1
|
Mbani Mpega Ntigui CN, Oyegue-Liabagui SL, Mouloungui-Mavoungou J, Ndjangangoye NK, Madoungou Idoumi DL, Kouna LC, Kassa Kassa RF, Moukodoum ND, Ontoua SS, Imboumy Limoukou RK, Biteghe Bi Essone JC, Okouga AP, Bagueboussa F, Lekana-Douki JB. Cytokine pattern during asymptomatic Anaplasma spp. infections and effect of co-infections by malaria and helminths in schoolchildren of Franceville, southeastern Gabon. Parasit Vectors 2025; 18:118. [PMID: 40148890 PMCID: PMC11948865 DOI: 10.1186/s13071-025-06714-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/04/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Asymptomatic infections by Anaplasma spp. and the basis of the immune response during these infections have not yet been established. This study investigated the inflammatory cytokine responses during Anaplasma spp. infection in school children and the effect of co-infection with Plasmodium spp. and helminths. METHODS Blood and stool samples were taken from children aged 5 to 17 years. Parasitological diagnosis was carried out by RDT and microscopy, while microscopy and PCR were used to diagnose infection by Anaplasma spp. Plasma was used for cytokine assays using the ELISA technique. RESULTS A total of 219 children were included in the present study, of whom 205 were infected with Anaplasma spp. and 14 were uninfected. Levels of IL-6, IL-22 and TGF-β were lower not only in children mono-infected with Anaplasma spp. but also in those co-infected with Anaplasma spp. and Plasmodium spp., Anaplasma spp. and helminths, and Anaplasma spp., Plasmodium spp. and helminths compared to controls. However, higher levels of IL-6 and IL-22 were observed in children mono-infected with Anaplasma spp. compared to those co-infected with Anaplasma spp. and helminths. The latter group also had lower levels of IL-6, IL-22, TGF-β and IL-10 than children co-infected with Anaplasma spp. and Plasmodium spp. In addition, children co-infected with Anaplasma spp. and helminths had also lower TGF-β and IL-10 levels than children co-infected with Anaplasma spp., Plasmodium spp. and helminths. An increase of IFN-γ and IL-10 were observed in children co-infected with Anaplasma spp. and Plasmodium spp. compared to those mono-infected with Anaplasma spp. Finally, the results showed that febrile children infected with Anaplasma spp. had higher levels of IFN-γ and lower levels of TGF-β than afebrile children. CONCLUSIONS These results suggest that infection with Anaplasma spp. downregulates cytokines including IL-6, IL-22 and TGF-β and that co-infection with Plasmodium spp. might have a protective effect on the host, while co-infection with helminths might have a negative effect.
Collapse
Affiliation(s)
- Chérone Nancy Mbani Mpega Ntigui
- Unité d'Evolution Epidémiologie et Résistances Parasitaires (UNEEREP), Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon.
- Ecole Doctorale Régionale d'Afrique Centrale en Infectiologie Tropicale (ECODRAC), Université des Sciences et Techniques de Masuku, BP 876, Franceville, Gabon.
