1
|
Lee GL, Hu CC, Chen MF, Chang Y, Lin YC, Wu YY, Hsu YH. Inosine from purine metabolism enhances fracture healing by coupling fibrinolysis and angiogenesis of type H vessels. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167818. [PMID: 40157654 DOI: 10.1016/j.bbadis.2025.167818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/24/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Fibrinolysis-angiogenesis coupling is crucial for successful fracture healing, in which type H vessels play an indispensable role. However, the metabolic control of fibrinolysis-type H angiogenesis coupling in fracture healing remains unclear. We used a metabolomics approach to gain metabolic insights from mouse fracture models (0.3 mm and 1.0 mm femur defects). Furthermore, human umbilical vein endothelial cells (HUVECs) and MC3T3-E1 cells were employed as in vitro models to examine the effects of identified metabolites on endothelial events and osteogenesis, respectively. CD31 and endomucin (Emcn) were used for detecting type H markers, and tissue-type plasminogen activator (tPA) and plasminogen activator inhibitor-1 (PAI-1) for fibrinolysis. A femur defect of 1.5 mm in mice was included to validate the therapeutic potential of identified metabolites by bone imaging and micro-CT. Purine metabolism is the most significant pathway in fracture healing; three purinergic metabolites, adenosine, adenine, and inosine, are regulated in mouse serum. According to the in vivo results, CD31HiEmcnHi type H vessels are upregulated near the defect site in mouse femur and are associated with tPA expression, but not PAI-1. Additionally, in vitro experiments examining the endothelial functions of HUVECs demonstrated that these three metabolites promote cell migration and tube formation rather than proliferation. Fibrinolytic activity and type H phenotype in HUVECs were induced only by inosine through activation of the adenosine A2A receptor. Inosine, regulated during fracture healing, has the capacity to synchronously induce fibrinolysis and type H phenotype in line with osteogenesis, indicating its role in enhancing fracture healing.
Collapse
Affiliation(s)
- Guan-Lin Lee
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chih-Chien Hu
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Mei-Feng Chen
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Yuhan Chang
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Chih Lin
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ying-Yu Wu
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Yung-Heng Hsu
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| |
Collapse
|
2
|
Bayne C, McGrosso D, Sanchez C, Rossitto LA, Patterson M, Gonzalez C, Baus C, Volk C, Zhao HN, Dorrestein P, Nizet V, Sakoulas G, Gonzalez DJ, Rose W. Multi-omic signatures of host response associated with presence, type, and outcome of enterococcal bacteremia. mSystems 2025; 10:e0147124. [PMID: 39835799 PMCID: PMC11834471 DOI: 10.1128/msystems.01471-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025] Open
Abstract
Despite the prevalence and severity of enterococcal bacteremia (EcB), the mechanisms underlying systemic host responses to the disease remain unclear. Here, we present an extensive study that profiles molecular differences in plasma from EcB patients using an unbiased multi-omics approach. We performed shotgun proteomics and metabolomics on 105 plasma samples, including those from EcB patients and healthy volunteers. Comparison between healthy volunteer and EcB-infected patient samples revealed significant disparities in proteins and metabolites involved in the acute phase response, inflammatory processes, and cholestasis. Several features distinguish these two groups with remarkable accuracy. Cross-referencing EcB signatures with those of Staphylococcus aureus bacteremia revealed shared reductions in cholesterol metabolism proteins and differing responses in platelet alpha granule and neutrophil-associated proteins. Characterization of Enterococcus isolates derived from patients facilitated a nuanced comparison between EcB caused by Enterococcus faecalis and Enterococcus faecium, uncovering reduced immunoglobulin abundances in E. faecium cases and features capable of distinguishing the underlying microbe. Leveraging extensive patient metadata, we now have identified features associated with mortality or survival, revealing significant multi-omic differences and pinpointing histidine-rich glycoprotein and fetuin-B as features capable of distinguishing survival status with excellent accuracy. Altogether, this study aims to culminate in the creation of objective risk stratification algorithms-a pivotal step toward enhancing patient management and care. To facilitate the exploration of this rich data source, we provide a user-friendly interface at https://gonzalezlab.shinyapps.io/EcB_multiomics/. IMPORTANCE Enterococcus infections have emerged as the second most common nosocomial infection, with enterococcal bacteremia (EcB) contributing to thousands of patient deaths annually. To address a lack of detailed understanding regarding the specific systemic response to EcB, we conducted a comprehensive multi-omic evaluation of the systemic host response observed in patient plasma. Our findings reveal significant features in the metabolome and proteome associated with the presence of infection, species differences, and survival outcome. We identified features capable of discriminating EcB infection from healthy states and survival from mortality with excellent accuracy, suggesting potential practical clinical utility. However, our study also established that systemic features to distinguish Enterococcus faecalis from Enterococcus faecium EcB show only a moderate degree of discriminatory accuracy, unlikely to significantly improve upon current diagnostic methods. Comparisons of differences in the plasma proteome relative to healthy samples between bacteremia caused by Enterococcus and Staphylococcus aureus suggest the presence of bacteria-specific responses alongside conserved inflammatory reactions.
Collapse
Affiliation(s)
- Charlie Bayne
- Biomedical Sciences Graduate Program, UC San Diego, La Jolla, San Diego, California, USA
- Department of Pharmacology, University of California San Diego, La Jolla, San Diego, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, San Diego, California, USA
| | - Dominic McGrosso
- Biomedical Sciences Graduate Program, UC San Diego, La Jolla, San Diego, California, USA
- Department of Pharmacology, University of California San Diego, La Jolla, San Diego, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, San Diego, California, USA
| | - Concepcion Sanchez
- Biomedical Sciences Graduate Program, UC San Diego, La Jolla, San Diego, California, USA
- Department of Pharmacology, University of California San Diego, La Jolla, San Diego, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, San Diego, California, USA
| | - Leigh-Ana Rossitto
- Biomedical Sciences Graduate Program, UC San Diego, La Jolla, San Diego, California, USA
- Department of Pharmacology, University of California San Diego, La Jolla, San Diego, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, San Diego, California, USA
| | - Maxwell Patterson
- Department of Pharmacology, University of California San Diego, La Jolla, San Diego, California, USA
| | - Carlos Gonzalez
- Department of Pharmacology, University of California San Diego, La Jolla, San Diego, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, San Diego, California, USA
| | - Courtney Baus
- Department of Pharmacy, UW Health, Madison, Wisconsin, USA
| | - Cecilia Volk
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Haoqi Nina Zhao
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, San Diego, California, USA
| | - Pieter Dorrestein
- Department of Pharmacology, University of California San Diego, La Jolla, San Diego, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, San Diego, California, USA
- Department of Pediatrics, UC San Diego, La Jolla, San Diego, California, USA
- Center for Microbiome Innovation, University of California at San Diego, La Jolla, San Diego, California, USA
| | - Victor Nizet
- Department of Pharmacology, University of California San Diego, La Jolla, San Diego, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, San Diego, California, USA
- Department of Pediatrics, UC San Diego, La Jolla, San Diego, California, USA
| | - George Sakoulas
- Department of Pediatrics, UC San Diego, La Jolla, San Diego, California, USA
- Sharp Rees Stealy Medical Group, San Diego, California, USA
| | - David J. Gonzalez
- Department of Pharmacology, University of California San Diego, La Jolla, San Diego, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, San Diego, California, USA
- Center for Microbiome Innovation, University of California at San Diego, La Jolla, San Diego, California, USA
| | - Warren Rose
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Singh T, Hasan M, Gaule TG, Ajjan RA. Exploiting the Molecular Properties of Fibrinogen to Control Bleeding Following Vascular Injury. Int J Mol Sci 2025; 26:1336. [PMID: 39941103 PMCID: PMC11818741 DOI: 10.3390/ijms26031336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
The plasma protein fibrinogen is critical for haemostasis and wound healing, serving as the structural foundation of the blood clot. Through a complex interaction between coagulation factors, the soluble plasma fibrinogen is converted to insoluble fibrin networks, which form the skeleton of the blood clot, an essential step to limit blood loss after vascular trauma. This review examines the molecular mechanisms by which fibrinogen modulates bleeding, focusing on its interactions with other proteins that maintain fibrin network stability and prevent premature breakdown. Moreover, we also cover the role of fibrinogen in ensuring clot stability through the physiological interaction with platelets. We address the therapeutic applications of fibrinogen across various clinical contexts, including trauma-induced coagulopathy, postpartum haemorrhage, and cardiac surgery. Importantly, a full understanding of protein function will allow the development of new therapeutics to limit blood loss following vascular trauma, which remains a key cause of mortality worldwide. While current management strategies help with blood loss following vascular injury, they are far from perfect and future research should prioritise refining fibrinogen replacement strategies and developing novel agents to stabilise the fibrin network. Exploiting fibrinogen's molecular properties holds significant potential for improving outcomes in trauma care, surgical interventions and obstetric haemorrhage.
