1
|
Gu N, Zeng Y, Long X, Liu Z, Wang Z, Zhang W, Yang D, Yuan J, Chen L, Zhao R, Shi B. Association between the ratio of high-density lipoprotein cholesterol to apolipoprotein A-I and in-stent neoatherosclerosis: an optical coherence tomography study. Cardiovasc Diagn Ther 2025; 15:116-127. [PMID: 40115105 PMCID: PMC11921189 DOI: 10.21037/cdt-24-328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/02/2024] [Indexed: 03/23/2025]
Abstract
Background In-stent neoatherosclerosis (ISNA) is an important cause of in-stent restenosis (ISR) with drug-eluting stent (DES) implants. High-density lipoprotein cholesterol (HDL-C) is associated with ISNA. However, few studies have focused on the functionalities of HDL-C composition, and till date, optical coherence tomography (OCT) has not been used to analyze the relationship between ISNA incidence and HDL-C-to-apolipoprotein A-I ratio (HAR) in patients with DES implants and ISR (DES-ISR). This study aimed to clarify the association between HAR and ISNA. Methods This single-center, retrospective study included patients admitted to the Affiliated Hospital of Zunyi Medical University. A total of 216 patients with 220 ISR lesions who underwent OCT for the culprit stent were included between July 2018 and November 2022. Based on HAR at admission, 33rd and 66th percentiles were identified as the cut-off points, and all eligible patients were divided into three groups: Tertile 1 (HAR ≤0.836; n=71), Tertile 2 (0.836< HAR <0.932; n=73), and Tertile 3 (HAR ≥0.932; n=72). Baseline characteristics and angiographic and OCT features were compared between the different groups. In addition, univariate and multivariate logistic regression models were used to assess the association of HAR with ISNA and in-stent thin-cap fibroatheroma (TCFA). Results Angiographic characteristics and quantitative OCT assessment values did not differ significantly among the groups. The incidences of ISNA (62.0% vs. 52.1% vs. 37.5%, P=0.01) and in-stent TCFA (35.2% vs. 27.4% vs. 15.3%, P=0.02) were significantly lower in the third tertile of the HAR group than in the first or second tertiles. The multifactor logistic regression model revealed that the highest tertile group had a reduced risk of ISNA [hazard ratio (HR) =0.185, 95% confidence interval (CI): 0.081-0.421; P<0.001] and TCFA (HR =0.197, 95% CI: 0.075-0.517; P<0.001) compared with the lowest tertile group. Conclusions OCT revealed high HAR levels to be negatively correlated with the incidences of ISNA and TCFA in patients with ISR. HAR is a better indicator of ISNA and plaque fragility than HDL-C itself, thus providing a marker and pathway for better prevention of ISNA.
Collapse
Affiliation(s)
- Ning Gu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yu Zeng
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xianping Long
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhijiang Liu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhenglong Wang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wei Zhang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Du Yang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jingsong Yuan
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lei Chen
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ranzun Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
2
|
Gangadaran P, Onkar A, Rajendran RL, Goenka A, Oh JM, Khan F, Nagarajan AK, Muthu S, Krishnan A, Hong CM, Ahn BC. Noninvasive in vivo imaging of macrophages: understanding tumor microenvironments and delivery of therapeutics. Biomark Res 2025; 13:20. [PMID: 39865337 PMCID: PMC11770947 DOI: 10.1186/s40364-025-00735-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/21/2025] [Indexed: 01/28/2025] Open
Abstract
Macrophages are pivotal in the body's defense and response to inflammation. They are present in significant numbers and are widely implicated in various diseases, including cancer. While molecular and histological techniques have advanced our understanding of macrophage biology, their precise function within the cancerous microenvironments remains underexplored. Enhancing our knowledge of macrophages and the dynamics of their extracellular vesicles (EVs) in cancer development can potentially improve therapeutic management. Notably, macrophages have also been harnessed to deliver drugs. Noninvasive in vivo molecular imaging of macrophages is crucial for investigating intricate cellular processes, comprehending the underlying mechanisms of diseases, tracking cells and EVs' migration, and devising macrophage-dependent drug-delivery systems in living organisms. Thus, in vivo imaging of macrophages has become an indispensable tool in biomedical research. The integration of multimodal imaging approaches and the continued development of novel contrast agents hold promise for overcoming current limitations and expanding the applications of macrophage imaging. This study comprehensively reviews several methods for labeling macrophages and various imaging modalities, assessing the merits and drawbacks of each approach. The review concludes by offering insights into the applicability of molecular imaging techniques for real time monitoring of macrophages in preclinical and clinical scenarios.
