1
|
Aref M, Ashour WM, El-Malkey NF, Alqahtani HA, Nassan MA, Abd-Almotaleb NA, Salem GA. Exercise ameliorates cardiac injury induced by nandrolone decanoate through downregulation of osteopontin and mTOR expressions. Tissue Cell 2025; 95:102932. [PMID: 40315693 DOI: 10.1016/j.tice.2025.102932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/07/2025] [Accepted: 04/23/2025] [Indexed: 05/04/2025]
Abstract
Nandrolone-decanoate (NA), a synthetic anabolic steroid, negatively impacts cardiac function. While exercise is known to benefit cardiovascular health, its effects on individuals misusing anabolic steroids require further study. Osteopontin (OPN) and mammalian target of rapamycin (m-TOR) are crucial in inflammation-related cardiovascular diseases and can be influenced by exercise, though results are inconclusive. This study aims to examine how exercise affects NA's cardiac adverse effects and the potential role of OPN and m-TOR. The study involved 52 male rats divided into four groups: control, exercise-only, NA-treated (15 mg/kg/day S.C for 8 W), and combined exercise and NA treatment. Researchers measured blood pressure, heart rate (HR), serum cardiac enzymes, CRP, IL-1B, IL-6, Brain Natriuretic Peptide (BNP) and conducted macro and micromorphological assessments. Additionally, immunohistochemical analysis of cardiac OPN and mTOR was performed. The NA-treated group showed significant increases in blood pressure, HR, weight, and cardiac enzymes compared to the control group. Exercise significantly improved these parameters in the combined exercise and NA treatment group, except for blood pressure. All groups exhibited an increase in cardiac weight relative to the control. The NA-treated group displayed marked hyaline degeneration and necrosis in cardiac tissues, with increased cell diameter and excess collagen deposition, which was less severe in the combined exercise (EX) and NA treatment group. NA treatment significantly elevated inflammatory mediators and the area percentage of OPN and m-TOR expression. These markers were significantly reduced in the combined exercise and NA treatment group. BNP was remarkably raised in EX+NA group compared to all other groups. Exercise mitigated NA-induced cardiac damage by reducing inflammation, possibly through the downregulation of cardiac OPN and m-TOR expression.
Collapse
Affiliation(s)
- Mohamed Aref
- Department of Anatomy and Embryology, Faculty of Veterinary medicine, Zagazig University, El-Sharkia 44519, Egypt.
| | - Wesam Mr Ashour
- Department of Medical Physiology, Faculty of medicine, Zagazig University, Zagazig, El-Sharkia 44519, Egypt
| | - Nanees F El-Malkey
- Department of Medical Physiology, Faculty of medicine, Zagazig University, Zagazig, El-Sharkia 44519, Egypt
| | - Haifa A Alqahtani
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Mohamed A Nassan
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Noha Ali Abd-Almotaleb
- Department of Human Anatomy and Embryology, Faculty of medicine, Zagazig University, Zagazig, El-Sharkia 44519, Egypt
| | - Gamal A Salem
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, El-Sharkia 44519, Egypt.
| |
Collapse
|
2
|
Baragetti A, Alieva AS, Grigore L, Pellegatta F, Lupi A, Scrimali C, Cefalù AB, Hutten BA, Wiegman A, Knaapen P, Bom MJ, Nurmohamed NS, Reutova O, Konradi A, Shlyakhto E, Stroes ESG, Averna M, Catapano AL. Fibroblast growth factor 5: a novel biomarker for familial hypercholesterolaemia. Eur Heart J 2025; 46:1819-1834. [PMID: 39928422 DOI: 10.1093/eurheartj/ehaf045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/25/2024] [Accepted: 01/21/2025] [Indexed: 02/12/2025] Open
Abstract
BACKGROUND AND AIMS Identification of individuals affected by familial hypercholesterolaemia (FH) is suboptimal when genetic tests are unavailable. Relying only on low-density lipoprotein cholesterol (LDL-C) is challenging as it may not allow distinguishing individuals with FH from hypercholesterolaemic (HC) individuals from the general population. The aim of this study was to determine whether biomarkers associated with cardiovascular disease and/or inflammation identify FH individuals and distinguish them from HC individuals. METHODS A panel of 264 proteins in plasma was measured and machine learning was used to search for those that can distinguish FH individuals, either genetically proven (genFH) or clinically diagnosed (clinFH) from HC and control individuals. RESULTS Both genFH and clinFH had elevated plasma levels of fibroblast growth factor 5 (FGF-5) compared with controls (mean area under the curve [AUC] > .990 for both, P < .001) or HC individuals (mean AUC >.990, P < .001), even after matching for LDL-C levels. An immunoenzymatic assay confirmed that FGF-5 was elevated in genFH and clinFH in all cohorts analysed. CONCLUSIONS This analysis suggests that FGF-5 could be a biomarker to discriminate individuals living with FH from HC individuals.