Collapse
Affiliation(s)
- Tanjot Singh
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Woodhouse, Leeds LS2 9JT, UK; (T.S.); (T.G.G.)
| | - Muhammad Hasan
- St James’s University Hospital, Beckett St, Harehills, Leeds LS9 7TF, UK;
| | - Thembaninkosi G. Gaule
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Woodhouse, Leeds LS2 9JT, UK; (T.S.); (T.G.G.)
| | - Ramzi A. Ajjan
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Woodhouse, Leeds LS2 9JT, UK; (T.S.); (T.G.G.)
| |
Collapse
|
4
|
Murad D, Paracha RZ, Nisar M. Unravelling the impact of SARS-CoV-2 on hemostatic and complement systems: a systems immunology perspective. Front Immunol 2025; 15:1457324. [PMID: 39885991 PMCID: PMC11781117 DOI: 10.3389/fimmu.2024.1457324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/17/2024] [Indexed: 02/01/2025] Open
Abstract
The hemostatic system prevents and stops bleeding, maintaining circulatory integrity after injury. It directly interacts with the complement system, which is key to innate immunity. In coronavirus disease 2019 (COVID-19), dysregulation of the hemostatic and complement systems has been associated with several complications. To understand the essential balance between activation and regulation of these systems, a quantitative systems immunology model can be established. The dynamics of the components are examined under three distinct conditions: the disease state representing symptomatic COVID-19 state, an intervened disease state marked by reduced levels of regulators, and drug interventions including heparin, tranexamic acid, avdoralimab, garadacimab, and tocilizumab. Simulation results highlight key components affected, including thrombin, tissue plasminogen activator, plasmin, fibrin degradation products, interleukin 6 (IL-6), the IL-6 and IL-6R complex, and the terminal complement complex (C5b-9). We explored that the decreased levels of complement factor H and C1-inhibitor significantly elevate these components, whereas tissue factor pathway inhibitor and alpha-2-macroglobulin have more modest effects. Furthermore, our analysis reveals that drug interventions have a restorative impact on these factors. Notably, targeting thrombin and plasmin in the early stages of thrombosis and fibrinolysis can improve the overall system. Additionally, the regulation of C5b-9 could aid in lysing the virus and/or infected cells. In conclusion, this study explains the regulatory mechanisms of the hemostatic and complement systems and illustrates how the biopathway machinery sustains the balance between activation and inhibition. The knowledge that we have acquired could contribute to designing therapies that target the hemostatic and complement systems.
Collapse
Affiliation(s)
| | - Rehan Zafar Paracha
- School of Interdisciplinary Engineering and Sciences (SINES), Department of Sciences,
National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | | |
Collapse
|
5
|
Garrigues RJ, Garrison MP, Garcia BL. The Crystal Structure of the Michaelis-Menten Complex of C1 Esterase Inhibitor and C1s Reveals Novel Insights into Complement Regulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:718-729. [PMID: 38995166 PMCID: PMC11333171 DOI: 10.4049/jimmunol.2400194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024]
Abstract
The ancient arm of innate immunity known as the complement system is a blood proteolytic cascade involving dozens of membrane-bound and solution-phase components. Although many of these components serve as regulatory molecules to facilitate controlled activation of the cascade, C1 esterase inhibitor (C1-INH) is the sole canonical complement regulator belonging to a superfamily of covalent inhibitors known as serine protease inhibitors (SERPINs). In addition to its namesake role in complement regulation, C1-INH also regulates proteases of the coagulation, fibrinolysis, and contact pathways. Despite this, the structural basis for C1-INH recognition of its target proteases has remained elusive. In this study, we present the crystal structure of the Michaelis-Menten (M-M) complex of the catalytic domain of complement component C1s and the SERPIN domain of C1-INH at a limiting resolution of 3.94 Å. Analysis of the structure revealed that nearly half of the protein/protein interface is formed by residues outside of the C1-INH reactive center loop. The contribution of these residues to the affinity of the M-M complex was validated by site-directed mutagenesis using surface plasmon resonance. Parallel analysis confirmed that C1-INH-interfacing residues on C1s surface loops distal from the active site also drive affinity of the M-M complex. Detailed structural comparisons revealed differences in substrate recognition by C1s compared with C1-INH recognition and highlight the importance of exosite interactions across broader SERPIN/protease systems. Collectively, this study improves our understanding of how C1-INH regulates the classical pathway of complement, and it sheds new light on how SERPINs recognize their cognate protease targets.
Collapse
Affiliation(s)
- Ryan J Garrigues
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Matthew P Garrison
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Brandon L Garcia
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC
| |
Collapse
|
6
|
Zainal Abidin A, Norrrahim MNF, Mohamed Shakrin NNS, Ibrahim B, Abdullah N, Abdul Rashid JI, Mohd Kasim NA, Ahmad Shah NA. Amidine containing compounds: Antimicrobial activity and its potential in combating antimicrobial resistance. Heliyon 2024; 10:e32010. [PMID: 39170404 PMCID: PMC11336351 DOI: 10.1016/j.heliyon.2024.e32010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 08/23/2024] Open
Abstract
Antimicrobial resistance (AMR) is a growing and concerning threat to global public health, necessitating innovative strategies to combat this crisis. Amidine-containing compounds have emerged as promising agents in the battle against AMR. This review gives a summary of recent advances from the past decade in studies of antimicrobial amidine-containing compounds with the aim to feature their structural diversity and the pharmacological relevance of the moiety to antimicrobial activity and their potential use in combating antimicrobial resistance, to the greatest extent possible. Highlighting is put on chemical structure of such compounds in relation to antimicrobial activities such as antibacterial, antifungal, and antiparasitic activities. Researchers commonly modify molecules containing amidine or incorporate amidine into existing antimicrobial agents to enhance their pharmacological attributes and combat antimicrobial resistance. This comprehensive review consolidates the current knowledge on amidine-containing compounds, elucidating their antimicrobial mechanisms and highlighting their promise in addressing the global AMR crisis. By offering a multidisciplinary perspective, we aim to inspire further research and innovation in this critical area of antimicrobial research.