Collapse
Affiliation(s)
- Prakash Gangadaran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Akanksha Onkar
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Ramya Lakshmi Rajendran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Anshika Goenka
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Ji Min Oh
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Fatima Khan
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - ArulJothi Kandasamy Nagarajan
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamilnadu, India
| | - Sathish Muthu
- Department of Orthopaedics, Government Medical College, Tamil Nadu, 639004, Karur, India
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Tamil Nadu, 641021, Coimbatore, India
| | - Anand Krishnan
- Precision Medicine and Integrated Nano-Diagnostics (P-MIND) Research Group, Office of the Dean, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Korea.
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Korea.
| | - Byeong-Cheol Ahn
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Korea.
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Korea.
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Korea.
| |
Collapse
|
3
|
Tedeschi G, Navarro MX, Scipioni L, Sondhi TK, Prescher JA, Digman MA. Monitoring Macrophage Polarization with Gene Expression Reporters and Bioluminescence Phasor Analysis. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:765-774. [PMID: 39610466 PMCID: PMC11600157 DOI: 10.1021/cbmi.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 11/30/2024]
Abstract
Macrophages exhibit a spectrum of behaviors upon activation and are generally classified as one of two types: inflammatory (M1) or anti-inflammatory (M2). Tracking these phenotypes in living cells can provide insight into immune function but remains a challenging pursuit. Existing methods are mostly limited to static readouts or are difficult to employ for multiplexed imaging in complex 3D environments while maintaining cellular resolution. We aimed to fill this void using bioluminescent technologies. Here we report genetically engineered luciferase reporters for the long-term monitoring of macrophage polarization via spectral phasor analysis. M1- and M2-specific promoters were used to drive the expression of bioluminescent enzymes in macrophage cell lines. The readouts were multiplexed and discernible in both 2D and 3D formats with single-cell resolution in living samples. Collectively, this work expands the toolbox of methods for monitoring macrophage polarization and provides a blueprint for monitoring other multifaceted networks in heterogeneous environments.
Collapse
Affiliation(s)
- Giulia Tedeschi
- Laboratory
for Fluorescence Dynamics, Biomedical Engineering Department, University of California, Irvine, Irvine, California 92617, United States
| | - Mariana X. Navarro
- Department
of Chemistry, University of California Irvine, Irvine, California 92617, United States
| | - Lorenzo Scipioni
- Laboratory
for Fluorescence Dynamics, Biomedical Engineering Department, University of California, Irvine, Irvine, California 92617, United States
| | - Tanvi K. Sondhi
- Department
of Chemistry, University of California Irvine, Irvine, California 92617, United States
| | - Jennifer A. Prescher
- Department
of Chemistry, University of California Irvine, Irvine, California 92617, United States
- Department
of Molecular Biology and Biochemistry, University
of California, Irvine, Irvine, California 92617, United States
- Department
of Pharmaceutical Sciences, University of
California, Irvine, Irvine, California 92617, United States
| | - Michelle A. Digman
- Laboratory
for Fluorescence Dynamics, Biomedical Engineering Department, University of California, Irvine, Irvine, California 92617, United States
| |
Collapse
|
4
|
Milzi A, Landi A, Dettori R, Burgmaier K, Reith S, Burgmaier M. Multimodal Intravascular Imaging of the Vulnerable Coronary Plaque. Echocardiography 2024; 41:e70035. [PMID: 39575542 DOI: 10.1111/echo.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 12/06/2024] Open
Abstract
Vulnerable coronary plaques are atherosclerotic lesions which, due to their specific phenotype, are prone to plaque rupture and to cause acute coronary syndromes, with subsequent relevant morbidity and mortality. Strategies to break the chain link between plaque vulnerability and adverse clinical events include optimized pharmacologic prevention and potentially also preemptive percutaneous coronary interventions (previously defined as "plaque sealing" or "plaque passivation"). Various morphologic features of the vulnerable plaques have been described, including aspects regarding the large necrotic lipid content, the thin fibrous cap, the presence and extent of the presence of calcifications with small size and calcification angle, and as well as the large macrophage infiltration within the plaque. The detection of these features of plaque vulnerability is possible with intravascular imaging modalities such as intravascular ultrasound (IVUS), near-infrared spectroscopy (NIRS), and optical coherence tomography (OCT). This review explores the peculiarities of these three imaging modalities for the detection of vulnerable coronary plaque features.
