1
|
Nunez H, Nieto PA, Mars RA, Ghavami M, Sew Hoy C, Sukhum K. Early life gut microbiome and its impact on childhood health and chronic conditions. Gut Microbes 2025; 17:2463567. [PMID: 39916516 PMCID: PMC11810090 DOI: 10.1080/19490976.2025.2463567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/20/2024] [Accepted: 02/02/2025] [Indexed: 02/12/2025] Open
Abstract
The development of the gut microbiome is crucial to human health, particularly during the first three years of life. Given its role in immune development, disturbances in the establishment process of the gut microbiome may have long term consequences. This review summarizes evidence for these claims, highlighting compositional changes of the gut microbiome during this critical period of life as well as factors that affect gut microbiome development. Based on human and animal data, we conclude that the early-life microbiome is a determinant of long-term health, impacting physiological, metabolic, and immune processes. The early-life gut microbiome field faces challenges. Some of these challenges are technical, such as lack of standardized stool collection protocols, inconsistent DNA extraction methods, and outdated sequencing technologies. Other challenges are methodological: small sample sizes, lack of longitudinal studies, and poor control of confounding variables. To address these limitations, we advocate for more robust research methodologies to better understand the microbiome's role in health and disease. Improved methods will lead to more reliable microbiome studies and a deeper understanding of its impact on health outcomes.
Collapse
Affiliation(s)
- Harold Nunez
- Seeding Inc, DBA Tiny Health, Austin, Texas, USA
| | | | - Ruben A. Mars
- Seeding Inc, DBA Tiny Health, Austin, Texas, USA
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | | | | |
Collapse
|
2
|
Nakajima A, Arzamasov AA, Sakanaka M, Murakami R, Kozakai T, Yoshida K, Katoh T, Ojima MN, Hirose J, Nagao S, Xiao JZ, Odamaki T, Rodionov DA, Katayama T. In vitro competition with Bifidobacterium strains impairs potentially pathogenic growth of Clostridium perfringens on 2'-fucosyllactose. Gut Microbes 2025; 17:2478306. [PMID: 40102238 PMCID: PMC11956901 DOI: 10.1080/19490976.2025.2478306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 02/23/2025] [Accepted: 03/04/2025] [Indexed: 03/20/2025] Open
Abstract
Fortifying infant formula with human milk oligosaccharides, such as 2'-fucosyllactose (2'-FL), is a global trend. Previous studies have shown the inability of pathogenic gut microbes to utilize 2'-FL. However, the present study demonstrates that the type strain (JCM 1290T) of Clostridium perfringens, a pathobiont species often more prevalent and abundant in the feces of C-section-delivered infants, exhibits potentially pathogenic growth on 2'-FL. The expression of genes for α-toxin, an activator of NLRP3 inflammasome, and ethanolamine ammonia-lyase, a factor responsible for the progression of gas gangrene, was significantly upregulated during 2'-FL assimilation compared to growth on lactose. However, colony-forming unit of C. perfringens JCM 1290T markedly decreased when co-cultivated with selected strains of Bifidobacterium, a taxon frequently detected in the breastfed infant gut. Moreover, during co-cultivation, the expression of virulence-related genes, including the gene for perfringolysin O - another activator of NLRP3 inflammasome - were significantly downregulated, while the lactate oxidation genes were upregulated. This can occur through two different mechanisms: direct competition for 2'-FL between the two organisms, or cross-feeding of lactose, released from 2'-FL by C. perfringens JCM 1290T, to Bifidobacterium. Attenuation of α-toxin production by the selected Bifidobacterium strains was observed to varying extents in 2'-FL-utilizing C. perfringens strains clinically isolated from healthy infants. Our results warrant detailed in vivo studies using animal models with dysbiotic microbiota dominated by various types of C. perfringens strains to further validate the safety of 2'-FL for clinical interventions, particularly on vulnerable preterm infants.
Collapse
Affiliation(s)
- Aruto Nakajima
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Aleksandr A. Arzamasov
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | - Ryuta Murakami
- Innovative Research Institute, Morinaga Milk Industry Co, Ltd, Zama, Kanagawa, Japan
| | - Tomoya Kozakai
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Keisuke Yoshida
- Innovative Research Institute, Morinaga Milk Industry Co, Ltd, Zama, Kanagawa, Japan
| | - Toshihiko Katoh
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Miriam N. Ojima
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Junko Hirose
- Department of Food and Nutrition, Kyoto Women’s University, Kyoto, Japan
| | | | - Jin-Zhong Xiao
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Innovative Research Institute, Morinaga Milk Industry Co, Ltd, Zama, Kanagawa, Japan
| | - Toshitaka Odamaki
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Innovative Research Institute, Morinaga Milk Industry Co, Ltd, Zama, Kanagawa, Japan
| | - Dmitry A. Rodionov
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Takane Katayama
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Duman H, Bechelany M, Karav S. Human Milk Oligosaccharides: Decoding Their Structural Variability, Health Benefits, and the Evolution of Infant Nutrition. Nutrients 2024; 17:118. [PMID: 39796552 PMCID: PMC11723173 DOI: 10.3390/nu17010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Human milk oligosaccharides (HMOs), the third most abundant solid component in human milk, vary significantly among women due to factors such as secretor status, race, geography, season, maternal nutrition and weight, gestational age, and delivery method. In recent studies, HMOs have been shown to have a variety of functional roles in the development of infants. Because HMOs are not digested by infants, they act as metabolic substrates for certain bacteria, helping to establish the infant's gut microbiota. By encouraging the growth of advantageous intestinal bacteria, these sugars function as prebiotics and produce short-chain fatty acids (SCFAs), which are essential for gut health. HMOs can also specifically reduce harmful microbes and viruses binding to the gut epithelium, preventing illness. HMO addition to infant formula is safe and promotes healthy development, infection prevention, and microbiota. Current infant formulas frequently contain oligosaccharides (OSs) that differ structurally from those found in human milk, making it unlikely that they would reproduce the unique effects of HMOs. However, there is a growing trend in producing OSs resembling HMOs, but limited data make it unclear whether HMOs offer additional therapeutic benefits compared to non-human OSs. Better knowledge of how the human mammary gland synthesizes HMOs could direct the development of technologies that yield a broad variety of complex HMOs with OS compositions that closely mimic human milk. This review explores HMOs' complex nature and vital role in infant health, examining maternal variation in HMO composition and its contributing factors. It highlights recent technological advances enabling large-scale studies on HMO composition and its effects on infant health. Furthermore, HMOs' multifunctional roles in biological processes such as infection prevention, brain development, and gut microbiota and immune response regulation are investigated. The structural distinctions between HMOs and other mammalian OSs in infant formulas are discussed, with a focus on the trend toward producing more precise replicas of HMOs found in human milk.
