1
|
Schinas G, Koros R, Ntalakouras I, Sideris S, Perperis A, Leventopoulos G, Davlouros P, Akinosoglou K. Gram-Negative Bacterial Infections in Cardiac Implantable Electronic Devices: Insights from a Retrospective Analysis of Multidrug-Resistant and Non-Multidrug-Resistant Isolates. Pathogens 2025; 14:215. [PMID: 40137700 PMCID: PMC11944461 DOI: 10.3390/pathogens14030215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/29/2025] Open
Abstract
Cardiac implantable electronic device (CIED) infections caused by Gram-negative bacteria are uncommon but potentially life-threatening. This study examined patients with Gram-negative CIED infections, investigating the clinical characteristics of patients harboring multidrug-resistant (MDR), versus non-MDR, isolates. A retrospective observational analysis was conducted at two tertiary Greek University Hospitals from 2015 to 2020. Patients were identified through microbiological cultures from device-related sites (pocket, lead, generator), with infections classified as MDR or non-MDR based on antimicrobial susceptibility profiles. Comprehensive data were collected, including demographic characteristics, clinical parameters, procedural details-on both the last device procedure and subsequent extraction procedure-infection-related findings, and microbiological profiles. In total, 18 patients were identified, with an equal distribution of 9 MDR and 9 non-MDR cases. The study population had a median age of 78 years, with 33.3% female patients, and a median Charlson Comorbidity Index of four. Pseudomonas aeruginosa was the most prevalent isolated species. Comparative analysis revealed that MDR patients had higher median SOFA (Sequential Organ Failure Assessment) scores (2 vs. 0, p = 0.07), longer time to device extraction (50% vs. 88.9% extracted within one month, p = 0.079), and higher blood culture positivity (80% vs. 37.5%, p = 0.135). Despite similar demographic characteristics, MDR infections demonstrated more complex clinical profiles, with a trend towards increased disease severity.
Collapse
Affiliation(s)
- Georgios Schinas
- School of Medicine, University of Patras, 26504 Rio, Greece; (G.S.); (G.L.); (P.D.)
| | - Rafail Koros
- Division of Cardiology, University General Hospital of Patras, 26504 Rio, Greece; (R.K.); (A.P.)
| | - Ioannis Ntalakouras
- Department of Cardiology, Ippokrateio General Hospital of Athens, 11527 Athens, Greece; (I.N.); (S.S.)
| | - Skevos Sideris
- Department of Cardiology, Ippokrateio General Hospital of Athens, 11527 Athens, Greece; (I.N.); (S.S.)
| | - Angelos Perperis
- Division of Cardiology, University General Hospital of Patras, 26504 Rio, Greece; (R.K.); (A.P.)
| | - Georgios Leventopoulos
- School of Medicine, University of Patras, 26504 Rio, Greece; (G.S.); (G.L.); (P.D.)
- Division of Cardiology, University General Hospital of Patras, 26504 Rio, Greece; (R.K.); (A.P.)
| | - Periklis Davlouros
- School of Medicine, University of Patras, 26504 Rio, Greece; (G.S.); (G.L.); (P.D.)
- Division of Cardiology, University General Hospital of Patras, 26504 Rio, Greece; (R.K.); (A.P.)
| | - Karolina Akinosoglou
- School of Medicine, University of Patras, 26504 Rio, Greece; (G.S.); (G.L.); (P.D.)