| | - Sandrine Lydie Oyegue-Liabagui
- Unité d'Evolution Epidémiologie et Résistances Parasitaires (UNEEREP), Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon
- Ecole Doctorale Régionale d'Afrique Centrale en Infectiologie Tropicale (ECODRAC), Université des Sciences et Techniques de Masuku, BP 876, Franceville, Gabon
- Département de Biologie, Université des Sciences et Techniques de Masuku (USTM), BP 914, Franceville, Gabon
| | - Jenny Mouloungui-Mavoungou
- Unité d'Evolution Epidémiologie et Résistances Parasitaires (UNEEREP), Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon
| | - Nal Kennedy Ndjangangoye
- Unité d'Evolution Epidémiologie et Résistances Parasitaires (UNEEREP), Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon
| | - Desly Luide Madoungou Idoumi
- Unité d'Evolution Epidémiologie et Résistances Parasitaires (UNEEREP), Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon
| | - Lady Charlene Kouna
- Unité d'Evolution Epidémiologie et Résistances Parasitaires (UNEEREP), Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon
| | - Roland Fabrice Kassa Kassa
- Unité de Recherches d'Analyses Médicales (URAM), Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon
| | - Nancy Diamella Moukodoum
- Unité d'Evolution Epidémiologie et Résistances Parasitaires (UNEEREP), Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon
| | - Steede Seinnat Ontoua
- Unité d'Evolution Epidémiologie et Résistances Parasitaires (UNEEREP), Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon
| | - Roméo Karl Imboumy Limoukou
- Unité d'Evolution Epidémiologie et Résistances Parasitaires (UNEEREP), Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon
| | - Jean-Claude Biteghe Bi Essone
- Unité d'Evolution Epidémiologie et Résistances Parasitaires (UNEEREP), Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon
| | - Alain Prince Okouga
- Unité d'Evolution Epidémiologie et Résistances Parasitaires (UNEEREP), Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon
| | - Félicien Bagueboussa
- Unité d'Evolution Epidémiologie et Résistances Parasitaires (UNEEREP), Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon
| | - Jean-Bernard Lekana-Douki
- Unité d'Evolution Epidémiologie et Résistances Parasitaires (UNEEREP), Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon
- Département de Parasitologie-Mycologie, Université des Sciences de la Santé (USS), BP 4009, Libreville, Gabon
| |
Collapse
|
2
|
Eskeland S, Bø-Granquist EG, Stuen S, Lybeck K, Wilhelmsson P, Lindgren PE, Makvandi-Nejad S. Temporal patterns of gene expression in response to inoculation with a virulent Anaplasma phagocytophilum strain in sheep. Sci Rep 2023; 13:20399. [PMID: 37989861 PMCID: PMC10663591 DOI: 10.1038/s41598-023-47801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/18/2023] [Indexed: 11/23/2023] Open
Abstract
The aim of this study was to characterize the gene expression of host immune- and cellular responses to a Norwegian virulent strain of Anaplasma phagocytophilum, the cause of tick-borne fever in sheep. Ten sheep were intravenously inoculated with a live virulent strain of A. phagocytophilum. Clinical-, observational-, hematological data as well as bacterial load, flow cytometric cell count data from peripheral blood mononuclear cells and host's gene expression post infection was analysed. The transcriptomic data were assessed for pre-set time points over the course of 22 days following the inoculation. Briefly, all inoculated sheep responded with clinical signs of infection 3 days post inoculation and onwards with maximum bacterial load observed on day 6, consistent with tick-borne fever. On days, 3-8, the innate immune responses and effector processes such as IFN1 signaling pathways and cytokine mediated signaling pathways were observed. Several pathways associated with the adaptive immune responses, namely T-cell activation, humoral immune responses, B-cell activation, and T- and B-cell differentiation dominated on the days of 8, 10 and 14. Flow-cytometric analysis of the PBMCs showed a reduction in CD4+CD25+ cells on day 10 and 14 post-inoculation and a skewed CD4:CD8 ratio indicating a reduced activation and proliferation of CD4-T-cells. The genes of important co-stimulatory molecules such as CD28 and CD40LG, important in T- and B-cell activation and proliferation, did not significantly change or experienced downregulation throughout the study. The absence of upregulation of several co-stimulatory molecules might be one possible explanation for the low activation and proliferation of CD4-T-cells during A. phagocytophilum infection, indicating a suboptimal CD4-T-cell response. The upregulation of T-BET, EOMES and IFN-γ on days 8-14 post inoculation, indicates a favoured CD4 Th1- and CD8-response. The dynamics and interaction between CD4+CD25+ and co-stimulatory molecules such as CD28, CD80, CD40 and CD40LG during infection with A. phagocytophilum in sheep needs further investigation in the future.
Collapse
Affiliation(s)
- Sveinung Eskeland
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Elizabeth Stephansens Vei 15, 1433, Ås, Norway.
