1
|
Abu-Gharbia MA, El-Sayed MF, Salem JM, Abd-Elsamei WM, Al-Arabi G. Antibacterial impact of biosynthesized zinc oxide nanoparticles on uropathogenic Escherichia coli and in vivo assessment of physiological and histological alterations. Sci Rep 2025; 15:15721. [PMID: 40325065 PMCID: PMC12053763 DOI: 10.1038/s41598-025-98060-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/09/2025] [Indexed: 05/07/2025] Open
Abstract
Zinc oxide nanoparticles (ZnO NPs) possess various medical potentials that qualify them to be promising antibacterial agents, particularly for uropathogens. The present study investigated in vitro and in vivo antibacterial impact of biosynthesized ZnO NPs against uropathogenic E. coli strain. Values of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of ZnO NPs were detected to be 3.2 mg/mL and 3.9 mg/mL, respectively. The in vivo study included twenty-four female albino rats that were divided into four equal groups: group 1 (control), group 2 (infected), group 3 (infected + ZnO NPs), and group 4 (ZnO NPs). The bactericidal efficacy of ZnO NPs (50 mg/Kg) was confirmed by a recovery percentage of 83.3% after the fourth dose and a survival rate of 100% after eight doses. Erythrocytosis and thrombocytopenia were observed in the infected group, while ZnO NPs-administrated groups exhibited normal red blood cells and platelets counts, and a significant increase in white blood cells count. A significant decrease in urea level and a slight increase in liver enzymes were observed in the infected group, unlike ZnO NPs-administrated groups. Moreover, ZnO NPs-administrated groups exhibited a significant decrease in uric acid and glucose levels. The histological sections of vital body organs showed the aggressive bacterial-induced inflammatory response in stomach, liver, spleen, kidney, and heart of the infected group, whereas ZnO NPs-treated group exhibited effective suppression of the bacterial infection.
Collapse
Affiliation(s)
- Magdy A Abu-Gharbia
- Botany and Microbiology Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | | | - Jehan M Salem
- Botany and Microbiology Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | | | - Gehad Al-Arabi
- Botany and Microbiology Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
| |
Collapse
|
2
|
Jin SS, Wang WQ, Jiang YH, Yu YT, Wang RL. A Comprehensive Overview of Klebsiella Pneumoniae: Resistance Dynamics, Clinical Manifestations, and Therapeutic Options. Infect Drug Resist 2025; 18:1611-1628. [PMID: 40162036 PMCID: PMC11954396 DOI: 10.2147/idr.s502175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/20/2025] [Indexed: 04/02/2025] Open
Abstract
Klebsiella pneumoniae (Kp) is a notable pathogen responsible for various infections. The emergence of hypervirulent and carbapenem-resistant strains has raised global concern. Many novel approaches were developed to combat the current severe situation of antibiotic resistance, and clinical guidelines have also provided corresponding recommendations. This review highlights the critical aspects of Kp, including classification, virulence factors, systemic dissemination, drug resistance progression and the new therapeutic strategies to combat this evolving threat.