- Department of Internal Medicine and Division of Infectious Diseases, University General Hospital of Patras, 26504 Rio, Greece
| |
Collapse
|
2
|
Chigozie VU, Saki M, Esimone CO. Molecular structural arrangement in quorum sensing and bacterial metabolic production. World J Microbiol Biotechnol 2025; 41:71. [PMID: 39939401 DOI: 10.1007/s11274-025-04280-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 01/28/2025] [Indexed: 02/14/2025]
Abstract
Quorum sensing (QS) regulates bacterial behaviors such as biofilm formation, virulence, and metabolite production through signaling molecules like acyl-homoserine lactones (AHLs), peptides, and AI-2. These signals are pivotal in bacterial communication, influencing pathogenicity and industrial applications. This review explores the molecular architecture of QS signals and their role in metabolite production, emphasizing structural modifications that disrupt bacterial communication to control virulence and enhance industrial processes. Key findings highlight the development of synthetic QS analogs, engineered inhibitors, and microbial consortia as innovative tools in biotechnology and medicine. The review underscores the potential of molecular engineering in managing microbial behaviors and optimizing applications like biofuel production, bioplastics, and anti-virulence therapies. Additionally, cross-species signaling mechanisms, particularly involving AI-2, reveal new opportunities for regulating interspecies cooperation and competition. This synthesis aims to bridge molecular insights with practical applications, showcasing how QS-based technologies can drive advancements in microbial biotechnology and therapeutic strategies.
Collapse
Affiliation(s)
- Victor U Chigozie
- Department of Pharmaceutical Microbiology and Biotechnology, David Umahi Federal University of Health Sciences, Ohaozara, Ebonyi State, Nigeria.
- International Institute for Pharmaceutical Research (IIPR), Ohaozara, Ebonyi State, Nigeria.
| | - Morteza Saki
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Charles O Esimone
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Awka, Nigeria
| |
Collapse
|
3
|
Zhai Y, Liu P, Hu X, Fan C, Cui X, He Q, He D, Ma X, Hu G. Artesunate, EDTA, and colistin work synergistically against MCR-negative and -positive colistin-resistant Salmonella. eLife 2025; 13:RP99130. [PMID: 39918863 PMCID: PMC11805504 DOI: 10.7554/elife.99130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025] Open
Abstract
Discovering new strategies to combat the multidrug-resistant bacteria constitutes a major medical challenge of our time. Previously, artesunate (AS) has been reported to exert antibacterial enhancement activity in combination with β-lactam antibiotics via inhibition of the efflux pump AcrB. However, combination of AS and colistin (COL) revealed a weak synergistic effect against a limited number of strains, and few studies have further explored its possible mechanism of synergistic action. In this article, we found that AS and EDTA could strikingly enhance the antibacterial effects of COL against mcr-1- and mcr-1+ Salmonella strains either in vitro or in vivo, when used in triple combination. The excellent bacteriostatic effect was primarily related to the increased cell membrane damage, accumulation of toxic compounds and inhibition of MCR-1. The potential binding sites of AS to MCR-1 (THR283, SER284, and TYR287) were critical for its inhibition of MCR-1 activity. Additionally, we also demonstrated that the CheA of chemosensory system and virulence-related protein SpvD were critical for the bacteriostatic synergistic effects of the triple combination. Selectively targeting CheA, SpvD, or MCR using the natural compound AS could be further investigated as an attractive strategy for the treatment of Salmonella infection. Collectively, our work opens new avenues toward the potentiation of COL and reveals an alternative drug combination strategy to overcome COL-resistant bacterial infections.
Collapse
Affiliation(s)
- Yajun Zhai
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural UniversityZhengzhouChina
| | - Peiyi Liu
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural UniversityZhengzhouChina
| | - Xueqin Hu
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural UniversityZhengzhouChina
| | - Changjian Fan
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural UniversityZhengzhouChina
| | - Xiaodie Cui
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural UniversityZhengzhouChina
| | - Qibiao He
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural UniversityZhengzhouChina
| | - Dandan He
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural UniversityZhengzhouChina
| | - Xiaoyuan Ma
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural UniversityZhengzhouChina
| | - Gongzheng Hu
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural UniversityZhengzhouChina
| |
Collapse
|
4
|
Patra S, Saha S, Singh R, Tomar N, Gulati P. Biofilm battleground: Unveiling the hidden challenges, current approaches and future perspectives in combating biofilm associated bacterial infections. Microb Pathog 2025; 198:107155. [PMID: 39586337 DOI: 10.1016/j.micpath.2024.107155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/09/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
A biofilm is a complex aggregation of microorganisms, either of the same or different species, that adhere to a surface and are encased in an extracellular polymeric substances (EPS) matrix. Quorum sensing (QS) and biofilm formation are closely linked, as QS genes regulate the development, maturation, and breakdown of biofilms. Inhibiting QS can be utilized as an effective approach to combat the impacts of biofilm infection. The impact of biofilms includes chronic infections, industrial biofouling, infrastructure corrosion, and environmental contamination as well. Therefore, a deep understanding of biofilms is crucial for enhancing public health, advancing industrial processes, safeguarding the environment, and deepening our knowledge of microbial life as well. This review aims to offer a comprehensive examination of challenges posed by bacterial biofilms, contemporary approaches and strategies for effectively eliminating biofilms, including the inhibition of quorum sensing pathways, while also focusing on emerging technologies and techniques for biofilm treatment. In addition, future research is projected to target the challenges associated with the bacterial biofilms, striving to develop new approaches and improve existing strategies for their effective control and eradication.