Collapse
Affiliation(s)
- Asmaa Zainal Abidin
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| | - Mohd Nor Faiz Norrrahim
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| | | | - Baharudin Ibrahim
- Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Norli Abdullah
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| | - Jahwarhar Izuan Abdul Rashid
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| | - Noor Azilah Mohd Kasim
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| | - Noor Aisyah Ahmad Shah
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Sawetaji, Aggarwal KK. A Protease from Moringa oleifera Lam. Exhibits In-vitro Blood Clot Solubilization and Fibrin Hydrolysis. Protein J 2024; 43:923-934. [PMID: 39068632 DOI: 10.1007/s10930-024-10222-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/30/2024]
Abstract
Thrombosis is the formation of abnormal blood clots in the blood vessels that obstruct blood flow and lead to thrombosis. Current treatments for thrombosis are associated with serious side effects. Therefore there is a need for alternative natural therapy. A fibrinolytic protease was isolated from fresh leaves of Moringa oleifera Lam. and characterized for its potential to solubilize blood clots and hydrolyse fibrin under in-vitro conditions. The isolated protease showed a single protein band on native-PAGE. It showed optimum fibrinolytic activity at pH 8.0, 37 oC with 50 µg protein. The fibrinolytic activity of isolated protease was also confirmed by fibrin zymography. Km and Vmax of isolated protease were determined by the Lineweaver Burk plot. The isolated protease could solubilize 96.41% of blood clots by 96 h under in-vitro conditions. In-vitro fibrin hydrolysis and blood clot solubilization activities shown by an isolated protease from leaves of Moringa oleifera Lam. suggest its fibrinolytic potential to dissolve blood clots. Being a natural molecule and from a dietary plant it can be explored as an alternative natural therapy against thrombosis.
Collapse
Affiliation(s)
- Sawetaji
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16-C Dwarka, New Delhi, 110078, India
| | - Kamal Krishan Aggarwal
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16-C Dwarka, New Delhi, 110078, India.
| |
Collapse
|
8
|
Lee CN, Hall BA, Sanford L, Molehin AJ. Molecular Characterization and Functional Analysis of a Schistosoma mansoni Serine Protease Inhibitor, Smserpin-p46. Microorganisms 2024; 12:1164. [PMID: 38930546 PMCID: PMC11205507 DOI: 10.3390/microorganisms12061164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Serine protease inhibitors are a superfamily of proteins that regulate various physiological processes including fibrinolysis, inflammation and immune responses. In parasite systems, serpins are believed to play important roles in parasite colonization, inhibition of host immune serine proteases and penetration of defensive barriers. However, serpins are less well characterized in schistosomes. In this study, a Schistosoma mansoni serpin (Smserpin-p46) containing a 1360 base pair open reading frame, was cloned, expressed and functionally characterized. Bioinformatics analysis revealed that Smserpin-p46 contains the key residues, structural domains and motifs characteristic of inhibitory serpins. Gene expression profiling demonstrated stage-specific expression of Smserpin-p46 with the highest expression in adult male worms. Recombinant Smserpin-p46 (rSmserpin-p46) inhibited both human neutrophil cathepsin G and elastase, key serine proteases involved in NETosis, a program for the formation of neutrophil extracellular traps. Using specific rabbit antiserum, Smserpin-p46 was detected in soluble worm antigen preparation and was localized to the adult worm tegument. Cumulatively, the expression of Smserpin-p46 on the parasite tegument and its ability to inhibit proteases involved in NETosis highlights the importance of this serpin in parasite-host interactions and encourages its further investigation as a candidate vaccine antigen for the control of schistosomiasis.
Collapse
Affiliation(s)
- Christine N. Lee
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA;
| | - Brooke Ashlyn Hall
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA;
| | - Leah Sanford
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA;
| | - Adebayo J. Molehin
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA;
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA;
| |
Collapse
|
9
|
Hamada M, Varkoly KS, Riyadh O, Beladi R, Munuswamy-Ramanujam G, Rawls A, Wilson-Rawls J, Chen H, McFadden G, Lucas AR. Urokinase-Type Plasminogen Activator Receptor (uPAR) in Inflammation and Disease: A Unique Inflammatory Pathway Activator. Biomedicines 2024; 12:1167. [PMID: 38927374 PMCID: PMC11201033 DOI: 10.3390/biomedicines12061167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/24/2024] [Accepted: 05/10/2024] [Indexed: 06/28/2024] Open
Abstract
The urokinase-type plasminogen activator receptor (uPAR) is a unique protease binding receptor, now recognized as a key regulator of inflammation. Initially, uPA/uPAR was considered thrombolytic (clot-dissolving); however, recent studies have demonstrated its predominant immunomodulatory functions in inflammation and cancer. The uPA/uPAR complex has a multifaceted central role in both normal physiological and also pathological responses. uPAR is expressed as a glycophosphatidylinositol (GPI)-linked receptor interacting with vitronectin, integrins, G protein-coupled receptors, and growth factor receptors within a large lipid raft. Through protein-to-protein interactions, cell surface uPAR modulates intracellular signaling, altering cellular adhesion and migration. The uPA/uPAR also modifies extracellular activity, activating plasminogen to form plasmin, which breaks down fibrin, dissolving clots and activating matrix metalloproteinases that lyse connective tissue, allowing immune and cancer cell invasion and releasing growth factors. uPAR is now recognized as a biomarker for inflammatory diseases and cancer; uPAR and soluble uPAR fragments (suPAR) are increased in viral sepsis (COVID-19), inflammatory bowel disease, and metastasis. Here, we provide a comprehensive overview of the structure, function, and current studies examining uPAR and suPAR as diagnostic markers and therapeutic targets. Understanding uPAR is central to developing diagnostic markers and the ongoing development of antibody, small-molecule, nanogel, and virus-derived immune-modulating treatments that target uPAR.
Collapse
Affiliation(s)
- Mostafa Hamada
- College of Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO 64106, USA; (M.H.); (O.R.)
| | - Kyle Steven Varkoly
- Department of Internal Medicine, McLaren Macomb Hospital, Michigan State University College of Human Medicine, 1000 Harrington St., Mt Clemens, MI 48043, USA
| | - Omer Riyadh
- College of Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO 64106, USA; (M.H.); (O.R.)
| | - Roxana Beladi
- Department of Neurosurgery, Ascension Providence Hospital, Michigan State University College of Human Medicine, 16001 W Nine Mile Rd, Southfield, MI 48075, USA;
| | - Ganesh Munuswamy-Ramanujam
- Molecular Biology and Immunobiology Division, Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Kattankulathur 603203, India;
| | - Alan Rawls
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA; (A.R.); (J.W.-R.)
| | - Jeanne Wilson-Rawls
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA; (A.R.); (J.W.-R.)
| | - Hao Chen
- Department of Tumor Center, Lanzhou University Second Hospital, Lanzhou 730030, China;
| | - Grant McFadden
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, 727 E Tyler St., Tempe, AZ 85287, USA;
| | - Alexandra R. Lucas
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, 727 E Tyler St., Tempe, AZ 85287, USA;
| |
Collapse
|
10
|
Rani A, Pandey DM, Pandey JP. Biomolecular characterization of Antheraea mylitta cocoonase: A secreted protease. Anal Biochem 2024; 686:115408. [PMID: 38008303 DOI: 10.1016/j.ab.2023.115408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Cocoonase is a protease secreted during the emergence of silk moths. In the present study cocoonase of Antheraea mylitta was collected, purified and secondary structure was determined using circular dichroism (CD) spectroscopy which revealed the presence of α-helix 4.3%, β-sheet 55%, turn 8% and random coil 32.7%. The thermal stability of cocoonase was studied using CD spectroscopy while the thermal property was observed using Differential Scanning Calorimetry (DSC). Furthermore, MALDI-TOF peptide mass fingerprinting (PMF) was performed for similar protein identification using the MASCOT server. Using casein as the substrate, the kinetic constants Km and Vmax were 13 × 103 mg/ml and 15.09 × 10-2 μg/mg.s1 respectively. The specific activity of cocoonase was observed to be maximum at temperature 40 °C, pH-8.0. The effect of heavy metals Hg2+, Cd2+, Co2+, Pb2+ showed inhibitory activity at higher concentrations, while few metals like Mn2+, Fe3+ enhanced the activity while the effect of Ca2+ was not much on the activity. Soybean trypsin inhibitor and PMSF showed an inhibitory effect on the activity of cocoonase. Additionally, antioxidant scavenging and fibrinolytic properties were also observed. Furthermore, the imperative information generated through the present study will serve to explore cocoonase for its prospective pharmaceutical applications.