Collapse
Affiliation(s)
- Shan-Shan Jin
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, People’s Republic of China
- Department of Critical Care Medicine, Shanghai General Hospital of Nanjing Medical University, Shanghai, People’s Republic of China
| | - Wei-Qin Wang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, People’s Republic of China
| | - Yi-Han Jiang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, People’s Republic of China
| | - Yue-Tian Yu
- Department of Critical Care Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Rui-Lan Wang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, People’s Republic of China
- Department of Critical Care Medicine, Shanghai General Hospital of Nanjing Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
3
|
Salih AM, Alattas NM, Alsubaie QD, Anifowose SO. Bidah Pomegranate Landrace: Chemical Composition, Antioxidant, Antibacterial, and Anticancer Activity. Life (Basel) 2025; 15:489. [PMID: 40141834 PMCID: PMC11943522 DOI: 10.3390/life15030489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/11/2025] [Accepted: 03/16/2025] [Indexed: 03/28/2025] Open
Abstract
Pomegranate (Punica granatum L.) belongs to the Punicaceae family and is native to Central Asia; yet, it has a wide geographical distribution globally, reflecting its adaptation to different climatic conditions. Pomegranate is among the oldest and most significant cultivated crops, thriving extensively in tropical and subtropical climates. Besides its nutritional uses, pomegranate has been employed in traditional medicine for treating various diseases, including cancer prevention, antimicrobial activity, male infertility, ulcers, and diarrhea. The Bidah pomegranate cultivar is known for its unique sweet taste and high productivity yield. However, there is limited knowledge about its nutritional composition and medicinal value. Therefore, this study aimed to evaluate the functional potential of Bidah pomegranate in terms of its phytochemicals, antioxidant capacity, antibacterial, and anticancer activity. Different analytical techniques were used to investigate the chemical composition and antioxidant properties of Bidah pomegranate. Moreover, the biological activity of shoot and callus of Bidah pomegranate cultivar was assessed against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and the colorectal cancer cell line (CaCo-2). Gas chromatography/mass spectrometry (GC/MS) analysis of the shoot and callus extracts revealed about 17 and 18 phytochemical compounds, respectively. Phenolic quantification showed that pomegranate materials contained high amounts of phenolic content. Additionally, Bidah pomegranate cultivar possesses high antioxidant activity with a low half-maximal inhibitory concentration (IC50) value. Furthermore, the pomegranate extract showed promising results with human pathogenic bacteria (E. coli and S. aureus), especially against S. aureus and the colorectal cancer cell line (CaCo-2). The findings of this study support the traditional use of pomegranate in folk medicine and highlight its potential for further exploration as a source of therapeutic agents.
Collapse
Affiliation(s)
- Abdalrhaman M. Salih
- National Research and Development Center for Sustainable Agriculture (Estidamah), Riyadh Techno Valley, Riyadh 12373, Saudi Arabia; (N.M.A.); (Q.D.A.)
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Nada M. Alattas
- National Research and Development Center for Sustainable Agriculture (Estidamah), Riyadh Techno Valley, Riyadh 12373, Saudi Arabia; (N.M.A.); (Q.D.A.)
| | - Qasi D. Alsubaie
- National Research and Development Center for Sustainable Agriculture (Estidamah), Riyadh Techno Valley, Riyadh 12373, Saudi Arabia; (N.M.A.); (Q.D.A.)
| | - Saheed O. Anifowose
- Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
4
|
Khosla A, Chaudhary V, Zhang H. A paradigm of microbe-mediated green nano-semiconductors and nano-metals. NANOTECHNOLOGY 2024; 36:082501. [PMID: 39637439 DOI: 10.1088/1361-6528/ad9aaf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/05/2024] [Indexed: 12/07/2024]
Abstract
Semiconducting and metallic nanomaterials are essential building blocks for developing modern-age technologies, and their demand is expanding exponentially with a growing population. However, their processing impacts the ecosystem and requires urgently sustainable solutions. This perspective underlines the emergence of microbe-mediated (bacteria, yeast, fungi, microalgae, viruses, cyanobacteria) green nanomaterials, including metal-based, carbon-based, organic and hybrid nanomaterials, with technical challenges of scalability, stability and cytotoxicity restricting their transition from lab-to-market. Besides, it discusses alternative solutions by integrating digital-age technologies like artificial intelligence to establish these green nano-semiconductors/metals for multidimensional applications and subsidizing the UN's sustainable development goals and one health management.