Collapse
Affiliation(s)
- Sandeep Patra
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Sumana Saha
- Gujarat Biotechnology University, Gandhinagar, Gujarat, India
| | - Randhir Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Nandini Tomar
- Department of Biotechnology, South Asian University, New Delhi, India
| | - Pallavi Gulati
- Ram Lal Anand College, University of Delhi, New Delhi, India.
| |
Collapse
|
5
|
Mikhailova EO. Green Silver Nanoparticles: An Antibacterial Mechanism. Antibiotics (Basel) 2024; 14:5. [PMID: 39858291 PMCID: PMC11762094 DOI: 10.3390/antibiotics14010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/27/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Silver nanoparticles (AgNPs) are a promising tool in the fight against pathogenic microorganisms. "Green" nanoparticles are especially valuable due to their environmental friendliness and lower energy consumption during production, as well as their ability to minimize the number of toxic by-products. This review focuses on the features of AgNP synthesis using living organisms (bacteria, fungi, plants) and the involvement of various biological compounds in this process. The mechanism of antibacterial activity is also discussed in detail with special attention given to anti-biofilm and anti-quorum sensing activities. The toxicity of silver nanoparticles is considered in light of their further biomedical applications.
Collapse
Affiliation(s)
- Ekaterina O Mikhailova
- Institute of Innovation Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
6
|
Kuchay RAH. Novel and emerging therapeutics for antimicrobial resistance: A brief review. Drug Discov Ther 2024; 18:269-276. [PMID: 39462601 DOI: 10.5582/ddt.2024.01063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
A pandemic known as anti-microbial resistance (AMR) poses a challenge to contemporary medicine. To stop AMR's rise and quick worldwide spread, urgent multisectoral intervention is needed. This review will provide insight on new and developing treatment approaches for AMR. Future therapy options may be made possible by the development of novel drugs that make use of developments in "omics" technology, artificial intelligence, and machine learning. Vaccines, immunoconjugates, antimicrobial peptides, monoclonal antibodies, and nanoparticles may also be intriguing options for treating AMR in the future. Combination therapy may potentially prove to be a successful strategy for combating AMR. To lessen the impact of AMR, ideas like drug repurposing, antibiotic stewardship, and the one health approach may be helpful.