Collapse
Affiliation(s)
- Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye;
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, University Montpellier, ENSCM, CNRS, F-34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Masjid Al Aqsa Street, Mubarak Al-Abdullah 32093, Kuwait
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye;
| |
Collapse
|
4
|
Colberg O, Hermes GDA, Licht TR, Wichmann A, Baker A, Laursen MF, Wellejus A. Development of an infant colon simulating in vitro model, I-TIM-2, to study the effects of modulation strategies on the infant gut microbiome composition and function. Microbiol Spectr 2024; 12:e0072424. [PMID: 39377603 PMCID: PMC11537066 DOI: 10.1128/spectrum.00724-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/15/2024] [Indexed: 10/09/2024] Open
Abstract
The early life stages are critical for the development of the gut microbiome. Variables such as antibiotics exposure, birth-mode via Cesarean section, and formula feeding are associated with disruptions in microbiome development and are related to adverse health effects later in life. Studying the effects of microbiome-modulating strategies in infants is challenged by appropriate ethical constraints. Therefore, we developed I-TIM-2, an infant in vitro colonic model based on the validated, computer-controlled, dynamic model of the colon, TIM-2. The system, consisting of four separate compartments, was inoculated with feces from four healthy, primarily breastfed infants, displaying distinctive microbiome profiles. For each infant's fecal sample, a 96-h experiment was performed, with two compartments receiving an infant diet adapted medium and two compartments additionally receiving five human milk oligosaccharides (HMOs) in physiological concentrations and proportions. Bacterial composition was determined by shotgun metagenomics and qPCR. Concentrations of short-chain fatty acids (SCFAs) and HMOs were determined by LC-MS. Microbial diversity and high amounts of inoculum-derived species were preserved in the model throughout each experiment. Microbiome composition and SCFA concentrations were consistent with published data from infants. HMOs strongly modulated the microbiome composition by stimulating relative proportions of Bifidobacterium. This affected the metabolic output and resulted in an increased production of acetic and formic acid, characteristic of bifidobacterial HMO metabolism. In conclusion, these data demonstrate the development of a valid model to study the dynamics and modulations of the infant gut microbiome and metabolome.IMPORTANCEThe infant gut microbiome is intricately linked to the health of its host. This is partly mediated through the bacterial production of metabolites that interact with the host cells. Human milk shapes the establishment of the infant gut microbiome as it contains human milk sugars that select for primarily bifidobacteria. The establishment can be disrupted by modern interventions such as formula feeding. This can alter the microbiome composition and metabolite production profile, which can affect the host. In this article, we set up an infant in vitro colonic model to study microbiome interactions and functions. In this model, we investigated the effects of human milk sugars and their promotion of bifidobacteria at the expense of other bacteria. The model is an ideal system to assess the effects of various modulating strategies on the infant gut microbiome and its interactions with its host.
Collapse
Affiliation(s)
- Olivia Colberg
- Novonesis, Human Health Research, Hørsholm, Denmark
- Technical University of Denmark, National Food Institute, Lyngby, Denmark
| | | | - Tine Rask Licht
- Technical University of Denmark, National Food Institute, Lyngby, Denmark
| | | | - Adam Baker
- Novonesis, Human Health Research, Hørsholm, Denmark
| | | | | |
Collapse
|
5
|
Wichmann A. Biological effects of combinations of structurally diverse human milk oligosaccharides. Front Pediatr 2024; 12:1439612. [PMID: 39564380 PMCID: PMC11573541 DOI: 10.3389/fped.2024.1439612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/14/2024] [Indexed: 11/21/2024] Open
Abstract
Human milk oligosaccharides (HMOs) are a diverse group of structures and an abundant bioactive component of breastmilk that contribute to infant health and development. Preclinical studies indicate roles for HMOs in shaping the infant gut microbiota, inhibiting pathogens, modulating the immune system, and influencing cognitive development. In the past decade, several industrially produced HMOs have become available to fortify infant formula. Clinical intervention trials with manufactured HMOs have begun to corroborate some of the physiological effects reported in preclinical studies, especially modulation of the gut microbiota in the direction of breastfed infants. As more HMOs become commercially available and as HMOs have some shared mechanisms of action, there is a need to better understand the unique and differential effects of individual HMOs and the benefits of combining multiple HMOs. This review focuses on the differential effects of different HMO structural classes and individual structures and presents a scientific rationale for why combining multiple structurally diverse HMOs is expected to exert greater biological effects.