Collapse
Affiliation(s)
- Ajit Khosla
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, People's Republic of China
| | - Vishal Chaudhary
- Physics Department, Bhagini Nivedita College, University of Delhi, New Delhi 110043, India
- Centre for Research Impact & Outcome, Chitkara University, Punjab 140401, India
| | - Hui Zhang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, People's Republic of China
| |
Collapse
|
5
|
El-Saadony MT, Fang G, Yan S, Alkafaas SS, El Nasharty MA, Khedr SA, Hussien AM, Ghosh S, Dladla M, Elkafas SS, Ibrahim EH, Salem HM, Mosa WFA, Ahmed AE, Mohammed DM, Korma SA, El-Tarabily MK, Saad AM, El-Tarabily KA, AbuQamar SF. Green Synthesis of Zinc Oxide Nanoparticles: Preparation, Characterization, and Biomedical Applications - A Review. Int J Nanomedicine 2024; 19:12889-12937. [PMID: 39651353 PMCID: PMC11624689 DOI: 10.2147/ijn.s487188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/17/2024] [Indexed: 12/11/2024] Open
Abstract
Over the last decade, biomedical nanomaterials have garnered significant attention due to their remarkable biological properties and diverse applications in biomedicine. Metal oxide nanoparticles (NPs) are particularly notable for their wide range of medicinal uses, including antibacterial, anticancer, biosensing, cell imaging, and drug/gene delivery. Among these, zinc oxide (ZnO) NPs stand out for their versatility and effectiveness. Recently, ZnO NPs have become a primary material in various sectors, such as pharmaceutical, cosmetic, antimicrobials, construction, textile, and automotive industries. ZnO NPs can generate reactive oxygen species and induce cellular apoptosis, thus underpinning their potent anticancer and antibacterial properties. To meet the growing demand, numerous synthetic approaches have been developed to produce ZnO NPs. However, traditional manufacturing processes often involve significant economic and environmental costs, prompting a search for more sustainable alternatives. Intriguingly, biological synthesis methods utilizing plants, plant extracts, or microorganisms have emerged as ideal for producing ZnO NPs. These green production techniques offer numerous medicinal, economic, environmental, and health benefits. This review highlights the latest advancements in the green synthesis of ZnO NPs and their biomedical applications, showcasing their potential to revolutionize the field with eco-friendly and cost-effective solutions.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Guihong Fang
- School of Public Health, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, Hainan, 571199, People’s Republic of China
- Qionghai People’s Hospital, Qionghai, Hainan, 571400, People’s Republic of China
| | - Si Yan
- Qionghai People’s Hospital, Qionghai, Hainan, 571400, People’s Republic of China
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mahmoud A El Nasharty
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Sohila A Khedr
- Industrial Biotechnology Department, Faculty of Science, Tanta University, Tanta, 31733, Egypt
| | - Aya Misbah Hussien
- Biotechnology Department at Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21531, Egypt
| | - Soumya Ghosh
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Mthokozisi Dladla
- Human Molecular Biology Unit (School of Biomedical Sciences), Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Shebin El Kom, Menofia, 32511, Egypt
- Faculty of Control System and Robotics, ITMO University, Saint-Petersburg, 197101, Russia
| | - Essam H Ibrahim
- Biology Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
- Blood Products Quality Control and Research Department, National Organization for Research and Control of Biologicals, Cairo, 12611, Egypt
| | - Heba Mohammed Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Ahmed Ezzat Ahmed
- Biology Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | | | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| |
Collapse
|
6
|
Selim MI, El-Banna T, Sonbol F, Elekhnawy E. Arthrospira maxima and biosynthesized zinc oxide nanoparticles as antibacterials against carbapenem-resistant Klebsiella pneumoniae and Acinetobacter baumannii: a review article. Microb Cell Fact 2024; 23:311. [PMID: 39558333 PMCID: PMC11575411 DOI: 10.1186/s12934-024-02584-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024] Open
Abstract
Carbapenem resistance among bacteria, especially Klebsiella pneumoniae and Acinetobacter baumannii, constitutes a dreadful threat to public health all over the world that requires developing new medications urgently. Carbapenem resistance emerges as a serious problem as this class is used as a last-line option to clear the multidrug-resistant bacteria. Arthrospira maxima (Spirulina) is a well-known cyanobacterium used as a food supplement as it is rich in protein, essential minerals and vitamins and previous studies showed it may have some antimicrobial activity against different organisms. Biosynthesized (green) zinc oxide nanoparticles have been investigated by several researchers as antibacterials because of their safety in health. In this article, previous studies were analyzed to get to a conclusion about their activity as antibacterials.