Collapse
Affiliation(s)
- Andrea Milzi
- Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
- Faculty of Biomedical Sciences, University of Italian Switzerland, Lugano, Switzerland
| | - Antonio Landi
- Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
- Faculty of Biomedical Sciences, University of Italian Switzerland, Lugano, Switzerland
| | - Rosalia Dettori
- Department of Internal Medicine I, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Kathrin Burgmaier
- Faculty of Applied Healthcare Science, Deggendorf Institute of Technology, Deggendorf, Germany
| | - Sebastian Reith
- Department of Internal Medicine III, St. Franziskus Hospital, Münster, Germany
| | - Mathias Burgmaier
- Faculty of Applied Healthcare Science, Deggendorf Institute of Technology, Deggendorf, Germany
| |
Collapse
|
5
|
Tedeschi G, Navarro MX, Scipioni L, Sondhi TK, Prescher JA, Digman MA. Monitoring macrophage polarization with gene expression reporters and bioluminescence phasor analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598305. [PMID: 38915606 PMCID: PMC11195121 DOI: 10.1101/2024.06.10.598305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Macrophages exhibit a spectrum of behaviors upon activation and are generally classified as one of two types: inflammatory (M1) or anti-inflammatory (M2). Tracking these phenotypes in living cells can provide insight into immune function, but remains a challenging pursuit. Existing methods are mostly limited to static readouts or difficult to employ for multiplexed imaging in complex 3D environments while maintaining cellular resolution. We aimed to fill this void using bioluminescent technologies. Here we report genetically engineered luciferase reporters for long-term monitoring of macrophage polarization via spectral phasor analysis. M1- and M2- specific promoters were used to drive the expression of bioluminescent enzymes in macrophage cell lines. The readouts were multiplexed and discernable in both 2D and 3D formats with single cell resolution in living samples. Collectively, this work expands the toolbox of methods for monitoring macrophage polarization and provides a blueprint for monitoring other multifaceted networks in heterogeneous environments.