Collapse
Affiliation(s)
- Andrea Baragetti
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzarett 9, 20133 Milan, Italy
- Center for the Study of Atherosclerosis, IRCCS MultiMedica, Via Milanese 300, 20099 Sesto San Giovanni, Milan, Italy
| | - Asiiat S Alieva
- Research Laboratory of Lipid Metabolism Disorders and Atherosclerosis, Almazov National Medical Research Centre, St. Petersburg, The Russian Federation
| | - Liliana Grigore
- Center for the Study of Atherosclerosis, IRCCS MultiMedica, Via Milanese 300, 20099 Sesto San Giovanni, Milan, Italy
| | - Fabio Pellegatta
- Center for the Study of Atherosclerosis, IRCCS MultiMedica, Via Milanese 300, 20099 Sesto San Giovanni, Milan, Italy
| | - Andrea Lupi
- S.I.S.A. Centre for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, Milan, Italy
| | - Chiara Scrimali
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo-School of Medicine, Palermo, Italy
| | - Angelo B Cefalù
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo-School of Medicine, Palermo, Italy
| | - Barbara A Hutten
- Department of Epidemiology and Data Science, Amsterdam University Medical Center, Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Research Institute, Diabetes and Metabolism, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Albert Wiegman
- Department of Pediatrics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul Knaapen
- Department of Cardiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Michiel J Bom
- Department of Cardiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nick S Nurmohamed
- Department of Cardiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Olga Reutova
- Research Laboratory of Lipid Metabolism Disorders and Atherosclerosis, Almazov National Medical Research Centre, St. Petersburg, The Russian Federation
| | - Alexandra Konradi
- Research Laboratory of Lipid Metabolism Disorders and Atherosclerosis, Almazov National Medical Research Centre, St. Petersburg, The Russian Federation
| | - Evgeny Shlyakhto
- Research Laboratory of Lipid Metabolism Disorders and Atherosclerosis, Almazov National Medical Research Centre, St. Petersburg, The Russian Federation
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Maurizio Averna
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo-School of Medicine, Palermo, Italy
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzarett 9, 20133 Milan, Italy
- Center for the Study of Atherosclerosis, IRCCS MultiMedica, Via Milanese 300, 20099 Sesto San Giovanni, Milan, Italy
| |
Collapse
|
3
|
Toner YC, Munitz J, Prevot G, Morla-Folch J, Wang W, van Elsas Y, Priem B, Deckers J, Anbergen T, Beldman TJ, Brechbühl EE, Aksu MD, Ziogas A, Sarlea SA, Ozturk M, Zhang Z, Li W, Li Y, Maier A, Fernandes JC, Cremers GA, van Genabeek B, Kreijtz JH, Lutgens E, Riksen NP, Janssen HM, Söntjens SH, Hoeben FJ, Kluza E, Singh G, Giamarellos-Bourboulis EJ, Schotsaert M, Duivenvoorden R, van der Meel R, Joosten LA, Cai L, Temel RE, Fayad ZA, Mhlanga MM, van Leent MM, Teunissen AJ, Netea MG, Mulder WJ. Targeting mTOR in myeloid cells prevents infection-associated inflammation. iScience 2025; 28:112163. [PMID: 40177636 PMCID: PMC11964677 DOI: 10.1016/j.isci.2025.112163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 12/13/2024] [Accepted: 02/28/2025] [Indexed: 04/05/2025] Open
Abstract
Infections, cancer, and trauma can cause life-threatening hyperinflammation. In the present study, using single-cell RNA sequencing of circulating immune cells, we found that the mammalian target of rapamycin (mTOR) pathway plays a critical role in myeloid cell regulation in COVID-19 patients. Previously, we developed an mTOR-inhibiting nanobiologic (mTORi-nanobiologic) that efficiently targets myeloid cells and their progenitors in the bone marrow. In vitro, we demonstrated that mTORi-nanobiologics potently inhibit infection-associated inflammation in human primary immune cells. Next, we investigated the in vivo effect of mTORi-nanobiologics in mouse models of hyperinflammation and acute respiratory distress syndrome. Using 18F-FDG uptake and flow cytometry readouts, we found mTORi-nanobiologic therapy to efficiently reduce hematopoietic organ metabolic activity and inflammation to levels comparable to those of healthy control animals. Together, we show that regulating myelopoiesis with mTORi-nanobiologics is a compelling therapeutic strategy to prevent deleterious organ inflammation in infection-related complications.
Collapse
Affiliation(s)
- Yohana C. Toner
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Jazz Munitz
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Geoffrey Prevot
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Judit Morla-Folch
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - William Wang
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yuri van Elsas
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Bram Priem
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Jeroen Deckers
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Tom Anbergen
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Thijs J. Beldman
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Eliane E.S. Brechbühl
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Muhammed D. Aksu
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Athanasios Ziogas
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Sebastian A. Sarlea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Mumin Ozturk
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Epigenomics & Single Cell Biophysics Group, Department of Cell Biology, FNWI, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6525 GA Nijmegen, the Netherlands
| | - Zhenhua Zhang
- Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany
| | - Wenchao Li
- Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany
| | - Yang Li
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany
| | - Alexander Maier
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cardiology and Angiology, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Jessica C. Fernandes
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Bas van Genabeek
- Trained Therapeutix Discovery, 5349 AB Oss, the Netherlands
- SyMO-Chem B.V., 5612 AZ Eindhoven, the Netherlands
| | | | - Esther Lutgens
- Department of Cardiovascular Medicine, Experimental Cardiovascular Immunology Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Niels P. Riksen
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | | | | | | | - Ewelina Kluza
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, the Netherlands
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Raphaël Duivenvoorden
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Nephrology, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Roy van der Meel
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, the Netherlands
| | - Leo A.B. Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, 400 349 Cluj-Napoca, Romania
| | - Lei Cai
- Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Ryan E. Temel
- Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Zahi A. Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Musa M. Mhlanga
- Epigenomics & Single Cell Biophysics Group, Department of Cell Biology, FNWI, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6525 GA Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Mandy M.T. van Leent
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Abraham J.P. Teunissen
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Willem J.M. Mulder
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, the Netherlands
| |
Collapse
|
4
|
Shivam P, Ball D, Cooley A, Osi I, Rayford KJ, Gonzalez SB, Edwards AD, McIntosh AR, Devaughn J, Pugh-Brown JP, Misra S, Kirabo A, Ramesh A, Lindsey ML, Sakwe AM, Gaye A, Hinton A, Martin PM, Nde PN. Regulatory roles of PIWI-interacting RNAs in cardiovascular disease. Am J Physiol Heart Circ Physiol 2025; 328:H991-H1004. [PMID: 40048207 DOI: 10.1152/ajpheart.00833.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/27/2024] [Accepted: 03/03/2025] [Indexed: 04/09/2025]
Abstract
Cardiovascular disease remains the number one cause of death worldwide. Across the spectrum of cardiovascular pathologies, all are accompanied by changes in gene expression profiles spanning a variety of cellular components of the myocardium. Alterations in gene expression are regulated by small noncoding RNAs (sncRNAs), with P-element-induced WImpy testis (PIWI)-interacting RNAs (piRNAs) being the most abundant of the sncRNAs in the human genome. Composed of 21-35 nucleotides in length with a protective methyl group at the 3' end, piRNAs complex with highly conserved RNA-binding proteins termed PIWI proteins to recruit enzymes used for histone, DNA, RNA, and protein modifications. Thus, specific piRNA expression patterns can be exploited for early clinical diagnosis of cardiovascular disease and the development of novel RNA therapeutics that may improve cardiac health outcomes. This review summarizes the latest progress made on understanding how piRNAs regulate cardiovascular health and disease progression, including a discussion of their potential in the development of biomarkers and therapeutics.