Collapse
Affiliation(s)
- Mohamed I Selim
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Tarek El-Banna
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Fatma Sonbol
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
7
|
Almuhayawi MS, Alruhaili MH, Soliman MKY, Tarabulsi MK, Ashy RA, Saddiq AA, Selim S, Alruwaili Y, Salem SS. Investigating the in vitro antibacterial, antibiofilm, antioxidant, anticancer and antiviral activities of zinc oxide nanoparticles biofabricated from Cassia javanica. PLoS One 2024; 19:e0310927. [PMID: 39352889 PMCID: PMC11444386 DOI: 10.1371/journal.pone.0310927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
It is thought to be risk-free, environmentally benign, and safe for biological processes to produce zinc oxide nanoparticles from renewable resources. This study examined Cassia javanica's ability to create ZnONPs. The generated ZnONPs were analyzed using a variety of techniques, such as TEM, FTIR spectroscopy, UV-Vis spectroscopy, and XRD analysis. The antibacterial potential of ZnONPs has been investigated using both Agar well diffusion and microtitreplate (MTP) methods. One method used to evaluate ZnONPs' capacity to scavenge free radicals at different concentrations was the DPPH method. The permanent zinc oxide (ZnO) shape and the naturally occurring crystal structure of ZnONPs were validated by the XRD data. ZnONPs showed antibacterial activity with MICs of 31.7 μg/mL toward Bacillus subtilis, 62.5 μg/mL for Salmonella typhimurium, Escherichia coli while Clostridium sporogenes and Bacillus pumilus was 125μg/mL. Furthermore, ZnONPs demonstrated a range of antibiofilm activities toward Staphylococcus aureus (MRSA). ZnONPs showed an intriguing antioxidant capacity, achieving IC50 of 109.3 μg/ml μg/mL. Additionally, ZnONPs demonstrated low toxic effect on Vero cell with IC50 154.01 μg/mL as well as possible anticancer action when applied to the carcinoma cell lines HepG2 with IC50 of 47.48 μg/mL. Furthermore, ZnONPs at 62.5 μg/mL had a promising antiviral impact against HSV1 and COX B4, with antiviral activities of 75.4% and 65.8%, respectively.
Collapse
Affiliation(s)
- Mohammed S Almuhayawi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed H Alruhaili
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Mohamed K Y Soliman
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Muyassar K Tarabulsi
- Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Ruba A Ashy
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Amna A Saddiq
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Yasir Alruwaili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
- Sustainable Development Research and Innovation Center, Deanship of Graduate Studies and Scientific Research, Jouf University, Sakaka, Saudi Arabia
| | - Salem S Salem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
8
|
Sultana S, Ashwini BS, Ansari MA, Alomary MN, Jamous YF, Ravikiran T, Niranjana SR, Begum MY, Siddiqua A, Lakshmeesha TR. Catharanthus roseus-assisted bio-fabricated zinc oxide nanoparticles for promising antibacterial potential against Klebsiella pneumoniae. Bioprocess Biosyst Eng 2024; 47:1259-1269. [PMID: 38526617 DOI: 10.1007/s00449-024-03001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/13/2024] [Indexed: 03/27/2024]
Abstract
This study emphasized on the synthesis of zinc oxide nanoparticles (ZnO NPs) in an environmentally friendly manner from the extract of Catharanthus roseus leaves and its antibacterial assessment against the pneumonia-causing pathogen Klebsiella pneumoniae. This simple and convenient phytosynthesis approach is found to be beneficial over conventional methods, wherein plants serve as excellent reducing, capping, and stabilizing agents that enables the formation of ZnO NPs without the use of harmful chemicals. The formation of ZnO NPs was confirmed through several characterization techniques such as UV-visible spectroscopy, XRD, FT-IR, SEM, HR-TEM, and EDX. XRD analysis revealed high polycrystallinity with crystallite size of approximately 13 nm. SEM and HR-TEM revealed the hexagonal structure of ZnO NPs with the particle size range of 20-50 nm. The EDX shows the elemental purity without any impurity. Furthermore, the antibacterial efficacy by the technique of disc diffusion exhibited clear inhibition zones in ZnO NPs-treated discs. In addition, 125 µg/mL of ZnO NP concentration showed minimum inhibition by the microbroth dilution method. The potent inhibitory activity was further validated with trypan blue dye exclusion and fluorescence microscopy. Finally, SEM examination confirmed the efficient antibacterial potential of ZnO NPs through disruption of the intact morphology of Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Sumreen Sultana
- Department of Microbiology and Biotechnology, Bangalore University, Jnana Bharathi Campus, Bengaluru, 560056, India
| | - Bagepalli Shivaram Ashwini
- Department of Microbiology, Shri Atal Bihari Vajpayee Medical College & Research Institute, Bengaluru, 560001, India
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia.
