1
|
Das M, Kiruthiga C, Shafreen RB, Nachammai K, Selvaraj C, Langeswaran K. Harnessing the human microbiome and its impact on immuno-oncology and nanotechnology for next-generation cancer therapies. Eur J Pharmacol 2025; 996:177436. [PMID: 40023356 DOI: 10.1016/j.ejphar.2025.177436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/14/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
The integration of microbiome research and nanotechnology represents a significant advancement in immuno-oncology, potentially improving the effectiveness of cancer immunotherapies. Recent studies highlight the influential role of the human microbiome in modulating immune responses, presenting new opportunities to enhance immune checkpoint inhibitors (ICIs) and other cancer therapies. Nanotechnology offers precise drug delivery and immune modulation capabilities, minimizing off-target effects while maximizing therapeutic outcomes. This review consolidates current knowledge on the interactions between the microbiome and the immune system, emphasizing the microbiome's impact on ICIs, and explores the incorporation of nanotechnology in cancer treatment strategies. Additionally, it provides a forward-looking perspective on the synergistic potential of microbiome modulation and nanotechnology to overcome existing challenges in immuno-oncology. This integrated approach may enhance the personalization and effectiveness of next-generation cancer treatments, paving the way for transformative patient care.
Collapse
Affiliation(s)
- Mamali Das
- Department of Biomedical Science, Alagappa University, Karaikudi, 630003, India
| | | | - R Beema Shafreen
- Department of Biomedical Science, Alagappa University, Karaikudi, 630003, India
| | - Kathiresan Nachammai
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, India
| | - Chandrabose Selvaraj
- CsrDD Lab, Department of Microbiology, Dr. D. Y. Patil Medical College Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to Be University), Pimpri, Pune, 411018, India.
| | - K Langeswaran
- Department of Biomedical Science, Alagappa University, Karaikudi, 630003, India; Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
2
|
Kumari N, Addepalli V, More A, Patil A, Suryawanshi M. Gut microbiota and Parkinson's Disease: a new frontier in understanding neurological health. Inflammopharmacology 2025:10.1007/s10787-025-01726-w. [PMID: 40244491 DOI: 10.1007/s10787-025-01726-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/31/2025] [Indexed: 04/18/2025]
Abstract
Increasingly recognized as a neurodegenerative disease with motor manifestations and progressive cognitive decline, PD has more frequently been linked to the gut microbiome. The gut-brain axis, a bidirectional communication system between the gut and brain, plays a crucial role in PD pathogenesis. Exploration of the intricacies in the interplay between PD and the gut microbiome, together with the important mechanisms involved, will form the basis of this review. Gut microbiome activities as contributors to PD actions include altered intestinal permeability, neuroinflammation, alpha-syn aggregation, oxidative stress, and neurotransmitter production. Gut-brain axis communication that is highly facilitated through immune, metabolic, and neural pathways enables communication between the gut and the brain. Recent evidence suggests that the disease may begin in the gut, with GI symptoms typically preceding loss of motor control. Research has shown a significant connection between Parkinson's disease and the gut microbiome, affecting disease onset, progression, and symptoms. Therapeutic strategies targeting the gut microbiome, such as probiotics, prebiotics, and FMT, may improve PD outcomes. Personalized medicine and neuroprotective therapies are promising for managing PD. Researchers are exploring the connection between the gut microbiome and PD to create new treatments for bettering the lives of those with the disease. By understanding the intricate relationship between the gut microbiome and PD, researchers can develop novel therapeutic approaches to improve the quality of life for individuals with this debilitating disease.
Collapse
Affiliation(s)
- Nishchhal Kumari
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, Maharashtra, 411018, India
| | - Veeranjaneyulu Addepalli
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, Maharashtra, 411018, India
| | - Aniket More
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, Maharashtra, 411018, India
| | - Ashwani Patil
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, Maharashtra, 411018, India.
| | - Meghraj Suryawanshi
- Department of Pharmaceutics, Sandip Institute of Pharmaceutical Sciences (SIPS), Affiliated To Savitribai Phule Pune University (SPPU, Pune), Nashik, Maharashtra, 422213, India.
| |
Collapse
|
3
|
Flores-Soto ME, Nápoles-Medina AY, Tejeda-Martínez AR, Solís-Pacheco JR, Chaparro-Huerta V, Gutiérrez-Sevilla JE, Aguilar-Uscanga BR. Supplementation of the Probiotic LLH135 Reduces Oxidative Stress in a Model of Hemiparkinsonism. Behav Neurol 2025; 2025:8401392. [PMID: 40256256 PMCID: PMC12006709 DOI: 10.1155/bn/8401392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 03/24/2025] [Indexed: 04/22/2025] Open
Abstract
Oxidative stress and neuroinflammation are considered as the two main etiological reasons behind idiopathic Parkinson's disease (PD). Nevertheless, the actual treatments are focused on improving motor symptoms by restoring dopamine (DA) presence, leaving said causes unattended. Probiotics could be a promising strategy for the improvement of these physiological features behind the disease and therefore constitute a complementary treatment for those having PD. This study evaluated the effect of the oral administration of a probiotic bacteria mixture from 3 strains of Limosilactobacillus fermentum LH01, Limosilactobacillus reuteri LH03, and Lactiplantibacillus plantarum LH05 (LLH135), of human milk origin, for 4 weeks, on mice under the hemiparkinsonism model of intrastriatal administration of 6-hidroxidopamine (6-OHDA). We measured total antioxidant capacity (TAC), super oxide dismutase (SOD) activity, and 8-deoxyguanosine (8-OHdG) regarding oxidative stress. Concerning neuroinflammation, immunoreactivity for GFAP, IBA-1, and CD68 was measured by immunohistochemistry and the latter markers corroborated in colocalization with immunofluorescence to assess activated microglia. The probiotic mixture diminished the oxidative stress features of SOD activity as well as 8-OHdG generated by the model of hemiparkinsonism. These effects were accompanied as well by the dampening of the glial immunoreactivity and colocalization of IBA-1 and CD68 that were present under the model. Our findings suggest that the administration of the probiotic LLH135 exerts neuroprotective effects by promoting an antioxidant response which could be explained by the modulation of the response from glial cells to dopaminergic neuronal damage induced with 6-OHDA.