Collapse
Affiliation(s)
- Giulia Tedeschi
- Laboratory for Fluorescence Dynamics, Biomedical Engineering Department, University of California, Irvine, Irvine, CA 92617 (USA)
| | - Mariana X. Navarro
- Department of Chemistry, University of California, Irvine, Irvine, CA 92617 (USA)
| | - Lorenzo Scipioni
- Laboratory for Fluorescence Dynamics, Biomedical Engineering Department, University of California, Irvine, Irvine, CA 92617 (USA)
| | - Tanvi K. Sondhi
- Department of Chemistry, University of California, Irvine, Irvine, CA 92617 (USA)
| | - Jennifer A. Prescher
- Department of Chemistry, University of California, Irvine, Irvine, CA 92617 (USA)
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92617 (USA)
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92617
| | - Michelle A. Digman
- Laboratory for Fluorescence Dynamics, Biomedical Engineering Department, University of California, Irvine, Irvine, CA 92617 (USA)
| |
Collapse
|
6
|
Zhang X, Heo GS, Li A, Lahad D, Detering L, Tao J, Gao X, Zhang X, Luehmann H, Sultan D, Lou L, Venkatesan R, Li R, Zheng J, Amrute J, Lin CY, Kopecky BJ, Gropler RJ, Bredemeyer A, Lavine K, Liu Y. Development of a CD163-Targeted PET Radiotracer That Images Resident Macrophages in Atherosclerosis. J Nucl Med 2024; 65:775-780. [PMID: 38548349 PMCID: PMC11064833 DOI: 10.2967/jnumed.123.266910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/26/2024] [Indexed: 05/03/2024] Open
Abstract
Tissue-resident macrophages are complementary to proinflammatory macrophages to promote the progression of atherosclerosis. The noninvasive detection of their presence and dynamic variation will be important to the understanding of their role in the pathogenesis of atherosclerosis. The goal of this study was to develop a targeted PET radiotracer for imaging CD163-positive (CD163+) macrophages in multiple mouse atherosclerosis models and assess the potential of CD163 as a biomarker for atherosclerosis in humans. Methods: CD163-binding peptide was identified using phage display and conjugated with a NODAGA chelator for 64Cu radiolabeling ([64Cu]Cu-ICT-01). CD163-overexpressing U87 cells were used to measure the binding affinity of [64Cu]Cu-ICT-01. Biodistribution studies were performed on wild-type C57BL/6 mice at multiple time points after tail vein injection. The sensitivity and specificity of [64Cu]Cu-ICT-01 in imaging CD163+ macrophages upregulated on the surface of atherosclerotic plaques were assessed in multiple mouse atherosclerosis models. Immunostaining, flow cytometry, and single-cell RNA sequencing were performed to characterize the expression of CD163 on tissue-resident macrophages. Human carotid atherosclerotic plaques were used to measure the expression of CD163+ resident macrophages and test the binding specificity of [64Cu]Cu-ICT-01. Results: [64Cu]Cu-ICT-01 showed high binding affinity to U87 cells. The biodistribution study showed rapid blood and renal clearance with low retention in all major organs at 1, 2, and 4 h after injection. In an ApoE-/- mouse model, [64Cu]Cu-ICT-01 demonstrated sensitive and specific detection of CD163+ macrophages and capability for tracking the progression of atherosclerotic lesions; these findings were further confirmed in Ldlr-/- and PCSK9 mouse models. Immunostaining showed elevated expression of CD163+ macrophages across the plaques. Flow cytometry and single-cell RNA sequencing confirmed the specific expression of CD163 on tissue-resident macrophages. Human tissue characterization demonstrated high expression of CD163+ macrophages on atherosclerotic lesions, and ex vivo autoradiography revealed specific binding of [64Cu]Cu-ICT-01 to human CD163. Conclusion: This work reported the development of a PET radiotracer binding CD163+ macrophages. The elevated expression of CD163+ resident macrophages on human plaques indicated the potential of CD163 as a biomarker for vulnerable plaques. The sensitivity and specificity of [64Cu]Cu-ICT-01 in imaging CD163+ macrophages warrant further investigation in translational settings.