| | - Mohammad N Alomary
- Advanced Diagnostic and Therapeutic Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Yahya F Jamous
- Vaccine and Bioprocessing Center, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Tekupalli Ravikiran
- Department of Microbiology and Biotechnology, Bangalore University, Jnana Bharathi Campus, Bengaluru, 560056, India
| | | | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ayesha Siddiqua
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | | |
Collapse
|
9
|
Abdallah OM, Shebl HR, Abdelsalam E, Mehrez SI. The impact and safety of encapsulated nanomaterials as a new alternative against carbapenem resistant bacteria. a systematic review. World J Microbiol Biotechnol 2024; 40:72. [PMID: 38233674 PMCID: PMC10794433 DOI: 10.1007/s11274-024-03894-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
The emergence of multi drug resistant bacterial infections has caused a critical problem with implication on hospitalization and mortality rates. This systematic review aims to review the combined antimicrobial effect of nanoparticles attached to the traditionally used antibiotics, to overcome the antibiotic resistance crisis. In this systematic search we focused on preclinical studies that have used animal models, to test and evaluate the effect of nanomaterials added to antibiotics against gram negative bacteria with carbapenem resistance. Where, this newly formed structure has led to significant decrease in bacterial load in animal model serum. Furthermore, by evaluating nanomaterial cytotoxicity and inflammatory markers, promising results were established, where low toxicity indices were presented, supporting the ability of this new pathway to be used as an alternative to abused antibiotics. Our research collected the various data and showed encouraging preclinical one for using nanomaterials with antibiotics. This undeniable route should be considered, due to its ability to contribute to the treatment of multi drug resistant bacterial infections. These findings provide base for future studies and reinforce the need for more evaluation and testing on the safety of nanomaterials against bacterial infections.
Collapse
Affiliation(s)
- Omnia M Abdallah
- Microbiology Department, Faculty of Dentistry, Misr International University, Cairo, Egypt.
| | - Heba R Shebl
- Microbiology Department, Faculty of Dentistry, Misr International University, Cairo, Egypt
| | - Eman Abdelsalam
- Pharmacology Department, faculty of Dentistry, Misr International University, Cairo, Egypt
| | - Shereen I Mehrez
- Pharmacology Department, faculty of Dentistry, Misr International University, Cairo, Egypt
| |
Collapse
|
10
|
Rana S, Kapoor S, Sharma S, Kalia A. Pleurotus florida mediated biosynthesis of nanoparticles and biofortification. Food Sci Biotechnol 2023; 32:2079-2092. [PMID: 37860734 PMCID: PMC10581977 DOI: 10.1007/s10068-023-01307-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/22/2023] [Accepted: 03/31/2023] [Indexed: 10/21/2023] Open
Abstract
The mycosynthesis of biogenic NPs using nanotechnology technique is an ecofriendly and economical approach. The extracellular mycelial extract of the Pleurotus florida fungi were used to biosynthesized Zn, Cu and Fe NPs using zinc sulphate, zinc chloride, copper sulphate, copper chloride ferrous sulphate and ferric chloride, precursor salts at 1.0 mM concentration. The color of reaction mixture was changed from (transparent to white, blue to green and yellow to brown) for Zn, Cu and Fe NPs during incubation period of 96 h at 25 ± 2 °C, indicating synthesis of NPs. Spectroscopy and microscopy techniques were used for the characterization of newly synthesized biogenic NPs. Whereas, the ICP-MS analysis revealed that copper chloride precursor salts produced high concentration of Cu biogenic NPs, followed by zinc chloride derived Zn NPs. The fortification with the biogenic NPs of Pleurotus florida mycelium exhibited high accumulation of the trace elements as compared to non-fortified mycelium. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01307-z.