Collapse
Affiliation(s)
- Mario E. Flores-Soto
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Angelica Y. Nápoles-Medina
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
- Laboratorio de Investigación Leche humana, Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Aldo R. Tejeda-Martínez
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Josué R. Solís-Pacheco
- Laboratorio de Investigación Leche humana, Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Verónica Chaparro-Huerta
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Juan E. Gutiérrez-Sevilla
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Blanca R. Aguilar-Uscanga
- Laboratorio de Investigación Leche humana, Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
4
|
Wang Y, Bing H, Jiang C, Wang J, Wang X, Xia Z, Chu Q. Gut microbiota dysbiosis and neurological function recovery after intracerebral hemorrhage: an analysis of clinical samples. Microbiol Spectr 2024; 12:e0117824. [PMID: 39315788 PMCID: PMC11537008 DOI: 10.1128/spectrum.01178-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
We aimed to investigate the microbial community composition in patients with intracerebral hemorrhage (ICH) and its effect on prognosis. We designed two clinical cohort studies to explore the gut dysbiosis after ICH and their relationship with neurological function prognosis. First, fecal samples from patients with ICH at three time points: T1 (within 24 h of admission), T2 (3 days after surgery), and T3 (7 days after surgery), and healthy volunteers were subjected to 16S rRNA sequencing using Illumina high-throughput sequencing technology. When differential gut microbiota was identified, the correlation between clinical indicators and microbiotas was analyzed. Subsequently, the patients with ICH were categorized into GOOD and POOR groups based on their Glasgow Outcome Scale Extended (GOS-E) score, and the disparities in gut microbiota between the two groups were assessed. Univariate and multivariate logistic regression analyses were performed to identify independent risk factors. The composition and diversity of the gut microbiota in patients with ICH were different from those in the control group and changed dynamically with the extension of the course of cerebral hemorrhage. The abundances of Enterococcaceae, Clostridiales incertae sedis XI, and Peptoniphilaceae were significantly increased in patients with ICH, whereas Bacteroidaceae, Ruminococcaceae, Lachnospiraceae, and Veillonellaceae were significantly reduced. The relative abundance of Enterococcus gradually increased with the extension of the duration of ICH after surgery, and the abundance of Bacteroides gradually decreased. The abundance of Enterococcus before surgery was found to be negatively associated with patient neurological function prognosis. The original ICH score and Lachnospiraceae status were independent risk factors for predicting the prognosis of neurological function in patients with ICH (P < 0.05). Changes in the gut microbiota diversity in patients with ICH were related to prognosis. Lachnospiraceae may have a protective effect on prognosis.IMPORTANCEAcute central nervous system injuries like hemorrhagic stroke are major global health issues. While surgical hematoma removal can alleviate brain damage, severe cases still have a high 1-month mortality rate of up to 40%. Gut microbiota significantly impacts health, and treatments like fecal microbiota transplantation (FMT) and probiotics can improve brain damage by correcting gut microbiota imbalances caused by ischemic stroke. However, few clinical studies have explored this relationship in hemorrhagic stroke. This study investigated the impact of cerebral hemorrhage on the composition of gut microbiota, and we found that Lachnospiraceae were the independent risk factors for poor prognosis in intracerebral hemorrhage (ICH). The findings offer potential insights for the application of FMT in patients with ICH, and it may improve the prognosis of patients.
Collapse
Affiliation(s)
- Yan Wang
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou central Hospital Affiliated To Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Hailong Bing
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou central Hospital Affiliated To Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Conghui Jiang
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou central Hospital Affiliated To Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jie Wang
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou central Hospital Affiliated To Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xuan Wang
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou central Hospital Affiliated To Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Qinjun Chu
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou central Hospital Affiliated To Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
5
|
Qi Y, Dong Y, Chen J, Xie S, Ma X, Yu X, Yu Y, Wang Y. Lactiplantibacillus plantarum SG5 inhibits neuroinflammation in MPTP-induced PD mice through GLP-1/PGC-1α pathway. Exp Neurol 2024; 383:115001. [PMID: 39406307 DOI: 10.1016/j.expneurol.2024.115001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/29/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Mounting evidence suggests that alterations in gut microbial composition play an active role in the pathogenesis of Parkinson's disease (PD). Probiotics are believed to modulate gut microbiota, potentially influencing PD development through the microbiota-gut-brain axis. However, the potential beneficial effects of Lactiplantibacillus plantarum SG5 (formerly known as Lactobacillus plantarum, abbreviated as L. plantarum) on PD and its underlying mechanisms remain unclear. In this study, we employed immunofluorescence, Western blotting, ELISA, and 16S rRNA gene sequencing to investigate the neuroprotective effects of L. plantarum SG5 against neuroinflammation in an MPTP-induced PD model and to explore the underlying mechanisms. Our results demonstrated that L. plantarum SG5 ameliorated MPTP-induced motor deficits, dopaminergic neuron loss, and elevated α-synuclein protein levels. Furthermore, SG5 inhibited MPTP-triggered overactivation of microglia and astrocytes in the substantia nigra (SN), attenuated disruption of both blood-brain and intestinal barriers, and suppressed the release of inflammatory factors in the colon and SN. Notably, SG5 modulated the composition and structure of the gut microbiota in mice. The MPTP-induced decrease in colonic GLP-1 secretion was reversed by SG5 treatment, accompanied by increased expression of GLP-1R and PGC-1α in the SN. Importantly, the GLP-1R antagonist Exendin 9-39 and PGC-1α inhibitor SR18292 attenuated the protective effects of SG5 in PD mice. In conclusion, we demonstrate a neuroprotective role of L. plantarum SG5 in the MPTP-induced PD mouse model, which likely involves modulation of the gut microbiota and, significantly, the GLP-1/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Yueyan Qi
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yuxuan Dong
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Jinhu Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang 050051, China
| | - Siyou Xie
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Xin Ma
- Thankcome Biotechnology (Su Zhou) Co., Suzhou, China
| | - Xueping Yu
- Thankcome Biotechnology (Su Zhou) Co., Suzhou, China
| | - Yang Yu
- Thankcome Biotechnology (Su Zhou) Co., Suzhou, China
| | - Yanqin Wang
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
| |
Collapse
|
6
|
Techaniyom P, Korsirikoon C, Rungruang T, Pakaprot N, Prombutara P, Mukda S, Kettawan AK, Kettawan A. Cold-pressed perilla seed oil: Investigating its protective influence on the gut-brain axis in mice with rotenone-induced Parkinson's disease. Food Sci Nutr 2024; 12:6259-6283. [PMID: 39554352 PMCID: PMC11561828 DOI: 10.1002/fsn3.4265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 11/19/2024] Open
Abstract
Perilla seed oil, derived from a regional plant native to northern Thailand, undergoes cold-pressing to analyze its bioactive components, notably alpha-linolenic acid (ALA). ALA, constituting approximately 61% of the oil, serves as a precursor for therapeutic omega-3 fatty acids, EPA and DHA, with neurodegenerative disease benefits and anti-inflammatory responses. This study administered different concentrations of perilla seed oil to male C57BL/6 mice, categorized as low dose (LP 5% w/w), middle dose (MP 10% w/w), and high dose (HP 20% w/w), along with a fish oil (FP 10% w/w) diet. An experimental group received soybean oil (5% w/w). Over 42 days, these diets were administered while inducing Parkinson's disease (PD) with rotenone injections. Mice on a high perilla seed oil dose exhibited decreased Cox-2 expression in the colon, suppressed Iba-1 microglia activation, reduced alpha-synuclein accumulation in the colon and hippocampus, prevented dopaminergic cell death in the substantia nigra, and improved motor and non-motor symptoms. Mice on a middle dose showed maintenance of diverse gut microbiota, with an increased abundance of short-chain fatty acid (SCFA)-producing bacteria (Bifidobacteria, Lactobacillus, and Faecalibacteria). A reduction in bacteria correlated with PD (Turicibacter, Ruminococcus, and Akkermansia) was observed. Results suggest the potential therapeutic efficacy of high perilla seed oil doses in mitigating both intestinal and neurological aspects linked to the gut-brain axis in PD.
Collapse
Affiliation(s)
- Peerapa Techaniyom
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of NutritionMahidol UniversityBangkokThailand
| | - Chawin Korsirikoon
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of NutritionMahidol UniversityBangkokThailand
| | - Thanaporn Rungruang
- Department of Anatomy, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Narawut Pakaprot
- Department of Physiology, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Pinidphon Prombutara
- OMICS Sciences and Bioinformatics Center, Faculty of ScienceChulalongkorn UniversityBangkokThailand
- Mod Gut Co., Ltd.BangkokThailand
| | - Sujira Mukda
- Research Center for NeuroscienceInstitute of Molecular Biosciences, Mahidol UniversityNakhon PathomThailand
| | | | | |
Collapse
|
7
|
Simpson JB, Walker ME, Sekela JJ, Ivey SM, Jariwala PB, Storch CM, Kowalewski ME, Graboski AL, Lietzan AD, Walton WG, Davis KA, Cloer EW, Borlandelli V, Hsiao YC, Roberts LR, Perlman DH, Liang X, Overkleeft HS, Bhatt AP, Lu K, Redinbo MR. Gut microbial β-glucuronidases influence endobiotic homeostasis and are modulated by diverse therapeutics. Cell Host Microbe 2024; 32:925-944.e10. [PMID: 38754417 PMCID: PMC11176022 DOI: 10.1016/j.chom.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/18/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
Hormones and neurotransmitters are essential to homeostasis, and their disruptions are connected to diseases ranging from cancer to anxiety. The differential reactivation of endobiotic glucuronides by gut microbial β-glucuronidase (GUS) enzymes may influence interindividual differences in the onset and treatment of disease. Using multi-omic, in vitro, and in vivo approaches, we show that germ-free mice have reduced levels of active endobiotics and that distinct gut microbial Loop 1 and FMN GUS enzymes drive hormone and neurotransmitter reactivation. We demonstrate that a range of FDA-approved drugs prevent this reactivation by intercepting the catalytic cycle of the enzymes in a conserved fashion. Finally, we find that inhibiting GUS in conventional mice reduces free serotonin and increases its inactive glucuronide in the serum and intestines. Our results illuminate the indispensability of gut microbial enzymes in sustaining endobiotic homeostasis and indicate that therapeutic disruptions of this metabolism promote interindividual response variabilities.
