1
|
Li Y, Li C, Fang Y, Zhang L, Ying X, Ren R, Zang Y, Ying D, Zhu S, Liu J, Cao X. Comprehensive Analysis of Pathogen Diversity and Diagnostic Biomarkers in Patients with Suspected Pulmonary Tuberculosis Through Metagenomic Next-Generation Sequencing. Infect Drug Resist 2025; 18:2215-2227. [PMID: 40337776 PMCID: PMC12056525 DOI: 10.2147/idr.s504587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/27/2025] [Indexed: 05/09/2025] Open
Abstract
Background This study aimed to investigate the co-infecting pathogens and lung microbiomes in patients with clinically confirmed pulmonary tuberculosis (TB) and explore potential diagnostic biomarkers to differentiate between varied infection patterns. Methods We conducted a retrospective cohort study by analyzing 198 bronchoalveolar lavage fluid (BALF) samples collected from patients with suspected pulmonary TB. All BALF samples were sequenced using metagenomic next-generation sequencing (mNGS). Results A total of 63 pathogens were detected in all samples. The TB group exhibited a higher diversity of pathogens (n=51) than the Non-TB group (n=37). The analysis revealed that TB patients had significantly higher pathogen counts (P=0.014), and specific microorganisms, such as Mycobacterium tuberculosis complex (MTBC), MTB, Streptococcus infantis, and Campylobacter curvus, were significantly enriched. Furthermore, the abundance of MTBC was negatively correlated with hemoglobin levels (R=-0.17, P=0.015) and positive correlated with C-reactive protein (CRP) levels (R=0.16, P=0.029). The random forest model combined eight differential microbes and five clinical parameters, yielding an area under the curve (AUC) of 0.86 for differentiating TB from Non-TB cohorts, whereas subgroup differentiation yielded an AUC of 0.571, demonstrating the potential for targeted diagnostics in pulmonary infections. Conclusion Our findings highlight the complexity of co-infection patterns in pulmonary TB and emphasize the potential of integrating microbial and clinical markers to improve diagnostic accuracy. This study provides valuable insights into the role of the lung microbiome in TB and informs future research on targeted therapies for this disease.
Collapse
Affiliation(s)
- Yuecui Li
- Department of Infectious Disease, The First People’s Hospital of Yongkang, affiliated to Hangzhou Medical College, Jinhua, People’s Republic of China
| | - Chenghang Li
- Department of Infectious Disease, The First People’s Hospital of Yongkang, affiliated to Hangzhou Medical College, Jinhua, People’s Republic of China
| | - Yu Fang
- Zhejiang Key Laboratory of Digital Technology in Medical Diagnostics, Hangzhou, People’s Republic of China
| | - LiLi Zhang
- Department of Infectious Disease, The First People’s Hospital of Yongkang, affiliated to Hangzhou Medical College, Jinhua, People’s Republic of China
| | - Xiaoyan Ying
- Department of Infectious Disease, The First People’s Hospital of Yongkang, affiliated to Hangzhou Medical College, Jinhua, People’s Republic of China
| | - Ruotong Ren
- MatriDx Biotechnology Co., Ltd, Hangzhou, People’s Republic of China
| | - Yinghui Zang
- Department of Infectious Disease, The First People’s Hospital of Yongkang, affiliated to Hangzhou Medical College, Jinhua, People’s Republic of China
| | - Dandan Ying
- Department of Infectious Disease, The First People’s Hospital of Yongkang, affiliated to Hangzhou Medical College, Jinhua, People’s Republic of China
| | - Shengwei Zhu
- Department of Infectious Disease, The First People’s Hospital of Yongkang, affiliated to Hangzhou Medical College, Jinhua, People’s Republic of China
| | - Jiao Liu
- Department of Infectious Disease, The First People’s Hospital of Yongkang, affiliated to Hangzhou Medical College, Jinhua, People’s Republic of China
| | - Xuefang Cao
- MatriDx Biotechnology Co., Ltd, Hangzhou, People’s Republic of China
| |
Collapse
|
2
|
Han X, Ma P, Liu C, Yao C, Yi Y, Du Z, Liu P, Zhang M, Xu J, Meng X, Liu Z, Wang W, Ren R, Xie L, Han X, Xiao K. Pathogenic profiles and lower respiratory tract microbiota in severe pneumonia patients using metagenomic next-generation sequencing. ADVANCED BIOTECHNOLOGY 2025; 3:13. [PMID: 40279015 PMCID: PMC12031718 DOI: 10.1007/s44307-025-00064-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/15/2025] [Accepted: 03/29/2025] [Indexed: 04/26/2025]
Abstract
INTRODUCTION The homeostatic balance of the lung microbiota is important for the maintenance of normal physiological function of the lung, but its role in pathological processes such as severe pneumonia is poorly understood. METHODS We screened 34 patients with community-acquired pneumonia (CAP) and 12 patients with hospital-acquired pneumonia (HAP), all of whom were admitted to the respiratory intensive care unit. Clinical samples, including bronchoalveolar lavage fluid (BALF), sputum, peripheral blood, and tissue specimens, were collected along with traditional microbiological test results, routine clinical test data, and clinical treatment information. The pathogenic spectrum of lower respiratory tract pathogens in critically ill respiratory patients was characterized through metagenomic next-generation sequencing (mNGS). Additionally, we analyzed the composition of the commensal microbiota and its correlation with clinical characteristics. RESULTS The sensitivity of the mNGS test for pathogens was 92.2% and the specificity 71.4% compared with the clinical diagnosis of the patients. Using mNGS, we detected more fungi and viruses in the lower respiratory tract of CAP-onset severe pneumonia patients, whereas bacterial species were predominant in HAP-onset patients. On the other hand, using mNGS data, commensal microorganisms such as Fusobacterium yohimbe were observed in the lower respiratory tract of patients with HAP rather than those with CAP, and most of these commensal microorganisms were associated with hospitalization or the staying time in ICU, and were significantly and positively correlated with the total length of stay. CONCLUSION mNGS can be used to effectively identify pathogenic pathogens or lower respiratory microbiome associated with pulmonary infectious diseases, playing a crucial role in the early and accurate diagnosis of these conditions. Based on the findings of this study, it is possible that a novel set of biomarkers and predictive models could be developed in the future to efficiently identify the cause and prognosis of patients with severe pneumonia.