Collapse
|
7
|
Carmona-Orozco ML, Echeverri F. Induction of biofilm in extended-spectrum beta-lactamase Staphylococcus aureus with drugs commonly used in pharmacotherapy. Microb Pathog 2024; 195:106863. [PMID: 39159772 DOI: 10.1016/j.micpath.2024.106863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/15/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
Staphylococcus aureus is a bacterial pathogen that causes bloodstream infections, pneumonia, and skin abscesses and is the primary pathogen responsible for medical devices associated with biofilm infections, accounting for approximately 70 % of cases. Therefore, the World Health Organization (WHO) has designated this microorganism as a top priority due to its role in causing over 20,000 bacteremia-related deaths in the US each year. The issue of pathogen resistance to antibiotics, mainly by a biofilm, further complicates these infections since biofilms render the bacterial colony impervious to antibiotics. However, many natural and synthetic substances also induce bacterial biofilm formation. Therefore, we investigated whether the most common active pharmaceutical ingredients (APIs) could induce biofilm formation in two clinical isolates of extended-spectrum beta-lactamase Staphylococcus aureus, one of them also methicillin-resistant (A2M) and two medical devices. We detected biofilm inducers, inhibitors, and destabilizers. Microbial strain, medical devices, API structure, and concentration influenced the modulatory effects of biofilm. In all devices tested, including microplates, FR18 duodenal probe, and respiratory probe, the clinic isolate methicillin-resistant S. aureus A2M exhibited lower susceptibility to biofilm formation than S. aureus A1. The anti-inflammatory acetaminophen, the hypocholesterolemic lovastatin, and the diuretic hydrochlorothiazide all induced biofilm. However, verapamil, an antihypertensive, and cetirizine, an antihistamine, inhibited biofilm on S. aureus A2M, while propranolol, another antihypertensive, inhibited biofilm on S. aureus A1. Additionally, diclofenac, an analgesic, and cetirizine destabilized the biofilm, resulting in more free bacteria and possibly making them more susceptible to external agents such as antibiotics. Nonetheless, further epidemiologic analyses and in vivo assays are needed to confirm these findings and to establish a correlation between drug use, the onset of bacterial infections in patients, and the use of medical devices. This work provides information about the probable clinical implications of drugs in patients using medical devices or undergoing surgical procedures. Inhibitory APIs could also be used as drug repurposing or templates to design new, more potent biofilm inhibitors.
Collapse
Affiliation(s)
- Maria L Carmona-Orozco
- Química Orgánica de Productos Naturales, Instituto de Química, Universidad de Antioquia, Medellín, Colombia
| | - Fernando Echeverri
- Química Orgánica de Productos Naturales, Instituto de Química, Universidad de Antioquia, Medellín, Colombia.
| |
Collapse
|
8
|
Sahoo K, Meshram S. Biofilm Formation in Chronic Infections: A Comprehensive Review of Pathogenesis, Clinical Implications, and Novel Therapeutic Approaches. Cureus 2024; 16:e70629. [PMID: 39483571 PMCID: PMC11527504 DOI: 10.7759/cureus.70629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/01/2024] [Indexed: 11/03/2024] Open
Abstract
Biofilms are intricate microbial communities on various surfaces, including medical devices and biological tissues, encased within a protective matrix of extracellular polymeric substances. Their formation and persistence are significant factors in the pathogenesis of chronic infections, contributing to the complexity of treatment and increased resistance to antimicrobial agents. This review explores the multifaceted nature of biofilms, focusing on their formation, structure, and the genetic and environmental factors that contribute to their resilience. Biofilms are particularly problematic in chronic infections, such as those associated with medical implants and persistent wounds, due to their ability to evade both the host immune response and conventional therapeutic strategies. The review also discusses the current challenges in diagnosing biofilm-associated infections and the limitations of existing treatment options. Emerging therapeutic approaches, including novel antibiofilm agents, physical disruption techniques, and biological therapies such as phage therapy, are examined for their potential to improve treatment outcomes. Innovations in drug delivery systems and preventive measures, such as biofilm-resistant materials, are also highlighted as promising developments. This comprehensive overview aims to provide insights into the mechanisms of biofilm-related infections and to guide future research and clinical practice. This review contributes to the ongoing efforts to enhance patient care and combat the growing challenge of antimicrobial resistance by addressing the critical need for effective strategies to manage and prevent biofilm-associated chronic infections.