Collapse
Affiliation(s)
- Shivnam Rana
- Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Shammi Kapoor
- Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Shivani Sharma
- Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Anu Kalia
- Electron Microscopy and Nanoscience Laboratory, Department of Soil Science, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| |
Collapse
|
11
|
Murali M, Gowtham HG, Shilpa N, Singh SB, Aiyaz M, Sayyed RZ, Shivamallu C, Achar RR, Silina E, Stupin V, Manturova N, Shati AA, Alfaifi MY, Elbehairi SEI, Kollur SP. Zinc oxide nanoparticles prepared through microbial mediated synthesis for therapeutic applications: a possible alternative for plants. Front Microbiol 2023; 14:1227951. [PMID: 37744917 PMCID: PMC10516225 DOI: 10.3389/fmicb.2023.1227951] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/16/2023] [Indexed: 09/26/2023] Open
Abstract
Zinc oxide nanoparticles (ZnO-NPs) synthesized through biogenic methods have gained significant attention due to their unique properties and potential applications in various biological fields. Unlike chemical and physical approaches that may lead to environmental pollution, biogenic synthesis offers a greener alternative, minimizing hazardous environmental impacts. During biogenic synthesis, metabolites present in the biotic sources (like plants and microbes) serve as bio-reductants and bio-stabilizers. Among the biotic sources, microbes have emerged as a promising option for ZnO-NPs synthesis due to their numerous advantages, such as being environmentally friendly, non-toxic, biodegradable, and biocompatible. Various microbes like bacteria, actinomycetes, fungi, and yeast can be employed to synthesize ZnO-NPs. The synthesis can occur either intracellularly, within the microbial cells, or extracellularly, using proteins, enzymes, and other biomolecules secreted by the microbes. The main key advantage of biogenic synthesis is manipulating the reaction conditions to optimize the preferred shape and size of the ZnO-NPs. This control over the synthesis process allows tailoring the NPs for specific applications in various fields, including medicine, agriculture, environmental remediation, and more. Some potential applications include drug delivery systems, antibacterial agents, bioimaging, biosensors, and nano-fertilizers for improved crop growth. While the green synthesis of ZnO-NPs through microbes offers numerous benefits, it is essential to assess their toxicological effects, a critical aspect that requires thorough investigation to ensure their safe use in various applications. Overall, the presented review highlights the mechanism of biogenic synthesis of ZnO-NPs using microbes and their exploration of potential applications while emphasizing the importance of studying their toxicological effects to ensure a viable and environmentally friendly green strategy.
Collapse
Affiliation(s)
| | - H. G. Gowtham
- Department of PG Studies in Biotechnology, Nrupathunga University, Bangalore, India
| | - N. Shilpa
- Department of Studies in Microbiology, University of Mysore, Mysuru, India
| | - S. Brijesh Singh
- Department of Studies in Botany, University of Mysore, Mysuru, India
| | - Mohammed Aiyaz
- Department of Studies in Biotechnology, University of Mysore, Mysuru, India
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s S I Patil Arts, G B Patel Science and STKV Sangh Commerce College, Shahada, India
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education & Research, Myuru, India
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Ekaterina Silina
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Surgery, Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Victor Stupin
- Department of Surgery, Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Natalia Manturova
- Department of Surgery, Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Ali A. Shati
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | | | | |
Collapse
|
12
|
Al-Askar AA, Hashem AH, Elhussieny NI, Saied E. Green Biosynthesis of Zinc Oxide Nanoparticles Using Pluchea indica Leaf Extract: Antimicrobial and Photocatalytic Activities. Molecules 2023; 28:4679. [PMID: 37375234 DOI: 10.3390/molecules28124679] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Nanotechnology is playing a critical role in several essential technologies with nanoscale structures (nanoparticles) in areas of the environment and biomedicine. In this work, the leaf extract of Pluchea indica was utilized to biosynthesize zinc oxide nanoparticles (ZnONPs) for the first time and evaluated for antimicrobial and photocatalytic activities. Different experimental methods were used to characterize the biosynthesized ZnONPs. The biosynthesized ZnONPs showed maximum Ultraviolet-visible spectroscopy (UV-vis) absorbance at a wavelength of 360 nm. The X-Ray diffraction (XRD) pattern of the ZnONPs exhibits seven strong reflection peaks, and the average particle size was 21.9 nm. Fourier-transform infrared spectroscopy (FT-IR) spectrum analysis reveals the presence of functional groups that help in biofabrication. The existence of Zn and O was confirmed by the Energy-dispersive X-ray (EDX) spectrum and the morphology by SEM images. Antimicrobial studies showed that the biosynthesized ZnONPs have antimicrobial efficacy against Escherichia coli, Pseudomonas aeruginosa, Enterococcus faecalis, Bacillus subtilis, Staphylococcus aureus, Candida albicans and Cryptococcus neoformans where inhibition zones at concentration 1000 µg/mL were 21.83 ± 0.76, 13.0 ± 1.1, 14.9 ± 0.85, 24.26 ± 1.1, 17.0 ± 1.0, 20.67 ± 0.57 and 19.0 ± 1.0 mm respectively. Under both dark and sunlight irradiation, the photocatalytic activity of ZnONPs was evaluated towards the degradation of the thiazine dye (methylene blue-MB). Approximately 95% of the MB dye was broken down at pH 8 after 150 min of sunlight exposure. The aforementioned results, therefore, suggest that ZnONPs synthesized by implementing environmentally friendly techniques can be employed for a variety of environmental and biomedical applications.