Collapse
Affiliation(s)
- Xinjie Han
- College of Pulmonary & Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, China
- Chinese PLA Medical School, Beijing, China
| | - Peng Ma
- MatriDx Biotechnology Co., Ltd, Hangzhou, China
| | - Chang Liu
- College of Pulmonary & Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Chen Yao
- College of Pulmonary & Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yaxing Yi
- MatriDx Biotechnology Co., Ltd, Hangzhou, China
| | - Zhenshan Du
- MatriDx Biotechnology Co., Ltd, Hangzhou, China
| | - Pengfei Liu
- College of Pulmonary & Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Minlong Zhang
- College of Pulmonary & Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jianqiao Xu
- College of Pulmonary & Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoyun Meng
- Department of Urology, 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zidan Liu
- MatriDx Biotechnology Co., Ltd, Hangzhou, China
| | - Weijia Wang
- MatriDx Biotechnology Co., Ltd, Hangzhou, China
| | - Ruotong Ren
- MatriDx Biotechnology Co., Ltd, Hangzhou, China
- Foshan Branch, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lixin Xie
- College of Pulmonary & Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Xu Han
- MatriDx Biotechnology Co., Ltd, Hangzhou, China.
| | - Kun Xiao
- College of Pulmonary & Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
3
|
Musyoki VM, Mureithi M, Heikinheimo A, Maleche-Obimbo E, Kithinji D, Musau S, Njaanake K, Anzala O. Effect of hyperglycemia on lung microbiota and treatment outcome in pulmonary tuberculosis: A scoping review. F1000Res 2024; 13:1543. [PMID: 39981106 PMCID: PMC11840297 DOI: 10.12688/f1000research.159555.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 02/22/2025] Open
Abstract
The comorbidity due to pulmonary tuberculosis (TB) and diabetes mellitus (DM) is a global health problem, but its mechanism remains unclear. It is suspected that hyperglycemic alteration of the immune response to TB and the composition of the lung microbiota play an important role. This scoping review aimed to contribute to the understanding of the mechanisms by mapping evidence on the effect of hyperglycemia on physical health indicators, immune cell counts, cytokine levels, and the composition of lung microbiota in patients with the DM-TB comorbidity. A systematic search for research articles about the relationship between hyperglycemia and physical health, immune cells, and cytokine levels in humans was conducted in MEDLINE, Scopus, and CINAHL Plus. Then, articles on the interactions between the immune cells, cytokines, and lung microbiota were identified through Google Scholar and Google search engines. Characteristics of the studies focusing on effects of hyperglycemia, the findings of the articles relevant to the research objectives, and strengths and weaknesses of the selected articles were charted in a data extraction tool. Twenty-one articles on the effects of hyperglycemia on immune mediators and health outcomes of patients with DM-TB were included. The evidence showed hyperglycemia to be associated with unfavorable treatment outcomes; altered counts and functioning of dendritic cells, monocytes, and CD4+ T cells; and changes in cytokine levels (mainly INF-γ, IL-17, IL-1β, IL-2, IL-6, IL-10, and TNF-α) in patients with DM-TB. The composition of the lung microbiota changed in correlation with changes in physical health outcomes, counts of immune cells, and cytokine levels. Thus, hyperglycemia, immune responses, and dysbiosis of the lung microbiota are integral in the pathogenesis of DM-TB and TB treatment outcomes. A prospective cohort study, especially in individuals with newly diagnosed DM versus known DM and concomitant latent TB versus active TB, is recommended to define causal relationships.