Collapse
Affiliation(s)
- Kaushik Sahoo
- Department of Microbiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Supriya Meshram
- Department of Microbiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
9
|
Zhao Y, Zhang T, Liang Y, Xie X, Pan H, Cao M, Wang S, Wu D, Wang J, Wang C, Hu W. Combination of aloe emodin, emodin, and rhein from Aloe with EDTA sensitizes the resistant Acinetobacter baumannii to polymyxins. Front Cell Infect Microbiol 2024; 14:1467607. [PMID: 39346899 PMCID: PMC11428196 DOI: 10.3389/fcimb.2024.1467607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Background The continuous emergence and spread of polymyxin-resistant Acinetobacter baumannii pose a significant global health challenge, necessitating the development of novel therapeutic strategies. Aloe, with its long-standing history of medicinal use, has recently been the subject of substantial research for its efficacy against pathogenic infections. Methods This study investigates the potential application of anthraquinone components in aloe against polymyxin-resistant A. baumannii by liquid chromatography-mass spectrometry, in vitro activity assessment, and construction of animal infection models. Results The findings demonstrate that aloe emodin, emodin, rhein, and their mixtures in equal mass ratios (EAR) exhibit strain-specific antibacterial activities against polymyxin-resistant A. baumannii. Co-administration of EAR with EDTA synergistically and universally enhanced the antibacterial activity and bactericidal efficacy of polymyxins against polymyxin-resistant A. baumannii, while also reducing the frequency of polymyxin-resistant mutations in polymyxinssensitive A. baumannii. Following toxicity assessment on human hepatic and renal cell lines, the combination therapy was applied to skin wounds in mice infected with polymyxin-resistant A. baumannii. Compared to monotherapy, the combination therapy significantly accelerated wound healing and reduced bacterial burden. Conclusions The combination of EAR and EDTA with polymyxins offers a novel therapeutic approach for managing skin infections caused by polymyxinresistant A. baumannii.
Collapse
Affiliation(s)
- Yue Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yinping Liang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Xiaoqing Xie
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Hongwei Pan
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Meng Cao
- Research and Development Center, Shandong Aobo Biotechnology Co., Ltd, Liaocheng, Shandong, China
| | - Shuhua Wang
- Research and Development Center, Shandong Aobo Biotechnology Co., Ltd, Liaocheng, Shandong, China
| | - Dalei Wu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Jing Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuandong Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Wei Hu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| |
Collapse
|
10
|
Mazzantini D, Massimino M, Calvigioni M, Rossi V, Celandroni F, Lupetti A, Batoni G, Ghelardi E. Anti-Staphylococcal Biofilm Effects of a Liposome-Based Formulation Containing Citrus Polyphenols. Antibiotics (Basel) 2024; 13:318. [PMID: 38666994 PMCID: PMC11047357 DOI: 10.3390/antibiotics13040318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/29/2024] Open
Abstract
Biofilms are surface-associated microbial communities embedded in a matrix that is almost impenetrable to antibiotics, thus constituting a critical health threat. Biofilm formation on the cornea or ocular devices can lead to serious and difficult-to-treat infections. Nowadays, natural molecules with antimicrobial activity and liposome-based delivery systems are proposed as anti-biofilm candidates. In this study, the anti-biofilm activity of a formulation containing citrus polyphenols encapsulated in liposomes was evaluated against Staphylococcus aureus and Staphylococcus epidermidis, the most common agents in ocular infections. The formulation activity against planktonic staphylococci was tested by broth microdilution and sub-inhibitory concentrations were used to evaluate the effect on biofilm formation using the crystal violet (CV) assay. The eradicating effect of the preparation on mature biofilms was investigated by the CV assay, plate count, and confocal laser scanning microscopy. The product was bactericidal against staphylococci at a dilution of 1:2 or 1:4 and able to reduce biofilm formation even if diluted at 1:64. The formulation also had the ability to reduce the biomass of mature biofilms without affecting the number of cells, suggesting activity on the extracellular matrix. Overall, our results support the application of the used liposome-encapsulated polyphenols as an anti-biofilm strategy to counter biofilm-associated ocular infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 37, 56123 Pisa, Italy; (D.M.); (M.M.); (M.C.); (V.R.); (F.C.); (A.L.); (G.B.)