Collapse
Affiliation(s)
- Pushkar Shivam
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
| | - Destiny Ball
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
| | - Ayorinde Cooley
- School of Medicine, Meharry Medical College, Nashville, Tennessee, United States
| | - Inmar Osi
- School of Medicine, Meharry Medical College, Nashville, Tennessee, United States
| | - Kayla J Rayford
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
| | - Said B Gonzalez
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
| | - Alayjha D Edwards
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
| | - Antonisha R McIntosh
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
| | - Jessica Devaughn
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
| | - Jada P Pugh-Brown
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
| | - Smita Misra
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
| | - Annet Kirabo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Aramandla Ramesh
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, Meharry Medical College, Nashville, Tennessee, United States
| | - Merry L Lindsey
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
- Research Service, Nashville VA Medical Center, Nashville, Tennessee, United States
| | - Amos M Sakwe
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
| | - Amadou Gaye
- Department of Integrative Genomics and Epidemiology, School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
| | - Antentor Hinton
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Pamela M Martin
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
| | - Pius N Nde
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
| |
Collapse
|
5
|
Bonacina F, Zhang X, Manel N, Yvan-Charvet L, Razani B, Norata GD. Lysosomes in the immunometabolic reprogramming of immune cells in atherosclerosis. Nat Rev Cardiol 2025; 22:149-164. [PMID: 39304748 PMCID: PMC11835540 DOI: 10.1038/s41569-024-01072-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 09/22/2024]
Abstract
Lysosomes have a central role in the disposal of extracellular and intracellular cargo and also function as metabolic sensors and signalling platforms in the immunometabolic reprogramming of macrophages and other immune cells in atherosclerosis. Lysosomes can rapidly sense the presence of nutrients within immune cells, thereby switching from catabolism of extracellular material to the recycling of intracellular cargo. Such a fine-tuned degradative response supports the generation of metabolic building blocks through effectors such as mTORC1 or TFEB. By coupling nutrients to downstream signalling and metabolism, lysosomes serve as a crucial hub for cellular function in innate and adaptive immune cells. Lysosomal dysfunction is now recognized to be a hallmark of atherogenesis. Perturbations in nutrient-sensing and signalling have profound effects on the capacity of immune cells to handle cholesterol, perform phagocytosis and efferocytosis, and limit the activation of the inflammasome and other inflammatory pathways. Strategies to improve lysosomal function hold promise as novel modulators of the immunoinflammatory response associated with atherosclerosis. In this Review, we describe the crosstalk between lysosomal biology and immune cell function and polarization, with a particular focus on cellular immunometabolic reprogramming in the context of atherosclerosis.
Collapse
Affiliation(s)
- Fabrizia Bonacina
- Department of Excellence of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Xiangyu Zhang
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
- Pittsburgh VA Medical Center, Pittsburgh, PA, USA
| | - Nicolas Manel
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU), Oncoage, Nice, France
| | - Babak Razani
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
- Pittsburgh VA Medical Center, Pittsburgh, PA, USA
| | - Giuseppe D Norata
- Department of Excellence of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
6
|
Akter R, Noor F, Tonmoy HS, Ahmed A. Potential of SIRT6 modulators in targeting molecular pathways involved in cardiovascular diseases and their treatment-A comprehensive review. Biochem Pharmacol 2025; 233:116787. [PMID: 39894306 DOI: 10.1016/j.bcp.2025.116787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/09/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality and morbidity, accounting for major public health concerns worldwide. CVD poses an immense burden on the global healthcare system and economy. Ischemic heart disease, stroke, heart failure, atherosclerosis, and hypertension are the major diseases belonging to CVDs and ischemic heart diseases and stroke contribute to most CVD-induced deaths. Previously published review articles focused on the role of SIRT6 in CVDs but did not focus on the important role of SIRT6 in modulating the signaling pathways involved in CVDs and targeting them to treat CVDs. Thus, this review aims to identify and delineate the major signaling pathways that are involved in CVDs and whether SIRT6 can modulate those pathways to improve and treat CVDs. Alongside possible applications of small molecule modulators of SIRT6 in cardiovascular disease treatment have been comprehensively analyzed.
Collapse
Affiliation(s)
- Raushanara Akter
- School of Pharmacy, KHA 224 Bir Uttam Rafiqul Islam Avenue, Merul Badda, BRAC University, Dhaka 1212, Bangladesh.
| | - Fouzia Noor
- School of Pharmacy, KHA 224 Bir Uttam Rafiqul Islam Avenue, Merul Badda, BRAC University, Dhaka 1212, Bangladesh
| | - Hasan Shahriyer Tonmoy
- School of Pharmacy, KHA 224 Bir Uttam Rafiqul Islam Avenue, Merul Badda, BRAC University, Dhaka 1212, Bangladesh
| | - Ashfaq Ahmed
- School of Pharmacy, KHA 224 Bir Uttam Rafiqul Islam Avenue, Merul Badda, BRAC University, Dhaka 1212, Bangladesh
| |
Collapse
|
7
|
Jakubowski H, Witucki Ł. Homocysteine Metabolites, Endothelial Dysfunction, and Cardiovascular Disease. Int J Mol Sci 2025; 26:746. [PMID: 39859460 PMCID: PMC11765536 DOI: 10.3390/ijms26020746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Atherosclerosis is accompanied by inflammation that underlies cardiovascular disease (CVD) and its vascular manifestations, including acute stroke, myocardial infarction, and peripheral artery disease, the leading causes of morbidity/mortality worldwide. The monolayer of endothelial cells formed on the luminal surface of arteries and veins regulates vascular tone and permeability, which supports vascular homeostasis. Endothelial dysfunction, the first step in the development of atherosclerosis, is caused by mechanical and biochemical factors that disrupt vascular homeostasis and induce inflammation. Together with increased plasma levels of low-density lipoprotein (LDL), diabetes, hypertension, cigarette smoking, infectious microorganisms, and genetic factors, epidemiological studies established that dysregulated metabolism of homocysteine (Hcy) causing hyperhomocysteinemia (HHcy) is associated with CVD. Patients with severe HHcy exhibit severe CVD and die prematurely due to vascular complications. Biochemically, HHcy is characterized by elevated levels of Hcy and related metabolites such as Hcy-thiolactone and N-Hcy-protein, seen in genetic and nutritional deficiencies in Hcy metabolism in humans and animals. The only known source of Hcy in humans is methionine released in the gut from dietary protein. Hcy is generated from S-adenosylhomocysteine (AdoHcy) and metabolized to cystathionine by cystathionine β-synthase (CBS) and to Hcy-thiolactone by methionyl-tRNA synthetase. Hcy-thiolactone, a chemically reactive thioester, modifies protein lysine residues, generating N-homocysteinylated (N-Hcy)-protein. N-Hcy-proteins lose their normal native function and become cytotoxic, autoimmunogenic, proinflammatory, prothrombotic, and proatherogenic. Accumulating evidence, discussed in this review, shows that these Hcy metabolites can promote endothelial dysfunction, CVD, and stroke in humans by inducing pro-atherogenic changes in gene expression, upregulating mTOR signaling, and inhibiting autophagy through epigenetic mechanisms involving specific microRNAs, histone demethylase PHF8, and methylated histone H4K20me1. Clinical studies, also discussed in this review, show that cystathionine and Hcy-thiolactone are associated with myocardial infarction and ischemic stroke by influencing blood clotting. These findings contribute to our understanding of the complex mechanisms underlying endothelial dysfunction, atherosclerosis, CVD, and stroke and identify potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632 Poznań, Poland;