Collapse
Affiliation(s)
- Victor Moses Musyoki
- Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi, Nairobi County, 00202, Kenya
- KAVI-Institute of Clinical Research, University of Nairobi, Nairobi, Nairobi County, 00202, Kenya
- Tuberculosis and HIV co-infection Training Program in Kenya, Fogarty International Center, Bethesda, Maryland, 2220, USA
| | - Marianne Mureithi
- Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi, Nairobi County, 00202, Kenya
- KAVI-Institute of Clinical Research, University of Nairobi, Nairobi, Nairobi County, 00202, Kenya
| | - Annamari Heikinheimo
- Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi, Nairobi County, 00202, Kenya
- Department of Veterinary Medicine, University of Helsinki, Helsinki, Uusimaa, 00014, Finland
| | - Elizabeth Maleche-Obimbo
- Tuberculosis and HIV co-infection Training Program in Kenya, Fogarty International Center, Bethesda, Maryland, 2220, USA
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Nairobi County, 00202, Kenya
| | - Dennis Kithinji
- Department of Medical Laboratory Sciences, Meru University of Science and Technology, Meru, Meru County, 60200, Kenya
- Research Methodology, Medright Consulting LTD, Maua, Meru, 60600, Kenya
| | - Susan Musau
- Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi, Nairobi County, 00202, Kenya
- Tuberculosis and HIV co-infection Training Program in Kenya, Fogarty International Center, Bethesda, Maryland, 2220, USA
| | - Kariuki Njaanake
- Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi, Nairobi County, 00202, Kenya
- KAVI-Institute of Clinical Research, University of Nairobi, Nairobi, Nairobi County, 00202, Kenya
| | - Omu Anzala
- Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi, Nairobi County, 00202, Kenya
- KAVI-Institute of Clinical Research, University of Nairobi, Nairobi, Nairobi County, 00202, Kenya
| |
Collapse
|
4
|
Li Y, Pan G, Wang S, Li Z, Yang R, Jiang Y, Chen Y, Li SC, Shen B. Comprehensive human respiratory genome catalogue underlies the high resolution and precision of the respiratory microbiome. Brief Bioinform 2024; 26:bbae620. [PMID: 39581874 PMCID: PMC11586125 DOI: 10.1093/bib/bbae620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/04/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024] Open
Abstract
The human respiratory microbiome plays a crucial role in respiratory health, but there is no comprehensive respiratory genome catalogue (RGC) for studying the microbiome. In this study, we collected whole-metagenome shotgun sequencing data from 4067 samples and sequenced long reads of 124 samples, yielding 9.08 and 0.42 Tbp of short- and long-read data, respectively. By submitting these data with a novel assembly algorithm, we obtained a comprehensive human RGC. This high-quality RGC contains 190,443 contigs over 1 kbps and an N50 length exceeding 13 kbps; it comprises 159 high-quality and 393 medium-quality genomes, including 117 previously uncharacterized respiratory bacteria. Moreover, the RGC contains 209 respiratory-specific species not captured by the unified human gastrointestinal genome. Using the RGC, we revisited a study on a pediatric pneumonia dataset and identified 17 pneumonia-specific respiratory pathogens, reversing an inaccurate etiological conclusion due to the previous incomplete reference. Furthermore, we applied the RGC to the data of 62 participants with a clinical diagnosis of infection. Compared to the Nucleotide database, the RGC yielded greater specificity (0 versus 0.444, respectively) and sensitivity (0.852 versus 0.881, respectively), suggesting that the RGC provides superior sensitivity and specificity for the clinical diagnosis of respiratory diseases.
Collapse
Affiliation(s)
- Yinhu Li
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No. 2222 Xinchuan Road, Gaoxin District, Chengdu 610212, China
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science–Shenzhen Fundamental Research Institutions, No. 1068 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China
| | - Guangze Pan
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Shuai Wang
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Zhengtu Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, No. 1 Kangda Road, Haizhu District, Guangzhou 510120, China
| | - Ru Yang
- Department of Neonatology Nursing, West China Second University Hospital, West China School of Nursing, Sichuan University, No. 1416 Chenglong Avenue, Jinjiang District, Chengdu 610041, China
| | - Yiqi Jiang
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Yu Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science–Shenzhen Fundamental Research Institutions, No. 1068 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No. 2222 Xinchuan Road, Gaoxin District, Chengdu 610212, China
| |
Collapse
|
5
|
Hong R, Lin S, Zhang S, Yi Y, Li L, Yang H, Du Z, Cao X, Wu W, Ren R, Yao X, Xie B. Pathogen spectrum and microbiome in lower respiratory tract of patients with different pulmonary diseases based on metagenomic next-generation sequencing. Front Cell Infect Microbiol 2024; 14:1320831. [PMID: 39544279 PMCID: PMC11560916 DOI: 10.3389/fcimb.2024.1320831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 10/08/2024] [Indexed: 11/17/2024] Open
Abstract
Introduction The homeostasis of the microbiome in lower respiratory tract is crucial in sustaining normal physiological functions of the lung. Different pulmonary diseases display varying degrees of microbiome imbalance; however, the specific variability and clinical significance of their microbiomes remain largely unexplored. Methods In this study, we delineated the pathogen spectrum and commensal microorganisms in the lower respiratory tract of various pulmonary diseases using metagenomic sequencing. We analyzed the disparities and commonalities of the microbial features and examined their correlation with disease characteristics. Results We observed distinct pathogen profiles and a diversity in lower airway microbiome in patients diagnosed with cancer, interstitial lung disease, bronchiectasis, common pneumonia, Nontuberculous mycobacteria (NTM) pneumonia, and severe pneumonia. Discussion This study illustrates the utility of Metagenomic Next-generation Sequencing (mNGS) in identifying pathogens and analyzing the lower respiratory microbiome, which is important for understanding the microbiological aspect of pulmonary diseases and essential for their early and precise diagnosis.