| |
Collapse
|
11
|
Tiwari S, Gidwani B, Vyas A. Quorum Sensing in Gram-Negative Bacteria: Strategies to Overcome Antibiotic Resistance in Ocular Infections. Curr Mol Med 2024; 24:876-888. [PMID: 37497706 DOI: 10.2174/1566524023666230727094635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023]
Abstract
Truly miraculous medications and antibiotics have helped save untold millions of lives. Antibiotic resistance, however, is a significant issue related to health that jeopardizes the effectiveness of antibiotics and could harm everyone's health. Bacteria, not humans or animals, become antibiotic-resistant. Bacteria use quorum-sensing communication routes to manage an assortment of physiological exercises. Quorum sensing is significant for appropriate biofilm development. Antibiotic resistance occurs when bacteria establish a biofilm on a surface, shielding them from the effects of infection-fighting drugs. Acylated homoserine lactones are used as autoinducers by gram-negative microscopic organisms to impart. However, antibiotic resistance among ocular pathogens is increasing worldwide. Bacteria are a significant contributor to ocular infections around the world. Gram-negative microscopic organisms are dangerous to ophthalmic tissues. This review highlights the use of elective drug targets and treatments, for example, combinational treatment, to vanquish antibiotic-resistant bacteria. Also, it briefly portrays anti-biotic resistance brought about by gram-negative bacteria and approaches to overcome resistance with the help of quorum sensing inhibitors and nanotechnology as a promising medication conveyance approach to give insurance of anti-microbials and improve pathways for the administration of inhibitors of quorum sensing with a blend of anti-microbials to explicit target destinations and penetration through biofilms for treatment of ocular infections. It centres on the methodologies to sidestep the confinements of ocular anti-biotic delivery with new visual innovation.
Collapse
Affiliation(s)
- Sakshi Tiwari
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, C.G., India
| | - Bina Gidwani
- Columbia Institute of Pharmacy, Raipur, C.G., India
| | - Amber Vyas
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, C.G., India
| |
Collapse
|
12
|
Blanco-Cabra N, Alcàcer-Almansa J, Admella J, Arévalo-Jaimes BV, Torrents E. Nanomedicine against biofilm infections: A roadmap of challenges and limitations. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1944. [PMID: 38403876 DOI: 10.1002/wnan.1944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/28/2023] [Accepted: 01/27/2024] [Indexed: 02/27/2024]
Abstract
Microbial biofilms are complex three-dimensional structures where sessile microbes are embedded in a polymeric extracellular matrix. Their resistance toward the host immune system as well as to a diverse range of antimicrobial treatments poses a serious health and development threat, being in the top 10 global public health threats declared by the World Health Organization. In an effort to combat biofilm-related microbial infections, several strategies have been developed to independently eliminate biofilms or to complement conventional antibiotic therapies. However, their limitations leave room for other treatment alternatives, where the application of nanotechnology to biofilm eradication has gained significant relevance in recent years. Their small size, penetration efficiency, and the design flexibility that they present makes them a promising alternative for biofilm infection treatment, although they also present set-backs. This review aims to describe the main possibilities and limitations of nanomedicine against biofilms, while covering the main aspects of biofilm formation and study, and the current therapies for biofilm treatment. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Núria Blanco-Cabra
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Júlia Alcàcer-Almansa
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Joana Admella
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Betsy Verónica Arévalo-Jaimes
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Chi J, Li Y, Zhang N, Liu H, Chen Z, Li J, Huang X. Fosfomycin Enhances the Inhibition Ability of Linezolid Against Biofilms of Vancomycin-Resistant Enterococcus faecium in vitro. Infect Drug Resist 2023; 16:7707-7719. [PMID: 38144225 PMCID: PMC10748582 DOI: 10.2147/idr.s428485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/14/2023] [Indexed: 12/26/2023] Open
Abstract
Purpose We explored the inhibition ability of linezolid/fosfomycin combination against biofilms of vancomycin-resistant Enterococcus faecium (VREfm) and tried to provide a theoretical basis for the treatment of VREfm biofilm-associated infections. Methods Four clinical isolates of VREfm (No.2, No.4, No.5, and No.6) were used for this study, which were collected from the First Affiliated Hospital of Anhui Medical University. The checkerboard method was used to assess the synergistic effect of linezolid and fosfomycin. The inhibition ability of biofilm biomass was evaluated by crystal violet staining, and the metabolic activity was tested by an Alamar blue cell viability assay. Changes in biofilm formation-related genes of the strains after incubating with drugs were investigated via the quantitative real-time polymerase chain reaction (RT-qPCR). Results The fractional inhibitory concentration index (FICI) showed that linezolid combined with fosfomycin had a synergistic effect on all four VREfm isolates. Compared with linezolid monotherapy, linezolid combined with fosfomycin led to a significant decrease in biofilm biomass and metabolic activity, especially in the mature biofilm. The results of RT-qPCR showed linezolid combined with fosfomycin inhibition biofilm formation through the inhibition of cylA, ebpA, and gelE transcription in VREfm in the initial and mature stages. To the mature biofilm, the combination also reduced the expression of asa1, atlA, and esp. Conclusion The combination of linezolid and fosfomycin represented stronger inhibitory effect on the biofilm formation of VREfm than linezolid alone.
