbiome in healthy pregnant women positive for group B Streptococcus colonization during the third trimester. BMC Microbiol 2022; 22:313. [PMID: 36544085 PMCID: PMC9769055 DOI: 10.1186/s12866-022-02730-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Streptococcus agalactiae or group B Streptococcus (GBS) asymptomatically colonizes the genitourinary tracts of up to 30% of pregnant women. Globally, GBS is an important cause of neonatal morbidity and mortality. GBS has recently been linked to adverse pregnancy outcomes. The potential interactions between GBS and the vaginal microbiome composition remain poorly understood. In addition, little is known about the vaginal microbiota of pregnant Egyptian women. RESULTS Using V3-V4 16S rRNA next-generation sequencing, we examined the vaginal microbiome in GBS culture-positive pregnant women (22) and GBS culture-negative pregnant women (22) during the third trimester in Ismailia, Egypt. According to the alpha-diversity indices, the vaginal microbiome of pregnant GBS culture-positive women was significantly more diverse and less homogenous. The composition of the vaginal microbiome differed significantly based on beta-diversity between GBS culture-positive and culture-negative women. The phylum Firmicutes and the family Lactobacillaceae were significantly more abundant in GBS-negative colonizers. In contrast, the phyla Actinobacteria, Tenericutes, and Proteobacteria and the families Bifidobacteriaceae, Mycoplasmataceae, Streptococcaceae, Corynebacteriaceae, Staphylococcaceae, and Peptostreptococcaceae were significantly more abundant in GBS culture-positive colonizers. On the genus and species levels, Lactobacillus was the only genus detected with significantly higher relative abundance in GBS culture-negative status (88%), and L. iners was the significantly most abundant species. Conversely, GBS-positive carriers exhibited a significant decrease in Lactobacillus abundance (56%). In GBS-positive colonizers, the relative abundance of the genera Ureaplasma, Gardnerella, Streptococcus, Corynebacterium, Staphylococcus, and Peptostreptococcus and the species Peptostreptococcus anaerobius was significantly higher. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to the metabolism of cofactors and vitamins, phosphatidylinositol signaling system, peroxisome, host immune system pathways, and host endocrine system were exclusively enriched among GBS culture-positive microbial communities. However, lipid metabolism KEGG pathways, nucleotide metabolism, xenobiotics biodegradation and metabolism, genetic information processing pathways associated with translation, replication, and repair, and human diseases (Staphylococcus aureus infection) were exclusively enriched in GBS culture-negative communities. CONCLUSIONS Understanding how perturbations of the vaginal microbiome contribute to pregnancy complications may result in the development of alternative, targeted prevention strategies to prevent maternal GBS colonization. We hypothesized associations between inferred microbial function and GBS status that would need to be confirmed in larger cohorts.
Collapse
Affiliation(s)
- Sarah Shabayek
- grid.33003.330000 0000 9889 5690Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Asmaa M. Abdellah
- grid.33003.330000 0000 9889 5690Department of Obstetrics and Gynecology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Mohammed Salah
- grid.440879.60000 0004 0578 4430Department of Microbiology and Immunology, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Mohammed Ramadan
- grid.411303.40000 0001 2155 6022Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Nora Fahmy
- grid.33003.330000 0000 9889 5690Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
17
|
Spoto M, Riera Puma JP, Fleming E, Guan C, Ondouah Nzutchi Y, Kim D, Oh J. Large-Scale CRISPRi and Transcriptomics of Staphylococcus epidermidis Identify Genetic Factors Implicated in Lifestyle Versatility. mBio 2022; 13:e0263222. [PMID: 36409086 PMCID: PMC9765180 DOI: 10.1128/mbio.02632-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022] Open
Abstract
Staphylococcus epidermidis is a ubiquitous human commensal skin bacterium that is also one of the most prevalent nosocomial pathogens. The genetic factors underlying this remarkable lifestyle plasticity are incompletely understood, mainly due to the difficulties of genetic manipulation, precluding high-throughput functional profiling of this species. To probe the versatility of S. epidermidis to survive across a diversity of environmental conditions, we developed a large-scale CRISPR interference (CRISPRi) screen complemented by transcriptional profiling (RNA sequencing) across 24 diverse conditions and piloted a droplet-based CRISPRi approach to enhance throughput and sensitivity. We identified putative essential genes, importantly revealing amino acid metabolism as crucial to survival across diverse environments, and demonstrated the importance of trace metal uptake for survival under multiple stress conditions. We identified pathways significantly enriched and repressed across our range of stress and nutrient-limited conditions, demonstrating the considerable plasticity of S. epidermidis in responding to environmental stressors. Additionally, we postulate a mechanism by which nitrogen metabolism is linked to lifestyle versatility in response to hyperosmotic challenges, such as those encountered on human skin. Finally, we examined the survival of S. epidermidis under acid stress and hypothesize a role for cell wall modification as a vital component of the survival response under acidic conditions. Taken together, this study integrates large-scale CRISPRi and transcriptomics data across multiple environments to provide insights into a keystone member of the human skin microbiome. Our results additionally provide a valuable benchmarking analysis for CRISPRi screens and are a rich resource for other staphylococcal researchers. IMPORTANCE Staphylococcus epidermidis is a bacteria that broadly inhabits healthy human skin, yet it is also a common cause of skin infections and bloodstream infections associated with implanted medical devices. Because human skin has many different types of S. epidermidis, each containing different genes, our goal is to determine how these different genes allow S. epidermidis to switch from healthy growth in the skin to being an infectious pathogen. Understanding this switch is critical to developing new strategies to prevent and treat S. epidermidis infections.
Collapse
Affiliation(s)
- Michelle Spoto
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
- The University of Connecticut Health Center, Farmington, Connecticut, USA
| | | | - Elizabeth Fleming
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Changhui Guan
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | | | - Dean Kim
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Julia Oh
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| |
Collapse
|
18
|
Secretome Analysis of the Plant Biostimulant Bacteria Strains Bacillus subtilis (EB2004S) and Lactobacillus helveticus (EL2006H) in Response to pH Changes. Int J Mol Sci 2022; 23:ijms232315144. [PMID: 36499471 PMCID: PMC9739546 DOI: 10.3390/ijms232315144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022] Open
Abstract
It is well-known that there is a high frequency of plant-growth-promoting strains in Bacillus subtilis and that these can be effective under both stressful and stress-free conditions. There are very few studies of this activity in the case of Lactobacillus helveticus. In this study, the effects of pH on the secretome (proteins) in the cell-free supernatants of two bacterial strains were evaluated. The bacteria were cultured at pH 5, 7 and 8, and their secretome profiles were analyzed, with pH 7 (optimal growth pH) considered as the "control". The results showed that acidity (lower pH 5) diminishes the detectable production of most of the secretome proteins, whereas alkalinity (higher pH 8) increases the detectable protein production. At pH 5, five (5) new proteins were produced by L. helveticus, including class A sortase, fucose-binding lectin II, MucBP-domain-containing protein, SLAP-domain-containing protein and hypothetical protein LHEJCM1006_11110, whereas for B. subtilis, four (4) types of proteins were uniquely produced (p ≤ 0.05), including helicase-exonuclease AddAB subunit AddB, 5-methyltetrahydropteroyltriglutamate-homocysteine S-methyltransferase, a cluster of ABC-F family ATP-binding-cassette-domain-containing proteins and a cluster of excinuclease ABC (subunit B). At pH 8, Bacillus subtilis produced 56 unique proteins. Many of the detected proteins were involved in metabolic processes, whereas the others had unknown functions. The unique and new proteins with known and unknown functions suggest potential the acclimatization of the microbes to pH stress.