Collapse
Affiliation(s)
- Rujun Hong
- Department of Pulmonary and Critical Care Medicine, Fujian Provincial Hospital, Fujian Provincial Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Sheng Lin
- Department of Pulmonary and Critical Care Medicine, Fujian Provincial Hospital, Fujian Provincial Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Siting Zhang
- Department of Pulmonary and Critical Care Medicine, Fujian Provincial Hospital, Fujian Provincial Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Yaxing Yi
- Medical Department, Matridx Biotechnology Co., Ltd, Hangzhou, China
| | - Lanfeng Li
- Department of Pulmonary and Critical Care Medicine, Fujian Provincial Hospital, Fujian Provincial Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Haitao Yang
- Department of Pulmonary and Critical Care Medicine, Fujian Provincial Hospital, Fujian Provincial Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Zhenshan Du
- Medical Department, Matridx Biotechnology Co., Ltd, Hangzhou, China
| | - Xuefang Cao
- Medical Department, Matridx Biotechnology Co., Ltd, Hangzhou, China
| | - Wenjie Wu
- Medical Department, Matridx Biotechnology Co., Ltd, Hangzhou, China
| | - Ruotong Ren
- Medical Department, Matridx Biotechnology Co., Ltd, Hangzhou, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiujuan Yao
- Department of Pulmonary and Critical Care Medicine, Fujian Provincial Hospital, Fujian Provincial Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Baosong Xie
- Department of Pulmonary and Critical Care Medicine, Fujian Provincial Hospital, Fujian Provincial Clinical Medical College, Fujian Medical University, Fuzhou, China
| |
Collapse
|
6
|
Song MJ, Kim DH, Kim SY, Kang N, Jhun BW. Comparison of the sputum microbiome between patients with stable nontuberculous mycobacterial pulmonary disease and patients requiring treatment. BMC Microbiol 2024; 24:172. [PMID: 38760693 PMCID: PMC11102115 DOI: 10.1186/s12866-024-03308-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/16/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND We evaluated whether the sputum bacterial microbiome differs between nontuberculous mycobacteria pulmonary disease (NTM-PD) patients with stable disease not requiring antibiotic treatment and those requiring antibiotics. METHODS We collected sputum samples from 21 clinically stable NTM-PD patients (stable group) and 14 NTM-PD patients needing antibiotic treatment (treatment group). We also obtained 13 follow-up samples from the stable group. We analyzed the 48 samples using 16S rRNA gene sequencing (V3-V4 region) and compared the groups. RESULTS In the linear discriminant analysis effect size (LEfSe) analysis, the species Porphyromonas pasteri, Haemophilus parahaemolyticus, Prevotella nanceiensis, and Gemella haemolysans were significantly more prevalent in the sputum of the stable group compared to the treatment group. No taxa showed significant differences in alpha-/beta-diversity or LEfSe between the 21 baseline and 13 follow-up sputum samples in the stable group. In the stable group, the genus Bergeyella and species Prevotella oris were less common in patients who achieved spontaneous culture conversion (n = 9) compared to those with persistent NTM positivity (n = 12) (effect size 3.04, p = 0.039 for Bergeyella; effect size 3.64, p = 0.033 for P. oris). In the treatment group, H. parainfluenzae was more common in patients with treatment success (n = 7) than in treatment-refractory patients (n = 7) (effect size 4.74, p = 0.013). CONCLUSIONS Our study identified distinct bacterial taxa in the sputum of NTM-PD patients based on disease status. These results suggest the presence of a microbial environment that helps maintain disease stability.
Collapse
Affiliation(s)
- Min Jong Song
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Dae Hun Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Su-Young Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Noeul Kang
- Division of Allergy, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Byung Woo Jhun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea.
| |
Collapse
|
7
|
Marrella V, Nicchiotti F, Cassani B. Microbiota and Immunity during Respiratory Infections: Lung and Gut Affair. Int J Mol Sci 2024; 25:4051. [PMID: 38612860 PMCID: PMC11012346 DOI: 10.3390/ijms25074051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Bacterial and viral respiratory tract infections are the most common infectious diseases, leading to worldwide morbidity and mortality. In the past 10 years, the importance of lung microbiota emerged in the context of pulmonary diseases, although the mechanisms by which it impacts the intestinal environment have not yet been fully identified. On the contrary, gut microbial dysbiosis is associated with disease etiology or/and development in the lung. In this review, we present an overview of the lung microbiome modifications occurring during respiratory infections, namely, reduced community diversity and increased microbial burden, and of the downstream consequences on host-pathogen interaction, inflammatory signals, and cytokines production, in turn affecting the disease progression and outcome. Particularly, we focus on the role of the gut-lung bidirectional communication in shaping inflammation and immunity in this context, resuming both animal and human studies. Moreover, we discuss the challenges and possibilities related to novel microbial-based (probiotics and dietary supplementation) and microbial-targeted therapies (antibacterial monoclonal antibodies and bacteriophages), aimed to remodel the composition of resident microbial communities and restore health. Finally, we propose an outlook of some relevant questions in the field to be answered with future research, which may have translational relevance for the prevention and control of respiratory infections.