Collapse
Affiliation(s)
- Xiuli Zhang
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Gyu Seong Heo
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Alexandria Li
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Divangana Lahad
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Lisa Detering
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Joan Tao
- Department of Medicine, University of Missouri, Columbia, Missouri
| | - Xuefeng Gao
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Xiaohui Zhang
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Hannah Luehmann
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Deborah Sultan
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Lanlan Lou
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Rajiu Venkatesan
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Ran Li
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Jie Zheng
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Junedh Amrute
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri; and
| | - Chieh-Yu Lin
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri
| | - Benjamin J Kopecky
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri; and
| | - Robert J Gropler
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Andrea Bredemeyer
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri; and
| | - Kory Lavine
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri; and
| | - Yongjian Liu
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri;
| |
Collapse
|
7
|
Rong J, Gu N, Tian H, Shen Y, Deng C, Chen P, Ma S, Ma Y, Hu X, Zhao R, Shi B. Association of the monocytes to high-density lipoprotein cholesterol ratio with in-stent neoatherosclerosis and plaque vulnerability: An optical coherence tomography study. Int J Cardiol 2024; 396:131417. [PMID: 37802300 DOI: 10.1016/j.ijcard.2023.131417] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/06/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND Monocyte-to-high-density lipoprotein cholesterol ratio (MHR) is an independent predictor of atherosclerosis and in-stent restenosis (ISR). However, the association between MHR and the incidence of in-stent neoatherosclerosis (ISNA) remains to be validated. METHODS This study included 216 patients with acute coronary syndrome who had 220 ISR lesions and had undergone optical coherence tomography (OCT). All eligible patients were divided into three groups according to their MHR tertile level. OCT characteristics were comparatively analyzed between groups of different MHR levels, and univariate and multivariate logistic regression analyses were constructed to assess correlations between MHR level and ISNA as well as in-stent thin-cap fibroatheroma (TCFA). A receiver operating characteristic curve was used to determine the optimal MHR thresholds for predicting ISNA and in-stent TCFA. RESULTS The incidence of ISNA (70.3% vs. 61.1% vs. 20.3%, P < 0.001) and in-stent TCFA (40.5% vs. 31.9% vs. 6.8%, P < 0.001) was the highest in the third tertile, followed by the second and first tertiles, respectively. Multivariate analysis revealed that MHR was independently associated with ISNA (odds ratio [OR], 7.212; 95% confidence interval [CI], 1.287-40.416; P = 0.025) and in-stent TCFA (OR, 5.610; 95% CI, 1.743-18.051; P = 0.004) after adjusting for other clinical factors. The area under the curve was 0.745 (95% CI, 0.678-0.811; P < 0.001) for the prediction of ISNA and 0.718 (95% CI, 0.637-0.778; P < 0.001) for the prediction of in-stent TCFA. CONCLUSION MHR levels are an independent risk factor for ISNA.
Collapse
Affiliation(s)
- Jidong Rong
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ning Gu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hongqin Tian
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Youcheng Shen
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chancui Deng
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Panke Chen
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shuai Ma
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yi Ma
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xingwei Hu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ranzun Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
8
|
Poznyak AV, Sukhorukov VN, Eremin II, Nadelyaeva II, Orekhov AN. Diagnostics of atherosclerosis: Overview of the existing methods. Front Cardiovasc Med 2023; 10:1134097. [PMID: 37229223 PMCID: PMC10203409 DOI: 10.3389/fcvm.2023.1134097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/11/2023] [Indexed: 05/27/2023] Open
Abstract
Atherosclerosis was and remains an extremely common and serious health problem. Since the elderly are most at risk of cardiovascular risk, and the average life expectancy is increasing, the spread of atherosclerosis and its consequences increases as well. One of the features of atherosclerosis is its asymptomaticity. This factor makes it difficult to make a timely diagnosis. This entails the lack of timely treatment and even prevention. To date, in the arsenal of physicians, there is only a limited set of methods to suspect and fully diagnose atherosclerosis. In this review, we have tried to briefly describe the most common and effective methods for diagnosing atherosclerosis.