Collapse
|
19
|
Genomic Landscape Highlights Molecular Mechanisms Involved in Silicate Solubilization, Stress Tolerance, and Potential Growth-Promoting Activity of Bacterium Enterobacter sp. LR6. Cells 2022; 11:cells11223622. [PMID: 36429050 PMCID: PMC9688052 DOI: 10.3390/cells11223622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Silicon (Si) is gaining widespread attention due to its prophylactic activity to protect plants under stress conditions. Despite Si's abundance in the earth's crust, most soils do not have enough soluble Si for plants to absorb. In the present study, a silicate-solubilizing bacterium, Enterobacter sp. LR6, was isolated from the rhizospheric soil of rice and subsequently characterized through whole-genome sequencing. The size of the LR6 genome is 5.2 Mb with a GC content of 54.9% and 5182 protein-coding genes. In taxogenomic terms, it is similar to E. hormaechei subsp. xiangfangensis based on average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH). LR6 genomic data provided insight into potential genes involved in stress response, secondary metabolite production, and growth promotion. The LR6 genome contains two aquaporins, of which the aquaglyceroporin (GlpF) is responsible for the uptake of metalloids including arsenic (As) and antimony (Sb). The yeast survivability assay confirmed the metalloid transport activity of GlpF. As a biofertilizer, LR6 isolate has a great deal of tolerance to high temperatures (45 °C), salinity (7%), and acidic environments (pH 9). Most importantly, the present study provides an understanding of plant-growth-promoting activity of the silicate-solubilizing bacterium, its adaptation to various stresses, and its uptake of different metalloids including As, Ge, and Si.
Collapse
|
20
|
Neuzil-Bunesova V, Ramirez Garcia A, Modrackova N, Makovska M, Sabolova M, Spröer C, Bunk B, Blom J, Schwab C. Feed Insects as a Reservoir of Granadaene-Producing Lactococci. Front Microbiol 2022; 13:848490. [PMID: 35615513 PMCID: PMC9125021 DOI: 10.3389/fmicb.2022.848490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/04/2022] [Indexed: 11/15/2022] Open
Abstract
Insects are a component of the diet of different animal species and have been suggested as the major source of human dietary protein for the future. However, insects are also carriers of potentially pathogenic microbes that constitute a risk to food and feed safety. In this study, we reported the occurrence of a hemolytic orange pigmented producing phenotype of Lactococcus garvieae/petauri/formosensis in the fecal microbiota of golden lion tamarins (Leontopithecus rosalia) and feed larvae (Zophobas atratus). Feed insects were identified as a regular source of L. garvieae/petauri/formosensis based on a reanalysis of available 16S rRNA gene libraries. Pan-genome analysis suggested the existence of four clusters within the L. garvieae/petauri/formosensis group. The presence of cyl cluster indicated that some strains of the L. garvieae/petauri/formosensis group produced a pigment similar to granadaene, an orange cytotoxic lipid produced by group B streptococci, including Streptococcus agalactiae. Pigment production by L. garvieae/petauri/formosensis strains was dependent on the presence of the fermentable sugars, with no pigment being observed at pH <4.7. The addition of buffering compounds or arginine, which can be metabolized to ammonium, restored pigment formation. In addition, pigment formation might be related to the source of peptone. These data suggest that edible insects are a possible source of granadaene-producing lactococci, which can be considered a pathogenic risk with zoonotic potential.
Collapse
Affiliation(s)
- Vera Neuzil-Bunesova
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Prague, Czechia
- *Correspondence: Vera Neuzil-Bunesova,
| | - Alejandro Ramirez Garcia
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, Zurich, Switzerland
| | - Nikol Modrackova
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Prague, Czechia
| | - Marie Makovska
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Prague, Czechia
| | - Monika Sabolova
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Prague, Czechia
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, University Giessen, Giessen, Germany
| | - Clarissa Schwab
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Prague, Czechia
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, Zurich, Switzerland
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| |
Collapse
|
21
|
Puccio T, An SS, Schultz AC, Lizarraga CA, Bryant AS, Culp DJ, Burne RA, Kitten T. Manganese transport by Streptococcus sanguinis in acidic conditions and its impact on growth in vitro and in vivo. Mol Microbiol 2021; 117:375-393. [PMID: 34862691 PMCID: PMC8844241 DOI: 10.1111/mmi.14854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023]
Abstract
Streptococcus sanguinis is an oral commensal and an etiological agent of infective endocarditis. Previous studies have identified the SsaACB manganese transporter as essential for endocarditis virulence; however, the significance of SsaACB in the oral environment has never been examined. Here we report that a ΔssaACB deletion mutant of strain SK36 exhibits reduced growth and manganese uptake under acidic conditions. Further studies revealed that these deficits resulted from the decreased activity of TmpA, shown in the accompanying paper to function as a ZIP‐family manganese transporter. Transcriptomic analysis of fermentor‐grown cultures of SK36 WT and ΔssaACB strains identified pH‐dependent changes related to carbon catabolite repression in both strains, though their magnitude was generally greater in the mutant. In strain VMC66, which possesses a MntH transporter, loss of SsaACB did not significantly alter growth or cellular manganese levels under the same conditions. Interestingly, there were only modest differences between SK36 and its ΔssaACB mutant in competition with Streptococcus mutans in vitro and in a murine oral colonization model. Our results suggest that the heterogeneity of the oral environment may provide a rationale for the variety of manganese transporters found in S. sanguinis.
Collapse
Affiliation(s)
- Tanya Puccio
- Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Richmond, Virginia, USA
| | - Seon-Sook An
- Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Richmond, Virginia, USA
| | - Alexander C Schultz
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Claudia A Lizarraga
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Ashley S Bryant
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - David J Culp
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Robert A Burne
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Todd Kitten
- Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Richmond, Virginia, USA
| |
Collapse
|
22
|
Genome of Bifidobacterium longum NCIM 5672 provides insights into its acid-tolerance mechanism and probiotic properties. Arch Microbiol 2021; 203:6109-6118. [PMID: 34553262 DOI: 10.1007/s00203-021-02573-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 01/02/2023]
Abstract
Bifidobacterium longum NCIM 5672 is a probiotic strain isolated from the Indian infant feces. The probiotic efficacy of Bifidobacteria is majorly affected by its acid tolerance. This study determined the probiotic properties and acid-tolerance mechanism of B. longum NCIM 5672 using whole-genome sequencing. The genome annotation is carried out using the RAST web server and NCBI PGAAP. The draft genome sequence of this strain, assembled in 63 contigs, consists of 22,46,978 base pairs, 1900 coding sequences and a GC content of 59.6%. The genome annotation revealed that seven candidate genes might be involved in regulating the acid tolerance of B. longum NCIM 5672. Furthermore, the presence of genes associated with immunomodulation and cell adhesion support the probiotic background of the strain. The analysis of candidate acid- tolerance-associated genes revealed three genes, argC, argH, and dapA, may play an essential role in high acid tolerance in B. longum NCIM 5672. The results of RT-qPCR supported this conclusion. Altogether, the results presented here supply an effective way to select acid-resistant strains for the food industry and provide new strategies to enhance this species' industrial applications and health-promoting properties.
Collapse
|
23
|
Cellular Management of Zinc in Group B Streptococcus Supports Bacterial Resistance against Metal Intoxication and Promotes Disseminated Infection. mSphere 2021; 6:6/3/e00105-21. [PMID: 34011683 PMCID: PMC8265624 DOI: 10.1128/msphere.00105-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zinc is an essential trace element for normal bacterial physiology but, divergently, can intoxicate bacteria at high concentrations. Here, we define the molecular systems for Zn detoxification in Streptococcus agalactiae, also known as group B streptococcus, and examine the effects of resistance to Zn stress on virulence. We compared the growth of wild-type bacteria and mutants deleted for the Zn exporter, czcD, and the response regulator, sczA, using Zn-stress conditions in vitro Macrophage antibiotic protection assays and a mouse model of disseminated infection were used to assess virulence. Global bacterial transcriptional responses to Zn stress were defined by RNA sequencing and quantitative reverse transcription-PCR. czcD and sczA enabled S. agalactiae to survive Zn stress, with the putative CzcD efflux system activated by SczA. Additional genes activated in response to Zn stress encompassed divalent cation transporters that contribute to regulation of Mn and Fe homeostasis. In vivo, the czcD-sczA Zn management axis supported virulence in the blood, heart, liver, and bladder. Additionally, several genes not previously linked to Zn stress in any bacterium, including, most notably, arcA for arginine deamination, also mediated resistance to Zn stress, representing a novel molecular mechanism of bacterial resistance to metal intoxication. Taken together, these findings show that S. agalactiae responds to Zn stress by sczA regulation of czcD, with additional novel mechanisms of resistance supported by arcA, encoding arginine deaminase. Cellular management of Zn stress in S. agalactiae supports virulence by facilitating bacterial survival in the host during systemic infection.IMPORTANCE Streptococcus agalactiae, also known as group B streptococcus, is an opportunistic pathogen that causes various diseases in humans and animals. This bacterium has genetic systems that enable zinc detoxification in environments of metal stress, but these systems remain largely undefined. Using a combination of genomic, genetic, and cellular assays, we show that this pathogen controls Zn export through CzcD to manage Zn stress and utilizes a system of arginine deamination never previously linked to metal stress responses in bacteria to survive metal intoxication. We show that these systems are crucial for survival of S. agalactiae in vitro during Zn stress and also enhance virulence during systemic infection in mice. These discoveries establish new molecular mechanisms of resistance to metal intoxication in bacteria; we suggest these mechanisms operate in other bacteria as a way to sustain microbial survival under conditions of metal stress, including in host environments.