Collapse
Affiliation(s)
- Abdulaziz A Al-Askar
- Department of Botany and Microbiology, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Nadeem I Elhussieny
- Department of Life Science and Chemistry, Constructor University, 28759 Bremen, Germany
- Institute of Environmental Biology and Biotechnology, University of Applied Sciences Bremen, Am Neustadtwall 30, 28199 Bremen, Germany
| | - Ebrahim Saied
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| |
Collapse
|
13
|
Rana A, Pathak S, Lim DK, Kim SK, Srivastava R, Sharma SN, Verma R. Recent Advancements in Plant- and Microbe-Mediated Synthesis of Metal and Metal Oxide Nanomaterials and Their Emerging Antimicrobial Applications. ACS APPLIED NANO MATERIALS 2023; 6:8106-8134. [DOI: 10.1021/acsanm.3c01351] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Archana Rana
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan
Marg, New Delhi 110012, India
- AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Saurabh Pathak
- Nanospinics Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, South Korea
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701, South Korea
| | - Sang-Koog Kim
- Nanospinics Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, South Korea
| | - Ritu Srivastava
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan
Marg, New Delhi 110012, India
- AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Shailesh Narain Sharma
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan
Marg, New Delhi 110012, India
- AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Rajni Verma
- Nanospinics Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, South Korea
- School of Physics, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
14
|
Molecular Dynamic Analysis of Carbapenem-Resistant Klebsiella pneumonia’s Porin Proteins with Beta Lactam Antibiotics and Zinc Oxide Nanoparticles. Molecules 2023; 28:molecules28062510. [PMID: 36985482 PMCID: PMC10055515 DOI: 10.3390/molecules28062510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 03/12/2023] Open
Abstract
To prevent the rapidly increasing prevalence of bacterial resistance, it is crucial to discover new antibacterial agents. The emergence of Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae has been associated with a higher mortality rate in gulf union countries and worldwide. Compared to physical and chemical approaches, green zinc oxide nanoparticle (ZnO-NP) synthesis is thought to be significantly safer and more ecofriendly. The present study used molecular dynamics (MD) to examine how ZnO-NPs interact with porin protein (GLO21), a target of β-lactam antibiotics, and then tested this interaction in vitro by determining the zone of inhibition (IZ), minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC), as well as the alteration of KPC’s cell surface. The nanoparticles produced were characterized by UV-Vis spectroscopy, zetasizer, Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). In silico investigation was conducted using a variety of computational techniques, including Autodock Vina for protein and ligand docking and Desmond for MD simulation. The candidate ligands that interact with the GLO21 protein were biosynthesized ZnO-NPs, meropenem, imipenem, and cefepime. Analysis of MD revealed that the ZnO-NPs had the highest log P value (−9.1 kcal/mol), which indicates higher permeability through the bacterial surface, followed by cefepime (−7.9 kcal/mol), meropenem (−7.5 kcal/mol), and imipenem (−6.4 kcal/mol). All tested compounds and ZnO-NPs possess similar binding sites of porin proteins. An MD simulation study showed a stable system for ZnO-NPs and cefepime, as confirmed by RMSD and RMSF values during 100 ns trajectories. The test compounds were further inspected for their intersection with porin in terms of hydrophobic, hydrogen, and ionic levels. In addition, the stability of these bonds were measured by observing the protein–ligand contact within 100 ns trajectories. ZnO-NPs showed promising results for fighting KPC, represented in MIC (0.2 mg/mL), MBC (0.5 mg/mL), and ZI (24 mm diameter). To draw the conclusion that ZnO-NP is a potent antibacterial agent and in order to identify potent antibacterial drugs that do not harm human cells, further in vivo studies are required.