Collapse
Affiliation(s)
- Aruna Rani
- Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India; Central Tasar Research and Training Institute (Central Silk Board, MOT Govt. of India), Piska Nagri, Ranchi, 835303, Jharkhand, India
| | - Dev Mani Pandey
- Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - Jay Prakash Pandey
- Central Tasar Research and Training Institute (Central Silk Board, MOT Govt. of India), Piska Nagri, Ranchi, 835303, Jharkhand, India.
| |
Collapse
|
11
|
Müller P, Zimmer C, Frey A, Holzmann G, Weldert AC, Schirmeister T. Ligand-Based Design of Selective Peptidomimetic uPA and TMPRSS2 Inhibitors with Arg Bioisosteres. Int J Mol Sci 2024; 25:1375. [PMID: 38338655 PMCID: PMC10855164 DOI: 10.3390/ijms25031375] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/20/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Trypsin-like serine proteases are involved in many important physiological processes like blood coagulation and remodeling of the extracellular matrix. On the other hand, they are also associated with pathological conditions. The urokinase-pwlasminogen activator (uPA), which is involved in tissue remodeling, can increase the metastatic behavior of various cancer types when overexpressed and dysregulated. Another member of this protease class that received attention during the SARS-CoV 2 pandemic is TMPRSS2. It is a transmembrane serine protease, which enables cell entry of the coronavirus by processing its spike protein. A variety of different inhibitors have been published against both proteases. However, the selectivity over other trypsin-like serine proteases remains a major challenge. In the current study, we replaced the arginine moiety at the P1 site of peptidomimetic inhibitors with different bioisosteres. Enzyme inhibition studies revealed that the phenylguanidine moiety in the P1 site led to strong affinity for TMPRSS2, whereas the cyclohexylguanidine derivate potently inhibited uPA. Both inhibitors exhibited high selectivity over other structurally similar and physiologically important proteases.
Collapse
Affiliation(s)
| | | | | | | | | | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany; (P.M.); (C.Z.); (A.F.); (G.H.); (A.C.W.)
| |
Collapse
|
12
|
Stierschneider A, Wiesner C. Shedding light on the molecular and regulatory mechanisms of TLR4 signaling in endothelial cells under physiological and inflamed conditions. Front Immunol 2023; 14:1264889. [PMID: 38077393 PMCID: PMC10704247 DOI: 10.3389/fimmu.2023.1264889] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Toll-like receptor 4 (TLR4) are part of the innate immune system. They are capable of recognizing pathogen-associated molecular patterns (PAMPS) of microbes, and damage-associated molecular patterns (DAMPs) of damaged tissues. Activation of TLR4 initiates downstream signaling pathways that trigger the secretion of cytokines, type I interferons, and other pro-inflammatory mediators that are necessary for an immediate immune response. However, the systemic release of pro-inflammatory proteins is a powerful driver of acute and chronic inflammatory responses. Over the past decades, immense progress has been made in clarifying the molecular and regulatory mechanisms of TLR4 signaling in inflammation. However, the most common strategies used to study TLR4 signaling rely on genetic manipulation of the TLR4 or the treatment with agonists such as lipopolysaccharide (LPS) derived from the outer membrane of Gram-negative bacteria, which are often associated with the generation of irreversible phenotypes in the target cells or unintended cytotoxicity and signaling crosstalk due to off-target or pleiotropic effects. Here, optogenetics offers an alternative strategy to control and monitor cellular signaling in an unprecedented spatiotemporally precise, dose-dependent, and non-invasive manner. This review provides an overview of the structure, function and signaling pathways of the TLR4 and its fundamental role in endothelial cells under physiological and inflammatory conditions, as well as the advances in TLR4 modulation strategies.
Collapse
Affiliation(s)
| | - Christoph Wiesner
- Department Science & Technology, Institute Biotechnology, IMC Krems University of Applied Sciences, Krems, Austria
| |
Collapse
|
13
|
Sananes A, Cohen I, Allon I, Ben‐David O, Abu Shareb R, Yegodayev KM, Stepensky D, Elkabets M, Papo N. Serine protease inhibitors decrease metastasis in prostate, breast, and ovarian cancers. Mol Oncol 2023; 17:2337-2355. [PMID: 37609678 PMCID: PMC10620120 DOI: 10.1002/1878-0261.13513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/18/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023] Open
Abstract
Targeted therapies for prostate, breast, and ovarian cancers are based on their activity against primary tumors rather than their anti-metastatic activity. Consequently, there is an urgent need for new agents targeting the metastatic process. Emerging evidence correlates in vitro and in vivo cancer invasion and metastasis with increased activity of the proteases mesotrypsin (prostate and breast cancer) and kallikrein 6 (KLK6; ovarian cancer). Thus, mesotrypsin and KLK6 are attractive putative targets for therapeutic intervention. As potential therapeutics for advanced metastatic prostate, breast, and ovarian cancers, we report novel mesotrypsin- and KLK6-based therapies, based on our previously developed mutants of the human amyloid β-protein precursor Kunitz protease inhibitor domain (APPI). These mutants, designated APPI-3M (prostate and breast cancer) and APPI-4M (ovarian cancer), demonstrated significant accumulation in tumors and therapeutic efficacy in orthotopic preclinical models, with the advantages of long retention times in vivo, high affinity and favorable pharmacokinetic properties. The applicability of the APPIs, as a novel therapy and for imaging purposes, is supported by their good safety profile and their controlled and scalable manufacturability in bioreactors.
Collapse
Affiliation(s)
- Amiram Sananes
- Avram and Stella Goldstein‐Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the NegevBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Itay Cohen
- Avram and Stella Goldstein‐Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the NegevBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Irit Allon
- Institute of Pathology, Barzilai University Medical Center, Ashkelon, Israel ad Faculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Oshrit Ben‐David
- Avram and Stella Goldstein‐Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the NegevBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Raghda Abu Shareb
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Ksenia M. Yegodayev
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - David Stepensky
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Niv Papo
- Avram and Stella Goldstein‐Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the NegevBen‐Gurion University of the NegevBeer‐ShevaIsrael
| |
Collapse
|
14
|
Zhang L, Li Y(H, Kibler K, Kraberger S, Varsani A, Turk J, Elmadbouly N, Aliskevich E, Spaccarelli L, Estifanos B, Enow J, Zanetti IR, Saldevar N, Lim E, Schlievert J, Browder K, Wilson A, Juan FA, Pinteric A, Garg A, Monder H, Saju R, Gisriel S, Jacobs B, Karr TL, Florsheim EB, Kumar V, Wallen J, Rahman M, McFadden G, Hogue BG, Lucas AR. Viral anti-inflammatory serpin reduces immuno-coagulopathic pathology in SARS-CoV-2 mouse models of infection. EMBO Mol Med 2023; 15:e17376. [PMID: 37534622 PMCID: PMC10493584 DOI: 10.15252/emmm.202317376] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023] Open
Abstract
SARS-CoV-2 acute respiratory distress syndrome (ARDS) induces uncontrolled lung inflammation and coagulopathy with high mortality. Anti-viral drugs and monoclonal antibodies reduce early COVID-19 severity, but treatments for late-stage immuno-thrombotic syndromes and long COVID are limited. Serine protease inhibitors (SERPINS) regulate activated proteases. The myxoma virus-derived Serp-1 protein is a secreted immunomodulatory serpin that targets activated thrombotic, thrombolytic, and complement proteases as a self-defense strategy to combat clearance. Serp-1 is effective in multiple animal models of inflammatory lung disease and vasculitis. Here, we describe systemic treatment with purified PEGylated Serp-1 as a therapy for immuno-coagulopathic complications during ARDS. Treatment with PEGSerp-1 in two mouse-adapted SARS-CoV-2 models in C57Bl/6 and BALB/c mice reduced lung and heart inflammation, with improved outcomes. PEGSerp-1 significantly reduced M1 macrophages in the lung and heart by modifying urokinase-type plasminogen activator receptor (uPAR), thrombotic proteases, and complement membrane attack complex (MAC). Sequential changes in gene expression for uPAR and serpins (complement and plasminogen inhibitors) were observed. PEGSerp-1 is a highly effective immune-modulator with therapeutic potential for severe viral ARDS, immuno-coagulopathic responses, and Long COVID.