Collapse
|
24
|
Ren J, Qiang Z, Li YY, Zhang JN. Biomarkers for a histological chorioamnionitis diagnosis in pregnant women with or without group B streptococcus infection: a case-control study. BMC Pregnancy Childbirth 2021; 21:250. [PMID: 33765949 PMCID: PMC7993527 DOI: 10.1186/s12884-021-03731-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/17/2021] [Indexed: 01/12/2023] Open
Abstract
Background Chorioamnionitis may cause serious perinatal and neonatal adverse outcomes, and group B streptococcus (GBS) is one of the most common bacteria isolated from human chorioamnionitis. The present study analyzed the impact of GBS infection and histological chorioamnionitis (HCA) on pregnancy outcomes and the diagnostic value of various biomarkers. Methods Pregnant women were grouped according to GBS infection and HCA detection. Perinatal and neonatal adverse outcomes were recorded with a follow-up period of 6 weeks. The white blood cell count (WBC), neutrophil ratio, and C-reactive protein (CRP) level from peripheral blood and soluble intercellular adhesion molecule-1 (sICAM-1), interleukin 8 (IL-8), and tumor necrosis factor α (TNF-α) levels from cord blood were assessed. Results A total of 371 pregnant women were included. Pregnant women with GBS infection or HCA had a higher risk of pathological jaundice and premature rupture of membranes and higher levels of sICAM-1, IL-8, and TNF-α in umbilical cord blood. Univariate and multivariate regression analysis revealed that sICMA-1, IL-8, TNF-α, WBC, and CRP were significantly related to an increased HCA risk. For all included pregnant women, TNF-α had the largest receiver operating characteristic (ROC) area (area: 0.841; 95% CI: 0.778–0.904) of the biomarkers analyzed. TNF-α still had the largest area under the ROC curve (area: 0.898; 95% CI: 0.814–0.982) for non-GBS-infected pregnant women, who also exhibited a higher neutrophil ratio (area: 0.815; 95% CI: 0.645–0.985) and WBC (area: 0.849; 95% CI: 0.72–0.978), but all biomarkers had lower value in the diagnosis of HCA in GBS-infected pregnant women. Conclusion GBS infection and HCA correlated with several perinatal and neonatal adverse outcomes. TNF-α in cord blood and WBCs in peripheral blood had diagnostic value for HCA in non-GBS-infected pregnant women but not GBS-infected pregnant women. Supplementary Information The online version contains supplementary material available at 10.1186/s12884-021-03731-7.
Collapse
Affiliation(s)
- Jie Ren
- Second Department of Obstetrics, The Fourth Hospital of Shijiazhuang, No.206, Zhongshan East Road, Chang'an District, Shijiazhuang, Hebei, People's Republic of China, 050011
| | - Zhe Qiang
- Second Department of Obstetrics, The Fourth Hospital of Shijiazhuang, No.206, Zhongshan East Road, Chang'an District, Shijiazhuang, Hebei, People's Republic of China, 050011.
| | - Yuan-Yuan Li
- Perinatal center, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei, People's Republic of China, 050000
| | - Jun-Na Zhang
- Second Department of Obstetrics, The Fourth Hospital of Shijiazhuang, No.206, Zhongshan East Road, Chang'an District, Shijiazhuang, Hebei, People's Republic of China, 050011
| |
Collapse
|
25
|
Hogendoorn C, Picone N, van Hout F, Vijverberg S, Poghosyan L, van Alen TA, Frank J, Pol A, Gagliano AL, Jetten MSM, D'Alessandro W, Quatrini P, Op den Camp HJM. Draft genome of a novel methanotrophic Methylobacter sp. from the volcanic soils of Pantelleria Island. Antonie van Leeuwenhoek 2021; 114:313-324. [PMID: 33566237 PMCID: PMC7902576 DOI: 10.1007/s10482-021-01525-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/22/2021] [Indexed: 11/27/2022]
Abstract
The genus Methylobacter is considered an important and often dominant group of aerobic methane-oxidizing bacteria in many oxic ecosystems, where members of this genus contribute to the reduction of CH4 emissions. Metagenomic studies of the upper oxic layers of geothermal soils of the Favara Grande, Pantelleria, Italy, revealed the presence of various methane-oxidizing bacteria, and resulted in a near complete metagenome assembled genome (MAG) of an aerobic methanotroph, which was classified as a Methylobacter species. In this study, the Methylobacter sp. B2 MAG was used to investigate its metabolic potential and phylogenetic affiliation. The MAG has a size of 4,086,539 bp, consists of 134 contigs and 3955 genes were found, of which 3902 were protein coding genes. All genes for CH4 oxidation to CO2 were detected, including pmoCAB encoding particulate methane monooxygenase (pMMO) and xoxF encoding a methanol dehydrogenase. No gene encoding a formaldehyde dehydrogenase was present and the formaldehyde to formate conversion follows the tetrahydromethanopterin (H4MPT) pathway. “Ca. Methylobacter favarea” B2 uses the Ribulose-Mono-Phosphate (RuMP) pathway for carbon fixation. Analysis of the MAG indicates that Na+/H+ antiporters and the urease system might be important in the maintenance of pH homeostasis of this strain to cope with acidic conditions. So far, thermoacidophilic Methylobacter species have not been isolated, however this study indicates that members of the genus Methylobacter can be found in distinct ecosystems and their presence is not restricted to freshwater or marine sediments.
Collapse
Affiliation(s)
- Carmen Hogendoorn
- Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Nunzia Picone
- Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Femke van Hout
- Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Sophie Vijverberg
- Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Lianna Poghosyan
- Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Theo A van Alen
- Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Jeroen Frank
- Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Arjan Pol
- Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Antonia L Gagliano
- Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palerma, Via U. La Malfa 153, 90146, Palermo, Italy
| | - Mike S M Jetten
- Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Walter D'Alessandro
- Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palerma, Via U. La Malfa 153, 90146, Palermo, Italy
| | - Paola Quatrini
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128, Palermo, Italy
| | - Huub J M Op den Camp
- Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
26
|
Pátek M, Grulich M, Nešvera J. Stress response in Rhodococcus strains. Biotechnol Adv 2021; 53:107698. [PMID: 33515672 DOI: 10.1016/j.biotechadv.2021.107698] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/13/2022]
Abstract
Rhodococci are bacteria which can survive under various extreme conditions, in the presence of toxic compounds, and in other hostile habitats. Their tolerance of unfavorable conditions is associated with the structure of their cell wall and their large array of enzymes, which degrade or detoxify harmful compounds. Their physiological and biotechnological properties, together with tools for their genetic manipulation, enable us to apply them in biotransformations, biodegradation and bioremediation. Many such biotechnological applications cause stresses that positively or negatively affect their efficiency. Whereas numerous reviews on rhodococci described their enzyme activities, the optimization of degradation or production processes, and corresponding technological solutions, only a few reviews discussed some specific effects of stresses on the physiology of rhodococci and biotechnological processes. This review aims to comprehensively describe individual stress responses in Rhodococcus strains, the interconnection of different types of stresses and their consequences for cell physiology. We examine here the responses to (1) environmental stresses (desiccation, heat, cold, osmotic and pH stress), (2) the presence of stress-inducing compounds (metals, organic compounds and antibiotics) in the environment (3) starvation and (4) stresses encountered during biotechnological applications. Adaptations of the cell envelope, the formation of multicellular structures and stresses induced by the interactions of hosts with pathogenic rhodococci are also included. The roles of sigma factors of RNA polymerase in the global regulation of stress responses in rhodococci are described as well. Although the review covers a large number of stressful conditions, our intention was to provide an overview of the selected stress responses and their possible connection to biotechnological processes, not an exhaustive survey of the scientific literature. The findings on stress responses summarized in this review and the demonstration of gaps in current knowledge may motivate researchers working to fill these gaps.