Collapse
Affiliation(s)
- Joshua B Simpson
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Morgan E Walker
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Joshua J Sekela
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Samantha M Ivey
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Parth B Jariwala
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Cameron M Storch
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Mark E Kowalewski
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Amanda L Graboski
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Adam D Lietzan
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William G Walton
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Kacey A Davis
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Erica W Cloer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Valentina Borlandelli
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Yun-Chung Hsiao
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lee R Roberts
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA
| | - David H Perlman
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA
| | - Xue Liang
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA
| | - Hermen S Overkleeft
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Aadra P Bhatt
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew R Redinbo
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
8
|
Manjarres Z, Calvo M, Pacheco R. Regulation of Pain Perception by Microbiota in Parkinson Disease. Pharmacol Rev 2023; 76:7-36. [PMID: 37863655 DOI: 10.1124/pharmrev.122.000674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023] Open
Abstract
Pain perception involves current stimulation in peripheral nociceptive nerves and the subsequent stimulation of postsynaptic excitatory neurons in the spinal cord. Importantly, in chronic pain, the neural activity of both peripheral nociceptors and postsynaptic neurons in the central nervous system is influenced by several inflammatory mediators produced by the immune system. Growing evidence has indicated that the commensal microbiota plays an active role in regulating pain perception by either acting directly on nociceptors or indirectly through the modulation of the inflammatory activity on immune cells. This symbiotic relationship is mediated by soluble bacterial mediators or intrinsic structural components of bacteria that act on eukaryotic cells, including neurons, microglia, astrocytes, macrophages, T cells, enterochromaffin cells, and enteric glial cells. The molecular mechanisms involve bacterial molecules that act directly on neurons, affecting their excitability, or indirectly on non-neuronal cells, inducing changes in the production of proinflammatory or anti-inflammatory mediators. Importantly, Parkinson disease, a neurodegenerative and inflammatory disorder that affects mainly the dopaminergic neurons implicated in the control of voluntary movements, involves not only a motor decline but also nonmotor symptomatology, including chronic pain. Of note, several recent studies have shown that Parkinson disease involves a dysbiosis in the composition of the gut microbiota. In this review, we first summarize, integrate, and classify the molecular mechanisms implicated in the microbiota-mediated regulation of chronic pain. Second, we analyze the changes on the commensal microbiota associated to Parkinson disease and propose how these changes affect the development of chronic pain in this pathology. SIGNIFICANCE STATEMENT: The microbiota regulates chronic pain through the action of bacterial signals into two main locations: the peripheral nociceptors and the postsynaptic excitatory neurons in the spinal cord. The dysbiosis associated to Parkinson disease reveals increased representation of commensals that potentially exacerbate chronic pain and reduced levels of bacteria with beneficial effects on pain. This review encourages further research to better understand the signals involved in bacteria-bacteria and bacteria-host communication to get the clues for the development of probiotics with therapeutic potential.
Collapse
Affiliation(s)
- Zulmary Manjarres
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile (Z.M., R.P.); Facultad de Ciencias Biológicas (Z.M., M.C.) and División de Anestesiología, Escuela de Medicina (M.C.), Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain, Santiago, Chile (Z.M., M.C.); and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile (R.P.)
| | - Margarita Calvo
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile (Z.M., R.P.); Facultad de Ciencias Biológicas (Z.M., M.C.) and División de Anestesiología, Escuela de Medicina (M.C.), Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain, Santiago, Chile (Z.M., M.C.); and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile (R.P.)
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile (Z.M., R.P.); Facultad de Ciencias Biológicas (Z.M., M.C.) and División de Anestesiología, Escuela de Medicina (M.C.), Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain, Santiago, Chile (Z.M., M.C.); and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile (R.P.)
| |
Collapse
|
9
|
Morimoto T, Kobayashi T, Kakiuchi T, Esaki M, Tsukamoto M, Yoshihara T, Hirata H, Yabuki S, Mawatari M. Gut-spine axis: a possible correlation between gut microbiota and spinal degenerative diseases. Front Microbiol 2023; 14:1290858. [PMID: 37965563 PMCID: PMC10641865 DOI: 10.3389/fmicb.2023.1290858] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023] Open
Abstract
As society ages, the number of patients with spinal degenerative diseases (SDD) is increasing, posing a major socioeconomic problem for patients and their families. SDD refers to a generic term for degenerative diseases of spinal structures, including osteoporosis (bone), facet osteoarthritis (joint), intervertebral disk degeneration (disk), lumbar spinal canal stenosis (yellow ligament), and spinal sarcopenia (muscle). We propose the term "gut-spine axis" for the first time, given the influence of gut microbiota (GM) on the metabolic, immune, and endocrine environment in hosts through various potential mechanisms. A close cross-talk is noted between the aforementioned spinal components and degenerative diseases. This review outlines the nature and role of GM, highlighting GM abnormalities associated with the degeneration of spinal components. It also summarizes the evidence linking GM to various SDD. The gut-spine axis perspective can provide novel insights into the pathogenesis and treatment of SDD.
Collapse
Affiliation(s)
- Tadatsugu Morimoto
- Department of Orthopedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Takaomi Kobayashi
- Department of Orthopedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Toshihiko Kakiuchi
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan
| | - Motohiro Esaki
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Masatsugu Tsukamoto
- Department of Orthopedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Tomohito Yoshihara
- Department of Orthopedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Hirohito Hirata
- Department of Orthopedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Shoji Yabuki
- Fukushima Medical University School of Health Sciences, Fukushima, Japan
| | - Masaaki Mawatari
- Department of Orthopedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
10
|
Montagnani M, Bottalico L, Potenza MA, Charitos IA, Topi S, Colella M, Santacroce L. The Crosstalk between Gut Microbiota and Nervous System: A Bidirectional Interaction between Microorganisms and Metabolome. Int J Mol Sci 2023; 24:10322. [PMID: 37373470 DOI: 10.3390/ijms241210322] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Several studies have shown that the gut microbiota influences behavior and, in turn, changes in the immune system associated with symptoms of depression or anxiety disorder may be mirrored by corresponding changes in the gut microbiota. Although the composition/function of the intestinal microbiota appears to affect the central nervous system (CNS) activities through multiple mechanisms, accurate epidemiological evidence that clearly explains the connection between the CNS pathology and the intestinal dysbiosis is not yet available. The enteric nervous system (ENS) is a separate branch of the autonomic nervous system (ANS) and the largest part of the peripheral nervous system (PNS). It is composed of a vast and complex network of neurons which communicate via several neuromodulators and neurotransmitters, like those found in the CNS. Interestingly, despite its tight connections to both the PNS and ANS, the ENS is also capable of some independent activities. This concept, together with the suggested role played by intestinal microorganisms and the metabolome in the onset and progression of CNS neurological (neurodegenerative, autoimmune) and psychopathological (depression, anxiety disorders, autism) diseases, explains the large number of investigations exploring the functional role and the physiopathological implications of the gut microbiota/brain axis.