Collapse
Affiliation(s)
- Jie Chi
- Department of Pharmacy, Tongling Municipal Hospital, Tongling, Anhui, People’s Republic of China
| | - Yaowen Li
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, People’s Republic of China
| | - Na Zhang
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, People’s Republic of China
| | - Huiping Liu
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, People’s Republic of China
| | - Zhifeng Chen
- Department of Pharmacy, Tongling Municipal Hospital, Tongling, Anhui, People’s Republic of China
| | - Jiabin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Xiaohui Huang
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, People’s Republic of China
| |
Collapse
|
14
|
Matilla MA, Krell T. Targeting motility and chemotaxis as a strategy to combat bacterial pathogens. Microb Biotechnol 2023; 16:2205-2211. [PMID: 37387327 PMCID: PMC10686171 DOI: 10.1111/1751-7915.14306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023] Open
Affiliation(s)
- Miguel A. Matilla
- Department of Biotechnology and Environmental Protection, Estación Experimental del ZaidínConsejo Superior de Investigaciones CientíficasGranadaSpain
| | - Tino Krell
- Department of Biotechnology and Environmental Protection, Estación Experimental del ZaidínConsejo Superior de Investigaciones CientíficasGranadaSpain
| |
Collapse
|
15
|
Mendhe S, Badge A, Ugemuge S, Chandi D. Impact of Biofilms on Chronic Infections and Medical Challenges. Cureus 2023; 15:e48204. [PMID: 38050493 PMCID: PMC10693677 DOI: 10.7759/cureus.48204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/03/2023] [Indexed: 12/06/2023] Open
Abstract
Biofilms which are intricate colonies of bacteria encapsulated in a self-produced matrix are becoming more widely recognized for their importance in persistent infections. Biofilm-related infections provide distinct diagnostic and therapy issues needing novel approaches. Biofilms are common in clinical settings and contribute to the persistence of diseases related to medical devices, dental health, respiratory disorders, and chronic infection. Overcoming these problems requires a thorough understanding of the elements that influence biofilm development and their complex interactions within the microbial community. Emerging diagnostic techniques and therapy approaches that target biofilm-related disorders at different levels give hope for improved patient outcomes. This review looks at how biofilm formation affects chronic infections in a variety of ways, including increased drug resistance, immune system evasion, and delayed diagnosis.
Collapse
Affiliation(s)
- Sakshi Mendhe
- Microbiology, Datta Meghe Medical College, Datta Meghe Institute of Higher Education and Research (DU), Nagpur, IND
| | - Ankit Badge
- Microbiology, Datta Meghe Medical College, Datta Meghe Institute of Higher Education and Research (DU), Nagpur, IND
| | - Sarita Ugemuge
- Microbiology, Datta Meghe Medical College, Datta Meghe Institute of Higher Education and Research (DU), Nagpur, IND
| | - Dhurba Chandi
- Microbiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research (DU), Wardha, IND
| |
Collapse
|