Collapse
|
9
|
Zan C, An J, Wu Z, Li S. Engineering molecular nanoprobes to target early atherosclerosis: Precise diagnostic tools and promising therapeutic carriers. Nanotheranostics 2023; 7:327-344. [PMID: 37064609 PMCID: PMC10093416 DOI: 10.7150/ntno.82654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/02/2023] [Indexed: 04/18/2023] Open
Abstract
Atherosclerosis, an inflammation-driven chronic blood vessel disease, is a major contributor to devastating cardiovascular events, bringing serious social and economic burdens. Currently, non-invasive diagnostic and therapeutic techniques in combination with novel nanosized materials as well as established molecular targets are under active investigation to develop integrated molecular imaging approaches, precisely visualizing and/or even effectively reversing early-stage plaques. Besides, mechanistic investigation in the past decades provides many potent candidates extensively involved in the initiation and progression of atherosclerosis. Recent hotly-studied imaging nanoprobes for detecting early plaques mainly including optical nanoprobes, photoacoustic nanoprobes, magnetic resonance nanoprobes, positron emission tomography nanoprobes, and other dual- and multi-modality imaging nanoprobes, have been proven to be surface functionalized with important molecular targets, which occupy tailored physical and biological properties for atherogenesis. Of note, these engineering nanoprobes provide long blood-pool residence and specific molecular targeting, which allows efficient recognition of early-stage atherosclerotic plaques and thereby function as a novel type of precise diagnostic tools as well as potential therapeutic carriers of anti-atherosclerosis drugs. There have been no available nanoprobes applied in the clinics so far, although many newly emerged nanoprobes, as exemplified by aggregation-induced emission nanoprobes and TiO2 nanoprobes, have been tested for cell lines in vitro and atherogenic animal models in vivo, achieving good experimental effects. Therefore, there is an urgent call to translate these preclinical results for nanoprobes into clinical trials. For this reason, this review aims to give an overview of currently investigated nanoprobes in the context of atherosclerosis, summarize relevant published studies showing applications of different kinds of formulated nanoprobes in early detection and reverse of plaques, discuss recent advances and some limitations thereof, and provide some insights into the development of the new generation of more precise and efficient molecular nanoprobes, with a critical property of specifically targeting early atherosclerosis.
Collapse
Affiliation(s)
- Chunfang Zan
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, China
| | - Jie An
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, China
| | - Zhifang Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, China
- ✉ Corresponding authors: Prof. Zhifang Wu, E-mail: . Prof. Sijin Li, E-mail:
| | - Sijin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, China
- ✉ Corresponding authors: Prof. Zhifang Wu, E-mail: . Prof. Sijin Li, E-mail:
| |
Collapse
|
10
|
Abstract
Atherosclerosis is a chronic inflammatory disease involved in plaque rupture, stroke, thrombosis, and heart attack (myocardial infarction), which is a leading cause of sudden cardiovascular events. In the past decades, various imaging strategies have been designed and employed for the diagnosis of atherosclerosis. Targeted imaging can accurately distinguish pathological tissues from normal tissues and reliably reveal biological information in the occurrence and development of atherosclerosis. By taking advantage of versatile imaging techniques, rationally designed imaging probes targeting biomarkers overexpressed in plaque microenvironments and targeting activated cells by modifying specific ligands accumulated in lesion regions have attracted increasing attention. This Perspective elucidates comprehensively the targeted imaging strategies, current challenges, and future development directions for precise identification and diagnosis of atherosclerosis, which is beneficial to better understand the physiological and pathological progression and exploit novel imaging strategies.