| | - Łukasz Witucki
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632 Poznań, Poland;
| |
Collapse
|
8
|
Nagy RN, Makkos A, Baranyai T, Giricz Z, Szabó M, Kravcsenko-Kiss B, Bereczki Z, Ágg B, Puskás LG, Faragó N, Schulz R, Gyöngyösi M, Lukovic D, Varga ZV, Görbe A, Ferdinandy P. Cardioprotective microRNAs (protectomiRs) in a pig model of acute myocardial infarction and cardioprotection by ischaemic conditioning: MiR-450a. Br J Pharmacol 2025; 182:396-416. [PMID: 39294819 DOI: 10.1111/bph.17313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 06/05/2024] [Accepted: 07/04/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND AND PURPOSE Cardioprotective miRNAs (protectomiRs) are promising therapeutic tools. Here, we aimed to identify protectomiRs in a translational porcine model of acute myocardial infarction (AMI) and to validate their cardiocytoprotective effect. EXPERIMENTAL APPROACH ProtectomiR candidates were selected after systematic analysis of miRNA expression changes in cardiac tissue samples from a closed-chest AMI model in pigs subjected to sham operation, AMI and ischaemic preconditioning, postconditioning or remote preconditioning, respectively. Cross-species orthologue protectomiR candidates were validated in simulated ischaemia-reperfusion injury (sI/R) model of isolated rat ocardiomyocytes and in human AC16 cells as well. For miR-450a, we performed target prediction and analysed the potential mechanisms of action by GO enrichment and KEGG pathway analysis. KEY RESULTS Out of the 220 detected miRNAs, four were up-regulated and 10 were down-regulated due to all three conditionings versus AMI. MiR-450a and miR-451 mimics at 25 nM were protective in rat cardiomyocytes, and miR-450a showed protection in human cardiomyocytes as well. MiR-450a has 3987 predicted mRNA targets in pigs, 4279 in rats and 8328 in humans. Of these, 607 genes are expressed in all three species. A total of 421 common enriched GO terms were identified in all three species, whereas KEGG pathway analysis revealed 13 common pathways. CONCLUSION AND IMPLICATIONS This is the first demonstration that miR-450a is associated with cardioprotection by ischaemic conditioning in a clinically relevant porcine model and shows cardiocytoprotective effect in human cardiomyocytes, making it a promising drug candidate. The mechanism of action of miR-450a involves multiple cardioprotective pathways. LINKED ARTICLES This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Grants
- OTKA ANN 107803 Hungarian Scientific Research Fund
- OTKA K-105555 Hungarian Scientific Research Fund
- 2018-1.3.1-VKE-2018-00024 National Research, Development and Innovation Office
- NVKP-16-1-2016-0017 National Heart Program National Research, Development and Innovation Office
- OTKA-FK 134751 National Research, Development and Innovation Office
- TKP/ITM/NFKIH National Research, Development and Innovation Office
- OTKAK21-139105 National Research, Development and Innovation Office
- RRF-2.3.1-21-2022-00003 European Union
- EU COST Action CardioRNA.eu, Cardioprotection.eu
- 88öu1 Austrian-Hungarian Action Scholarship
- 739593 European Union's Horizon 2020
- 2019-1.1.1-PIACI-KFI-2019-00367 National Research, Development and Innovation Fund
- 2020-1.1.5-GYORSÍTÓSÁV-2021-00011 National Research, Development and Innovation Fund
- ÚNKP-20-5 National Research, Development and Innovation Fund
- ÚNKP-23-4-II-SE-34 National Research, Development and Innovation Fund
- János Bolyai Research Scholarship of Hungarian Academy of Sciences
Collapse
Affiliation(s)
- Regina N Nagy
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - András Makkos
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Tamás Baranyai
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zoltán Giricz
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Márta Szabó
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Bernadett Kravcsenko-Kiss
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zoltán Bereczki
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Bence Ágg
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - László G Puskás
- Laboratory of Functional Genomics, Biological Research Centre, Szeged, Hungary
| | - Nóra Faragó
- Laboratory of Functional Genomics, Biological Research Centre, Szeged, Hungary
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University of Giessen, Giessen, Germany
| | - Mariann Gyöngyösi
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Dominika Lukovic
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Zoltán V Varga
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
| | - Anikó Görbe
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Péter Ferdinandy
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
9
|
Maduray K, Zhong J. Emerging roles of ketone bodies in cardiac fibrosis. Am J Physiol Cell Physiol 2024; 327:C1416-C1432. [PMID: 39401423 DOI: 10.1152/ajpcell.00241.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 12/11/2024]
Abstract
Cardiac fibrosis, characterized by excessive extracellular matrix (ECM) deposition within the myocardium, poses a significant challenge in cardiovascular health, contributing to various cardiac pathologies. Ketone bodies (KBs), particularly β-hydroxybutyrate (β-OHB), have emerged as subjects of interest due to their potential cardioprotective effects. However, their specific influence on cardiac fibrosis remains underexplored. This literature review comprehensively examines the relationship between KBs and cardiac fibrosis, elucidating potential mechanisms through which KBs modulate fibrotic pathways. A multifaceted interplay exists between KBs and key mediators of cardiac fibrosis. While some studies indicate a profibrotic role for KBs, others highlight their potential to attenuate fibrosis and cardiac remodeling. Mechanistically, KBs may regulate fibrotic pathways through modulation of cellular components such as cardiac fibroblasts, macrophages, and lymphocytes, as well as extracellular matrix proteins. Furthermore, the impact of KBs on cellular processes implicated in fibrosis, including oxidative stress, chemokine and cytokine expression, caspase activation, and inflammasome signaling is explored. While conflicting findings exist regarding the effects of KBs on these processes, emerging evidence suggests a predominantly beneficial role in mitigating inflammation and oxidative stress associated with fibrotic remodeling. Overall, this review underscores the importance of elucidating the complex interplay between KB metabolism and cardiac fibrosis. The insights gained have the potential to inform novel therapeutic strategies for managing cardiac fibrosis and associated cardiovascular disorders, highlighting the need for further research in this area.