Collapse
Affiliation(s)
- Anita Wichmann
- Global Regulatory Affairs HMOs, Early Life & Medical Nutrition, DSM-Firmenich, Hørsholm, Denmark
| |
Collapse
|
6
|
Dalby MJ, Kiu R, Serghiou IR, Miyazaki A, Acford-Palmer H, Tung R, Caim S, Phillips S, Kujawska M, Matsui M, Iwamoto A, Taking B, Cox SE, Hall LJ. Faecal microbiota and cytokine profiles of rural Cambodian infants linked to diet and diarrhoeal episodes. NPJ Biofilms Microbiomes 2024; 10:85. [PMID: 39277573 PMCID: PMC11401897 DOI: 10.1038/s41522-024-00562-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/28/2024] [Indexed: 09/17/2024] Open
Abstract
The gut microbiota of infants in low- to middle-income countries is underrepresented in microbiome research. This study explored the faecal microbiota composition and faecal cytokine profiles in a cohort of infants in a rural province of Cambodia and investigated the impact of sample storage conditions and infant environment on microbiota composition. Faecal samples collected at three time points from 32 infants were analysed for microbiota composition using 16S rRNA amplicon sequencing and concentrations of faecal cytokines. Faecal bacterial isolates were subjected to whole genome sequencing and genomic analysis. We compared the effects of two sample collection methods due to the challenges of faecal sample collection in a rural location. Storage of faecal samples in a DNA preservation solution preserved Bacteroides abundance. Microbiota analysis of preserved samples showed that Bifidobacterium was the most abundant genus with Bifidobacterium longum the most abundant species, with higher abundance in breast-fed infants. Most infants had detectable pathogenic taxa, with Shigella and Klebsiella more abundant in infants with recent diarrhoeal illness. Neither antibiotics nor infant growth were associated with gut microbiota composition. Genomic analysis of isolates showed gene clusters encoding the ability to digest human milk oligosaccharides in B. longum and B. breve isolates. Antibiotic-resistant genes were present in both potentially pathogenic species and in Bifidobacterium. Faecal concentrations of Interlukin-1alpha and vascular endothelial growth factor were higher in breast-fed infants. This study provides insights into an underrepresented population of rural Cambodian infants, showing pathogen exposure and breastfeeding impact gut microbiota composition and faecal immune profiles.
Collapse
Affiliation(s)
- Matthew J Dalby
- Microbes, Infection and Microbiomes, College of Medicine and Health, University of Birmingham, Birmingham, B15 2TT, UK
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Raymond Kiu
- Microbes, Infection and Microbiomes, College of Medicine and Health, University of Birmingham, Birmingham, B15 2TT, UK
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Iliana R Serghiou
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Asuka Miyazaki
- School of Tropical Medicine & Global Health, Nagasaki University, Nagasaki, Japan
| | - Holly Acford-Palmer
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Rathavy Tung
- National Maternal and Child Health Centre, Ministry of Health, Phnom Penh, Cambodia
| | - Shabhonam Caim
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Sarah Phillips
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Magdalena Kujawska
- Microbes, Infection and Microbiomes, College of Medicine and Health, University of Birmingham, Birmingham, B15 2TT, UK
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Intestinal Microbiome, School of Life Sciences, ZIEL - Institute for Food & Health, Technical University of Munich, Freising, 80333, Germany
| | - Mitsuaki Matsui
- School of Tropical Medicine & Global Health, Nagasaki University, Nagasaki, Japan
| | - Azusa Iwamoto
- Bureau of International Health Cooperation, National Centre for Global Health and Medicine, Tokyo, Japan
| | - Bunsreng Taking
- Kampong Cham Provincial Health Department, Ministry of Health, Kampong Cham, Cambodia
| | - Sharon E Cox
- School of Tropical Medicine & Global Health, Nagasaki University, Nagasaki, Japan
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
- Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Lindsay J Hall
- Microbes, Infection and Microbiomes, College of Medicine and Health, University of Birmingham, Birmingham, B15 2TT, UK.
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK.
- Intestinal Microbiome, School of Life Sciences, ZIEL - Institute for Food & Health, Technical University of Munich, Freising, 80333, Germany.
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
7
|
Matharu D, Ponsero AJ, Lengyel M, Meszaros-Matwiejuk A, Kolho KL, de Vos WM, Molnar-Gabor D, Salonen A. Human milk oligosaccharide composition is affected by season and parity and associates with infant gut microbiota in a birth mode dependent manner in a Finnish birth cohort. EBioMedicine 2024; 104:105182. [PMID: 38838470 PMCID: PMC11215963 DOI: 10.1016/j.ebiom.2024.105182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/05/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Human milk oligosaccharides (HMOs), their determinants, infant gut microbiota and health are under extensive research; however, seldom jointly addressed. Leveraging data from the HELMi birth cohort, we investigated them collectively, considering maternal and infant secretor status. METHODS HMO composition in breastmilk collected 3 months postpartum (n = 350 mothers) was profiled using high-performance liquid chromatography. Infant gut microbiota taxonomic and functional development was studied at 3, 6, and 12 months (n = 823 stool samples) via shotgun metagenomic sequencing, focusing on HMO metabolism via glycoside hydrolase (GH) analysis. Maternal and infant secretor statuses were identified through phenotyping and genotyping, respectively. Child health, emphasizing allergies and antibiotics as proxies for infectious diseases, was recorded until 2 years. FINDINGS Mother's parity, irritable bowel syndrome, gestational diabetes, and season of milk collection associated with HMO composition. Neither maternal nor infant secretor status associated with infant gut microbiota, except for a few taxa linked to individual HMOs. Analysis stratified for birth mode revealed distinct patterns between the infant gut microbiota and HMOs. Child health parameters were not associated to infant or maternal secretor status. INTERPRETATION This comprehensive exploration unveils intricate links between secretor genotype, maternal factors, HMO composition, infant microbiota, and child health. Understanding these nuanced relationships is paramount for refining strategies to optimize early life nutrition and its enduring impact on long-term health. FUNDING Sweet Crosstalk EU H2020 MSCA ITN, Academy of Finland, Mary and Georg C. Ehrnrooth Foundation, Päivikki and Sakari Sohlberg Foundation, and Tekes.