Collapse
Affiliation(s)
- Veronica Marrella
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, 20138 Milan, Italy;
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Federico Nicchiotti
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, 20089 Milan, Italy;
| | - Barbara Cassani
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, 20089 Milan, Italy;
| |
Collapse
|
8
|
Lian Q, Song X, Yang J, Wang L, Xu P, Wang X, Xu X, Yang B, He J, Ju C. Alterations of lung microbiota in lung transplant recipients with pneumocystis jirovecii pneumonia. Respir Res 2024; 25:125. [PMID: 38486264 PMCID: PMC10941442 DOI: 10.1186/s12931-024-02755-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Increasing evidence revealed that lung microbiota dysbiosis was associated with pulmonary infection in lung transplant recipients (LTRs). Pneumocystis jirovecii (P. jirovecii) is an opportunistic fungal pathogen that frequently causes lethal pneumonia in LTRs. However, the lung microbiota in LTRs with P. jirovecii pneumonia (PJP) remains unknow. METHODS In this prospective observational study, we performed metagenomic next-generation sequencing (mNGS) on 72 bronchoalveolar lavage fluid (BALF) samples from 61 LTRs (20 with PJP, 22 with PJC, 19 time-matched stable LTRs, and 11 from LTRs after PJP recovery). We compared the lung microbiota composition of LTRs with and without P. jirovecii, and analyzed the related clinical variables. RESULTS BALFs collected at the episode of PJP showed a more discrete distribution with a lower species diversity, and microbiota composition differed significantly compared to P. jirovecii colonization (PJC) and control group. Human gammaherpesvirus 4, Phreatobacter oligotrophus, and Pseudomonas balearica were the differential microbiota species between the PJP and the other two groups. The network analysis revealed that most species had a positive correlation, while P. jirovecii was correlated negatively with 10 species including Acinetobacter venetianus, Pseudomonas guariconensis, Paracandidimonas soli, Acinetobacter colistiniresistens, and Castellaniella defragrans, which were enriched in the control group. The microbiota composition and diversity of BALF after PJP recovery were also different from the PJP and control groups, while the main components of the PJP recovery similar to control group. Clinical variables including age, creatinine, total protein, albumin, IgG, neutrophil, lymphocyte, CD3+CD45+, CD3+CD4+ and CD3+CD8+ T cells were deeply implicated in the alterations of lung microbiota in LTRs. CONCLUSIONS This study suggests that LTRs with PJP had altered lung microbiota compared to PJC, control, and after recovery groups. Furthermore, lung microbiota is related to age, renal function, nutritional and immune status in LTRs.
Collapse
Affiliation(s)
- Qiaoyan Lian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Organ transplantation, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, Guangdong, P.R. China
| | - Xiuling Song
- Vision Medicals Co., Ltd, 510700, Guangzhou, Guangdong, P.R. China
| | - Juhua Yang
- Vision Medicals Co., Ltd, 510700, Guangzhou, Guangdong, P.R. China
| | - Lulin Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Organ transplantation, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, Guangdong, P.R. China
| | - Peihang Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Organ transplantation, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, Guangdong, P.R. China
| | - Xiaohua Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Organ transplantation, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, Guangdong, P.R. China
| | - Xin Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Organ transplantation, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, Guangdong, P.R. China
- Department of Thoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, Guangdong, P.R. China
| | - Bin Yang
- Vision Medicals Co., Ltd, 510700, Guangzhou, Guangdong, P.R. China
| | - Jianxing He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Organ transplantation, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, Guangdong, P.R. China.
- Department of Thoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, Guangdong, P.R. China.
| | - Chunrong Ju
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Organ transplantation, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, Guangdong, P.R. China.
| |
Collapse
|
9
|
Nguyen M, Ahn P, Dawi J, Gargaloyan A, Kiriaki A, Shou T, Wu K, Yazdan K, Venketaraman V. The Interplay between Mycobacterium tuberculosis and Human Microbiome. Clin Pract 2024; 14:198-213. [PMID: 38391403 PMCID: PMC10887847 DOI: 10.3390/clinpract14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Tuberculosis (TB), a respiratory disease caused by Mycobacterium tuberculosis (Mtb), is a significant cause of mortality worldwide. The lung, a breeding ground for Mtb, was once thought to be a sterile environment, but has now been found to host its own profile of microbes. These microbes are critical in the development of the host immune system and can produce metabolites that aid in host defense against various pathogens. Mtb infection as well as antibiotics can shift the microbial profile, causing dysbiosis and dampening the host immune response. Additionally, increasing cases of drug resistant TB have impacted the success rates of the traditional therapies of isoniazid, rifampin, pyrazinamide, and ethambutol. Recent years have produced tremendous research into the human microbiome and its role in contributing to or attenuating disease processes. Potential treatments aimed at altering the gut-lung bacterial axis may offer promising results against drug resistant TB and help mitigate the effects of TB.