Collapse
Affiliation(s)
- Liqiang Zhang
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Yize (Henry) Li
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
- School of Life SciencesArizona State UniversityTempeAZUSA
| | - Karen Kibler
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Simona Kraberger
- Center of Fundamental and Applied MicrobiomicsBiodesign Institute, Arizona State UniversityTempeAZUSA
| | - Arvind Varsani
- School of Life SciencesArizona State UniversityTempeAZUSA
- Center of Fundamental and Applied MicrobiomicsBiodesign Institute, Arizona State UniversityTempeAZUSA
- Center for Evolution and Medicine, School of Life SciencesArizona State UniversityTempeAZUSA
| | - Julie Turk
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Nora Elmadbouly
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Emily Aliskevich
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Laurel Spaccarelli
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Bereket Estifanos
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Junior Enow
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Isabela Rivabem Zanetti
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Nicholas Saldevar
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Efrem Lim
- School of Life SciencesArizona State UniversityTempeAZUSA
- Center of Fundamental and Applied MicrobiomicsBiodesign Institute, Arizona State UniversityTempeAZUSA
| | - Jessika Schlievert
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Kyle Browder
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Anjali Wilson
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Fernando Arcos Juan
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Aubrey Pinteric
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Aman Garg
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Henna Monder
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Rohan Saju
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Savanah Gisriel
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
- Departments of Pathology & Lab MedicineYale‐New Haven HospitalNew HavenCTUSA
| | - Bertram Jacobs
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
- School of Life SciencesArizona State UniversityTempeAZUSA
| | - Timothy L Karr
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
- Neurodegenerative Disease Research Center & Proteomics Center, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Esther Borges Florsheim
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
- School of Life SciencesArizona State UniversityTempeAZUSA
| | - Vivek Kumar
- New Jersey Institute of TechnologyNewarkNJUSA
| | | | - Masmudur Rahman
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Grant McFadden
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
- School of Life SciencesArizona State UniversityTempeAZUSA
| | - Brenda G Hogue
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
- School of Life SciencesArizona State UniversityTempeAZUSA
- Center for Applied Structural Discovery, Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Alexandra R Lucas
- Center for Personalized Diagnostics, Biodesign InstituteArizona State UniversityTempeAZUSA
- Center of Immunotherapy, Vaccines and Virotherapy, Biodesign InstituteArizona State UniversityTempeAZUSA
| |
Collapse
|
15
|
Toomer KH, Gerber GF, Zhang Y, Daou L, Tushek M, Hooper JE, Francischetti IMB. SARS-CoV-2 infection results in upregulation of Plasminogen Activator Inhibitor-1 and Neuroserpin in the lungs, and an increase in fibrinolysis inhibitors associated with disease severity. EJHAEM 2023; 4:324-338. [PMID: 37206290 PMCID: PMC10188457 DOI: 10.1002/jha2.654] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/14/2023] [Accepted: 01/21/2023] [Indexed: 05/21/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection results in coagulation activation although it is usually not associated with consumption coagulopathy. D-dimers are also commonly elevated despite systemic hypofibrinolysis. To understand these unusual features of coronavirus disease 2019 (COVID-19) coagulopathy, 64 adult patients with SARS-CoV-2 infection (36 moderate and 28 severe) and 16 controls were studied. We evaluated the repertoire of plasma protease inhibitors (Serpins, Kunitz, Kazal, Cystatin-like) targeting the fibrinolytic system: Plasminogen Activator Inhibitor-1 (PAI-1), Tissue Plasminogen Activator/Plasminogen Activator Inhibitor-1 complex (t-PA/PAI-1), α-2-Antiplasmin, Plasmin-α2-Antiplasmin Complex, Thrombin-activatable Fibrinolysis Inhibitor (TAFI)/TAFIa, Protease Nexin-1 (PN-1), and Neuroserpin (the main t-PA inhibitor of the central nervous system). Inhibitors of the common (Antithrombin, Thrombin-antithrombin complex, Protein Z [PZ]/PZ inhibitor, Heparin Cofactor II, and α2-Macroglobulin), Protein C ([PC], Protein C inhibitor, and Protein S), contact (Kallistatin, Protease Nexin-2/Amyloid Beta Precursor Protein, and α-1-Antitrypsin), and complement (C1-Inhibitor) pathways, in addition to Factor XIII, Histidine-rich glycoprotein (HRG) and Vaspin were also investigated by enzyme-linked immunosorbent assay. The association of these markers with disease severity was evaluated by logistic regression. Pulmonary expression of PAI-1 and Neuroserpin in the lungs from eight post-mortem cases was assessed by immunohistochemistry. Results show that six patients (10%) developed thrombotic events, and mortality was 11%. There was no significant reduction in plasma anticoagulants, in keeping with a compensated state. However, an increase in fibrinolysis inhibitors (PAI-1, Neuroserpin, PN-1, PAP, and t-PA/PAI-1) was consistently observed, while HRG was reduced. Furthermore, these markers were associated with moderate and/or severe disease. Notably, immunostains demonstrated overexpression of PAI-1 in epithelial cells, macrophages, and endothelial cells of fatal COVID-19, while Neuroserpin was found in intraalveolar macrophages only. These results imply that the lungs in SARS-CoV-2 infection provide anti-fibrinolytic activity resulting in a shift toward a local and systemic hypofibrinolytic state predisposing to (immuno)thrombosis, often in a background of compensated disseminated intravascular coagulation.
Collapse
Affiliation(s)
- Kevin H. Toomer
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Gloria F. Gerber
- Division of HematologyDepartment of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Yifan Zhang
- Department of BiostatisticsJohns Hopkins University Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Laetitia Daou
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Michael Tushek
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jody E. Hooper
- Department of PathologyStanford University School of MedicinePalo AltoCaliforniaUSA
| | | |
Collapse
|
16
|
Abdellatif HAA, Sultan BO, Nassar HM, Gomaa MEE, Sakr MG, Riad E, Al-Harbi AI, Abdulhakim JA, Fawzy MS, Abd El-Fadeal NM. Circulating Soluble Urokinase Plasminogen Activator Receptor as a Predictive Indicator for COVID-19-Associated Acute Kidney Injury and Mortality: Clinical and Bioinformatics Analysis. Int J Mol Sci 2023; 24:7177. [PMID: 37108340 PMCID: PMC10138406 DOI: 10.3390/ijms24087177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Urokinase receptors regulate the interplay between inflammation, immunity, and blood clotting. The soluble urokinase plasminogen activator system is an immunologic regulator affecting endothelial function and its related receptor; the soluble urokinase plasminogen activator receptor (suPAR) has been reported to impact kidney injury. This work aims to measure serum levels of suPAR in COVID-19 patients and correlate the measurements with variable clinicolaboratory parameters and patient outcomes. In this prospective cohort study, 150 COVID-19 patients and 50 controls were included. The circulating suPAR levels were quantified by Enzyme-linked immunosorbent assay (ELISA). Routine COVID-19 laboratory assessments, including CBC, CRP, LDH, serum creatinine, and estimated glomerular filtration rates, were performed. The need for oxygen therapy, CO-RAD score, and survival rates was assessed. Bioinformatic analysis and molecular docking were run to explore the urokinase receptor structure/function and to characterize molecules as potential anti-suPAR therapeutic targets, respectively. We found higher circulating suPAR levels in COVID-19 patients vs. controls (p < 0.001). Circulating suPAR levels positively correlated with COVID-19 severity, the need for O2 therapy, the total leukocytes count, and the neutrophils to lymphocyte ratio, while they were negatively correlated with the O2 saturation level, albumin, blood calcium, lymphocytic count, and GFR. In addition, the suPAR levels were associated with poor prognostic outcomes such as a high incidence of acute kidney injury (AKI) and mortality rate. Kaplan-Meier curves showed a lower survival rate with higher suPAR levels. The logistic regression analysis confirmed the significant association of suPAR levels with the occurrence of AKI related to COVID-19 and with increased mortality probability within three months of COVID-19 follow-up. Some compounds that can act similarly to uPAR were discovered and tested by molecular docking to identify the possible ligand-protein interactions. In conclusion, higher circulating suPAR levels were associated with COVID-19 severity and could be considered a putative predictor of AKI development and mortality.