Collapse
|
15
|
Alotaibi B, Negm WA, Elekhnawy E, El-Masry TA, Elharty ME, Saleh A, Abdelkader DH, Mokhtar FA. Antibacterial activity of nano zinc oxide green-synthesised from Gardenia thailandica triveng. Leaves against Pseudomonas aeruginosa clinical isolates: in vitro and in vivo study. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2022; 50:96-106. [PMID: 35361019 DOI: 10.1080/21691401.2022.2056191] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The increasing emergence of bacterial resistance is a challenge for the research community, thus novel antibacterial agents should be developed. Metal nanoparticles are promising antibacterial agents and could solve the problem of antibiotic resistance. Herein, we used Gardenia thailandica methanol extract (GTME) to biogenically synthesise zinc oxide nanoparticles (ZnO-NPs). The characterisation of ZnO-NPs was performed by UV spectroscopy, FTIR, scanning and transmission electron microscopes, dynamic light scattering, and X-ray diffraction. The antibacterial activity of ZnO-NPs was studied both in vitro and in vivo against Pseudomonas aeruginosa clinical isolates. Its minimum inhibitory concentration values ranged from 2 to 64 µg/mL, and it significantly decreased the membrane integrity and resulted in a significant increase in the inner and outer membrane permeability. Also, the ZnO-NPs treated cells possessed a distorted and deformed shape when examined by scanning electron microscope. The in vivo study (biochemical parameters and histological investigation) was conducted and it revealed a protective effect of ZnO-NPs against the deleterious influences of P. aeruginosa bacteria on lung, liver, and kidney tissues. LC-ESI-MS/MS revealed a phytochemical tentative identification of 57 compounds for the first time. We propose that GTME is a useful source for ZnO-NPs which has a promising antibacterial activity.
Collapse
Affiliation(s)
- Badriyah Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Thanaa A El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Mohamed E Elharty
- Study Master in Pharmaceutical Science at the Institute of Research and Environmental Studies, Al Sadat, Egypt
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.,Department of Biochemistry, Faculty of Pharmacy, Al Azhar University, Cairo, Egypt
| | - Dalia H Abdelkader
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Fatma Alzahraa Mokhtar
- Department of Pharmacognosy, Faculty of Pharmacy, Al Salam University, Al Gharbia, Egypt
| |
Collapse
|
16
|
Doxorubicin-Conjugated Zinc Oxide Nanoparticles, Biogenically Synthesised Using a Fungus Aspergillus niger, Exhibit High Therapeutic Efficacy against Lung Cancer Cells. Molecules 2022; 27:molecules27082590. [PMID: 35458790 PMCID: PMC9030660 DOI: 10.3390/molecules27082590] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 01/27/2023] Open
Abstract
This study reports the therapeutic effectiveness of doxorubicin-conjugated zinc oxide nanoparticles against lung cancer cell line. The zinc oxide nanoparticles (ZnONPs) were first synthesised using a fungus, isolated from air with an extraordinary capability to survive in very high concentrations of zinc salt. Molecular analysis based on 18S rRNA gene sequencing led to its identification as Aspergillus niger with the NCBI accession no. OL636020. The fungus was found to produce ZnONPs via the reduction of zinc ions from zinc sulphate. The ZnONPs were characterised by various biophysical techniques. ZnONPs were further bioconjugated with the anti-cancer drug doxorubicin (DOX), which was further confirmed by different physical techniques. Furthermore, we examined the cytotoxic efficacy of Doxorubicin-bioconjugated-ZnONPs (DOX-ZnONPs) against lung cancer A549 cells in comparison to ZnONPs and DOX alone. The cytotoxicity caused due to ZnONPs, DOX and DOX-ZnONPs in lung cancer A549 cells was assessed by MTT assay. DOX-ZnONPs strongly inhibited the proliferation of A549 with IC50 value of 0.34 μg/mL, which is lower than IC50 of DOX alone (0.56 μg/mL). Moreover, DOX-ZnONPs treated cells also showed increased nuclear condensation, enhanced ROS generation in cytosol and reduced mitochondrial membrane potential. To investigate the induction of apoptosis, caspase-3 activity was measured in all the treated groups. Conclusively, results of our study have established that DOX-ZnONPs have strong therapeutic efficacy to inhibit the growth of lung cancer cells in comparison to DOX alone. Our study also offers substantial evidence for the biogenically synthesised zinc oxide nanoparticle as a promising candidate for a drug delivery system.
Collapse
|