Collapse
Affiliation(s)
- Michelle Nguyen
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Phillip Ahn
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - John Dawi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Areg Gargaloyan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Anthony Kiriaki
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Tiffany Shou
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Kevin Wu
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Kian Yazdan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
10
|
Liu J, Zhang Y, Cai J, Shao L, Jiang X, Yin X, Zhao X, Wang S. Clinical and Microbiological Characteristics of Klebsiella pneumoniae Co-Infections in Pulmonary Tuberculosis: A Retrospective Study. Infect Drug Resist 2023; 16:7175-7185. [PMID: 38023404 PMCID: PMC10640825 DOI: 10.2147/idr.s421587] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/21/2023] [Indexed: 12/01/2023] Open
Abstract
Background Klebsiella pneumoniae (K. pneumoniae) is one of the most common pathogens leading to pulmonary tuberculosis (PTB) co-infection, but the data of co-infections is scarce. This research aimed to study the clinical and microbiological characteristics of K. pneumoniae co-infections in pulmonary tuberculosis cases. Methods Clinical manifestations and examination results of PTB cases co-infected by K. pneumoniae were retrospectively collected from the medical record database of a tertiary teaching hospital in China between November 2019 and October 2021. The K. pneumoniae strains isolated from the patients were sent for whole-genome sequencing. Statistical analyses were conducted using Stata v.14.0. Results A total of 80 strains were collected from 76 PTB patients with K. pneumoniae co-infections (two strains were isolated from each of the four patients at different time points), including 37 primary and 39 retreated TB cases. Among these, 29 (36.3%) of the K. pneumoniae isolates were extended-spectrum β-lactamase (ESBL)-producing strains, and seven (8.8%) were determined as carbapenem-resistant Enterobacteriaceae (CRE) strains. We found that patients in the multidrug resistance (MDR)-group received more respiratory support than the non-MDR group (40.6% vs 18.2%, P= 0.031) and possessed higher elevated C-reactive protein (62.6% vs 41.8%, P=0.008) and lower haemoglobin (87.5% vs 47.7%, P=0.001). We found that 80.3% (61/76) patients had lung lesions and 57.8% (44/76) patients were immunocompromised within one month. The most common K. pneumoniae strain sequence type was ST23 (15%), followed by ST15 (12.5%) and ST273 (7.5%). Among the strains, 26.25% were classically hypervirulent K1/K2 K. pneumoniae, and all carried salmochelin and rmpA. Conclusion This study demonstrated the important clinical features, phenotypic and genomic characteristics of isolated strains of PTB patients with K. pneumoniae co-infection. These data suggested a special attention for multidrug resistant K. pneumoniae infections with more obvious inflammatory responses which calls for more respiratory support and timely clinical management.
Collapse
Affiliation(s)
- Jun Liu
- Department of Laboratory medicine, Wuxi Fifth People’s Hospital Affiliated to Nanjing Medical University, Wuxi, People’s Republic of China
| | - Yi Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Jianpeng Cai
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Lingyun Shao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Xiufeng Jiang
- Department of Respiratory and Critical Care Medicine, Wuxi Fifth People’s Hospital Affiliated to Nanjing Medical University, Wuxi, People’s Republic of China
| | - Xiaohong Yin
- Department of Tuberculosis, Wuxi Fifth People’s Hospital Affiliated to Nanjing Medical University, Wuxi, People’s Republic of China
| | - Xinguo Zhao
- Department of Tuberculosis, Wuxi Fifth People’s Hospital Affiliated to Nanjing Medical University, Wuxi, People’s Republic of China
| | - Sen Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
- Huashen Institute of Microbes and Infections, Shanghai, People’s Republic of China
| |
Collapse
|
11
|
Zhuo Q, Zhang X, Zhang K, Chen C, Huang Z, Xu Y. The gut and lung microbiota in pulmonary tuberculosis: susceptibility, function, and new insights into treatment. Expert Rev Anti Infect Ther 2023; 21:1355-1364. [PMID: 37970631 DOI: 10.1080/14787210.2023.2283036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
INTRODUCTION Tuberculosis (TB) is a chronic infectious disease caused by mycobacterium tuberculosis (Mtb) that poses a major threat to human health. AREAS COVERED Herein, we aim to review the alteration of the microbiota in gut and respiratory during TB development, the potential function and mechanisms of microbiota in the pathogenesis of Mtb infection, and the impact of antibiotic treatment on the microbiota. In addition, we discuss the potential new paradigm for the use of microbiota-based treatments such as probiotics and prebiotics in the treatment of TB. EXPERT OPINION Studies have shown that trillions of micro-organisms live in the human gut and respiratory tract, acting as gatekeepers in maintaining immune homeostasis and respiratory physiology and playing a beneficial or hostile role in the development of TB. Anti-TB antibiotics may cause microecological imbalances in the gut and respiratory tract, and microbiome-based therapeutics may be a promising strategy for TB treatment. Appropriate probiotics and prebiotics supplementation, along with antimycobacterial treatment, will improve the therapeutic effect of TB treatment and protect the gut and respiratory microbiota from dysbiosis.