Collapse
Affiliation(s)
- Miroslav Pátek
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic.
| | - Michal Grulich
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic.
| | - Jan Nešvera
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic.
| |
Collapse
|
27
|
Transcriptome changes and polymyxin resistance of acid-adapted Escherichia coli O157:H7 ATCC 43889. Gut Pathog 2020; 12:52. [PMID: 33292490 PMCID: PMC7709258 DOI: 10.1186/s13099-020-00390-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/18/2020] [Indexed: 12/25/2022] Open
Abstract
Background Acid treatment is commonly used for controlling or killing pathogenic microorganisms on medical devices and environments; however, inadequate acid treatment may cause acid tolerance response (ATR) and offer cross-protection against environmental stresses, including antimicrobials. This study aimed to characterise an Escherichia coli strain that can survive in the acidic gastrointestinal environment. Results We developed an acid-tolerant E. coli O157:H7 ATCC 43889 (ATCC 43889) strain that can survive at pH 2.75 via cell adaptation in low pH conditions. We also performed RNA sequencing and qRT-PCR to compare differentially expressed transcripts between acid-adapted and non-adapted cells. Genes related to stress resistance, including kdpA and bshA were upregulated in the acid-adapted ATCC 43889 strain. Furthermore, the polymyxin resistance gene arnA was upregulated in the acid-adapted cells, and resistance against polymyxin B and colistin (polymyxin E) was observed. As polymyxins are important antibiotics, effective against multidrug-resistant gram-negative bacterial infections, the emergence of polymyxin resistance in acid-adapted E. coli is a serious public health concern. Conclusion The transcriptomic and phenotypic changes analysed in this study during the adaptation of E. coli to acid environments can provide useful information for developing intervention technologies and mitigating the risk associated with the emergence and spread of antimicrobial resistance.
Collapse
|
28
|
Assoni L, Milani B, Carvalho MR, Nepomuceno LN, Waz NT, Guerra MES, Converso TR, Darrieux M. Resistance Mechanisms to Antimicrobial Peptides in Gram-Positive Bacteria. Front Microbiol 2020; 11:593215. [PMID: 33193264 PMCID: PMC7609970 DOI: 10.3389/fmicb.2020.593215] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
With the alarming increase of infections caused by pathogenic multidrug-resistant bacteria over the last decades, antimicrobial peptides (AMPs) have been investigated as a potential treatment for those infections, directly through their lytic effect or indirectly, due to their ability to modulate the immune system. There are still concerns regarding the use of such molecules in the treatment of infections, such as cell toxicity and host factors that lead to peptide inhibition. To overcome these limitations, different approaches like peptide modification to reduce toxicity and peptide combinations to improve therapeutic efficacy are being tested. Human defense peptides consist of an important part of the innate immune system, against a myriad of potential aggressors, which have in turn developed different ways to overcome the AMPs microbicidal activities. Since the antimicrobial activity of AMPs vary between Gram-positive and Gram-negative species, so do the bacterial resistance arsenal. This review discusses the mechanisms exploited by Gram-positive bacteria to circumvent killing by antimicrobial peptides. Specifically, the most clinically relevant genera, Streptococcus spp., Staphylococcus spp., Enterococcus spp. and Gram-positive bacilli, have been explored.
Collapse
Affiliation(s)
- Lucas Assoni
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Barbara Milani
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Marianna Ribeiro Carvalho
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Lucas Natanael Nepomuceno
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Natalha Tedeschi Waz
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Maria Eduarda Souza Guerra
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Thiago Rojas Converso
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Michelle Darrieux
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| |
Collapse
|
29
|
Silvestre I, Borrego MJ, Jordão L. Biofilm formation by ST17 and ST19 strains of Streptococcus agalactiae. Res Microbiol 2020; 171:311-318. [PMID: 32896574 DOI: 10.1016/j.resmic.2020.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 11/26/2022]
Abstract
Bacterial biofilms are an important virulence factor with a vital role in evasion from the host immune system, colonization and infection. The aim of the present study was to evaluate in vitro the effects of three environmental factors (H+, glucose and human plasma) in biofilm formation, by carrier and invasive Streptococcus agalactiae strains of ST17 and ST19 sequence types, including DNase producers and non-producers. Bacteria ability to assemble biofilms was classified based on crystal violet assay. Biofilm formation was also monitored by scanning electron microscopy. Depending on the growth medium used, each bacterial isolate could fit in different biofilm production categories. Our data showed that optimal conditions for S. agalactiae biofilm assembly were reached after 48 h incubation at pH 7.6 in the presence of glucose and inactivated human plasma. In the presence of inactivated human plasma, the biofilm biomass of ST19 strains experienced a higher increase than ST17 strains. The composition of the extracellular polymeric matrix of the three strongest biofilm producers (all from ST17) was accessed by enzymatic digestion of mature biofilms and proteins were shown to be the predominant component. The detailed identification of the extracellular protein components should contribute to the development of new therapeutic strategies to fight S. agalactiae infections.
Collapse
Affiliation(s)
- Inês Silvestre
- Department of Life Sciences, UCIBIO, Nova School of Science and Technology, 2829-516 Caparica, Portugal; Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal.
| | - Maria José Borrego
- Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal.
| | - Luísa Jordão
- Department of Environmental Health, Research and Development Unit, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal.
| |
Collapse
|
30
|
Kornspan D, Zahavi T, Salmon-Divon M. The Acidic Stress Response of the Intracellular Pathogen Brucella melitensis: New Insights from a Comparative, Genome-Wide Transcriptome Analysis. Genes (Basel) 2020; 11:genes11091016. [PMID: 32872264 PMCID: PMC7563570 DOI: 10.3390/genes11091016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 11/30/2022] Open
Abstract
The intracellular pathogenic bacteria belonging to the genus Brucella must cope with acidic stress as they penetrate the host via the gastrointestinal route, and again during the initial stages of intracellular infection. A transcription-level regulation has been proposed to explain this but the specific molecular mechanisms are yet to be determined. We recently reported a comparative transcriptomic analysis of the attenuated vaccine Brucella melitensis strain Rev.1 against the virulent strain 16M in cultures grown under either neutral or acidic conditions. Here, we re-analyze the RNA-seq data of 16M from our previous study and compare it to published transcriptomic data of this strain from both an in cellulo and an in vivo model. We identify 588 genes that are exclusively differentially expressed in 16M grown under acidic versus neutral pH conditions, including 286 upregulated genes and 302 downregulated genes that are not differentially expressed in either the in cellulo or the in vivo model. Of these, we highlight 13 key genes that are known to be associated with a bacterial response to acidic stress and, in our study, were highly upregulated under acidic conditions. These genes provide new molecular insights into the mechanisms underlying the acid-resistance of Brucella within its host.
Collapse
Affiliation(s)
- David Kornspan
- Department of Bacteriology, Kimron Veterinary Institute, Bet Dagan 50250, Israel
- Correspondence: ; Tel.: +972-3-968-1745
| | - Tamar Zahavi
- Genomic Bioinformatics Laboratory, Department of Molecular Biology, Ariel University, Ariel 40700, Israel; (T.Z.); (M.S.-D.)
| | - Mali Salmon-Divon
- Genomic Bioinformatics Laboratory, Department of Molecular Biology, Ariel University, Ariel 40700, Israel; (T.Z.); (M.S.-D.)