Collapse
Affiliation(s)
- Hidi A. A. Abdellatif
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Oncology Diagnostic Unit, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Basma Osman Sultan
- Internal Medicine Department-Nephrology Unit, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Hassnaa M. Nassar
- Clinical Pathology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | | | - Mohamed Gamal Sakr
- Internal Medicine Department-Tropical Medicine, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Eman Riad
- Pulmonology Unit, Internal Medicine Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Alhanouf I. Al-Harbi
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu 46411, Saudi Arabia
| | - Jawaher A. Abdulhakim
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu 46411, Saudi Arabia
| | - Manal S. Fawzy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 1321, Saudi Arabia
| | - Noha M. Abd El-Fadeal
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Oncology Diagnostic Unit, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Center of Excellence in Molecular and Cellular Medicine, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
17
|
Humphreys SJ, Whyte CS, Mutch NJ. "Super" SERPINs-A stabilizing force against fibrinolysis in thromboinflammatory conditions. Front Cardiovasc Med 2023; 10:1146833. [PMID: 37153474 PMCID: PMC10155837 DOI: 10.3389/fcvm.2023.1146833] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
The superfamily of serine protease inhibitors (SERPINs) are a class of inhibitors that utilise a dynamic conformational change to trap and inhibit their target enzymes. Their powerful nature lends itself well to regulation of complex physiological enzymatic cascades, such as the haemostatic, inflammatory and complement pathways. The SERPINs α2-antiplasmin, plasminogen-activator inhibitor-1, plasminogen-activator inhibitor-2, protease nexin-1, and C1-inhibitor play crucial inhibitory roles in regulation of the fibrinolytic system and inflammation. Elevated levels of these SERPINs are associated with increased risk of thrombotic complications, obesity, type 2 diabetes, and hypertension. Conversely, deficiencies of these SERPINs have been linked to hyperfibrinolysis with bleeding and angioedema. In recent years SERPINs have been implicated in the modulation of the immune response and various thromboinflammatory conditions, such as sepsis and COVID-19. Here, we highlight the current understanding of the physiological role of SERPINs in haemostasis and inflammatory disease progression, with emphasis on the fibrinolytic pathway, and how this becomes dysregulated during disease. Finally, we consider the role of these SERPINs as potential biomarkers of disease progression and therapeutic targets for thromboinflammatory diseases.
Collapse
|
18
|
Transcriptomic Analysis of Circulating Leukocytes Obtained during the Recovery from Clinical Mastitis Caused by Escherichia coli in Holstein Dairy Cows. Animals (Basel) 2022; 12:ani12162146. [PMID: 36009735 PMCID: PMC9404729 DOI: 10.3390/ani12162146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Escherichia coli is a bacterium which infects cow udders causing clinical mastitis, a potentially severe disease with welfare and economic consequences. During an infection, white blood cells (leukocytes) enter the udder to provide immune defence and assist tissue repair. We sequenced RNA derived from circulating leukocytes to investigate which genes are up- or down-regulated in dairy cows with naturally occurring cases of clinical mastitis in comparison with healthy control cows from the same farm. We also looked for genetic variations between infected and healthy cows. Blood samples were taken either EARLY (around 10 days) or LATE (after 4 weeks) during the recovery phase after diagnosis. Many genes (1090) with immune and inflammatory functions were up-regulated during the EARLY phase. By the LATE phase only 29 genes were up-regulated including six haemoglobin subunits, possibly important for the production of new red blood corpuscles. Twelve genetic variations which were associated with an increased or decreased expression of some important immune genes were identified between the infected and control cows. These results show that the initial inflammatory response to E. coli continued for at least 10 days despite the cows having received prompt veterinary treatment, but they had largely recovered within 4 weeks. Genetic differences between cows may predispose some animals to infection. Abstract The risk and severity of clinical infection with Escherichia coli as a causative pathogen for bovine mastitis is influenced by the hosts’ phenotypic and genotypic variables. We used RNA-Seq analysis of circulating leukocytes to investigate global transcriptomic profiles and genetic variants from Holstein cows with naturally occurring cases of clinical mastitis, diagnosed using clinical symptoms and milk microbiology. Healthy lactation-matched cows served as controls (CONT, n = 6). Blood samples were collected at two time periods during the recovery phase post diagnosis: EARLY (10.3 ± 1.8 days, n = 6) and LATE (46.7 ± 11 days, n = 3). Differentially expressed genes (DEGs) between the groups were identified using CLC Genomics Workbench V21 and subjected to enrichment analysis. Variant calling was performed following GATKv3.8 best practice. The comparison of E. coli(+) EARLY and CONT cows found the up-regulation of 1090 DEGs, mainly with immune and inflammatory functions. The key signalling pathways involved NOD-like and interleukin-1 receptors and chemokines. Many up-regulated DEGs encoded antimicrobial peptides including cathelicidins, beta-defensins, S100 calcium binding proteins, haptoglobin and lactoferrin. Inflammation had largely resolved in the E. coli(+) LATE group, with only 29 up-regulated DEGs. Both EARLY and LATE cows had up-regulated DEGs encoding ATP binding cassette (ABC) transporters and haemoglobin subunits were also up-regulated in LATE cows. Twelve candidate genetic variants were identified in DEGs between the infected and CONT cows. Three were in contiguous genes WIPI1, ARSG and SLC16A6 on BTA19. Two others (RAC2 and ARHGAP26) encode a Rho-family GTPase and Rho GTPase-activating protein 26. These results show that the initial inflammatory response to E. coli continued for at least 10 days despite prompt treatment and provide preliminary evidence for genetic differences between cows that may predispose them to infection.
Collapse
|
19
|
Boucard E, Vidal L, Coulon F, Mota C, Hascoët JY, Halary F. The degradation of gelatin/alginate/fibrin hydrogels is cell type dependent and can be modulated by targeting fibrinolysis. Front Bioeng Biotechnol 2022; 10:920929. [PMID: 35935486 PMCID: PMC9355319 DOI: 10.3389/fbioe.2022.920929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
In tissue engineering, cell origin is important to ensure outcome quality. However, the impact of the cell type chosen for seeding in a biocompatible matrix has been less investigated. Here, we investigated the capacity of primary and immortalized fibroblasts of distinct origins to degrade a gelatin/alginate/fibrin (GAF)-based biomaterial. We further established that fibrin was targeted by degradative fibroblasts through the secretion of fibrinolytic matrix-metalloproteinases (MMPs) and urokinase, two types of serine protease. Finally, we demonstrated that besides aprotinin, specific targeting of fibrinolytic MMPs and urokinase led to cell-laden GAF stability for at least forty-eight hours. These results support the use of specific strategies to tune fibrin-based biomaterials degradation over time. It emphasizes the need to choose the right cell type and further bring targeted solutions to avoid the degradation of fibrin-containing hydrogels or bioinks.