Collapse
Affiliation(s)
- Kellina Maduray
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
| | - Jingquan Zhong
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
- Department of Cardiology, Qilu Hospital of Shandong University (Qingdao), Shandong University, Qingdao, Shandong, China
| |
Collapse
|
10
|
Zhang L, Lin Y, Zhang Z, Chen Y, Zhong J. Immune regulation and organ damage link adiponectin to sepsis. Front Immunol 2024; 15:1444884. [PMID: 39664383 PMCID: PMC11632310 DOI: 10.3389/fimmu.2024.1444884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/07/2024] [Indexed: 12/13/2024] Open
Abstract
Sepsis is a life-threatening syndrome characterized by organ dysfunction, resulting from an uncontrolled or abnormal immune response to infection, which leads to septicemia. It involves a disruption of immune homeostasis, marked by the release of Inflammatory factors and dysfunction of immune cells. Adiponectin is widely recognized as an anti-inflammatory mediator, playing a crucial role in regulating immune cell function and exerting protective effects on tissues and organs. However, the physiological role of adiponectin in septicemia remains unclear due to the condition's association with immune response dysregulation and organ damage. This study focuses on the potential relationship between adiponectin and excessive immune responses, along with organ injury in septicemia. Additionally, we investigate possible explanations for the observed discrepancies in adiponectin levels among critically ill or deceased patients compared to theoretical expectations, aiming to provide valuable insights for clinical diagnostics and therapeutic interventions in sepsis.
Collapse
Affiliation(s)
| | | | - Zhongying Zhang
- Medical Laboratory Center, Xiamen Humanity Hospital, Xiamen, Fujian, China
| | | | | |
Collapse
|
11
|
Gao H, Chen Z, Yao Y, He Y, Hu X. Common biological processes and mutual crosstalk mechanisms between cardiovascular disease and cancer. Front Oncol 2024; 14:1453090. [PMID: 39634266 PMCID: PMC11614734 DOI: 10.3389/fonc.2024.1453090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Cancer and cardiovascular disease (CVD) are leading causes of mortality and thus represent major health challenges worldwide. Clinical data suggest that cancer patients have an increased likelihood of developing cardiovascular disease, while epidemiologic studies have shown that patients with cardiovascular disease are also more likely to develop cancer. These observations underscore the increasing importance of studies exploring the mechanisms underlying the interaction between the two diseases. We review their common physiological processes and potential pathophysiological links. We explore the effects of chronic inflammation, oxidative stress, and disorders of fatty acid metabolism in CVD and cancer, and also provide insights into how cancer and its treatments affect heart health, as well as present recent advances in reverse cardio-oncology using a new classification approach.
Collapse
Affiliation(s)
- Hanwei Gao
- Department of Cardiology, China–Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Zhongyu Chen
- Department of Cardiology, China–Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
- CJUH-JLU-China iGEM Team, Jilin University, Changchun, Jilin, China
| | - Yutong Yao
- Department of Cardiology, China–Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
- CJUH-JLU-China iGEM Team, Jilin University, Changchun, Jilin, China
| | - Yuquan He
- Department of Cardiology, China–Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
- CJUH-JLU-China iGEM Team, Jilin University, Changchun, Jilin, China
| | - Xin Hu
- Department of Cardiology, China–Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
- CJUH-JLU-China iGEM Team, Jilin University, Changchun, Jilin, China
| |
Collapse
|
12
|
Chang D, Zhao Y, Ren Z, Zhu X, Bao X, Wang Y, Wang W, Cui C, Liu X, Li Z, Shan Y, Yang J. Transcriptome analysis reveals the immune response mechanism of golden cuttlefish (Sepia esculenta) larvae exposed to ink. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101355. [PMID: 39541713 DOI: 10.1016/j.cbd.2024.101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/02/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
The golden cuttlefish (Sepia esculenta), a significant cephalopod in the Yellow and Bohai Seas of China, is highly esteemed for its exceptional medicinal and commercial value. The natural resources of the S. esculenta are currently facing depletion due to the ongoing environmental degradation and overfishing. Secreted by the ink sac of the S. esculenta, the ink contains a diverse array of nutrients and active ingredients, which can exert a substantial impact on biological immune cells' proliferation and differentiation, the occurrence of inflammation, autophagy, along with other processes pertaining to immune response, and thus affects their survival. In the actual production, the high-density artificial cultivation and transportation process of S. esculenta often leads to large-scale inkjet phenomenon, posing a significant threat to the survival of this species. The present study employed RNA-seq as the basis to investigate the mechanisms of immune response in S. esculenta larvae when exposed to ink. Conduct functional enrichment analysis (GO and KEGG) as well as protein-protein interaction (PPI) network analysis for the 1951 differentially expressed genes (DEGs). In addition, this study is the pioneering attempt to employ a combined analysis of KEGG and PPI network construction and further reveal a set of 20 key genes associated with immunity, which have higher numbers of PPI or KEGG pathway participation. It is evident that the ink exposure has an impact on the inflammatory response, immune cell propagation and specialization, transmission of signals in the immune system, and autophagy in S. esculenta larvae. Through the enrichment analysis of genes and pathway functions, we understood the impact of ink exposure on the larvae of S. esculenta exhibit immune resistance, further improved our overall comprehension regarding the immune functionality exhibited by mollusks, and contributed to improving the survival rate of S. esculenta in factory farming.
Collapse
Affiliation(s)
- Deyuan Chang
- Fisheries College, Ludong University, Yantai 264025, China
| | - Yancheng Zhao
- Fisheries College, Ludong University, Yantai 264025, China
| | - Ziwen Ren
- Shandong Yellow River Delta Marine Technology Co., Ltd., Dongying 257200, China
| | - Xueyu Zhu
- Fisheries College, Ludong University, Yantai 264025, China
| | - Xiaokai Bao
- Fisheries College, Ludong University, Yantai 264025, China
| | - Yongjie Wang
- Fisheries College, Ludong University, Yantai 264025, China
| | - Weijun Wang
- Fisheries College, Ludong University, Yantai 264025, China
| | - Cuiju Cui
- Fisheries College, Ludong University, Yantai 264025, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Zan Li
- Fisheries College, Ludong University, Yantai 264025, China.
| | - Yuan Shan
- National Fisheries Technology Extension Center & China Society of Fisheries, Beijing 100125, China.
| | - Jianmin Yang
- Fisheries College, Ludong University, Yantai 264025, China.