| | - Erik G Bø-Granquist
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Elizabeth Stephansens Vei 15, 1433, Ås, Norway
| | - Snorre Stuen
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Kyrkjevegen 332/334, 4325, Sandnes, Norway
| | - Kari Lybeck
- Norwegian Veterinary Institute, Elizabeth Stephansens Vei 1, 1433, Ås, Norway
| | - Peter Wilhelmsson
- Division of Clinical Microbiology, Laboratory Medicine, National Reference Laboratory for Borrelia and Other Tick-Borne Bacteria, Region Jönköping County, 553 05, Jönköping, Sweden
| | - Per-Eric Lindgren
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | | |
Collapse
|
3
|
Yu H, Deng W, Chen S, Qin B, Yao Y, Zhou C, Guo M. Strongylocentrotus nudus egg polysaccharide (SEP) suppresses HBV replication via activation of TLR4-induced immune pathway. Int J Biol Macromol 2023:125539. [PMID: 37355064 DOI: 10.1016/j.ijbiomac.2023.125539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Chronic hepatitis B virus (HBV) infection is a worldwide public health problem that causes significant liver-related morbidity and mortality. In our previous study, Strongylocentrotus nudus eggs polysaccharide (SEP), extracted from sea urchins, had immunomodulatory and antitumor effects. Whether SEP has anti-HBV activity is still obscure. This study demonstrated that SEP decreased the secretion of hepatitis B surface antigen (HBsAg) and e antigen (HBeAg), as well as the replication and transcription of HBV both in vitro and in vivo. Immunofluorescence and immunohistochemistry results showed that the level of HBV core antigen (HBcAg) was clearly reduced by SEP treatment. Mechanistically, RT-qPCR, western blot, and confocal microscopy analysis showed that SEP significantly increased the expression of toll-like receptor 4 (TLR4) and co-localization with TLR4. The downstream molecules of TLR4, including NF-κb and IRF3, were activated and the expression of IFN-β, TNF-α, IL-6, OAS, and MxA were also increased, which could suppress HBV replication. Moreover, SEP inhibited other genotypes of HBV and hepatitis C virus (HCV) replication in vitro. In summary, SEP could be investigated as a potential anti-HBV drug capable of modulating the innate immune.
Collapse
Affiliation(s)
- Haifei Yu
- State Key Laboratory of Natural Medicines, School of Life Science & Technolgy, China Pharmaceutical University, Nanjing 211198, Jiangsu province, China
| | - Wanyu Deng
- College of life science, Shangrao Normal University, Shangrao 334001, Jiangxi province, China
| | - Shuo Chen
- State Key Laboratory of Natural Medicines, School of Life Science & Technolgy, China Pharmaceutical University, Nanjing 211198, Jiangsu province, China
| | - Bo Qin
- Shaoxing Women and Children's Hospital, Shaoxing 312000, Zhejiang, China
| | - Yongxuan Yao
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou 510623, China.
| | - Changlin Zhou
- State Key Laboratory of Natural Medicines, School of Life Science & Technolgy, China Pharmaceutical University, Nanjing 211198, Jiangsu province, China.
| | - Min Guo
- State Key Laboratory of Natural Medicines, School of Life Science & Technolgy, China Pharmaceutical University, Nanjing 211198, Jiangsu province, China.
| |
Collapse
|
4
|
Londoño AF, Scorpio DG, Dumler JS. Innate immunity in rickettsial infections. Front Cell Infect Microbiol 2023; 13:1187267. [PMID: 37228668 PMCID: PMC10203653 DOI: 10.3389/fcimb.2023.1187267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023] Open
Abstract
Rickettsial agents are a diverse group of alpha-proteobacteria within the order Rickettsiales, which possesses two families with human pathogens, Rickettsiaceae and Anaplasmataceae. These obligate intracellular bacteria are most frequently transmitted by arthropod vectors, a first step in the pathogens' avoidance of host cell defenses. Considerable study of the immune responses to infection and those that result in protective immunity have been conducted. Less study has focused on the initial events and mechanism by which these bacteria avoid the innate immune responses of the hosts to survive within and propagate from host cells. By evaluating the major mechanisms of evading innate immunity, a range of similarities among these bacteria become apparent, including mechanisms to escape initial destruction in phagolysosomes of professional phagocytes, those that dampen the responses of innate immune cells or subvert signaling and recognition pathways related to apoptosis, autophagy, proinflammatory responses, and mechanisms by which these microbes attach to and enter cells or those molecules that trigger the host responses. To illustrate these principles, this review will focus on two common rickettsial agents that occur globally, Rickettsia species and Anaplasma phagocytophilum.