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| |
Collapse
|
31
|
Crespo-Ortiz MDP, Burbano ME, Barreto M. Pathogenesis and in vivo interactions of human Streptococcus agalactiae isolates in the Galleria mellonella invertebrate model. Microb Pathog 2020; 147:104400. [PMID: 32736013 DOI: 10.1016/j.micpath.2020.104400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 01/06/2023]
Abstract
Group B Streptococcus (GBS) is a gram positive bacterium colonizing the gastrointestinal and urogenital tracts in humans. However under certain conditions GBS invades leading to severe infections in neonates, pregnant women, immunocompromised patients and the elderly people. The precise mechanisms involved in the transition from colonizer to pathogen remain to be elucidated, however it has been suggested that environmental determinants may regulate gene expression resulting in GBS invasion. We have assessed the potential of the moth Galleria mellonella as a model to study the in vivo virulence and GBS interactions of invasive and noninvasive human isolates from our population. Temperature, pH and bacterial competition effects were examined in the model as well as the response of Galleria hemocytes to GBS infection. GBS strains were able to effectively grow and infect G. mellonella in a dose dependent manner with a (half-lethal dose) LD50 1 × 107 CFU after 24 h. GBS infection induced larva melanization with hemocyte vacuolation and depletion. Larval killing increased with environmental conditions such as temperature (37 °C) and pH (≥5.5-7.2). Bacterial interference assays showed a remarkable antagonistic effect of Lactobacillus gasseri (cells and filtrates) on GBS infection and significantly improved Galleria survival. The protective effect of L. gasseri was observed even at ratios similar to those of GBS colonization suggesting that L. gasseri modulation by its metabolic products is relevant. Exposure to L. gasseri acidic filtrates induced growth inhibition and prevented larva killing after infection with the hypervirulent GBS clone (a multiresistant clinical ST 17 strain). We showed that mechanisms mediating these effects are mainly pH dependent, however other mechanisms may have a role depending on inocula. We also found that G. mellonella infected with invasive human GBS isolates showed differential killing curves with higher killing rates after 24 h when compared to those considered colonizers or noninvasive isolates. Overall it has been shown that G. mellonella may be a representative in vivo model for baseline GBS studies. Given the potential effects over the hypervirulent strain, our findings support the use of L. gasseri in the GBS control strategies based on Lactobacillus formulations.
Collapse
Affiliation(s)
- Maria Del Pilar Crespo-Ortiz
- Department of Microbiology, University del Valle, San Fernando Campus, Calle 4 B #36-00, Cali, 760043, Colombia.
| | - Maria Elena Burbano
- Department of Microbiology, University del Valle, San Fernando Campus, Calle 4 B #36-00, Cali, 760043, Colombia.
| | - Mauricio Barreto
- Department of Microbiology, University del Valle, San Fernando Campus, Calle 4 B #36-00, Cali, 760043, Colombia.
| |
Collapse
|
32
|
Liu T, Liu J, Liu J, Yang R, Lu X, He X, Shi W, Guo L. Interspecies Interactions Between Streptococcus Mutans and Streptococcus Agalactiae in vitro. Front Cell Infect Microbiol 2020; 10:344. [PMID: 32733820 PMCID: PMC7358462 DOI: 10.3389/fcimb.2020.00344] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/04/2020] [Indexed: 01/30/2023] Open
Abstract
Streptococcus mutans is an oral species closely associated with dental caries. As an early oral colonizer, S. mutans utilizes interspecies coaggregation to promote the colonization of subsequent species and affect polymicrobial pathogenesis. Previous studies have confirmed several adhering partner species of S. mutans, including Candida albicans and Fusobacterium nucleatum. In this study, we discovered new intergeneric co-adherence between S. mutans and the saliva isolate Streptococcus agalactiae (GBS-SI101). Research shows that GBS typically colonizes the human gastrointestinal and vaginal tracts. It is responsible for adverse pregnancy outcomes and life-threatening infections in neonates and immunocompromised people. Our results revealed that GtfB and GtfC of S. mutans, which contributed to extracellular polysaccharide synthesis, promoted coaggregation of S. mutans with GBS-SI101. In addition, oral streptococci, including Streptococcus sanguinis, Streptococcus gordonii and S. mutans, barely inhibited the growth of GBS-SI101. This study indicated that S. mutans could help GBS integrate into the Streptococcus-associated oral polymicrobial community and become a resident species in the oral cavity, increasing the risk of oral infections.
Collapse
Affiliation(s)
- Tingjun Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jia Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jianwei Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Ruiqi Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xianjun Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xuesong He
- The Forsyth Institute, Cambridge, MA, United States
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Wenyuan Shi
- The Forsyth Institute, Cambridge, MA, United States
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Lihong Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
33
|
Two-Component Signal Transduction Systems in the Human Pathogen Streptococcus agalactiae. Infect Immun 2020; 88:IAI.00931-19. [PMID: 31988177 DOI: 10.1128/iai.00931-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Streptococcus agalactiae (group B Streptococcus [GBS]) is an important cause of invasive infection in newborns, maternal women, and older individuals with underlying chronic illnesses. GBS has many mechanisms to adapt and survive in its host, and these mechanisms are often controlled via two-component signal transduction systems. In GBS, more than 20 distinct two-component systems (TCSs) have been classified to date, consisting of canonical TCSs as well as orphan and atypical sensors and regulators. These signal transducing systems are necessary for metabolic regulation, resistance to antibiotics and antimicrobials, pathogenesis, and adhesion to the mucosal surfaces to colonize the host. This minireview discusses the structures of these TCSs in GBS as well as how selected systems regulate essential cellular processes such as survival and colonization. GBS contains almost double the number of TCSs compared to the closely related Streptococcus pyogenes and Streptococcus pneumoniae, and while research on GBS TCSs has been increasing in recent years, no comprehensive reviews of these TCSs exist, making this review especially relevant.
Collapse
|
34
|
Nové M, Kincses A, Molnár J, Amaral L, Spengler G. The Role of Efflux Pumps and Environmental pH in Bacterial Multidrug Resistance. In Vivo 2020; 34:65-71. [PMID: 31882464 DOI: 10.21873/invivo.11746] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/03/2019] [Accepted: 10/11/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIM One of the most studied bacterial resistance mechanisms is the resistance related to multidrug efflux pumps. In our study the pump activity of the Escherichia coli K-12 AG100 strain expressing the AcrAB-TolC pump system was investigated at pH 7 and pH 5 in the presence of the efflux pump inhibitor (EPI) promethazine (PMZ). MATERIALS AND METHODS The EPI activity was assessed by real-time fluorimetry. The influence of PMZ treatment on the relative expression of the pump genes acrA, acrB and their regulators marA, marB, marR, the stress genes soxS, rob, as well as the bacterial growth control genes ftsI, and sdiA were determined by RT-qPCR. RESULTS The EPI activity of PMZ was more effective at neutral pH. The PMZ treatment induced a significant stress response in the bacterium at acidic pH by the up-regulation of genes. CONCLUSION The genetic system that regulates the activity of the main efflux pump is pH-dependent.
Collapse
Affiliation(s)
- Márta Nové
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Annamária Kincses
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - József Molnár
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Leonard Amaral
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Travel Medicine, Institute of Hygiene and Tropical Medicine, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
35
|
van de Wijgert JHHM, Verwijs MC, Gill AC, Borgdorff H, van der Veer C, Mayaud P. Pathobionts in the Vaginal Microbiota: Individual Participant Data Meta-Analysis of Three Sequencing Studies. Front Cell Infect Microbiol 2020; 10:129. [PMID: 32351902 PMCID: PMC7174631 DOI: 10.3389/fcimb.2020.00129] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/10/2020] [Indexed: 12/23/2022] Open
Abstract
Sequencing studies have shown that optimal vaginal microbiota (VMB) are lactobacilli-dominated and that anaerobes associated with bacterial vaginosis (BV-anaerobes) are commonly present. However, they overlooked a less prevalent but more pathogenic group of vaginal bacteria: the pathobionts that cause maternal and neonatal infections and pelvic inflammatory disease. We conducted an individual participant data meta-analysis of three VMB sequencing studies that included diverse groups of women in Rwanda, South Africa, and the Netherlands (2,044 samples from 1,163 women in total). We identified 40 pathobiont taxa but only six were non-minority taxa (at least 1% relative abundance in at least one sample) in all studies: Streptococcus (54% of pathobionts reads), Staphylococcus, Enterococcus, Escherichia/Shigella, Haemophilus, and Campylobacter. When all pathobionts were combined into one bacterial group, the VMB of 17% of women contained a relative abundance of at least 1%. We found a significant negative correlation between relative abundances (ρ = -0.9234), but not estimated concentrations (r = 0.0031), of lactobacilli and BV-anaerobes; and a significant positive correlation between estimated concentrations of pathobionts and BV-anaerobes (r = 0.1938) but not between pathobionts and lactobacilli (r = 0.0436; although lactobacilli declined non-significantly with increasing pathobionts proportions). VMB sequencing data were also classified into mutually exclusive VMB types. The overall mean bacterial load of the ≥20% pathobionts VMB type (5.85 log10 cells/μl) was similar to those of the three lactobacilli-dominated VMB types (means 5.13-5.83 log10 cells/μl) but lower than those of the four anaerobic dysbiosis VMB types (means 6.11-6.87 log10 cells/μl). These results suggest that pathobionts co-occur with both lactobacilli and BV-anaerobes and do not expand as much as BV-anaerobes do in a dysbiotic situation. Pathobionts detection/levels were increased in samples with a Nugent score of 4-6 in both studies that conducted Nugent-scoring. Having pathobionts was positively associated with young age, non-Dutch origin, hormonal contraceptive use, smoking, antibiotic use in the 14 days prior to sampling, HIV status, and the presence of sexually transmitted pathogens, in at least one but not all studies; inconsistently associated with sexual risk-taking and unusual vaginal discharge reporting; and not associated with vaginal yeasts detection by microscopy. We recommend that future VMB studies quantify common vaginal pathobiont genera.