Collapse
Affiliation(s)
- Qiqi Zhuo
- Department of Clinical Laboratory, The Baoan People's Hospital of Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xianyi Zhang
- Department of Clinical Laboratory, The Baoan People's Hospital of Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Kehong Zhang
- Department of Clinical Laboratory, The Baoan People's Hospital of Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Chan Chen
- Department of Clinical Laboratory, The Baoan People's Hospital of Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhen Huang
- Department of Clinical Laboratory, The Baoan People's Hospital of Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yuzhong Xu
- Department of Clinical Laboratory, The Baoan People's Hospital of Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
12
|
Xie G, Hu Q, Cao X, Wu W, Dai P, Guo W, Wang O, Wei L, Ren R, Li Y. Clinical identification and microbiota analysis of Chlamydia psittaci- and Chlamydia abortus- pneumonia by metagenomic next-generation sequencing. Front Cell Infect Microbiol 2023; 13:1157540. [PMID: 37434780 PMCID: PMC10331293 DOI: 10.3389/fcimb.2023.1157540] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/29/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction Recently, the incidence of chlamydial pneumonia caused by rare pathogens such as C. psittaci or C. abortus has shown a significant upward trend. The non-specific clinical manifestations and the limitations of traditional pathogen identification methods determine that chlamydial pneumonia is likely to be poorly diagnosed or even misdiagnosed, and may further result in delayed treatment or unnecessary antibiotic use. mNGS's non-preference and high sensitivity give us the opportunity to obtain more sensitive detection results than traditional methods for rare pathogens such as C. psittaci or C. abortus. Methods In the present study, we investigated both the pathogenic profile characteristics and the lower respiratory tract microbiota of pneumonia patients with different chlamydial infection patterns using mNGS. Results More co-infecting pathogens were found to be detectable in clinical samples from patients infected with C. psittaci compared to C. abortus, suggesting that patients infected with C. psittaci may have a higher risk of mixed infection, which in turn leads to more severe clinical symptoms and a longer disease course cycle. Further, we also used mNGS data to analyze for the first time the characteristic differences in the lower respiratory tract microbiota of patients with and without chlamydial pneumonia, the impact of the pattern of Chlamydia infection on the lower respiratory tract microbiota, and the clinical relevance of these characteristics. Significantly different profiles of lower respiratory tract microbiota and microecological diversity were found among different clinical subgroups, and in particular, mixed infections with C. psittaci and C. abortus resulted in lower lung microbiota diversity, suggesting that chlamydial infections shape the unique lung microbiota pathology, while mixed infections with different Chlamydia may have important effects on the composition and diversity of the lung microbiota. Discussion The present study provides possible evidences supporting the close correlation between chlamydial infection, altered microbial diversity in patients' lungs and clinical parameters associated with infection or inflammation in patients, which also provides a new research direction to better understand the pathogenic mechanisms of pulmonary infections caused by Chlamydia.
Collapse
Affiliation(s)
- Gongxun Xie
- Department of Pathology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Qing Hu
- Department of Pathology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Xuefang Cao
- Institute of Innovative Applications, MatriDx Biotechnology Co., Ltd, Hangzhou, Zhejiang, China
| | - Wenjie Wu
- Institute of Innovative Applications, MatriDx Biotechnology Co., Ltd, Hangzhou, Zhejiang, China
| | - Penghui Dai
- Department of Pathology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Wei Guo
- Department of Pathology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Ouxi Wang
- Institute of Innovative Applications, MatriDx Biotechnology Co., Ltd, Hangzhou, Zhejiang, China
| | - Liang Wei
- Institute of Innovative Applications, MatriDx Biotechnology Co., Ltd, Hangzhou, Zhejiang, China
| | - Ruotong Ren
- Institute of Innovative Applications, MatriDx Biotechnology Co., Ltd, Hangzhou, Zhejiang, China
- Foshan Branch, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yanchun Li
- Department of Pathology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
13
|
Nam NN, Do HDK, Loan Trinh KT, Lee NY. Metagenomics: An Effective Approach for Exploring Microbial Diversity and Functions. Foods 2023; 12:2140. [PMID: 37297385 PMCID: PMC10252221 DOI: 10.3390/foods12112140] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Various fields have been identified in the "omics" era, such as genomics, proteomics, transcriptomics, metabolomics, phenomics, and metagenomics. Among these, metagenomics has enabled a significant increase in discoveries related to the microbial world. Newly discovered microbiomes in different ecologies provide meaningful information on the diversity and functions of microorganisms on the Earth. Therefore, the results of metagenomic studies have enabled new microbe-based applications in human health, agriculture, and the food industry, among others. This review summarizes the fundamental procedures on recent advances in bioinformatic tools. It also explores up-to-date applications of metagenomics in human health, food study, plant research, environmental sciences, and other fields. Finally, metagenomics is a powerful tool for studying the microbial world, and it still has numerous applications that are currently hidden and awaiting discovery. Therefore, this review also discusses the future perspectives of metagenomics.
Collapse
Affiliation(s)
- Nguyen Nhat Nam
- Biotechnology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City 72820, Vietnam
| | - Kieu The Loan Trinh
- Department of BioNano Technology, Gachon University 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| |
Collapse
|
14
|
Ao Z, Xu H, Li M, Liu H, Deng M, Liu Y. Clinical characteristics, diagnosis, outcomes and lung microbiome analysis of invasive pulmonary aspergillosis in the community-acquired pneumonia patients. BMJ Open Respir Res 2023; 10:e001358. [PMID: 36828645 PMCID: PMC9972439 DOI: 10.1136/bmjresp-2022-001358] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 01/06/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Invasive pulmonary aspergillosis (IPA) remains underestimated in patients with community-acquired pneumonia (CAP). This study aims to describe clinical features and outcomes of IPA in CAP patients, assess diagnostic performance of metagenomic next-generation sequencing (mNGS) for IPA and analyse lung microbiome via mNGS data. METHODS This retrospective cohort study included CAP patients from 22 April 2019 to 30 September 2021. Clinical and microbiological data were analysed. Diagnostic performance of mNGS was compared with traditional detection methods. The lung microbiome detected by mNGS was characterised and its association with clinical features was evaluated. MAIN RESULTS IPA was diagnosed in 26 (23.4%) of 111 CAP patients. Patients with IPA displayed depressed immunity, higher hospital mortality (30.8% vs 11.8%) and intensive care unit mortality (42.1% vs 17.5%) compared with patients without IPA. The galactomannan (GM) antigen test had the highest sensitivity (57.7%) in detecting the Aspergillus spp, followed by mNGS (42.3%), culture (30.8%) and smear (7.7%). The mNGS, culture and smear had 100% specificity, while GM test had 92.9% specificity. The microbial structure of IPA significantly differed from non-IPA patients (p<0.001; Wilcoxon test). Nineteen different species were significantly correlated with clinical outcomes and laboratory biomarkers, particularly for Streptococcus salivarius, Prevotella timonensis and Human betaherpesvirus 5. CONCLUSIONS Our results reveal that patients with Aspergillus infection tend to have a higher early mortality rate. The mNGS may be suggested as a complement to routine microbiological test in diagnosis of patients at risk of Aspergillus infection. The lung microbiota is associated with inflammatory, immune and metabolic conditions of IPA, and thus influences clinical outcomes.