Collapse
Affiliation(s)
- Dollwin Matharu
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Alise J Ponsero
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Marton Lengyel
- DSM-Firmenich, (Formerly: Glycom A/S), Hørsholm, Denmark
| | | | - Kaija-Leena Kolho
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Children's Hospital, University of Helsinki and HUS, Helsinki, Finland
| | - Willem M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Laboratory of Microbiology, Wageningen University, the Netherlands
| | | | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
8
|
Da Silva Morais E, Grimaud GM, Warda A, Stanton C, Ross P. Genome plasticity shapes the ecology and evolution of Phocaeicola dorei and Phocaeicola vulgatus. Sci Rep 2024; 14:10109. [PMID: 38698002 PMCID: PMC11066082 DOI: 10.1038/s41598-024-59148-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Phocaeicola dorei and Phocaeicola vulgatus are very common and abundant members of the human gut microbiome and play an important role in the infant gut microbiome. These species are closely related and often confused for one another; yet, their genome comparison, interspecific diversity, and evolutionary relationships have not been studied in detail so far. Here, we perform phylogenetic analysis and comparative genomic analyses of these two Phocaeicola species. We report that P. dorei has a larger genome yet a smaller pan-genome than P. vulgatus. We found that this is likely because P. vulgatus is more plastic than P. dorei, with a larger repertoire of genetic mobile elements and fewer anti-phage defense systems. We also found that P. dorei directly descends from a clade of P. vulgatus¸ and experienced genome expansion through genetic drift and horizontal gene transfer. Overall, P. dorei and P. vulgatus have very different functional and carbohydrate utilisation profiles, hinting at different ecological strategies, yet they present similar antimicrobial resistance profiles.
Collapse
Affiliation(s)
- Emilene Da Silva Morais
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- Microbiology Department, University College Cork, Co. Cork, Ireland
| | - Ghjuvan Micaelu Grimaud
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Alicja Warda
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Paul Ross
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland.
- Microbiology Department, University College Cork, Co. Cork, Ireland.
| |
Collapse
|
9
|
Lin Y, Xie Z, Li Z, Yuan C, Zhang C, Li Y, Xie K, Wang K. The microbiota-gut-brain axis: A crucial immunomodulatory pathway for Bifidobacterium animalis subsp. lactis' resilience against LPS treatment in neonatal rats. Int J Biol Macromol 2024; 266:131255. [PMID: 38556221 DOI: 10.1016/j.ijbiomac.2024.131255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
An imbalanced gut microflora may contribute to immune disorders in neonates due to an immature gut barrier. Bacterial toxins, particularly, can trigger the immune system, potentially resulting in uncontrolled gut and systemic inflammation. Previous research has revealed that Bifidobacterium animalis subsp. lactis (B. lactis) could protect against early-life pathogen infections by enhancing the gut barrier. However, the effects of B. lactis on a compromised immune system remain uncertain. Hence, this study concentrated on the immunomodulatory effects and mechanisms of B. lactis in neonatal rats intraperitoneally injected with lipopolysaccharide (LPS), a bacterial toxin and inflammatory mediator. First, B. lactis significantly alleviated the adverse effects induced by LPS on the growth, development, and body temperature of neonatal rats. Second, B. lactis significantly reduced the immune responses and damage induced by LPS, affecting both systemic and local immune responses in the peripheral blood, gut, and brain. Notably, B. lactis exhibited extra potent neuroprotective and neurorepair effects. Our research found that pre-treatment with B. lactis shaped the diverse gut microecology by altering both microbial populations and metabolic biomolecules, closely linked to immunomodulation. Overall, this study elucidated the multifaceted roles of B. lactis in neonatal hosts against pathogenic infection and immune disorder, revealing the existence of the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Yugui Lin
- Microbiology Laboratory, Zhongshan Bo'ai Hospital, 528400 Zhongshan, China; Department of Microbiology, Guangxi Medical University, 530021 Nanning, China.