Collapse
Affiliation(s)
- Janneke H. H. M. van de Wijgert
- Department of Clinical Infection, Microbiology, and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marijn C. Verwijs
- Department of Clinical Infection, Microbiology, and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - A. Christina Gill
- Department of Clinical Infection, Microbiology, and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Hanneke Borgdorff
- Amsterdam Institute for Global Health and Development, Amsterdam UMC, Amsterdam, Netherlands
| | | | - Philippe Mayaud
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
36
|
Zhang Q, Zhang L, Ross P, Zhao J, Zhang H, Chen W. Comparative Genomics of Lactobacillus crispatus from the Gut and Vagina Reveals Genetic Diversity and Lifestyle Adaptation. Genes (Basel) 2020; 11:genes11040360. [PMID: 32230824 PMCID: PMC7230607 DOI: 10.3390/genes11040360] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/20/2022] Open
Abstract
Lactobacillus crispatus colonizes the human feces, human vagina, and the crops and ceca of chicken. To explore the genetic characteristics and evolutionary relationships of L. crispatus isolated from different niches, we selected 37 strains isolated from the human vagina (n = 17), human feces (n = 11), and chicken feces (n = 9), and used comparative genomics to explore the genetic information of L. crispatus from the feces and vagina. No significant difference was found in the three sources of genomic features such as genome size, GC content, and number of protein coding sequences (CDS). However, in a phylogenetic tree constructed based on core genes, vagina-derived L. crispatus and feces-derived strains were each clustered separately. Therefore, the niche exerted an important impact on the evolution of L. crispatus. According to gene annotation, the L. crispatus derived from the vagina possessed a high abundance of genes related to acid tolerance, redox reactions, pullulanase, and carbohydrate-binding modules (CBMs). These genes helped L. crispatus to better adapt to the acidic environment of the vagina and obtain more nutrients, maintaining its dominance in the vagina in competition with other strains. In feces-derived bacteria, more genes encoding CRISPR/Cas system, glycoside hydrolases (GHs) family, and tetracycline/lincomycin resistance genes were found to adapt to the complex intestinal environment. This study highlights the evolutionary relationship of L. crispatus strains isolated from the vagina and feces, and the adaptation of L. crispatus to the host environment.
Collapse
Affiliation(s)
- Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.Z.); (L.Z.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China
| | - Lili Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.Z.); (L.Z.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Paul Ross
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.Z.); (L.Z.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.Z.); (L.Z.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.Z.); (L.Z.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Correspondence: ; Tel.: +86-510-859-12155
| |
Collapse
|
37
|
Guan N, Liu L. Microbial response to acid stress: mechanisms and applications. Appl Microbiol Biotechnol 2020; 104:51-65. [PMID: 31773206 PMCID: PMC6942593 DOI: 10.1007/s00253-019-10226-1] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/23/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023]
Abstract
Microorganisms encounter acid stress during multiple bioprocesses. Microbial species have therefore developed a variety of resistance mechanisms. The damage caused by acidic environments is mitigated through the maintenance of pH homeostasis, cell membrane integrity and fluidity, metabolic regulation, and macromolecule repair. The acid tolerance mechanisms can be used to protect probiotics against gastric acids during the process of food intake, and can enhance the biosynthesis of organic acids. The combination of systems and synthetic biology technologies offers new and wide prospects for the industrial applications of microbial acid tolerance mechanisms. In this review, we summarize acid stress response mechanisms of microbial cells, illustrate the application of microbial acid tolerance in industry, and prospect the introduction of systems and synthetic biology to further explore the acid tolerance mechanisms and construct a microbial cell factory for valuable chemicals.
Collapse
Affiliation(s)
- Ningzi Guan
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China.
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
38
|
Pekmezovic M, Mogavero S, Naglik JR, Hube B. Host-Pathogen Interactions during Female Genital Tract Infections. Trends Microbiol 2019; 27:982-996. [PMID: 31451347 DOI: 10.1016/j.tim.2019.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/25/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022]
Abstract
Dysbiosis in the female genital tract (FGT) is characterized by the overgrowth of pathogenic bacterial, fungal, or protozoan members of the microbiota, leading to symptomatic or asymptomatic infections. In this review, we discuss recent advances in studies dealing with molecular mechanisms of pathogenicity factors of Gardnerella vaginalis, Mycoplasma genitalium, Mycoplasma hominis, Neisseria gonorrhoeae, Streptococcus agalactiae, Chlamydia trachomatis, Trichomonas vaginalis, and Candida spp., as well as their interactions with the host and microbiota in the various niches of the FGT. Taking a holistic approach to identifying fundamental commonalities and differences during these infections could help us to better understand reproductive tract health and improve current prevention and treatment strategies.
Collapse
Affiliation(s)
- Marina Pekmezovic
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral, and Craniofacial Sciences, King's College London, SE1 1UL, UK
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany; Institute of Microbiology, Friedrich Schiller University, Jena, Germany. @leibniz-hki.de
| |
Collapse
|
39
|
Furfaro LL, Nathan EA, Chang BJ, Payne MS. Group B streptococcus prevalence, serotype distribution and colonization dynamics in Western Australian pregnant women. J Med Microbiol 2019; 68:728-740. [PMID: 31013212 DOI: 10.1099/jmm.0.000980] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Streptococcus agalactiae, or group B streptococcus (GBS), is a leading neonatal pathogen that causes sepsis, meningitis and pneumonia. Globally, strategies have been implemented to address vertical transmission, and in Western Australia (WA), culture-based screening at 35-37 weeks' gestation is part of routine care and guides antibiotic administration. Previous Australian studies have focused on other regions or included low sample-size representatives; we aimed to describe antenatal GBS colonization in WA. METHODOLOGY A cohort of 814 pregnant women attending antenatal clinics (2015-2017) self-collected vaginal and rectal swabs at ≤22 weeks (n=814) and ≥33 weeks' (n=567) gestation. These were assessed for GBS presence using culture and PCR, and serotyping was conducted using molecular methods. Lifestyle questionnaires and medical data were collected. RESULTS We observed an overall GBS colonization rate of 24%, with 10.6 % of positive participants transiently colonized. Ethnicity (Aboriginal, Torres Strait Islander and African), maternal age ≥25 years, vitamin use, frequent sexual intercourse (≥5 times/week) and use of sex toys were associated with GBS colonization. The dominant serotypes identified were Ia (27.9%), III (20.9%), II (16.3%), V (15.8%), Ib (8.4%), VI (5.1%), IV (2.8%), NT (1.9), VIII (0.5%) and IX (0.5%) at visit one, with V (18.9%) preceding serotype II (18.2%) at visit two. Serotype VII was not detected. CONCLUSION This is the first cohort study to assess GBS colonization in Western Australian pregnant women and will be highly beneficial for guiding clinical practice and future therapeutic options, in particular, the selection of suitable vaccine candidates.