Collapse
Affiliation(s)
- Monica Montagnani
- Department of Precision and Regenerative Medicine and Ionian Area-Section of Pharmacology, School of Medicine, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Lucrezia Bottalico
- School of Technical Medical Sciences, "Alexander Xhuvani" University of Elbasan, 3001-3006 Elbasan, Albania
| | - Maria Assunta Potenza
- Department of Precision and Regenerative Medicine and Ionian Area-Section of Pharmacology, School of Medicine, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Ioannis Alexandros Charitos
- Pneumology and Respiratory Rehabilitation Division, Maugeri Clinical Scientific Research Institutes (IRCCS), 70124 Bari, Italy
| | - Skender Topi
- School of Technical Medical Sciences, "Alexander Xhuvani" University of Elbasan, 3001-3006 Elbasan, Albania
| | - Marica Colella
- Interdisciplinary Department of Medicine, Microbiology and Virology Unit, School of Medicine, University of Bari "Aldo Moro", Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Microbiology and Virology Unit, School of Medicine, University of Bari "Aldo Moro", Piazza G. Cesare, 11, 70124 Bari, Italy
| |
Collapse
|
11
|
Zhang Y, Xu S, Qian Y, Mo C, Ai P, Yang X, Xiao Q. Sodium butyrate ameliorates gut dysfunction and motor deficits in a mouse model of Parkinson's disease by regulating gut microbiota. Front Aging Neurosci 2023; 15:1099018. [PMID: 36761177 PMCID: PMC9905700 DOI: 10.3389/fnagi.2023.1099018] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
Background A growing body of evidence showed that gut microbiota dysbiosis might be associated with the pathogenesis of Parkinson's disease (PD). Microbiota-targeted interventions could play a protective role in PD by regulating the gut microbiota-gut-brain axis. Sodium butyrate (NaB) could improve gut microbiota dysbiosis in PD and other neuropsychiatric disorders. However, the potential mechanism associated with the complex interaction between NaB and gut microbiota-gut-brain communication in PD needs further investigation. Methods C57BL/6 mice were subjected to a rotenone-induced PD model and were treated intragastrically with NaB for 4 weeks. The gut function and motor function were evaluated. The α-synuclein expression in colon and substantia nigra were detected by western blotting. Tyrosine hydroxylase (TH)-positive neurons in substantia nigra were measured by immunofluorescence. Moreover, gut microbiota composition was analyzed by 16S rRNA sequencing. Fecal short chain fatty acids (SCFAs) levels were determined by liquid chromatography tandem mass spectrometry (LC-MS). The levels of glucagon like peptide-1 (GLP-1) in tissues and serum were evaluated using enzyme-linked immunosorbent assay (ELISA). Results NaB ameliorated gut dysfunction and motor deficits in rotenone-induced mice. Meanwhile, NaB protected against rotenone-induced α-synuclein expression in colon and substantia nigra, and prevented the loss of TH-positive neurons. In addition, NaB could remodel gut microbiota composition, and regulate gut SCFAs metabolism, and restore GLP-1 levels in colon, serum, and substantia nigra in PD mice. Conclusion NaB could ameliorate gut dysfunction and motor deficits in rotenone-induced PD mice, and the mechanism might be associated with the regulation of gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaoqing Xu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwei Qian
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengjun Mo
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Penghui Ai
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaodong Yang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Qin Xiao, ; Xiaodong Yang,
| | - Qin Xiao
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Qin Xiao, ; Xiaodong Yang,
| |
Collapse
|
12
|
Zhang J. Investigating neurological symptoms of infectious diseases like COVID-19 leading to a deeper understanding of neurodegenerative disorders such as Parkinson's disease. Front Neurol 2022; 13:968193. [PMID: 36570463 PMCID: PMC9768197 DOI: 10.3389/fneur.2022.968193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/08/2022] [Indexed: 12/12/2022] Open
Abstract
Apart from common respiratory symptoms, neurological symptoms are prevalent among patients with COVID-19. Research has shown that infection with SARS-CoV-2 accelerated alpha-synuclein aggregation, induced Lewy-body-like pathology, caused dopaminergic neuron senescence, and worsened symptoms in patients with Parkinson's disease (PD). In addition, SARS-CoV-2 infection can induce neuroinflammation and facilitate subsequent neurodegeneration in long COVID, and increase individual vulnerability to PD or parkinsonism. These findings suggest that a post-COVID-19 parkinsonism might follow the COVID-19 pandemic. In order to prevent a possible post-COVID-19 parkinsonism, this paper reviewed neurological symptoms and related findings of COVID-19 and related infectious diseases (influenza and prion disease) and neurodegenerative disorders (Alzheimer's disease, PD and amyotrophic lateral sclerosis), and discussed potential mechanisms underlying the neurological symptoms and the relationship between the infectious diseases and the neurodegenerative disorders, as well as the therapeutic and preventive implications in the neurodegenerative disorders. Infections with a relay of microbes (SARS-CoV-2, influenza A viruses, gut bacteria, etc.) and prion-like alpha-synuclein proteins over time may synergize to induce PD. Therefore, a systematic approach that targets these pathogens and the pathogen-induced neuroinflammation and neurodegeneration may provide cures for neurodegenerative disorders. Further, antiviral/antimicrobial drugs, vaccines, immunotherapies and new therapies (e.g., stem cell therapy) need to work together to treat, manage or prevent these disorders. As medical science and technology advances, it is anticipated that better vaccines for SARS-CoV-2 variants, new antiviral/antimicrobial drugs, effective immunotherapies (alpha-synuclein antibodies, vaccines for PD or parkinsonism, etc.), as well as new therapies will be developed and made available in the near future, which will help prevent a possible post-COVID-19 parkinsonism in the 21st century.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Neurology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
13
|
Tonelli Enrico V, Vo N, Methe B, Morris A, Sowa G. An unexpected connection: A narrative review of the associations between Gut Microbiome and Musculoskeletal Pain. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2022; 31:3603-3615. [PMID: 36308543 PMCID: PMC9617047 DOI: 10.1007/s00586-022-07429-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE Multiple diverse factors contribute to musculoskeletal pain, a major cause of physical dysfunction and health-related costs worldwide. Rapidly growing evidence demonstrates that the gut microbiome has overarching influences on human health and the body's homeostasis and resilience to internal and external perturbations. This broad role of the gut microbiome is potentially relevant and connected to musculoskeletal pain, though the literature on the topic is limited. Thus, the literature on the topic of musculoskeletal pain and gut microbiome was explored. METHODS This narrative review explores the vast array of reported metabolites associated with inflammation and immune-metabolic response, which are known contributors to musculoskeletal pain. Moreover, it covers known modifiable (e.g., diet, lifestyle choices, exposure to prescription drugs, pollutants, and chemicals) and non-modifiable factors (e.g., gut architecture, genetics, age, birth history, and early feeding patterns) that are known to contribute to changes to the gut microbiome. Particular attention is devoted to modifiable factors, as the ultimate goal of researching this topic is to implement gut microbiome health interventions into clinical practice. RESULTS Overall, numerous associations exist in the literature that could converge on the gut microbiome's pivotal role in musculoskeletal health. Particularly, a variety of metabolites that are either directly produced or indirectly modulated by the gut microbiome have been highlighted. CONCLUSION The review highlights noticeable connections between the gut and musculoskeletal health, thus warranting future research to focus on the gut microbiome's role in musculoskeletal conditions.
Collapse
Affiliation(s)
- Valerio Tonelli Enrico
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, University of Pittsburgh, 200 Lothrop Street, Room E1612, BST, Pittsburgh, PA, 15261, USA.