| | - Zhong Xie
- Department of Microbiology, Guangxi Medical University, 530021 Nanning, China
| | - Zhouyi Li
- Department of Microbiology, Guangxi Medical University, 530021 Nanning, China
| | - Chunlei Yuan
- Microbiology Laboratory, Zhongshan Bo'ai Hospital, 528400 Zhongshan, China
| | - Chilun Zhang
- Microbiology Laboratory, Zhongshan Bo'ai Hospital, 528400 Zhongshan, China
| | - Yanfen Li
- Microbiology Laboratory, Zhongshan Bo'ai Hospital, 528400 Zhongshan, China
| | - Kunke Xie
- Immunology Laboratory, Zhongshan Bo'ai Hospital, 528400 Zhongshan, China
| | - Ke Wang
- Immunology Laboratory, Zhongshan Bo'ai Hospital, 528400 Zhongshan, China
| |
Collapse
|
10
|
Bajic D, Wiens F, Wintergerst E, Deyaert S, Baudot A, den Abbeele PV. HMOs Impact the Gut Microbiome of Children and Adults Starting from Low Predicted Daily Doses. Metabolites 2024; 14:239. [PMID: 38668367 PMCID: PMC11052010 DOI: 10.3390/metabo14040239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Recent studies suggest that the dietary intake of human milk oligosaccharides (HMOs) provides health benefits from infancy up to adulthood. Thus far, beneficial changes in the adult gut microbiome have been observed at oral doses of 5-20 g/day of HMOs. Efficacy of lower doses has rarely been tested. We assessed four HMO molecular species-2'Fucosyllactose (2'FL), Lacto-N-neotetraose (LNnT), 3'Sialyllactose (3'SL), and 6'Sialyllactose (6'SL)-at predicted doses from 0.3 to 5 g/day for 6-year-old children and adults (n = 6 each), using ex vivo SIFR® technology (Cryptobiotix, Ghent, Belgium). This technology employing bioreactor fermentation on fecal samples enables us to investigate microbial fermentation products that are intractable in vivo given their rapid absorption/consumption in the human gut. We found that HMOs significantly increased short-chain fatty acids (SCFAs), acetate, propionate (in children/adults), and butyrate (in adults) from predicted doses of 0.3-0.5 g/day onwards, with stronger effects as dosing increased. The fermentation of 6'SL had the greatest effect on propionate, LNnT most strongly increased butyrate, and 2'FL and 3'SL most strongly increased acetate. An untargeted metabolomic analysis revealed that HMOs enhanced immune-related metabolites beyond SCFAs, such as aromatic lactic acids (indole-3-lactic acid/3-phenyllactic acid) and 2-hydroxyisocaproic acid, as well as gut-brain-axis-related metabolites (γ-aminobutyric acid/3-hydroxybutyric acid/acetylcholine) and vitamins. The effects of low doses of HMOs potentially originate from the highly specific stimulation of keystone species belonging to, for example, the Bifidobacteriaceae family, which had already significantly increased at doses of only 0.5 g/day LNnT (adults) and 1 g/day 2'FL (children/adults).
Collapse
Affiliation(s)
- Danica Bajic
- DSM Nutritional Products Ltd., Wurmisweg 576, 4303 Kaiseraugst, Switzerland
| | - Frank Wiens
- DSM Nutritional Products Ltd., Wurmisweg 576, 4303 Kaiseraugst, Switzerland
| | - Eva Wintergerst
- DSM Nutritional Products Ltd., Wurmisweg 576, 4303 Kaiseraugst, Switzerland
| | - Stef Deyaert
- Cryptobiotix SA, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium
| | - Aurélien Baudot
- Cryptobiotix SA, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium
| | | |
Collapse
|
11
|
Lordan C, Roche AK, Delsing D, Nauta A, Groeneveld A, MacSharry J, Cotter PD, van Sinderen D. Linking human milk oligosaccharide metabolism and early life gut microbiota: bifidobacteria and beyond. Microbiol Mol Biol Rev 2024; 88:e0009423. [PMID: 38206006 PMCID: PMC10966949 DOI: 10.1128/mmbr.00094-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
SUMMARYHuman milk oligosaccharides (HMOs) are complex, multi-functional glycans present in human breast milk. They represent an intricate mix of heterogeneous structures which reach the infant intestine in an intact form as they resist gastrointestinal digestion. Therefore, they confer a multitude of benefits, directly and/or indirectly, to the developing neonate. Certain bifidobacterial species, being among the earliest gut colonizers of breast-fed infants, have an adapted functional capacity to metabolize various HMO structures. This ability is typically observed in infant-associated bifidobacteria, as opposed to bifidobacteria associated with a mature microbiota. In recent years, information has been gleaned regarding how these infant-associated bifidobacteria as well as certain other taxa are able to assimilate HMOs, including the mechanistic strategies enabling their acquisition and consumption. Additionally, complex metabolic interactions occur between microbes facilitated by HMOs, including the utilization of breakdown products released from HMO degradation. Interest in HMO-mediated changes in microbial composition and function has been the focal point of numerous studies, in recent times fueled by the availability of individual biosynthetic HMOs, some of which are now commonly included in infant formula. In this review, we outline the main HMO assimilatory and catabolic strategies employed by infant-associated bifidobacteria, discuss other taxa that exhibit breast milk glycan degradation capacity, and cover HMO-supported cross-feeding interactions and related metabolites that have been described thus far.
Collapse
Affiliation(s)
- Cathy Lordan
- Teagasc Food Research Centre, Fermoy, Co Cork, Ireland
| | - Aoife K. Roche
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | | | - Arjen Nauta
- FrieslandCampina, Amersfoort, the Netherlands
| | | | - John MacSharry
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Fermoy, Co Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Douwe van Sinderen
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
12
|
Buzun E, Hsu CY, Sejane K, Oles RE, Vasquez Ayala A, Loomis LR, Zhao J, Rossitto LA, McGrosso DM, Gonzalez DJ, Bode L, Chu H. A bacterial sialidase mediates early-life colonization by a pioneering gut commensal. Cell Host Microbe 2024; 32:181-190.e9. [PMID: 38228143 PMCID: PMC10922750 DOI: 10.1016/j.chom.2023.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/14/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024]
Abstract
The early microbial colonization of the gastrointestinal tract can have long-term impacts on development and health. Keystone species, including Bacteroides spp., are prominent in early life and play crucial roles in maintaining the structure of the intestinal ecosystem. However, the process by which a resilient community is curated during early life remains inadequately understood. Here, we show that a single sialidase, NanH, in Bacteroides fragilis mediates stable occupancy of the intestinal mucosa in early life and regulates a commensal colonization program. This program is triggered by sialylated glycans, including those found in human milk oligosaccharides and intestinal mucus. NanH is required for vertical transmission from dams to pups and promotes B. fragilis dominance during early life. Furthermore, NanH facilitates commensal resilience and recovery after antibiotic treatment in a defined microbial community. Collectively, our study reveals a co-evolutionary mechanism between the host and microbiota mediated through host-derived glycans to promote stable colonization.