Collapse
Affiliation(s)
- Lucy L Furfaro
- The School of Medicine, Division of Obstetrics and Gynaecology, The University of Western Australia, Australia
| | - Elizabeth A Nathan
- The School of Medicine, Division of Obstetrics and Gynaecology, The University of Western Australia, Australia.,Women and Infants Research Foundation of Western Australia, King Edward Memorial Hospital, Subiaco, Western Australia, Australia
| | - Barbara J Chang
- The School of Biomedical Sciences, The Marshall Centre for Infectious Diseases Research and Training, The University of Western Australia, Australia
| | - Matthew S Payne
- The School of Medicine, Division of Obstetrics and Gynaecology, The University of Western Australia, Australia
| |
Collapse
|
40
|
An Acid Up-Regulated Surface Protein of Lactobacillus paracasei Strain GCRL 46 is Phylogenetically Related to the Secreted Glucan- (GpbB) and Immunoglobulin-Binding (SibA) Protein of Pathogenic Streptococci. Int J Mol Sci 2019; 20:ijms20071610. [PMID: 30935131 PMCID: PMC6479570 DOI: 10.3390/ijms20071610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/22/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023] Open
Abstract
Bacterial cell wall hydrolases, including amidases and peptidases, play a critical role in peptidoglycan turnover during growth, impacting daughter cell separation, and cell death, through autolysis. When exploring the regulation of protein expression across the growth cycle of an acid-resistant strain of Lactobacillus paracasei, GCRL 46, we observed temporal up-regulation of proteins in the 40⁻45 kDa molecular weight range for whole-cell extracts when culturing in fermenters at a controlled pH of 4.0 versus optimum growth pH of 6.3. Up-regulation of proteins in this size range was not detected in SDS-PAGE gels of the cytosolic fraction, but was routinely detected following growth at low pH in whole cells and cell debris obtained after bead beating and centrifugation, indicating a cell surface location. N-terminal sequencing and in silico analyses showed sequence similarity with proteins in the L. casei group (L. casei, L. paracasei and L. rhamnosus) which were variously annotated as uncharacterized proteins, surface antigens, possible TrsG proteins, CHAP (cysteine, histidine-dependent amidohydrolases/peptidases)-domain proteins or putative peptidoglycan d,l-endopeptidase due to the presence of a CwlO domain. This protein is a homologue of the p40 (Msp2) secreted protein of L. rhamnosus LGG, which is linked to probiotic functionality in this species, and is phylogenetically related to structurally-similar proteins found in Enterococcus, Streptococcus and Bifidobacterium species, including the glucan-binding (GbpB), surface antigen (SagA) proteins detected in pathogenic group A streptococci species as secreted, immunoglobulin-binding (SibA) proteins (also named PcsB). Three-dimensional (3D) modelling predicted structural similarities in the CHAP proteins from the L. casei group and streptococcal species, indicating retention of overall architecture despite sequence divergence, and an implied retention of function during evolution. A phylogenetically-related hydrolase also contained the CwlO domain with a NLPC_P60 domain, and showed similar overall but distinct architecture to the CHAP proteins. We concluded that the surface-located, CHAP protein in L. casei is up-regulated during long-term exposure to acidic conditions during growth but not during acid shock.
Collapse
|
41
|
Zwe YH, Goh ZHE, Chau ML, Aung KT, Yuk HG. Survival of an emerging foodborne pathogen: Group B Streptococcus (GBS) serotype III sequence type (ST) 283-under simulated partial cooking and gastric fluid conditions. Food Sci Biotechnol 2018; 28:939-944. [PMID: 31093453 DOI: 10.1007/s10068-018-0525-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/19/2018] [Accepted: 11/27/2018] [Indexed: 01/13/2023] Open
Abstract
Group B Streptococcus (GBS) was previously not known to be transmitted through food, but an outbreak investigation in Singapore in 2015 documented for the first time an association between GBS Type III Sequence Type 283 infection and consumption of raw fish dishes. As very little is known about the survival of GBS during heat treatment and the stomach transit, its survival under simulated conditions was studied, in comparison with that of Escherichia coli O157:H7 and Listeria monocytogenes. The mean D-values of four GBS strains ranging from 0.72 to 0.88 min in neutral pH tryptone soy broth at 56.4 °C and 0.44-1.43 min at pH 2.35 at 37 °C in simulated gastric fluid, were significantly lower (p < 0.05) than those of E. coli O157:H7 and L. monocytogenes. This study suggests possible factors other than acid or heat resistance of GBS to be instrumental to its pathogenicity.
Collapse
Affiliation(s)
- Ye Htut Zwe
- 1Food Science and Technology Programme, Department of Chemistry, National University of Singapore, Science Drive 2, Singapore, 117543 Singapore
| | - Zhu Hui Esther Goh
- 1Food Science and Technology Programme, Department of Chemistry, National University of Singapore, Science Drive 2, Singapore, 117543 Singapore
| | - Man Ling Chau
- 2Environmental Health Institute, National Environment Agency, 11 Biopolis Way, Singapore, 138667 Singapore
| | - Kyaw Thu Aung
- 2Environmental Health Institute, National Environment Agency, 11 Biopolis Way, Singapore, 138667 Singapore.,3School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
| | - Hyun-Gyun Yuk
- 4Department of Food Science and Technology, Korea National University of Transportation, 61 Daehak-ro, Jeungpyeong-gun, Cheongju, Chungbuk 27909 Republic of Korea
| |
Collapse
|
42
|
Tavares GC, Carvalho AF, Pereira FL, Rezende CP, Azevedo VAC, Leal CAG, Figueiredo HCP. Transcriptome and Proteome of Fish-Pathogenic Streptococcus agalactiae Are Modulated by Temperature. Front Microbiol 2018; 9:2639. [PMID: 30450092 PMCID: PMC6224512 DOI: 10.3389/fmicb.2018.02639] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/16/2018] [Indexed: 12/23/2022] Open
Abstract
Streptococcus agalactiae is one of the most important pathogens associated with streptococcosis outbreaks in Nile tilapia farms worldwide. High water temperature (above 27°C) has been described as a predisposing factor for the disease in fish. At low temperatures (below 25°C), fish mortalities are not usually observed in farms. Temperature variation can modulate the expression of genes and proteins involved in metabolism, adaptation, and bacterial pathogenicity, thus increasing or decreasing the ability to infect the host. This study aimed to evaluate the transcriptome and proteome of a fish-pathogenic S. agalactiae strain SA53 subjected to in vitro growth at different temperatures using a microarray and label-free shotgun LC-HDMSE approach. Biological triplicates of isolates were cultured in BHIT broth at 22 or 32°C for RNA and protein isolation and submitted for transcriptomic and proteomic analyses. In total, 1,730 transcripts were identified in SA53, with 107 genes being differentially expressed between the temperatures evaluated. A higher number of genes related to metabolism, mainly from the phosphotransferase system (PTS) and ATP-binding cassette (ABC) transport system, were upregulated at 32°C. In the proteome analysis, 1,046 proteins were identified in SA53, of which 81 were differentially regulated between 22 and 32°C. Proteins involved in defense mechanisms, lipid transport and metabolism, and nucleotide transport and metabolism were upregulated at 32°C. A higher number of interactions were observed in proteins involved in nucleotide transport and metabolism. We observed a low correlation between the transcriptome and proteome datasets. Our study indicates that the transcriptome and proteome of a fish-adapted S. agalactiae strain are modulated by temperature, particularly showing differential expression of genes/proteins involved in metabolism, virulence factors, and adaptation.