- Department of Physical Therapy, University of Pittsburgh, 100 Technology Dr, Pittsburgh, PA, 15219, USA.
| | - Nam Vo
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, University of Pittsburgh, 200 Lothrop Street, Room E1612, BST, Pittsburgh, PA, 15261, USA
| | - Barbara Methe
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh, 1218 Scaife Hall 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Alison Morris
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh, 1218 Scaife Hall 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Gwendolyn Sowa
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, University of Pittsburgh, 200 Lothrop Street, Room E1612, BST, Pittsburgh, PA, 15261, USA
- Department of Physical Medicine and Rehabilitation, School of Medicine, University of Pittsburgh, Kaufmann Medical Building, Suite 910, 3471 Fifth Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
14
|
Magni G, Riboldi B, Petroni K, Ceruti S. Flavonoids bridging the gut and the brain: intestinal metabolic fate, and direct or indirect effects of natural supporters against neuroinflammation and neurodegeneration. Biochem Pharmacol 2022; 205:115257. [PMID: 36179933 DOI: 10.1016/j.bcp.2022.115257] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/02/2022]
Abstract
In recent years, experimental evidence suggested a possible role of the gut microbiota in the onset and development of several neurodegenerative disorders, such as AD and PD, MS and pain. Flavonoids, including anthocyanins, EGCG, the flavonol quercetin, and isoflavones, are plant polyphenolic secondary metabolites that have shown therapeutic potential for the treatment of various pathological conditions, including neurodegenerative diseases. This is due to their antioxidant and anti-inflammatory properties, despite their low bioavailability which often limits their use in clinical practice. In more recent years it has been demonstrated that flavonoids are metabolized by specific bacterial strains in the gut to produce their active metabolites. On the other way round, both naturally-occurring flavonoids and their metabolites promote or limit the proliferation of specific bacterial strains, thus profoundly affecting the composition of the gut microbiota which in turn modifies its ability to further metabolize flavonoids. Thus, understanding the best way of acting on this virtuous circle is of utmost importance to develop innovative approaches to many brain disorders. In this review, we summarize some of the most recent advances in preclinical and clinical research on the neuroinflammatory and neuroprotective effects of flavonoids on AD, PD, MS and pain, with a specific focus on their mechanisms of action including possible interactions with the gut microbiota, to emphasize the potential exploitation of dietary flavonoids as adjuvants in the treatment of these pathological conditions.
Collapse
Affiliation(s)
- Giulia Magni
- Department of Pharmacological and Biomolecular Sciences - Università degli Studi di Milano - via Balzaretti, 9 - 20133 MILAN (Italy)
| | - Benedetta Riboldi
- Department of Pharmacological and Biomolecular Sciences - Università degli Studi di Milano - via Balzaretti, 9 - 20133 MILAN (Italy)
| | - Katia Petroni
- Department of Biosciences - Università degli Studi di Milano - via Celoria, 26 - 20133 MILAN (Italy)
| | - Stefania Ceruti
- Department of Pharmacological and Biomolecular Sciences - Università degli Studi di Milano - via Balzaretti, 9 - 20133 MILAN (Italy).
| |
Collapse
|
15
|
Onaolapo AY, Ojo FO, Olofinnade AT, Falade J, Lawal IA, Onaolapo OJ. Microbiome-Based Therapies in Parkinson's Disease: Can Tuning the Microbiota Become a Viable Therapeutic Strategy? CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 22:CNSNDDT-EPUB-126136. [PMID: 36056826 DOI: 10.2174/1871527321666220903114559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/20/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Progressive neurodegenerative disorders such as Parkinson's disease (PD) have continued to baffle medical science, despite strides in the understanding of their pathology. The inability of currently available therapies to halt disease progression is a testament to an incomplete understanding of pathways crucial to disease initiation, progression and management. Science has continued to link the activities and equilibrium of the gut microbiome to the health and proper functioning of brain neurons. They also continue to stir interest in the potential applications of technologies that may shift the balance of the gut microbiome towards achieving a favourable outcome in PD management. There have been suggestions that an improved understanding of the roles of the gut microbiota is likely to lead to the emergence of an era where their manipulation becomes a recognized strategy for PD management. This review examines the current state of our journey in the quest to understand how the gut microbiota can influence several aspects of PD. We highlight the relationship between the gut microbiome/microbiota and PD pathogenesis, as well as preclinical and clinical evidence evaluating the effect of postbiotics, probiotics and prebiotics in PD management. This is with a view to ascertaining if we are at the threshold of discovering the application of a usable tool in our quest for disease modifying therapies in PD.
Collapse
Affiliation(s)
- Adejoke Y Onaolapo
- Behavioural Neuroscience/Neurobiology Unit, Department of Anatomy, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Folusho O Ojo
- Department of Anatomy, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Anthony T Olofinnade
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Clinical Sciences, College of Medicine, Lagos State University, Lagos State
| | - Joshua Falade
- Department of Mental Health, Afe-Babalola University Ado-Ekiti Ekiti State Nigeria
| | - Ismail A Lawal
- Department of Anatomy, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Department of Anatomy, Faculty of Health Sciences. Alhikmah University Ilorin, Kwara State, Nigeria
| | - Olakunle J Onaolapo
- Behavioural Neuroscience/Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
16
|
Nandwana V, Nandwana NK, Das Y, Saito M, Panda T, Das S, Almaguel F, Hosmane NS, Das BC. The Role of Microbiome in Brain Development and Neurodegenerative Diseases. Molecules 2022; 27:3402. [PMID: 35684340 PMCID: PMC9182002 DOI: 10.3390/molecules27113402] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 12/13/2022] Open
Abstract
Hundreds of billions of commensal microorganisms live in and on our bodies, most of which colonize the gut shortly after birth and stay there for the rest of our lives. In animal models, bidirectional communications between the central nervous system and gut microbiota (Gut-Brain Axis) have been extensively studied, and it is clear that changes in microbiota composition play a vital role in the pathogenesis of various neurodevelopmental and neurodegenerative disorders, such as Autism Spectrum Disorder, Alzheimer's disease, Parkinson's disease, Multiple Sclerosis, Amyotrophic Lateral Sclerosis, anxiety, stress, and so on. The makeup of the microbiome is impacted by a variety of factors, such as genetics, health status, method of delivery, environment, nutrition, and exercise, and the present understanding of the role of gut microbiota and its metabolites in the preservation of brain functioning and the development of the aforementioned neurological illnesses is summarized in this review article. Furthermore, we discuss current breakthroughs in the use of probiotics, prebiotics, and synbiotics to address neurological illnesses. Moreover, we also discussed the role of boron-based diet in memory, boron and microbiome relation, boron as anti-inflammatory agents, and boron in neurodegenerative diseases. In addition, in the coming years, boron reagents will play a significant role to improve dysbiosis and will open new areas for researchers.
Collapse
Affiliation(s)
- Varsha Nandwana
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (V.N.); (N.K.N.); (T.P.); (S.D.)
| | - Nitesh K. Nandwana
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (V.N.); (N.K.N.); (T.P.); (S.D.)
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yogarupa Das
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (Y.D.); (M.S.)
| | - Mariko Saito
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (Y.D.); (M.S.)
| | - Tanisha Panda
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (V.N.); (N.K.N.); (T.P.); (S.D.)
| | - Sasmita Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (V.N.); (N.K.N.); (T.P.); (S.D.)
| | - Frankis Almaguel
- School of Medicine, Loma Linda University Health, Loma Linda, CA 92350, USA;
| | - Narayan S. Hosmane
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA;
| | - Bhaskar C. Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (V.N.); (N.K.N.); (T.P.); (S.D.)