Collapse
Affiliation(s)
- Ekaterina Buzun
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chia-Yun Hsu
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kristija Sejane
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Renee E Oles
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adriana Vasquez Ayala
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Luke R Loomis
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jiaqi Zhao
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Leigh-Ana Rossitto
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dominic M McGrosso
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - David J Gonzalez
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lars Bode
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California, San Diego, La Jolla, CA 92093, USA; Human Milk Institute (HMI), University of California, San Diego, La Jolla, CA 92093, USA
| | - Hiutung Chu
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA; Human Milk Institute (HMI), University of California, San Diego, La Jolla, CA 92093, USA; Chiba University-UC San Diego Center for Mucosal Immunology, Allergy and Vaccines (cMAV), University of California, San Diego, La Jolla, CA 92093, USA; Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
13
|
Kijner S, Ennis D, Shmorak S, Florentin A, Yassour M. CRISPR-Cas-based identification of a sialylated human milk oligosaccharides utilization cluster in the infant gut commensal Bacteroides dorei. Nat Commun 2024; 15:105. [PMID: 38167825 PMCID: PMC10761964 DOI: 10.1038/s41467-023-44437-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
The infant gut microbiome is impacted by early-life feeding, as human milk oligosaccharides (HMOs) found in breastmilk cannot be digested by infants and serve as nutrients for their gut bacteria. While the vast majority of HMO-utilization research has focused on Bifidobacterium species, recent studies have suggested additional HMO-utilizers, mostly Bacteroides, yet their utilization mechanism is poorly characterized. Here, we investigate Bacteroides dorei isolates from breastfed-infants and identify that polysaccharide utilization locus (PUL) 33 enables B. dorei to utilize sialylated HMOs. We perform transcriptional profiling and identity upregulated genes when growing on sialylated HMOs. Using CRISPR-Cas12 to knock-out four PUL33 genes, combined with complementation assays, we identify GH33 as the critical gene in PUL33 for sialylated HMO-utilization. This demonstration of an HMO-utilization system by Bacteroides species isolated from infants opens the way to further characterization of additional such systems, to better understand HMO-utilization in the infant gut.
Collapse
Affiliation(s)
- Sivan Kijner
- Microbiology & Molecular Genetics Department, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dena Ennis
- Microbiology & Molecular Genetics Department, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shimrit Shmorak
- Microbiology & Molecular Genetics Department, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Anat Florentin
- Microbiology & Molecular Genetics Department, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Kuvin Center for the Study of Infectious and Tropical Diseases, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Moran Yassour
- Microbiology & Molecular Genetics Department, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
14
|
Chieu RV, Hamilton K, Ryan PM, Copeland J, Wang PW, Retnakaran R, Guttman DS, Parkinson J, Hamilton JK. The impact of gestational diabetes on functional capacity of the infant gut microbiome is modest and transient. Gut Microbes 2024; 16:2356277. [PMID: 38798005 PMCID: PMC11135868 DOI: 10.1080/19490976.2024.2356277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a metabolic complication that manifests as hyperglycemia during the later stages of pregnancy. In high resource settings, careful management of GDM limits risk to the pregnancy, and hyperglycemia typically resolves after birth. At the same time, previous studies have revealed that the gut microbiome of infants born to mothers who experienced GDM exhibit reduced diversity and reduction in the abundance of several key taxa, including Lactobacillus. What is not known is what the functional consequences of these changes might be. In this case control study, we applied 16S rRNA sequence surveys and metatranscriptomics to profile the gut microbiome of 30 twelve-month-old infants - 16 from mothers with GDM, 14 from mothers without - to examine the impact of GDM during pregnancy. Relative to the mode of delivery and sex of the infant, maternal GDM status had a limited impact on the structure and function of the developing microbiome. While GDM samples were associated with a decrease in alpha diversity, we observed no effect on beta diversity and no differentially abundant taxa. Further, while the mode of delivery and sex of infant affected the expression of multiple bacterial pathways, much of the impact of GDM status on the function of the infant microbiome appears to be lost by twelve months of age. These data may indicate that, while mode of delivery appears to impact function and diversity for longer than anticipated, GDM may not have persistent effects on the function nor composition of the infant gut microbiome.
Collapse
Affiliation(s)
- Ryan V. Chieu
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Katharine Hamilton
- Division of Endocrinology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Paul M. Ryan
- Division of Endocrinology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Julia Copeland
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, Canada
| | - Pauline W. Wang
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Ravi Retnakaran
- Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, ON, Canada
| | - David S. Guttman
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - John Parkinson
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Jill K. Hamilton
- Division of Endocrinology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Zhou DT, Mudhluli TE, Hall LJ, Manasa J, Munyati S. A Scoping Review of Gut Microbiome and Bifidobacterium Research in Zimbabwe: Implications for Future Studies. Pediatric Health Med Ther 2023; 14:483-496. [PMID: 38145055 PMCID: PMC10743709 DOI: 10.2147/phmt.s414766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/13/2023] [Indexed: 12/26/2023] Open
Abstract
Background Gut microbiota play a key role in host health, with certain Bifidobacterium strains critical for immune development. The healthy gut of breastfed infants is dominated by these pioneer microbes, especially the strains that feed on human milk oligosaccharides. Objective This is a scoping review of gut microbiome research from Zimbabwe. It focuses on distribution and dynamic changes of bifidobacteria, and milk components that promote growth of microbes in infants, together with the distribution of associated gut microbes in adults. Design Online databases were searched for publications from 2000 to 2023. Results and Analysis Fourteen publications on microbiota of infants and adults were included in this scoping review. Most were cross-sectional, while three were clinical trials/cohort protocols. Publications focused on pediatrics (78.5%), pregnant women (14.3%), and men (7.2%). Zimbabwe has a high burden of HIV; hence 35.7% of study populations were delineated by HIV status. The laboratory methods used included shotgun metagenomics (62%) or 16S rRNA gene amplicon sequencing. Almost 85% of the studies focused on total microbiome profiles and rarely reported the distribution of different Bifidobacterium species and variants. None of the papers studied human breast milk composition. There were reports of reduced abundance of beneficial genera in pregnant women, children, and adolescents living with HIV. Additionally, gut microbiota was reported to be poorly predictive of child growth and vaccine response, though this was not conclusive. Conclusion There are few studies that characterize the gut microbiome by Zimbabwe-based researchers. However, studies on strain level diversity of Bifidobacterium and other key microbes, and their role in health during and beyond infancy, lag behind in Zimbabwe and other low- and middle-income countries. Such cohorts are needed to inform future mechanistic studies and downstream translational work such as next-generation probiotics and prebiotics.