| |
Collapse
|
13
|
Abdelrahman AA, Sandow PV, Wang J, Xu Z, Rojas M, Bomalaski JS, Lemtalsi T, Caldwell RB, Caldwell RW. Arginine deprivation/citrulline augmentation with ADI-PEG20 as novel therapy for complications in type 2 diabetes. Mol Metab 2024; 89:102020. [PMID: 39214514 PMCID: PMC11414555 DOI: 10.1016/j.molmet.2024.102020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE Chronic inflammation and oxidative stress mediate the pathological progression of diabetic complications, like diabetic retinopathy (DR), peripheral neuropathy (DPN) and impaired wound healing. Studies have shown that treatment with a stable form of arginase 1 that reduces l-arginine levels and increases ornithine and urea limits retinal injury and improves visual function in DR. We tested the therapeutic efficacy of PEGylated arginine deiminase (ADI-PEG20) that depletes l-arginine and elevates l-citrulline on diabetic complications in the db/db mouse model of type 2 diabetes (T2D). METHODS Mice received intraperitoneal (IP), intramuscular (IM), or intravitreal (IVT) injections of ADI-PEG20 or PEG20 as control. Effects on body weight, fasting blood glucose levels, blood-retinal-barrier (BRB) function, visual acuity, contrast sensitivity, thermal sensitivity, and wound healing were determined. Studies using bone marrow-derived macrophages (BMDM) examined the underlying signaling pathway. RESULTS Systemic injections of ADI-PEG20 reduced body weight and blood glucose and decreased oxidative stress and inflammation in db/db retinas. These changes were associated with improved BRB and visual function along with thermal sensitivity and wound healing. IVT injections of either ADI-PEG20, anti-VEGF antibody or their combination also improved BRB and visual function. ADI-PEG20 treatment also prevented LPS/IFNℽ-induced activation of BMDM in vitro as did depletion of l-arginine and elevation of l-citrulline. CONCLUSIONS/INTERPRETATION ADI-PEG20 treatment limited signs of DR and DPN and enhanced wound healing in db/db mice. Studies using BMDM suggest that the anti-inflammatory effects of ADI-PEG20 involve blockade of the JAK2-STAT1 signaling pathway via l-arginine depletion and l-citrulline production.
Collapse
Affiliation(s)
- Ammar A Abdelrahman
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912 USA; Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA.
| | - Porsche V Sandow
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912 USA; Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA
| | - Jing Wang
- Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA
| | - Zhimin Xu
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA; Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA
| | - Modesto Rojas
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912 USA; Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA; Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA
| | | | - Tahira Lemtalsi
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA; Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA
| | - Ruth B Caldwell
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA; Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA
| | - Robert W Caldwell
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912 USA; Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA; Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA.
| |
Collapse
|
14
|
Sanganahalli BG, Mihailovic JM, Vekaria HJ, Coman D, Yackzan AT, Flemister A, Aware C, Wenger K, Hubbard WB, Sullivan PG, Hyder F, Lin AL. mTOR inhibition enhances synaptic and mitochondrial function in Alzheimer's disease in an APOE genotype-dependent manner. J Cereb Blood Flow Metab 2024; 44:1745-1758. [PMID: 38879800 PMCID: PMC11494852 DOI: 10.1177/0271678x241261942] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 04/11/2024] [Accepted: 05/24/2024] [Indexed: 10/18/2024]
Abstract
Apolipoprotein ε4 (APOE4) carriers develop brain metabolic dysfunctions decades before the onset of Alzheimer's disease (AD). A goal of the study is to identify if rapamycin, an inhibitor for the mammalian target of rapamycin (mTOR) inhibitor, would enhance synaptic and mitochondrial function in asymptomatic mice with human APOE4 gene (E4FAD) before they showed metabolic deficits. A second goal is to determine whether there may be genetic-dependent responses to rapamycin when compared to mice with human APOE3 alleles (E3FAD), a neutral AD genetic risk factor. We fed asymptomatic E4FAD and E3FAD mice with control or rapamycin diets for 16 weeks from starting from 3 months of age. Neuronal mitochondrial oxidative metabolism and excitatory neurotransmission rates were measured using in vivo 1H-[13C] proton-observed carbon-edited magnetic resonance spectroscopy, and isolated mitochondrial bioenergetic measurements using Seahorse. We found that rapamycin enhanced neuronal mitochondrial function, glutamate-glutamine cycling, and TCA cycle rates in the asymptomatic E4FAD mice. In contrast, rapamycin enhances glycolysis, non-neuronal activities, and inhibitory neurotransmission of the E3FAD mice. These findings indicate that rapamycin might be able to mitigate the risk for AD by enhancing brain metabolic functions for cognitively intact APOE4 carriers, and the responses to rapamycin are varied by APOE genotypes. Consideration of precision medicine may be needed for future rapamycin therapeutics.
Collapse
Affiliation(s)
- Basavaraju G Sanganahalli
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Jelena M Mihailovic
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Hemendra J Vekaria
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
- Lexington VA Health Care System, Lexington, KY, USA
| | - Daniel Coman
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Andrew T Yackzan
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | | | - Chetan Aware
- Department of Radiology, University of Missouri, Columbia, MO, USA
| | - Kathryn Wenger
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - W Brad Hubbard
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
- Lexington VA Health Care System, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Patrick G Sullivan
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
- Lexington VA Health Care System, Lexington, KY, USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Ai-Ling Lin
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
| |
Collapse
|
15
|
Witucki Ł, Jakubowski H. Homocysteine metabolites impair the PHF8/H4K20me1/mTOR/autophagy pathway by upregulating the expression of histone demethylase PHF8-targeting microRNAs in human vascular endothelial cells and mice. FASEB J 2024; 38:e70072. [PMID: 39323294 DOI: 10.1096/fj.202302116r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/21/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
The inability to efficiently metabolize homocysteine (Hcy) due to nutritional and genetic deficiencies, leads to hyperhomocysteinemia (HHcy) and endothelial dysfunction, a hallmark of atherosclerosis which underpins cardiovascular disease (CVD). PHF8 is a histone demethylase that demethylates H4K20me1, which affects the mammalian target of rapamycin (mTOR) signaling and autophagy, processes that play important roles in CVD. PHF8 is regulated by microRNA (miR) such as miR-22-3p and miR-1229-3p. Biochemically, HHcy is characterized by elevated levels of Hcy, Hcy-thiolactone and N-Hcy-protein. Here, we examined the effects of these metabolites on miR-22-3p, miR-1229-3p, and their target PHF8, as well as on the downstream consequences of these effects on H4K20me1, mTOR-, and autophagy-related proteins and mRNAs expression in human umbilical vein endothelial cells (HUVEC). We found that treatments with N-Hcy-protein, Hcy-thiolactone, or Hcy upregulated miR-22-3p and miR-1229-3p, attenuated PHF8 expression, upregulated H4K20me1, mTOR, and phospho-mTOR. Autophagy-related proteins (BECN1, ATG5, ATG7, lipidated LC3-II, and LC3-II/LC3-I ratio) were significantly downregulated by at least one of these metabolites. We also found similar changes in the expression of miR-22-3p, Phf8, mTOR- and autophagy-related proteins/mRNAs in vivo in hearts of Cbs-/- mice, which show severe HHcy and endothelial dysfunction. Treatments with inhibitors of miR-22-3p or miR-1229-3p abrogated the effects of Hcy-thiolactone, N-Hcy-protein, and Hcy on miR expression and on PHF8, H4K20me1, mTOR-, and autophagy-related proteins/mRNAs in HUVEC. Taken together, these findings show that Hcy metabolites upregulate miR-22-3p and miR-1229-3p expression, which then dysregulate the PHF8/H4K20me1/mTOR/autophagy pathway, important for vascular homeostasis.