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
17
|
Zhang J, Sun B, Yang J, Chen Z, Li Z, Zhang N, Li H, Shen L. Comparison of the effect of rotenone and 1‑methyl‑4‑phenyl‑1,2,3,6‑tetrahydropyridine on inducing chronic Parkinson's disease in mouse models. Mol Med Rep 2022; 25:91. [PMID: 35039876 PMCID: PMC8809117 DOI: 10.3892/mmr.2022.12607] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/16/2021] [Indexed: 11/23/2022] Open
Abstract
Animal models for Parkinson's disease (PD) are very useful in understanding the pathogenesis of PD and screening for new therapeutic approaches. The present study compared two commonly used neurotoxin‑induced mouse models of chronic PD to guide model selection, explore the pathogenesis and mechanisms underlying PD and develop effective treatments. The chronic PD mouse models were established via treatment with rotenone or 1‑methyl‑4‑phenyl‑1,2,3,6-tetrahydropyridine (MPTP) for 6 weeks. The effects of rotenone and MPTP in the mice were compared by assessing neurobehavior, neuropathology and mitochondrial function through the use of the pole, rotarod and open field tests, immunohistochemistry for tyrosine hydroxylase (TH), glial fibrillary acidic protein (GFAP), ionized calcium‑binding adapter molecule 1 (Iba‑1), neuronal nuclear antigen (NeuN) and (p)S129 α‑synuclein, immunofluorescence for GFAP, Iba‑1 and NeuN, western blotting for TH, oxygen consumption, complex I enzyme activity. The locomotor activity, motor coordination and exploratory behavior in both rotenone and MPTP groups were significantly lower compared with the control group. However, behavioral tests were no significant differences between the two groups. In the MPTP group, the loss of dopaminergic (DA) neurons in the substantia nigra (SN) pars compacta, the reduction of the tyrosine hydroxylase content in the SN and striatum and the astrocyte proliferation and microglial activation in the SN were more significant compared with the rotenone group. Notably, mitochondrial‑dependent oxygen consumption and complex I enzyme activity in the SN were significantly reduced in the rotenone group compared with the MPTP group. In addition, Lewy bodies were present only in SN neurons in the rotenone group. Although no significant differences in neurobehavior were observed between the two mouse models, the MPTP model reproduced the pathological features of PD more precisely in terms of the loss of DA neurons, decreased dopamine levels and neuroinflammation in the SN. On the other hand, the rotenone model was more suitable for studying the role of mitochondrial dysfunction (deficient complex I activity) and Lewy body formation in the SN, which is a characteristic pathological feature of PD. The results indicated that MPTP and rotenone PD models have advantages and disadvantages, therefore one or both should be selected based on the purpose of the study.
Collapse
Affiliation(s)
- Jing Zhang
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Bohao Sun
- Department of Pathology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Jifeng Yang
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Zhuo Chen
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Zhengzheng Li
- Department of Internal Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Nan Zhang
- Department of Internal Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Hongzhi Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Luxi Shen
- Department of Internal Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
18
|
Perez Visñuk D, Teran MDM, Savoy de Giori G, LeBlanc JG, de Moreno de LeBlanc A. Neuroprotective Effect of Riboflavin Producing Lactic Acid Bacteria in Parkinsonian Models. Neurochem Res 2022; 47:1269-1279. [PMID: 35113305 DOI: 10.1007/s11064-021-03520-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022]
Abstract
Oxidative stress and inflammatory processes might contribute to the cascade of events leading Parkinson disease (PD); and vitamins such as riboflavin can exert protection on vulnerable neurons in neurodegenerative conditions. Previously, it was demonstrated that a mixture of lactic acid bacteria (including a riboflavin-producing strain) improved motor skills in a parkinsonian model. The aim of the present work was to investigate the neuroprotective potential of Lactiplantibacillus (L.) plantarum CRL2130, a riboflavin-producing strain in PD models. In vitro, N2a differentiated neurons were exposed the neurotoxin 1-methyl-4-phenylpyridinium (MPP+) and treated with intracellular bacterial extracts or commercial riboflavin. In vivo, adult male C57BL/6 mice were injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and probenecid, and received orally L. plantarum CRL2130, L. plantarum CRL725 (parent strain that produces low levels of riboflavin) or commercial vitamin. Results showed that when N2a cells were incubated with intracellular extract from L. plantarum CRL2130 maintained the viability, and significantly decreased the release of IL-6 and the formation of reactive oxygen species (ROS), all affected by MPP+. In vivo, the administration of L. plantarum CRL2130 attenuated motor deficits and prevented dopaminergic neuronal death. Decrease of pro-inflammatory cytokines and increase of IL-10 in both serum and brain were observed in samples from mice that received L. plantarum CRL2130 compared to MPTP control group (without treatment). In addition, these beneficial effects were similar or improved when compared with animals that received commercial riboflavin. In conclusion, L. plantarum CRL2130 showed a neuroprotective effect in both PD models through anti-oxidant/anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Daiana Perez Visñuk
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, San Miguel de Tucumán, Tucumán, Argentina
| | - María Del Milagro Teran
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, San Miguel de Tucumán, Tucumán, Argentina
| | - Graciela Savoy de Giori
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, San Miguel de Tucumán, Tucumán, Argentina.,Cátedra de Microbiología Superior, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina
| | - Jean Guy LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, San Miguel de Tucumán, Tucumán, Argentina.
| | - Alejandra de Moreno de LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, San Miguel de Tucumán, Tucumán, Argentina.
| |
Collapse
|
19
|
Anis E, Xie A, Brundin L, Brundin P. Digesting recent findings: gut alpha-synuclein, microbiome changes in Parkinson's disease. Trends Endocrinol Metab 2022; 33:147-157. [PMID: 34949514 DOI: 10.1016/j.tem.2021.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/24/2021] [Indexed: 01/22/2023]
Abstract
Two hallmarks of Parkinson's disease (PD) are the widespread deposition of misfolded alpha-synuclein (αSyn) protein in the nervous system and loss of substantia nigra dopamine neurons. Recent research has suggested that αSyn aggregates in the enteric nervous system (ENS) lead to prodromal gastrointestinal (GI) symptoms such as constipation in PD, then propagating to the brain stem and eventually triggering neurodegeneration and motor symptoms. Additionally, whether the microbiome changes in PD contribute to the primary pathogenesis or, alternatively, are consequential to either the disease process or medication is still unclear. In this review, we discuss the possible roles of αSyn and microbiome changes in the GI system in PD and consider if and how the changes interact and contribute to the disease process and symptoms.
Collapse
Affiliation(s)
- Ehraz Anis
- Parkinson's Disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Aoji Xie
- Parkinson's Disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Lena Brundin
- Parkinson's Disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Patrik Brundin
- Parkinson's Disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
20
|
Li XX, Zhang F. Targeting TREM2 for Parkinson's Disease: Where to Go? Front Immunol 2022; 12:795036. [PMID: 35003116 PMCID: PMC8740229 DOI: 10.3389/fimmu.2021.795036] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/13/2021] [Indexed: 12/16/2022] Open
Abstract
Parkinson’s disease (PD) is one of most common neurodegenerative disorders caused by a combination of environmental and genetic risk factors. Currently, numerous population genetic studies have shown that polymorphisms in myeloid cell-triggered receptor II (TREM2) are associated with a variety of neurodegenerative disorders. Recently, TREM2 has been verified to represent a promising candidate gene for PD susceptibility and progression. For example, the expression of TREM2 was apparently increased in the prefrontal cortex of PD patients. Moreover, the rare missense mutations in TREM2 (rs75932628, p.R47H) was confirmed to be a risk factor of PD. In addition, overexpression of TREM2 reduced dopaminergic neurodegeneration in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine mouse model of PD. Due to the complex pathogenesis of PD, there is still no effective drug treatment. Thus, TREM2 has received increasing widespread attention as a potential therapeutic target. This review focused on the variation of TREM2 in PD and roles of TREM2 in PD pathogenesis, such as excessive-immune inflammatory response, α-Synuclein aggregation and oxidative stress, to further provide evidence for new immune-related biomarkers and therapies for PD.