Collapse
Affiliation(s)
- Elea Boucard
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Luciano Vidal
- Rapid Manufacturing Platform, Institut de Recherche en Génie Civil et Mécanique (GeM), UMR 7 CNRS 6183 Ecole Centrale de Nantes, Nantes, France
| | - Flora Coulon
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Carlos Mota
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Jean-Yves Hascoët
- Rapid Manufacturing Platform, Institut de Recherche en Génie Civil et Mécanique (GeM), UMR 7 CNRS 6183 Ecole Centrale de Nantes, Nantes, France
| | - Franck Halary
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
- *Correspondence: Franck Halary,
| |
Collapse
|
20
|
Jagiełło A, Castillo U, Botvinick E. Cell mediated remodeling of stiffness matched collagen and fibrin scaffolds. Sci Rep 2022; 12:11736. [PMID: 35817812 PMCID: PMC9273755 DOI: 10.1038/s41598-022-14953-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
Cells are known to continuously remodel their local extracellular matrix (ECM) and in a reciprocal way, they can also respond to mechanical and biochemical properties of their fibrous environment. In this study, we measured how stiffness around dermal fibroblasts (DFs) and human fibrosarcoma HT1080 cells differs with concentration of rat tail type 1 collagen (T1C) and type of ECM. Peri-cellular stiffness was probed in four directions using multi-axes optical tweezers active microrheology (AMR). First, we found that neither cell type significantly altered local stiffness landscape at different concentrations of T1C. Next, rat tail T1C, bovine skin T1C and fibrin cell-free hydrogels were polymerized at concentrations formulated to match median stiffness value. Each of these hydrogels exhibited distinct fiber architecture. Stiffness landscape and fibronectin secretion, but not nuclear/cytoplasmic YAP ratio differed with ECM type. Further, cell response to Y27632 or BB94 treatments, inhibiting cell contractility and activity of matrix metalloproteinases, respectively, was also dependent on ECM type. Given differential effect of tested ECMs on peri-cellular stiffness landscape, treatment effect and cell properties, this study underscores the need for peri-cellular and not bulk stiffness measurements in studies on cellular mechanotransduction.
Collapse
Affiliation(s)
- Alicja Jagiełło
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697-2715, USA
| | - Ulysses Castillo
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697-2715, USA
| | - Elliot Botvinick
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697-2715, USA.
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA, 92612, USA.
- Department of Surgery, University of California Irvine, 333 City Boulevard, Suite 700, Orange, CA, 92868, USA.
- The Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, University of California, Irvine, CA, 92697-2730, USA.
| |
Collapse
|
21
|
Abbas MN, Chlastáková A, Jmel MA, Iliaki-Giannakoudaki E, Chmelař J, Kotsyfakis M. Serpins in Tick Physiology and Tick-Host Interaction. Front Cell Infect Microbiol 2022; 12:892770. [PMID: 35711658 PMCID: PMC9195624 DOI: 10.3389/fcimb.2022.892770] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Tick saliva has been extensively studied in the context of tick-host interactions because it is involved in host homeostasis modulation and microbial pathogen transmission to the host. Accumulated knowledge about the tick saliva composition at the molecular level has revealed that serine protease inhibitors play a key role in the tick-host interaction. Serpins are one highly expressed group of protease inhibitors in tick salivary glands, their expression can be induced during tick blood-feeding, and they have many biological functions at the tick-host interface. Indeed, tick serpins have an important role in inhibiting host hemostatic processes and in the modulation of the innate and adaptive immune responses of their vertebrate hosts. Tick serpins have also been studied as potential candidates for therapeutic use and vaccine development. In this review, we critically summarize the current state of knowledge about the biological role of tick serpins in shaping tick-host interactions with emphasis on the mechanisms by which they modulate host immunity. Their potential use in drug and vaccine development is also discussed.
Collapse
Affiliation(s)
- Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Adéla Chlastáková
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
- Laboratory of Molecular Biology of Ticks, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Mohamed Amine Jmel
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | | | - Jindřich Chmelař
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
- *Correspondence: Jindřich Chmelař, ; Michail Kotsyfakis,
| | - Michail Kotsyfakis
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
- *Correspondence: Jindřich Chmelař, ; Michail Kotsyfakis,
| |
Collapse
|
22
|
Ferguson TEG, Reihill JA, Martin SL, Walker B. Novel Inhibitors and Activity-Based Probes Targeting Trypsin-Like Serine Proteases. Front Chem 2022; 10:782608. [PMID: 35529696 PMCID: PMC9068901 DOI: 10.3389/fchem.2022.782608] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
The trypsin-like proteases (TLPs) play widespread and diverse roles, in a host of physiological and pathological processes including clot dissolution, extracellular matrix remodelling, infection, angiogenesis, wound healing and tumour invasion/metastasis. Moreover, these enzymes are involved in the disruption of normal lung function in a range of respiratory diseases including allergic asthma where several allergenic proteases have been identified. Here, we report the synthesis of a series of peptide derivatives containing an N-alkyl glycine analogue of arginine, bearing differing electrophilic leaving groups (carbamate and triazole urea), and demonstrate their function as potent, irreversible inhibitors of trypsin and TLPs, to include activities from cockroach extract. As such, these inhibitors are suitable for use as activity probes (APs) in activity-based profiling (ABP) applications.
Collapse
Affiliation(s)
- Timothy E G Ferguson
- Biomolecular Sciences Research Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - James A Reihill
- Biomolecular Sciences Research Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - S Lorraine Martin
- Biomolecular Sciences Research Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Brian Walker
- Biomolecular Sciences Research Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
23
|
Grover SP, Mackman N. Anticoagulant SERPINs: Endogenous Regulators of Hemostasis and Thrombosis. Front Cardiovasc Med 2022; 9:878199. [PMID: 35592395 PMCID: PMC9110684 DOI: 10.3389/fcvm.2022.878199] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/29/2022] [Indexed: 12/17/2022] Open
Abstract
Appropriate activation of coagulation requires a balance between procoagulant and anticoagulant proteins in blood. Loss in this balance leads to hemorrhage and thrombosis. A number of endogenous anticoagulant proteins, such as antithrombin and heparin cofactor II, are members of the serine protease inhibitor (SERPIN) family. These SERPIN anticoagulants function by forming irreversible inhibitory complexes with target coagulation proteases. Mutations in SERPIN family members, such as antithrombin, can cause hereditary thrombophilias. In addition, low plasma levels of SERPINs have been associated with an increased risk of thrombosis. Here, we review the biological activities of the different anticoagulant SERPINs. We further consider the clinical consequences of SERPIN deficiencies and insights gained from preclinical disease models. Finally, we discuss the potential utility of engineered SERPINs as novel therapies for the treatment of thrombotic pathologies.
Collapse
|
24
|
Pomilio AB, Vitale AA, Lazarowski AJ. Uncommon Noninvasive Biomarkers for the Evaluation and Monitoring of the Etiopathogenesis of Alzheimer's Disease. Curr Pharm Des 2022; 28:1152-1169. [DOI: 10.2174/1381612828666220413101929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/25/2022] [Indexed: 11/22/2022]
Abstract
Background:
Alzheimer´s disease (AD) is the most widespread dementia in the world, followed by vascular dementia. Since AD is a heterogeneous disease that shows several varied phenotypes, it is not easy to make an accurate diagnosis, so it arises when the symptoms are clear and the disease is already very advanced. Therefore, it is important to find out biomarkers for AD early diagnosis that facilitate treatment or slow down the disease. Classic biomarkers are obtained from cerebrospinal fluid and plasma, along with brain imaging by positron emission tomography. Attempts have been made to discover uncommon biomarkers from other body fluids, which are addressed in this update.