Collapse
Affiliation(s)
- Łukasz Witucki
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
| | - Hieronim Jakubowski
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, International Center for Public Health, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
16
|
Collignon É, Furlan G. [RNA methylation at the heart of embryonic dormancy]. Med Sci (Paris) 2024; 40:620-622. [PMID: 39303112 DOI: 10.1051/medsci/2024102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Affiliation(s)
- Évelyne Collignon
- Faculté de médecine, ULB-Cancer research centre et Institut Jules Bordet, Université libre de Bruxelles, Bruxelles, Belgique
| | - Giacomo Furlan
- Lunenfeld-Tanenbaum research institute and department of molecular genetics, Université de Toronto, Toronto, Canada
| |
Collapse
|
17
|
Silva RCMC. Mitochondria, Autophagy and Inflammation: Interconnected in Aging. Cell Biochem Biophys 2024; 82:411-426. [PMID: 38381268 DOI: 10.1007/s12013-024-01231-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
In this manuscript, I discuss the direct link between abnormalities in inflammatory responses, mitochondrial metabolism and autophagy during the process of aging. It is focused on the cytosolic receptors nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) and cyclic GMP-AMP synthase (cGAS); myeloid-derived suppressor cells (MDSCs) expansion and their associated immunosuppressive metabolite, methyl-glyoxal, all of them negatively regulated by mitochondrial autophagy, biogenesis, metabolic pathways and its distinct metabolites.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
18
|
Trinh J, Shin J, Rai V, Agrawal DK. Targeting Oncostatin M Receptor to Attenuate Carotid Artery Plaque Vulnerability in Hypercholesterolemic Microswine. CARDIOLOGY AND CARDIOVASCULAR MEDICINE 2024; 8:206-214. [PMID: 38817407 PMCID: PMC11138392 DOI: 10.26502/fccm.92920380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Atherosclerosis is a chronic inflammatory disease that leads to acute embolism via the formation of atherosclerotic plaques. Plaque formation is first induced by fatty deposition along the arterial intima. Inflammation, bacterial infection, and the released endotoxins can lead to dysfunction and phenotypic changes of vascular smooth muscle cells (VSMCs), advancing the plaque from stable to unstable form and prone to rupture. Stable plaques are characterized by increased VSMCs and less inflammation while vulnerable plaques develop due to chronic inflammation and less VSMCs. Oncostatin M (OSM), an inflammatory cytokine, plays a role in endothelial cells and VSMC proliferation. This effect of OSM could be modulated by p27KIP1, a cyclin-dependent kinase (CDK) inhibitor. However, the role of OSM in plaque vulnerability has not been investigated. To better understand the role of OSM and its downstream signaling including p27KIP1 in plaque vulnerability, we characterized the previously collected carotid arteries from hyperlipidemic Yucatan microswine using hematoxylin and eosin stain, Movat Pentachrome stain, and gene and protein expression of OSM and p27KIP1 using immunostaining and real-time polymerase chain reaction. OSM and p27KIP1 expression in carotid arteries with angioplasty and treatment with either scrambled peptide or LR12, an inhibitor of triggering receptor expressed on myeloid cell (TREM)-1, were compared between the experimental groups and with contralateral carotid artery. The results of this study elucidated the presence of OSM and p27KIP1 in carotid arteries with plaque and their association with arterial plaque and vulnerability. The findings suggest that targeting OSM and p27KIP1 axis regulating VSMC proliferation may have therapeutic significance to stabilize plaque.
Collapse
Affiliation(s)
- Jerry Trinh
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91763, USA
| | - Jennifer Shin
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91763, USA
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91763, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91763, USA
| |
Collapse
|
19
|
Bugga P, Manning JR, Mushala BAS, Stoner MW, Sembrat J, Scott I. GCN5L1-mediated acetylation prevents Rictor degradation in cardiac cells after hypoxic stress. Cell Signal 2024; 116:111065. [PMID: 38281616 PMCID: PMC10922666 DOI: 10.1016/j.cellsig.2024.111065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 01/30/2024]
Abstract
Cardiomyocyte apoptosis and cardiac fibrosis are the leading causes of mortality in patients with ischemic heart disease. As such, these processes represent potential therapeutic targets to treat heart failure resulting from ischemic insult. We previously demonstrated that the mitochondrial acetyltransferase protein GCN5L1 regulates cardiomyocyte cytoprotective signaling in ischemia-reperfusion injury in vivo and hypoxia-reoxygenation injury in vitro. The current study investigated the mechanism underlying GCN5L1-mediated regulation of the Akt/mTORC2 cardioprotective signaling pathway. Rictor protein levels in cardiac tissues from human ischemic heart disease patients were significantly decreased relative to non-ischemic controls. Rictor protein levels were similarly decreased in cardiac AC16 cells following hypoxic stress, while mRNA levels remained unchanged. The reduction in Rictor protein levels after hypoxia was enhanced by the knockdown of GCN5L1, and was blocked by GCN5L1 overexpression. These findings correlated with changes in Rictor lysine acetylation, which were mediated by GCN5L1 acetyltransferase activity. Rictor degradation was regulated by proteasomal activity, which was antagonized by increased Rictor acetylation. Finally, we found that GCN5L1 knockdown restricted cytoprotective Akt signaling, in conjunction with decreased mTOR abundance and activity. In summary, these studies suggest that GCN5L1 promotes cardioprotective Akt/mTORC2 signaling by maintaining Rictor protein levels through enhanced lysine acetylation.