Collapse
Affiliation(s)
- Zhi Ao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huan Xu
- Department of Scientific Affairs, Vision Medicals for Infection Diseases, Guangzhou, China
| | - Mengqi Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huifang Liu
- Department of Scientific Affairs, Vision Medicals for Infection Diseases, Guangzhou, China
| | - Min Deng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuliang Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Chen S, Niu C, Lv W. Multi-omics insights reveal the remodeling of gut mycobiome with P. gingivalis. Front Cell Infect Microbiol 2022; 12:937725. [PMID: 36105149 PMCID: PMC9465408 DOI: 10.3389/fcimb.2022.937725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
As a keystone periodontal pathogen, Porphyromonas gingivalis (P. gingivalis) was suggested to be involved in the progression of systemic diseases by altering the intestinal microecology. However, studies concerning gut microbiome have focused entirely on the bacterial component, while the fungal community (gut mycobiome) has been overlooked. In this study, we aimed to characterize the alteration of gut mycobiome profile with P. gingivalis administration using mice fecal samples. Metagenomic analysis showed a distinct composition pattern of mycobiome and significant difference of beta diversity between control and the P. gingivalis group. Some fungal species were differentially characterized with P. gingivalis administration, among which Pyricularia pennisetigena and Alternaria alternata showed positive correlation with P. gingivalis. KEGG functional analyses revealed that three pathways, namely, “pentose and glucuronate interconversions”, “metabolic pathways”, and “two-component system”, were statistically enriched with P. gingivalis administration. Moreover, the alteration of gut mycobiome was also closely related with serum metabolites, especially lipid and tryptophan metabolic pathways. Taken together, this study demonstrated the alteration of fungal composition and function with P. gingivalis administration for the first time, and investigated the fungi–bacterial interaction and fungi–metabolite interaction preliminarily, providing a whole insight into gut mycobiome remodeling with oral pathobiont through multi-omics analyses.
Collapse
Affiliation(s)
- Si Chen
- Department of Oral Implantology, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - ChenGuang Niu
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - WanQi Lv
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
- *Correspondence: WanQi Lv,
| |
Collapse
|
16
|
Liu C, Wu K, Sun T, Chen B, Yi Y, Ren R, Xie L, Xiao K. Effect of invasive mechanical ventilation on the diversity of the pulmonary microbiota. Crit Care 2022; 26:252. [PMID: 35996150 PMCID: PMC9394019 DOI: 10.1186/s13054-022-04126-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/02/2022] [Indexed: 11/10/2022] Open
Abstract
Pulmonary microbial diversity may be influenced by biotic or abiotic conditions (e.g., disease, smoking, invasive mechanical ventilation (MV), etc.). Specially, invasive MV may trigger structural and physiological changes in both tissue and microbiota of lung, due to gastric and oral microaspiration, altered body posture, high O2 inhalation-induced O2 toxicity in hypoxemic patients, impaired airway clearance and ventilator-induced lung injury (VILI), which in turn reduce the diversity of the pulmonary microbiota and may ultimately lead to poor prognosis. Furthermore, changes in (local) O2 concentration can reduce the diversity of the pulmonary microbiota by affecting the local immune microenvironment of lung. In conclusion, systematic literature studies have found that invasive MV reduces pulmonary microbiota diversity, and future rational regulation of pulmonary microbiota diversity by existing or novel clinical tools (e.g., lung probiotics, drugs) may improve the prognosis of invasive MV treatment and lead to more effective treatment of lung diseases with precision.
Collapse
Affiliation(s)
- Chang Liu
- College of Pulmonary & Critical Care Medicine, 8th Medical Center, Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Kang Wu
- College of Pulmonary & Critical Care Medicine, 8th Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Tianyu Sun
- College of Pulmonary & Critical Care Medicine, 8th Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Bin Chen
- MatriDx Biotechnology Co., Ltd, Hangzhou, China
| | - Yaxing Yi
- MatriDx Biotechnology Co., Ltd, Hangzhou, China
| | - Ruotong Ren
- MatriDx Biotechnology Co., Ltd, Hangzhou, China.
- Foshan Branch, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Lixin Xie
- College of Pulmonary & Critical Care Medicine, 8th Medical Center, Chinese PLA General Hospital, Beijing, China.
- School of Medicine, Nankai University, Tianjin, China.
| | - Kun Xiao
- College of Pulmonary & Critical Care Medicine, 8th Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|