Collapse
Affiliation(s)
- Jingjing Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Kaixian Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, People's Republic of China
| |
Collapse
|
11
|
Hu GF, Wang X, Meng LB, Li JY, Xu HX, Wu DS, Shan MJ, Chen YH, Xu JP, Gong T, Chen Z, Li YJ, Liu DP. SGLT1/2 as the potential biomarkers of renal damage under Apoe−/− and chronic stress via the BP neural network model and support vector machine. Front Cardiovasc Med 2022; 9:948909. [PMID: 36035950 PMCID: PMC9405420 DOI: 10.3389/fcvm.2022.948909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundChronic stress (CS) could produce negative emotions. The molecular mechanism of SGLT1 and SGLT2 in kidney injury caused by chronic stress combined with atherosclerosis remains unclear.MethodsIn total, 60 C57BL/6J mice were randomly divided into four groups, namely, control (CON, n = 15), control diet + chronic stress (CON+CS, n = 15), high-fat diet + Apoe−/− (HF + Apoe−/−, n = 15), and high-fat diet + Apoe−/− + chronic stress (HF+Apoe−/− + CS, n = 15) groups. The elevated plus maze and open field tests were performed to examine the effect of chronic stress. The expression of SGLT1 and SGLT2 in the kidney was detected. The support vector machine (SVM) and back propagation (BP) neural network model were constructed to explore the predictive value of the expression of SGLT1/2 on the renal pathological changes. The receiver operating characteristic (ROC) curve analysis was used.ResultsA chronic stress model and atherosclerosis model were constructed successfully. Edema, broken reticular fiber, and increased glycogen in the kidney would be obvious in the HF + Apoe−/− + CS group. Compared with the CON group, the expression of SGLT1/2 in the kidney was upregulated in the HF + Apoe−/− + CS group (P < 0.05). There existed positive correlations among edema, glycogen, reticular fiber, expression of SGLT1/2 in the kidney. There were higher sensitivity and specificity of diagnosis of SGLT1/2 for edema, reticular fiber, and glycogen in the kidney. The result of the SVM and BP neural network model showed better predictive values of SGLT1 and SGLT2 for edema and glycogen in the kidney.ConclusionIn conclusion, SGLT1/2 might be potential biomarkers of renal damage under Apoe−/− and chronic stress, which provided a potential research direction for future related explorations into this mechanism.
Collapse
Affiliation(s)
- Gai-feng Hu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Xiang Wang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ling-bing Meng
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-yi Li
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong-xuan Xu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Di-shan Wu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng-jie Shan
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yu-hui Chen
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jia-pei Xu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Tao Gong
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Tao Gong
| | - Zuoguan Chen
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Zuoguan Chen
| | - Yong-jun Li
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Yong-jun Li
| | - De-ping Liu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: De-ping Liu
| |
Collapse
|
12
|
In vitro Therapeutic Effects of Folate Receptor-Targeted Delivery of Anti-Atherogenic Nanodrug on Macrophage Foam Cells. Macromol Res 2022. [DOI: 10.1007/s13233-022-0082-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Zhang S, Liu Y, Cao Y, Zhang S, Sun J, Wang Y, Song S, Zhang H. Targeting the Microenvironment of Vulnerable Atherosclerotic Plaques: An Emerging Diagnosis and Therapy Strategy for Atherosclerosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110660. [PMID: 35238081 DOI: 10.1002/adma.202110660] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Atherosclerosis is considered one of the primary causes of cardiovascular diseases (CVDs). Unpredictable rupture of the vulnerable atherosclerotic plaques triggers adverse cardiovascular events such as acute myocardial syndrome and even sudden cardiac death. Therefore, assessing the vulnerability of atherosclerotic plaques and early intervention are of significance in reducing CVD mortality. Nanomedicine possesses tremendous advantages in achieving the integration of the diagnosis and therapy of atherosclerotic plaques because of its magnetic, optical, thermal, and catalytic properties. Based on the pathological characteristics of vulnerable plaques, stimuli-responsive nanoplatforms and surface-functionalized nanoagents are designed and have drawn great attention for accomplishing the precise imaging and treatment of vulnerable atherosclerotic plaques due to their superior properties, such as high bioavailability, lesion-targeting specificity, on-demand cargo release, and low off-target damage. Here, the characteristics of vulnerable plaques are generalized, and some targeted strategies for boosting the accuracy of plaque vulnerability evaluation by imaging and the efficacy of plaque stabilization therapy (including antioxidant therapy, macrophage depletion therapy, regulation of lipid metabolism therapy, anti-inflammation therapy, etc.) are systematically summarized. In addition, existing challenges and prospects in this field are discussed, and it is believed to provide new thinking for the diagnosis and treatment of CVDs in the near future.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Cardiovascular Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021, China
| | - Yang Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yue Cao
- Department of Neurosurgery, The First Hospital of Jilin University, 71 Ximin Street, Changchun, Jilin, 130021, China
| | - Songtao Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Jian Sun
- Department of Cardiovascular Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021, China
| | - Yinghui Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|