Collapse
Affiliation(s)
- Danai T Zhou
- Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Taona E Mudhluli
- Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe, Harare, Zimbabwe
- Department of Biochemistry, Midlands State University, Gweru, Zimbabwe
| | - Lindsay J Hall
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
- Intestinal Microbiome, Technical University of Munich, Freising, Germany
| | - Justen Manasa
- Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe, Harare, Zimbabwe
- Department of Laboratory Sciences, Biomedical Research and Training Institute, Harare, Zimbabwe
| | - Shungu Munyati
- Department of Laboratory Sciences, Biomedical Research and Training Institute, Harare, Zimbabwe
| |
Collapse
|
16
|
Kiely LJ, Busca K, Lane JA, van Sinderen D, Hickey RM. Molecular strategies for the utilisation of human milk oligosaccharides by infant gut-associated bacteria. FEMS Microbiol Rev 2023; 47:fuad056. [PMID: 37793834 PMCID: PMC10629584 DOI: 10.1093/femsre/fuad056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/14/2023] [Accepted: 10/03/2023] [Indexed: 10/06/2023] Open
Abstract
A number of bacterial species are found in high abundance in the faeces of healthy breast-fed infants, an occurrence that is understood to be, at least in part, due to the ability of these bacteria to metabolize human milk oligosaccharides (HMOs). HMOs are the third most abundant component of human milk after lactose and lipids, and represent complex sugars which possess unique structural diversity and are resistant to infant gastrointestinal digestion. Thus, these sugars reach the infant distal intestine intact, thereby serving as a fermentable substrate for specific intestinal microbes, including Firmicutes, Proteobacteria, and especially infant-associated Bifidobacterium spp. which help to shape the infant gut microbiome. Bacteria utilising HMOs are equipped with genes associated with their degradation and a number of carbohydrate-active enzymes known as glycoside hydrolase enzymes have been identified in the infant gut, which supports this hypothesis. The resulting degraded HMOs can also be used as growth substrates for other infant gut bacteria present in a microbe-microbe interaction known as 'cross-feeding'. This review describes the current knowledge on HMO metabolism by particular infant gut-associated bacteria, many of which are currently used as commercial probiotics, including the distinct strategies employed by individual species for HMO utilisation.
Collapse
Affiliation(s)
- Leonie Jane Kiely
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61C996, Ireland
- Health and Happiness Group, H&H Research, National Food Innovation Hub, Teagasc Moorepark, Fermoy, Co. Cork P61K202, Ireland
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland
| | - Kizkitza Busca
- Health and Happiness Group, H&H Research, National Food Innovation Hub, Teagasc Moorepark, Fermoy, Co. Cork P61K202, Ireland
| | - Jonathan A Lane
- Health and Happiness Group, H&H Research, National Food Innovation Hub, Teagasc Moorepark, Fermoy, Co. Cork P61K202, Ireland
| | - Douwe van Sinderen
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland
| | - Rita M Hickey
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61C996, Ireland
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
| |
Collapse
|
17
|
Buzun E, Hsu CY, Sejane K, Oles RE, Ayala AV, Loomis LR, Zhao J, Rossitto LA, McGrosso D, Gonzalez DJ, Bode L, Chu H. A bacterial sialidase mediates early life colonization by a pioneering gut commensal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552477. [PMID: 37609270 PMCID: PMC10441351 DOI: 10.1101/2023.08.08.552477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The early microbial colonization of the gastrointestinal tract can lead to long-term impacts in development and overall human health. Keystone species, including Bacteroides spp ., play a crucial role in maintaining the structure, diversity, and function of the intestinal ecosystem. However, the process by which a defined and resilient community is curated and maintained during early life remains inadequately understood. Here, we show that a single sialidase, NanH, in Bacteroides fragilis mediates stable occupancy of the intestinal mucosa and regulates the commensal colonization program during the first weeks of life. This program is triggered by sialylated glycans, including those found in human milk oligosaccharides and intestinal mucus. After examining the dynamics between pioneer gut Bacteroides species in the murine gut, we discovered that NanH enables vertical transmission from dams to pups and promotes B. fragilis dominance during early life. Furthermore, we demonstrate that NanH facilitates commensal resilience and recovery after antibiotic treatment in a defined microbial community. Collectively, our study reveals a co-evolutionary mechanism between the host and the microbiota mediated through host-derived glycans to promote stable intestinal colonization.