Collapse
Affiliation(s)
- Andrés F. Londoño
- The Henry M. Jackson Foundation for Advancement in Military Medicine, Bethesda, MD, United States
- Department of Pathology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Diana G. Scorpio
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - J. Stephen Dumler
- Department of Pathology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
5
|
Fisher J, Gonzales C, Chroust Z, Liang Y, Soong L. Orientia tsutsugamushi Infection Stimulates Syk-Dependent Responses and Innate Cytosolic Defenses in Macrophages. Pathogens 2022; 12:pathogens12010053. [PMID: 36678402 PMCID: PMC9861896 DOI: 10.3390/pathogens12010053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/12/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Orientia tsutsugamushi is an obligately intracellular bacterium and an etiological agent of scrub typhus. Human studies and animal models of scrub typhus have shown robust type 1-skewed proinflammatory responses during severe infection. Macrophages (MΦ) play a critical role in initiating such responses, yet mechanisms of innate recognition for O. tsutsugamushi remain unclear. In this study, we investigated whether Syk-dependent C-type lectin receptors (CLRs) contribute to innate immune recognition and the generation of proinflammatory responses. To validate the role of CLRs in scrub typhus, we infected murine bone marrow-derived MΦ with O. tsutsugamushi in the presence of selective Syk inhibitors and analyzed a panel of CLRs and proinflammatory markers via qRT-PCR. We found that Mincle/Clec4a and Clec5a transcription was significantly abrogated upon Syk inhibition at 6 h of infection. The effect of Syk inhibition on Mincle protein expression was validated via Western blot. Syk-inhibited MΦ had diminished expression of type 1 cytokines/chemokines (Il12p40, Tnf, Il27p28, Cxcl1) during infection. Additionally, expression of innate immune cytosolic sensors (Mx1 and Oas1-3) was highly induced in the brain of lethally infected mice. We established that Mx1 and Oas1 expression was reduced in Syk-inhibited MΦ, while Oas2, Oas3, and MerTK were not sensitive to Syk inhibition. This study reveals that Syk-dependent CLRs contribute to inflammatory responses against O. tsutsugamushi. It also provides the first evidence for Syk-dependent activation of intracellular defenses during infection, suggesting a role of pattern recognition receptor crosstalk in orchestrating macrophage-mediated responses to this poorly studied bacterium.
Collapse
Affiliation(s)
- James Fisher
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
- School of Medicine, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Casey Gonzales
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Zachary Chroust
- School of Medicine, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
- Correspondence: (Y.L.); (L.S.)
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
- Correspondence: (Y.L.); (L.S.)
| |
Collapse
|
6
|
Fisher JR, Chroust ZD, Onyoni F, Soong L. Pattern Recognition Receptors in Innate Immunity to Obligate Intracellular Bacteria. ZOONOSES (BURLINGTON, MASS.) 2021; 1:10. [PMID: 35282331 PMCID: PMC8909792 DOI: 10.15212/zoonoses-2021-0011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Host pattern recognition receptors (PRRs) are crucial for sensing pathogenic microorganisms, launching innate responses, and shaping pathogen-specific adaptive immunity during infection. Rickettsia spp., Orientia tsutsugamushi, Anaplasma spp., Ehrlichia spp., and Coxiella burnetii are obligate intracellular bacteria, which can only replicate within host cells and must evade immune detection to successfully propagate. These five bacterial species are zoonotic pathogens of clinical or agricultural importance, yet, uncovering how immune recognition occurs has remained challenging. Recent evidence from in-vitro studies and animal models has offered new insights into the types and kinetics of PRR activation during infection with Rickettsia spp., A. phagocytophilum, E. chaffeensis, and C. burnetii, respectively. However, much less is known in these regards for O. tsutsugamushi infection, until the recent discovery for the role of the C-type lectin receptor Mincle during lethal infection in mice and in primary macrophage cultures. This review gives a brief summary for clinical and epidemiologic features of these five bacterial infections, focuses on fundamental biologic facets of infection, and recent advances in host recognition. In addition, we discuss knowledge gaps for innate recognition of these bacteria in the context of disease pathogenesis.
Collapse
Affiliation(s)
- James R. Fisher
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Zachary D. Chroust
- School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Florence Onyoni
- Graduate School of Biomedical Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
- Corresponding author: Lynn Soong, Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd. MRB 3.142, Galveston, Texas 77555-1070,
| |
Collapse
|