Collapse
Affiliation(s)
- Xiao-Xian Li
- Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Feng Zhang
- Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China.,Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| |
Collapse
|
21
|
Klann EM, Dissanayake U, Gurrala A, Farrer M, Shukla AW, Ramirez-Zamora A, Mai V, Vedam-Mai V. The Gut-Brain Axis and Its Relation to Parkinson's Disease: A Review. Front Aging Neurosci 2022; 13:782082. [PMID: 35069178 PMCID: PMC8776990 DOI: 10.3389/fnagi.2021.782082] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/18/2021] [Indexed: 02/02/2023] Open
Abstract
Parkinson's disease is a chronic neurodegenerative disease characterized by the accumulation of misfolded alpha-synuclein protein (Lewy bodies) in dopaminergic neurons of the substantia nigra and other related circuitry, which contribute to the development of both motor (bradykinesia, tremors, stiffness, abnormal gait) and non-motor symptoms (gastrointestinal issues, urinogenital complications, olfaction dysfunction, cognitive impairment). Despite tremendous progress in the field, the exact pathways and mechanisms responsible for the initiation and progression of this disease remain unclear. However, recent research suggests a potential relationship between the commensal gut bacteria and the brain capable of influencing neurodevelopment, brain function and health. This bidirectional communication is often referred to as the microbiome-gut-brain axis. Accumulating evidence suggests that the onset of non-motor symptoms, such as gastrointestinal manifestations, often precede the onset of motor symptoms and disease diagnosis, lending support to the potential role that the microbiome-gut-brain axis might play in the underlying pathological mechanisms of Parkinson's disease. This review will provide an overview of and critically discuss the current knowledge of the relationship between the gut microbiota and Parkinson's disease. We will discuss the role of α-synuclein in non-motor disease pathology, proposed pathways constituting the connection between the gut microbiome and the brain, existing evidence related to pre- and probiotic interventions. Finally, we will highlight the potential opportunity for the development of novel preventative measures and therapeutic options that could target the microbiome-gut-brain axis in the context of Parkinson's disease.
Collapse
Affiliation(s)
- Emily M. Klann
- Department of Epidemiology, College of Public Health and Health Professions & College of Medicine, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Upuli Dissanayake
- Department of Epidemiology, College of Public Health and Health Professions & College of Medicine, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Anjela Gurrala
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Matthew Farrer
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Aparna Wagle Shukla
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Adolfo Ramirez-Zamora
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Volker Mai
- Department of Epidemiology, College of Public Health and Health Professions & College of Medicine, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Vinata Vedam-Mai
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
22
|
Chen C, Zhang S, Wei Y, Sun X. LncRNA RMST Regulates Neuronal Apoptosis and Inflammatory Response via Sponging miR-150-5p in Parkinson's Disease. Neuroimmunomodulation 2022; 29:55-62. [PMID: 34515176 DOI: 10.1159/000518212] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/24/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION LncRNA rhabdomyosarcoma 2-associated transcript (RMST) serves as a key regulator in neural stem cell fate and is involved in the progression of different neurological diseases. In this research, the serum level and clinical value of RMST in Parkinson's disease (PD) patients were detected, and the underlying mechanism was explored. METHODS Ninety-nine PD patients and 93 healthy individuals were collected for clinical experiments. SH-SY5Y cells were treated with the dopaminergic neurotoxin 1-methyl-4-phenylpyridinium (MPP+) to establish PD cell models. qRT-PCR was used for the detection of mRNA levels. CCK-8 and flow cytometry were used to detect neuronal viability and apoptosis. The target relationship of RMST with miR-15a-5p was confirmed applying luciferase reporter assay. RESULTS RMST was present at high levels in both serum of PD patients and PD cell models. Serum RMST had a certain clinical value for the diagnosis of PD with the AUC of 0.892 at a cutoff value of 1.225. Serum RMST was positively associated with the levels of TNF-α (r = 0.421, p < 0.001) and IL-1β (r = 0.567, p < 0.001) in PD patients. Knockdown of RMST alleviated the apoptosis and inflammatory response of SH-SY5Y cells induced by MPP+. miR-150-5p was the target gene of RMST and less expressed in the clinical serum samples and PD cell models. CONCLUSION Serum RMST serves as a promising biomarker for the diagnosis of PD. RMST downregulation may regulate the occurrence and development of PD through inhibiting neuron cell apoptosis and the release of inflammatory cytokines via targeting miR-150-5p.
Collapse
Affiliation(s)
- Chuanlei Chen
- Department of Neurology First Ward, Yidu Central Hospital of Weifang, Weifang, China
| | - Shijuan Zhang
- Department of Critical Care Medicine, Yidu Central Hospital of Weifang, Weifang, China
| | - Yuhong Wei
- Department of Gastroenterology First Ward, Yidu Central Hospital of Weifang, Weifang, China
| | - Xibo Sun
- Department of Neurology First Ward, Yidu Central Hospital of Weifang, Weifang, China
| |
Collapse
|
23
|
The Emerging Scenario of the Gut-Brain Axis: The Therapeutic Actions of the New Actor Kefir against Neurodegenerative Diseases. Antioxidants (Basel) 2021; 10:antiox10111845. [PMID: 34829716 PMCID: PMC8614795 DOI: 10.3390/antiox10111845] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022] Open
Abstract
The fact that millions of people worldwide suffer from Alzheimer’s disease (AD) or Parkinson’s disease (PD), the two most prevalent neurodegenerative diseases (NDs), has been a permanent challenge to science. New tools were developed over the past two decades and were immediately incorporated into routines in many laboratories, but the most valuable scientific contribution was the “waking up” of the gut microbiota. Disturbances in the gut microbiota, such as an imbalance in the beneficial/pathogenic effects and a decrease in diversity, can result in the passage of undesired chemicals and cells to the systemic circulation. Recently, the potential effect of probiotics on restoring/preserving the microbiota was also evaluated regarding important metabolite and vitamin production, pathogen exclusion, immune system maturation, and intestinal mucosal barrier integrity. Therefore, the focus of the present review is to discuss the available data and conclude what has been accomplished over the past two decades. This perspective fosters program development of the next steps that are necessary to obtain confirmation through clinical trials on the magnitude of the effects of kefir in large samples.
Collapse
|
24
|
Zhou X, Guo Q, Guo M, Li B, Peng W, Wang D, Ming D, Zheng B. Nanoarmour-shielded single-cell factory for bacteriotherapy of Parkinson's disease. J Control Release 2021; 338:742-753. [PMID: 34517041 DOI: 10.1016/j.jconrel.2021.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 01/15/2023]
Abstract
Cell-based therapy for Parkinson's disease (PD) is a novel and promising approach in recent years. However, exogenous cells are easy to be captured and destroyed by the harsh environment in vivo, so their application prospects have been severely limited. Here, a facile yet versatile approach for decorating individual living cells with nano-armor coatings is reported. By simply self-assembly with liposome under a cyto-compatible condition, the lipid bimolecular coating on the surface of each cell acts as armor to effectively protect it from the attack and destruction of strong acids and digestive enzymes during the oral treatment of PD. Our results demonstrated that the liposome coated B. adolescentis (LCB) could significantly improve the colonization rate in the intestinal tract. LCB, as a living cell factory, can self-regulate to produce a constant concentration of γ-aminobutyric acid and maintain a longer half-life for the treatment of PD. Then, we also explored the specific mechanism of LCB to improve the behavior of murine models of PD, including abating inflammatory effects, reducing neuronal apoptosis, regulating the activity of dopaminergic neurons and microglia. The simple nano-armor shielded single-cell factory can produce neurotransmitters-like drugs on demand in vivo, introducing novel strategies of integration of producing and using to the research of drug delivery field.