Collapse
Affiliation(s)
- Guilherme C Tavares
- AQUACEN-National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alex F Carvalho
- AQUACEN-National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Felipe L Pereira
- AQUACEN-National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Cristiana P Rezende
- AQUACEN-National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vasco A C Azevedo
- LGCM-Laboratory of Cellular and Molecular Genetics, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Carlos A G Leal
- AQUACEN-National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Henrique C P Figueiredo
- AQUACEN-National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
43
|
Type 2 NADH Dehydrogenase Is the Only Point of Entry for Electrons into the Streptococcus agalactiae Respiratory Chain and Is a Potential Drug Target. mBio 2018; 9:mBio.01034-18. [PMID: 29970468 PMCID: PMC6030563 DOI: 10.1128/mbio.01034-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The opportunistic pathogen Streptococcus agalactiae is the major cause of meningitis and sepsis in a newborn’s first week, as well as a considerable cause of pneumonia, urinary tract infections, and sepsis in immunocompromised adults. This pathogen respires aerobically if heme and quinone are available in the environment, and a functional respiratory chain is required for full virulence. Remarkably, it is shown here that the entire respiratory chain of S. agalactiae consists of only two enzymes, a type 2 NADH dehydrogenase (NDH-2) and a cytochrome bd oxygen reductase. There are no respiratory dehydrogenases other than NDH-2 to feed electrons into the respiratory chain, and there is only one respiratory oxygen reductase to reduce oxygen to water. Although S. agalactiae grows well in vitro by fermentative metabolism, it is shown here that the absence of NDH-2 results in attenuated virulence, as observed by reduced colonization in heart and kidney in a mouse model of systemic infection. The lack of NDH-2 in mammalian mitochondria and its important role for virulence suggest this enzyme may be a potential drug target. For this reason, in this study, S. agalactiae NDH-2 was purified and biochemically characterized, and the isolated enzyme was used to screen for inhibitors from libraries of FDA-approved drugs. Zafirlukast was identified to successfully inhibit both NDH-2 activity and aerobic respiration in intact cells. This compound may be useful as a laboratory tool to inhibit respiration in S. agalactiae and, since it has few side effects, it might be considered a lead compound for therapeutics development. S. agalactiae is part of the human intestinal microbiota and is present in the vagina of ~30% of healthy women. Although a commensal, it is also the leading cause of septicemia and meningitis in neonates and immunocompromised adults. This organism can aerobically respire, but only using external sources of heme and quinone, required to have a functional electron transport chain. Although bacteria usually have a branched respiratory chain with multiple dehydrogenases and terminal oxygen reductases, here we establish that S. agalactiae utilizes only one type 2 NADH dehydrogenase (NDH-2) and one cytochrome bd oxygen reductase to perform respiration. NADH-dependent respiration plays a critical role in the pathogen in maintaining NADH/NAD+ redox balance in the cell, optimizing ATP production, and tolerating oxygen. In summary, we demonstrate the essential role of NDH-2 in respiration and its contribution to S. agalactiae virulence and propose it as a potential drug target.
Collapse
|
44
|
Chen X, Ma A, McDermaid A, Zhang H, Liu C, Cao H, Ma Q. RECTA: Regulon Identification Based on Comparative Genomics and Transcriptomics Analysis. Genes (Basel) 2018; 9:genes9060278. [PMID: 29849014 PMCID: PMC6027394 DOI: 10.3390/genes9060278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/19/2018] [Accepted: 05/25/2018] [Indexed: 11/16/2022] Open
Abstract
Regulons, which serve as co-regulated gene groups contributing to the transcriptional regulation of microbial genomes, have the potential to aid in understanding of underlying regulatory mechanisms. In this study, we designed a novel computational pipeline, regulon identification based on comparative genomics and transcriptomics analysis (RECTA), for regulon prediction related to the gene regulatory network under certain conditions. To demonstrate the effectiveness of this tool, we implemented RECTA on Lactococcus lactis MG1363 data to elucidate acid-response regulons. A total of 51 regulons were identified, 14 of which have computational-verified significance. Among these 14 regulons, five of them were computationally predicted to be connected with acid stress response. Validated by literature, 33 genes in Lactococcus lactis MG1363 were found to have orthologous genes which were associated with six regulons. An acid response related regulatory network was constructed, involving two trans-membrane proteins, eight regulons (llrA, llrC, hllA, ccpA, NHP6A, rcfB, regulons #8 and #39), nine functional modules, and 33 genes with orthologous genes known to be associated with acid stress. The predicted response pathways could serve as promising candidates for better acid tolerance engineering in Lactococcus lactis. Our RECTA pipeline provides an effective way to construct a reliable gene regulatory network through regulon elucidation, and has strong application power and can be effectively applied to other bacterial genomes where the elucidation of the transcriptional regulation network is needed.
Collapse
Affiliation(s)
- Xin Chen
- Center for Applied Mathematics, Tianjin University, Tianjin 300072, China.
| | - Anjun Ma
- Bioinformatics and Mathematical Biosciences Lab, Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57006, USA.
- Department of Mathematics and Statistics, South Dakota State University, Brookings, SD 57006, USA.
| | - Adam McDermaid
- Bioinformatics and Mathematical Biosciences Lab, Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57006, USA.
- Department of Mathematics and Statistics, South Dakota State University, Brookings, SD 57006, USA.
| | - Hanyuan Zhang
- College of Computer Science and Engineering, University of Nebraska Lincoln, Lincoln, NE 68588, USA.
| | - Chao Liu
- Shandong Provincial Hospital affiliated to Shandong University, Jinan 250021, China.
| | - Huansheng Cao
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Qin Ma
- Bioinformatics and Mathematical Biosciences Lab, Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57006, USA.
- Department of Mathematics and Statistics, South Dakota State University, Brookings, SD 57006, USA.
| |
Collapse
|
45
|
Yadav MK, Vidal JE, Go YY, Kim SH, Chae SW, Song JJ. The LuxS/AI-2 Quorum-Sensing System of Streptococcus pneumoniae Is Required to Cause Disease, and to Regulate Virulence- and Metabolism-Related Genes in a Rat Model of Middle Ear Infection. Front Cell Infect Microbiol 2018; 8:138. [PMID: 29780750 PMCID: PMC5945837 DOI: 10.3389/fcimb.2018.00138] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/18/2018] [Indexed: 01/02/2023] Open
Abstract
Objective:Streptococcus pneumoniae colonizes the nasopharynx of children, and from nasopharynx it could migrate to the middle ear and causes acute otitis media (AOM). During colonization and AOM, the pneumococcus forms biofilms. In vitro biofilm formation requires a functional LuxS/AI-2 quorum-sensing system. We investigated the role of LuxS/AI-2 signaling in pneumococcal middle ear infection, and identified the genes that are regulated by LuxS/AI-2 during pneumococcal biofilm formation. Methods:Streptococcus pneumoniae D39 wild-type and an isogenic D39ΔluxS strain were utilized to evaluate in vitro biofilm formation, and in vivo colonization and epithelial damage using a microtiter plate assay and a rat model of pneumococcal middle ear infection, respectively. Biofilm structures and colonization and epithelial damage were evaluated at the ultrastructural level by scanning electron microscopy and confocal microscopy. Microarrays were used to investigate the global genes that were regulated by LuxS/AI-2 during biofilm formation. Results: The biofilm biomass and density of D39ΔluxS were significantly (p < 0.05) lower than those of D39 wild-type. SEM and confocal microscopy revealed that D39ΔluxS formed thin biofilms in vitro compared with D39 wild-type. The in vivo model of middle ear infection showed that D39ΔluxS resulted in ~60% less (p < 0.05) bacterial colonization than the wild-type. SEM analysis of the rat middle ears revealed dense biofilm-like cell debris deposited on the cilia in wild-type D39-infected rats. However, little cell debris was deposited in the middle ears of the D39ΔluxS-inoculated rats, and the cilia were visible. cDNA-microarray analysis revealed 117 differentially expressed genes in D39ΔluxS compared with D39 wild-type. Among the 66 genes encoding putative proteins and previously characterized proteins, 60 were significantly downregulated, whereas 6 were upregulated. Functional annotation revealed that genes involved in DNA replication and repair, ATP synthesis, capsule biosynthesis, cell division, the cell cycle, signal transduction, transcription regulation, competence, virulence, and carbohydrate metabolism were downregulated in the absence of LuxS/AI-2. Conclusion: The S. pneumoniae LuxS/AI-2 quorum-sensing system is necessary for biofilm formation and the colonization of the ear epithelium, and caused middle ear infection in the rat model. LuxS/AI-2 regulates the expression of the genes involved in virulence and bacterial fitness during pneumococcal biofilm formation.
Collapse
Affiliation(s)
- Mukesh K Yadav
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea.,Institute for Medical Device Clinical Trials, Korea University College of Medicine, Seoul, South Korea
| | - Jorge E Vidal
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Yoon Y Go
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| | - Shin H Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| | - Sung-Won Chae
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| | - Jae-Jun Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|