Collapse
|
18
|
Muñoz-Provencio D, Yebra MJ. Gut Microbial Sialidases and Their Role in the Metabolism of Human Milk Sialylated Glycans. Int J Mol Sci 2023; 24:9994. [PMID: 37373145 DOI: 10.3390/ijms24129994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/26/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Sialic acids (SAs) are α-keto-acid sugars with a nine-carbon backbone present at the non-reducing end of human milk oligosaccharides and the glycan moiety of glycoconjugates. SAs displayed on cell surfaces participate in the regulation of many physiologically important cellular and molecular processes, including signaling and adhesion. Additionally, sialyl-oligosaccharides from human milk act as prebiotics in the colon by promoting the settling and proliferation of specific bacteria with SA metabolism capabilities. Sialidases are glycosyl hydrolases that release α-2,3-, α-2,6- and α-2,8-glycosidic linkages of terminal SA residues from oligosaccharides, glycoproteins and glycolipids. The research on sialidases has been traditionally focused on pathogenic microorganisms, where these enzymes are considered virulence factors. There is now a growing interest in sialidases from commensal and probiotic bacteria and their potential transglycosylation activity for the production of functional mimics of human milk oligosaccharides to complement infant formulas. This review provides an overview of exo-alpha-sialidases of bacteria present in the human gastrointestinal tract and some insights into their biological role and biotechnological applications.
Collapse
Affiliation(s)
- Diego Muñoz-Provencio
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Av. Agustín Escardino 7, 46980 Paterna, Spain
| | - María J Yebra
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Av. Agustín Escardino 7, 46980 Paterna, Spain
| |
Collapse
|
19
|
Roager HM, Stanton C, Hall LJ. Microbial metabolites as modulators of the infant gut microbiome and host-microbial interactions in early life. Gut Microbes 2023; 15:2192151. [PMID: 36942883 PMCID: PMC10038037 DOI: 10.1080/19490976.2023.2192151] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
The development of infant gut microbiome is a pivotal process affecting the ecology and function of the microbiome, as well as host health. While the establishment of the infant microbiome has been of interest for decades, the focus on gut microbial metabolism and the resulting small molecules (metabolites) has been rather limited. However, technological and computational advances are now enabling researchers to profile the plethora of metabolites in the infant gut, allowing for improved understanding of how gut microbial-derived metabolites drive microbiome community structuring and host-microbial interactions. Here, we review the current knowledge on development of the infant gut microbiota and metabolism within the first year of life, and discuss how these microbial metabolites are key for enhancing our basic understanding of interactions during the early life developmental window.
Collapse
Affiliation(s)
- Henrik M. Roager
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Catherine Stanton
- APC Microbiome Ireland, Teagasc Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland
| | - Lindsay J. Hall
- Gut Microbes & Health, Quadram Institute Biosciences, Norwich, UK
- Intestinal Microbiome, School of Life Sciences, ZIEL – Institute for Food & Health, Technical University of Munich, Freising, Germany
- Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
20
|
Arzamasov AA, Osterman AL. Milk glycan metabolism by intestinal bifidobacteria: insights from comparative genomics. Crit Rev Biochem Mol Biol 2022; 57:562-584. [PMID: 36866565 PMCID: PMC10192226 DOI: 10.1080/10409238.2023.2182272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/11/2023] [Accepted: 02/15/2023] [Indexed: 03/04/2023]
Abstract
Bifidobacteria are early colonizers of the human neonatal gut and provide multiple health benefits to the infant, including inhibiting the growth of enteropathogens and modulating the immune system. Certain Bifidobacterium species prevail in the gut of breastfed infants due to the ability of these microorganisms to selectively forage glycans present in human milk, specifically human milk oligosaccharides (HMOs) and N-linked glycans. Therefore, these carbohydrates serve as promising prebiotic dietary supplements to stimulate the growth of bifidobacteria in the guts of children suffering from impaired gut microbiota development. However, the rational formulation of milk glycan-based prebiotics requires a detailed understanding of how bifidobacteria metabolize these carbohydrates. Accumulating biochemical and genomic data suggest that HMO and N-glycan assimilation abilities vary remarkably within the Bifidobacterium genus, both at the species and strain levels. This review focuses on the delineation and genome-based comparative analysis of differences in respective biochemical pathways, transport systems, and associated transcriptional regulatory networks, providing a foundation for genomics-based projection of milk glycan utilization capabilities across a rapidly growing number of sequenced bifidobacterial genomes and metagenomic datasets. This analysis also highlights remaining knowledge gaps and suggests directions for future studies to optimize the formulation of milk-glycan-based prebiotics that target bifidobacteria.
Collapse
Affiliation(s)
- Aleksandr A Arzamasov
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Andrei L Osterman
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
21
|
Browne HP, Shao Y, Lawley TD. Mother-infant transmission of human microbiota. Curr Opin Microbiol 2022; 69:102173. [PMID: 35785616 DOI: 10.1016/j.mib.2022.102173] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 12/16/2022]
Abstract
Humans are colonised by a highly adapted microbiota with coevolved functions that promote human health, development and disease resistance. Acquisition and assembly of the microbiota start at birth and recent evidence suggests that it coincides with, and informs, immune system development and regulation in the rapidly growing infant. Several large-scale studies have identified Bifidobacterium and Bacteroides species maternally transmitted to infants, many of which are capable of colonising over the longer term. Disruption of maternal transmission by caesarean section and antibiotic exposure around birth is associated with a higher incidence of pathogen colonisation and immune-related disorders in children. In this review, we discuss key maternally transmitted bacterial species, their sources and their potential role in shaping immune development. Maternal transmission of gut bacteria provides a microbial 'starter kit' for infants which promotes healthy growth and disease resistance. Optimising and nurturing this under-appreciated form of kinship should be considered as a priority.
Collapse
Affiliation(s)
- Hilary P Browne
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK.
| | - Yan Shao
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Trevor D Lawley
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK.
| |
Collapse
|