Objective:
This update aims to describe recent biomarkers from minimally invasive body fluids for the patients, such as saliva, urine, eye fluid or tears.
Methods:
Biomarkers were determined in patients versus controls by single tandem mass spectrometry, and immunoassays. Metabolites were identified by nuclear magnetic resonance, and microRNAs with genome-wide high-throughput real-time polymerase chain reaction-based platforms.
Results:
Biomarkers from urine, saliva, and eye fluid were described, including peptides/proteins, metabolites, and some microRNAs. The association with AD neuroinflammation and neurodegeneration was analyzed, highlighting the contribution of matrix metalloproteinases, the immune system and microglia, as well as the vascular system.
Conclusion:
Unusual biomarkers have been developed, which distinguish each stage and progression of the disease, and are suitable for the early AD diagnosis. An outstanding relationship of biomarkers with neuroinflammation and neurodegeneration was assessed, clearing up concerns of the etiopathogenesis of AD.
Collapse
Affiliation(s)
- Alicia B. Pomilio
- Departamento de Bioquímica Clínica, Área Hematología, Hospital de Clínicas “José de San Martín”, Universidad de Buenos Aires, Av. Córdoba 2351, C1120AAF Buenos Aires, Argentina
| | - Arturo A. Vitale
- Departamento de Bioquímica Clínica, Área Hematología, Hospital de Clínicas “José de San Martín”, Universidad de Buenos Aires, Av. Córdoba 2351, C1120AAF Buenos Aires, Argentina
| | - Alberto J. Lazarowski
- Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Universidad de Buenos Aires, Córdoba 2351, C1120AAF Buenos Aires, Argentina
| |
Collapse
|
25
|
Taşlı NP, Gönen ZB, Kırbaş OK, Gökdemir NS, Bozkurt BT, Bayrakcı B, Sağraç D, Taşkan E, Demir S, Ekimci Gürcan N, Bayındır Bilgiç M, Bayrak ÖF, Yetişkin H, Kaplan B, Pavel STI, Dinç G, Serhatlı M, Çakırca G, Eken A, Aslan V, Yay M, Karakukcu M, Unal E, Gül F, Basaran KE, Ozkul Y, Şahin F, Jones OY, Tekin Ş, Özdarendeli A, Cetin M. Preclinical Studies on Convalescent Human Immune Plasma-Derived Exosome: Omics and Antiviral Properties to SARS-CoV-2. Front Immunol 2022; 13:824378. [PMID: 35401544 PMCID: PMC8987587 DOI: 10.3389/fimmu.2022.824378] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/16/2022] [Indexed: 02/05/2023] Open
Abstract
The scale of the COVID-19 pandemic forced urgent measures for the development of new therapeutics. One of these strategies is the use of convalescent plasma (CP) as a conventional source for passive immunity. Recently, there has been interest in CP-derived exosomes. In this report, we present a structural, biochemical, and biological characterization of our proprietary product, convalescent human immune plasma-derived exosome (ChipEXO), following the guidelines set forth by the Turkish Ministry of Health and the Turkish Red Crescent, the Good Manufacturing Practice, the International Society for Extracellular Vesicles, and the Gene Ontology Consortium. The data support the safety and efficacy of this product against SARS-CoV-2 infections in preclinical models.
Collapse
Affiliation(s)
| | - Zeynep Burçin Gönen
- Oral and Maxillofacial Surgery, Genome and Stem Cell Centre, Erciyes University, Kayseri, Turkey
| | | | - Nur Seda Gökdemir
- Oral and Maxillofacial Surgery, Genome and Stem Cell Centre, Erciyes University, Kayseri, Turkey
| | | | - Buse Bayrakcı
- Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Derya Sağraç
- Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Ezgi Taşkan
- Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Sevda Demir
- Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | | | | | | | - Hazel Yetişkin
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Vaccine Research and Development Application and Research Center, Erciyes University, Kayseri, Turkey
| | - Büşra Kaplan
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Vaccine Research and Development Application and Research Center, Erciyes University, Kayseri, Turkey
| | - Shaikh Terkıs Islam Pavel
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Vaccine Research and Development Application and Research Center, Erciyes University, Kayseri, Turkey
| | - Gökçen Dinç
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Müge Serhatlı
- The Scientific and Technological Research Council of Turkey (TÜBITAK) Marmara Research Centre Energy Institute, Kocaeli, Turkey
| | - Gamze Çakırca
- The Scientific and Technological Research Council of Turkey (TÜBITAK) Marmara Research Centre Energy Institute, Kocaeli, Turkey
- Department of Molecular Biology and Genetics, Faculty of Science, Gebze Technical University, Kocaeli, Turkey
| | - Ahmet Eken
- Department of Biology, Faculty of Science, Erciyes University, Kayseri, Turkey
- Gevher Nesibe Genome and Stem Cell Institute, Erciyes University, Kayseri, Turkey
| | - Vedat Aslan
- Antalya Training and Research Hospital, Antalya, Turkey
| | - Mehmet Yay
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Musa Karakukcu
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Ekrem Unal
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Fethi Gül
- Department of Anesthesiology and Reanimation, School of Medicine, Marmara University, Istanbul, Turkey
| | - Kemal Erdem Basaran
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Gevher Nesibe Genome and Stem Cell Institute, Erciyes University, Kayseri, Turkey
| | - Yusuf Ozkul
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Gevher Nesibe Genome and Stem Cell Institute, Erciyes University, Kayseri, Turkey
| | - Fikrettin Şahin
- Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Olcay Y. Jones
- Division of Rheumatology, Department of Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Şaban Tekin
- The Scientific and Technological Research Council of Turkey (TÜBITAK) Marmara Research Centre Energy Institute, Kocaeli, Turkey
- Medical Biology, Department of Basic Medical Sciences, University of Health Sciences, Istanbul, Turkey
| | - Aykut Özdarendeli
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Vaccine Research and Development Application and Research Center, Erciyes University, Kayseri, Turkey
| | - Mustafa Cetin
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
26
|
Ju B, Guo O, Benissan-Messan DZ, Shawver MH, Chen P, Geng B, Wei S, Yaron JR, Lucas AR, Zhu H. Serp-1 Promotes Corneal Wound Healing by Facilitating Re-epithelialization and Inhibiting Fibrosis and Angiogenesis. Front Cardiovasc Med 2021; 8:649124. [PMID: 34164439 PMCID: PMC8216079 DOI: 10.3389/fcvm.2021.649124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 04/28/2021] [Indexed: 11/21/2022] Open
Abstract
Purpose: Chemical corneal injuries carry a high morbidity and commonly lead to visual impairment. Here, we investigate the role of Serp-1, a serine protease inhibitor, in corneal wound healing. Methods: An alkaline-induced corneal injury was induced in 14 mice. Following injury, five mice received daily topical saline application while nine mice received Serp-1 100 μL topically combined with a daily subcutaneous injection of 100 ng/gram body weight of Serp-1. Corneal damage was monitored daily through fluorescein staining and imaging. Cross sectional corneal H&E staining were obtained. CD31 was used as marker for neovascularization. Results: Serp-1 facilitates corneal wound healing by reducing fibrosis and neovascularization while mitigating inflammatory cell infiltration with no noticeable harm related to its application. Conclusions: Serp-1 effectively mitigates inflammation, decreases fibrosis, and reduce neovascularization in a murine model of corneal injury without affecting other organs. Translational Relavence: Our study provides preclinical data for topical application of Serp-1 to treat corneal wounds.
Collapse
Affiliation(s)
- Brent Ju
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Owen Guo
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Dathe Z Benissan-Messan
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - McKinley H Shawver
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Peng Chen
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Bingchuan Geng
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Siqi Wei
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jordan R Yaron
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Tempe, AZ, United States
| | - Alexandra R Lucas
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Tempe, AZ, United States
| | - Hua Zhu
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|