Collapse
Affiliation(s)
- Xin Zhou
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin 300072, China; College of Medical Imaging, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Qinglu Guo
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin 300072, China
| | - Mingming Guo
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin 300072, China
| | - Bowen Li
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin 300072, China
| | - Wenchang Peng
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin 300072, China
| | - Deping Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin 300072, China; College of Medical Imaging, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin 300072, China
| | - Bin Zheng
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin 300072, China; Healthina Academy of Cellular Intelligence Manufacturing & Neurotrauma Repair, Beijing Tangyi Huikang Biomedical Technology Co., Ltd, Beijing 100010, China.
| |
Collapse
|
25
|
Jena R, Jain R, Muralidharan S, Yanamala VL, Zubair Z, Kantamaneni K, Jalla K, Renzu M, Alfonso M. Role of Gastrointestinal Dysbiosis and Fecal Transplantation in Parkinson's Disease. Cureus 2021; 13:e19035. [PMID: 34853754 PMCID: PMC8608042 DOI: 10.7759/cureus.19035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/25/2021] [Indexed: 12/02/2022] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases with a high rate of morbidity. It is associated with dopaminergic neuron loss and is fairly common in the elderly population. Recently, there has been a growing interest in the role of the gut microbiome in the pathogenesis of PD and thus studies addressing the methods to modulate the microbiota are becoming increasingly popular. Fecal microbiota transplant (FMT) is one of these methods and is effective in certain intestinal and extraintestinal conditions. This review aims to talk about gastrointestinal dysbiosis and how the reconstruction of this microbiome via FMT could potentially be used as a treatment modality in the future. We went through various studies and collected data relevant to our topic from the previous five years. The studies selected include reviews, observational studies, animal studies, case reports, and some grey literature. We concluded that although it has great potential as a therapeutic modality in the future, it is limited by several factors such as variability among the results of most clinical studies and the lack of large sample sizes. Therefore, there is a need for high-quality clinical trials with larger sample sizes to gather enough clinical evidence so that FMT can qualify as a widely recommended therapeutic measure.
Collapse
Affiliation(s)
- Rahul Jena
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ruchi Jain
- Diagnostic Radiology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Suchitra Muralidharan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | - Zainab Zubair
- General Surgery, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ketan Kantamaneni
- Surgery, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Surgery, Dr. Pinnamaneni Siddhartha Institute of Medical Sciences and Research Foundation, Gannavaram, IND
| | - Krishi Jalla
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mahvish Renzu
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Michael Alfonso
- School of Medicine, Universidad del Rosario, Bogota, COL
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
26
|
Yu X, Zhou G, Shao B, Zhou H, Xu C, Yan F, Wang L, Chen G, Li J, Fu X. Gut Microbiota Dysbiosis Induced by Intracerebral Hemorrhage Aggravates Neuroinflammation in Mice. Front Microbiol 2021; 12:647304. [PMID: 34025607 PMCID: PMC8137318 DOI: 10.3389/fmicb.2021.647304] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/25/2021] [Indexed: 01/20/2023] Open
Abstract
Intracerebral hemorrhage (ICH) induces a strong hematoma-related neuroinflammatory reaction and alters peripheral immune homeostasis. Recent research has found that gut microbiota plays a role in neurodegeneration and autoimmune diseases by regulating immune homeostasis and neuroinflammation. Therefore, we investigated the relationship between ICH, microbiota alteration, and immune responses after hematoma-induced acute brain injury. In our study, we used a mouse model of ICH, and 16S ribosomal RNA sequencing showed that ICH causes gut microbiota dysbiosis, which in turn affects ICH outcome through immune-mediated mechanisms. There was prominent reduced species diversity and microbiota overgrowth in the dysbiosis induced by ICH, which may reduce intestinal motility and increase gut permeability. In addition, recolonizing ICH mice with a normal health microbiota ameliorates functional deficits and neuroinflammation after ICH. Meanwhile, cell-tracking studies have demonstrated the migration of intestinal lymphocytes to the brain after ICH. In addition, therapeutic transplantation of fecal microbiota improves intestinal barrier damage. These results support the conclusion that the gut microbiome is a target of ICH-induced systemic alteration and is considered to have a substantial impact on ICH outcome.
Collapse
Affiliation(s)
- Xiaobo Yu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guoyang Zhou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bo Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurosurgery, The First People's Hospital of Wenling, Wenling, China
| | - Hang Zhou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chaoran Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lin Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianru Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiongjie Fu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Chen ZJ, Liang CY, Yang LQ, Ren SM, Xia YM, Cui L, Li XF, Gao BL. Association of Parkinson's Disease With Microbes and Microbiological Therapy. Front Cell Infect Microbiol 2021; 11:619354. [PMID: 33763383 PMCID: PMC7982661 DOI: 10.3389/fcimb.2021.619354] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is the most common movement disorder in the world, affecting 1-2 per 1,000 of the population. The main pathological changes of PD are damage of dopaminergic neurons in substantia nigra of the central nervous system and formation of Lewy bodies. These pathological changes also occur in the intestinal tract and are strongly associated with changes in intestinal flora. By reviewing the research progress in PD and its association with intestinal flora in recent years, this review expounded the mechanism of action between intestinal flora and PD as well as the transmission mode of α - synuclein in neurons. In clinical studies, β diversity of intestinal flora in PD patients was found to change significantly, with Lactobacillusaceae and Verrucomicrobiaceae being significantly increased and Lachnospiraceae and Prevotellaceae being significantly decreased. In addition, a longer PD course was associated with fewer bacteria and probiotics producing short chain fatty acids, but more pathogenic bacteria. Moreover, the motor symptoms of PD patients may be related to Enterobacteriaceae and bacteria. Most importantly, catechol-O-methyltransferase inhibitors and anticholinergic drugs could change the intestinal flora of PD patients and increase the harmful flora, whereas other anti-PD drugs such as levodopa, dopamine agonist, monoamine oxidase inhibitors, and amantadine did not have these effects. Probiotics, prebiotics, and synbiotics treatment had some potential values in improving the constipation of PD patients, promoting the growth of probiotics, and improving the level of intestinal inflammation. At present, there were only a few case studies and small sample studies which have found certain clinical efficacy of fecal microbiome transplants. Further studies are necessary to elaborate the relationship of PD with microbes.
Collapse
Affiliation(s)
- Zhao-Ji Chen
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Cheng-Yu Liang
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Li-Qing Yang
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Si-Min Ren
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Yan-Min Xia
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Lei Cui
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Xiao-Fang Li
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Bu-Lang Gao
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
28
|
Mansour SR, Moustafa MAA, Saad BM, Hamed R, Moustafa ARA. Impact of diet on human gut microbiome and disease risk. New Microbes New Infect 2021; 41:100845. [PMID: 34035924 PMCID: PMC8138677 DOI: 10.1016/j.nmni.2021.100845] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 12/19/2022] Open
Abstract
The gut microbiome of humans comprises a diverse group of trillions of microorganisms including symbiotic organisms, opportunistic pathogens and commensal organisms. This microbiota plays a major role in digesting food; it also helps with absorbing and synthesizing some nutrients and releases their metabolites, which may deliver a variety of growth-promoting and growth-inhibiting factors that influence human health either directly or indirectly. The balance between microbial species, especially those responsible for the fermentation of different substrates within the microbial community, which are in the majority, depends on daily diet. Therefore, an unbalanced diet may lead to the progression and development of human diseases. These include metabolic and inflammatory disorders, cancer and depression, as well as infant health and longevity. We provide an overview of the effect of diet on the human microbiome and assess the related risk of disease development.
Collapse
Affiliation(s)
- S R Mansour
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - M A A Moustafa
- Faculty of Medicine, 6 October University, 6 October, Egypt
| | - B M Saad
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - R Hamed
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - A-R A Moustafa
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|