Collapse
Affiliation(s)
- Paramesha Bugga
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, United States of America; Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States of America; Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Janet R Manning
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, United States of America; Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States of America; Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Bellina A S Mushala
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, United States of America; Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States of America; Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Michael W Stoner
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, United States of America; Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States of America; Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - John Sembrat
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Iain Scott
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, United States of America; Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States of America; Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America.
| |
Collapse
|
20
|
Abasubong KP, Jiang GZ, Guo HX, Wang X, Huang YY, Li XF, Yan-Zou D, Liu WB, Desouky HE. Effects of a high-fat and high-carbohydrate diet on appetite regulation and central AMPK in the hypothalamus of blunt snout bream (Megalobrama amblycephala). J Anim Physiol Anim Nutr (Berl) 2024; 108:480-492. [PMID: 38014877 DOI: 10.1111/jpn.13908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is a sensor of cellular energy changes and controls food intake. This study investigates the effect of a high-calorie diet (high fat diet [HFD], high carbohydrate diet [HCD] and high energy diet [HED]) on appetite and central AMPK in blunt snout bream. In the present study, fish (average initial weight 45.84 ± 0.07 g) were fed the control, HFD, HCD and HED in four replicates for 12 weeks. At the end of the feeding trial, the result showed that body mass index, specific growth rate, feed efficiency ratio and feed intake were not affected (p > 0.05) by dietary treatment. However, fish fed the HFD obtained a significantly higher (p < 0.05) lipid productive value, lipid gain and lipid intake than those fed the control diet, but no significant difference was attributed to others. Also, a significantly higher (p < 0.05) energy intake content was found in fish-fed HFD, HCD and HED than those given the control diet. Long-term HFD and HCD feeding significantly increased (p < 0.05) plasma glucose, glycated serum protein, advanced glycation end product, insulin and leptin content levels than the control group. Moreover, a significantly lower (p < 0.05) complex 1, 2 and 3 content was found in fish-fed HFD and HCD than in the control, but no differences (p > 0.05) were attributed to those in HED. Fish-fed HED significantly upregulated (p < 0.05) hypothalamic ampα 1 and ampα 2 expression, whereas the opposite trend was observed in the hypothalamic mammalian target of rapamycin than those in HFD and HCD compared to the control. However, hypothalamic neuropeptide y, peroxisome proliferator-activated receptor α (pparα), acetyl-coa oxidase and carnitine palmitoyltransferase 1 were significantly upregulated (p < 0.05) in the HCD group, while the opposite was seen in cholecystokinin expression compared to those in the control group. Our findings indicated that the central AMPK signal pathway and appetite were modulated according to the diet's energy level to regulate nutritional status and maintain energy homoeostasis in fish.
Collapse
Affiliation(s)
- Kenneth Prudence Abasubong
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Guang-Zhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Hui-Xing Guo
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xi Wang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Yang-Yang Huang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Dong Yan-Zou
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Hesham Eed Desouky
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, Nanjing, People's Republic of China
- Department of Animal and Poultry Production, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| |
Collapse
|
21
|
Yarmohammadi F, Hesari M, Shackebaei D. The Role of mTOR in Doxorubicin-Altered Cardiac Metabolism: A Promising Therapeutic Target of Natural Compounds. Cardiovasc Toxicol 2024; 24:146-157. [PMID: 38108960 DOI: 10.1007/s12012-023-09820-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Doxorubicin (DOX) is commonly used for the treatment of various types of cancer, however can cause serious side effects, including cardiotoxicity. The mechanisms involved in DOX-induced cardiac damage are complex and not yet fully understood. One mechanism is the disruption of cardiac metabolism, which can impair cardiac function. The mammalian target of rapamycin (mTOR) is a key regulator of cardiac energy metabolism, and dysregulation of mTOR signaling has been implicated in DOX-induced cardiac dysfunction. Natural compounds (NCs) have been shown to improve cardiac function in vivo and in vitro models of DOX-induced cardiotoxicity. This review article explores the protective effects of NCs against DOX-induced cardiac injury, with a focus on their regulation of mTOR signaling pathways. Generally, the modulation of mTOR signaling by NCs represents a promising strategy for decreasing the cardiotoxic effects of DOX.
Collapse
Affiliation(s)
- Fatemeh Yarmohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahvash Hesari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Dareuosh Shackebaei
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
22
|
Soares JP, Cardoso R, Almeida V, Pereira AF, Silva AM, Mota MP. The Impact of 8 Weeks of Combined Physical Exercise Training on SIRT3 and mTOR in Lymphocytes, and on Lipid Peroxidation. Healthcare (Basel) 2024; 12:350. [PMID: 38338233 PMCID: PMC10855888 DOI: 10.3390/healthcare12030350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
The sirtuins (SIRT) protein family and the mechanistic/mammalian target of rapamycin (mTOR) are intracellular molecules that have been involved in the regulation of several biological processes, as well as in various aging-related processes. This pilot study, in small scale, aimed to analyze the effects of an 8-week physical exercise program on SIRT3 and mTOR levels in lymphocytes, as well as on lipid peroxidation in middle aged and older men. A total of 9 participants aged between 56 and 73 years were enrolled in an 8-week physical exercise program comprising cardiovascular and high-intensity interval training. The program involved three sessions per week, each lasting 45-60 min, conducted on non-consecutive days. Tests were conducted before and after the experimental period (pre- and post-training). Assessments included a vertical jump, 20 m velocity, ball throwing, and an aerobic capacity test. Lipid peroxidation (MDA) was measured in plasma as an oxidative stress biomarker. Additionally, sirtuin 3 (SIRT3/β-actin) and mTOR (mTOR/β-actin) levels were measured in isolated lymphocytes extracted from venous blood. Following the exercise training period, our results demonstrated a significant improvement in aerobic capacity (pre-training: 615.4 ± 45.3 m; post-training: 687.2 ± 34.6 m; t = -2.521; p = 0.012) and 20 m velocity (pre-training: 4.6 ± 0.5 s; post-training: 4.3 ± 0.3 s; t = -2.023; p = 0.04). Concerning blood variables, there was a significant decrease in mTOR levels (pre-training: 0.857 ± 0.593; post-training: 0.214 ± 0.097; t = -2.547; p = 0.011), while no changes were observed in SIRT3 (pre-training: 0.608 ± 0.404; post-training: 0.516 ± 0.390; t = 0.533; p = 0.594) and MDA (pre-training: 8420 ± 4615; post-training: 8800 ± 3163; t = -0.533; p = 0.594). The notable reduction in mTOR levels in lymphocytes following the 8-week physical exercise program suggests a potential role of exercise in modulating immune cell dynamics, particularly in middle-aged and older individuals. Furthermore, the exercise regimen resulted in improvements in physical function, including enhanced aerobic capacity and walking velocity.
Collapse
Affiliation(s)
- Jorge Pinto Soares
- Research Centre in Sports Sciences, Health, and Human Development (CIDESD), 5001-801 Vila Real, Portugal;
- Department of Sport of Science Exercise and Health, School of Life and Environmental Sciences (ECVA), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Ricardo Cardoso
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (R.C.); (V.A.)
| | - Vanessa Almeida
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (R.C.); (V.A.)
| | | | - Amélia M. Silva
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (R.C.); (V.A.)
- Department of Biology and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Maria Paula Mota
- Research Centre in Sports Sciences, Health, and Human Development (CIDESD), 5001-801 Vila Real, Portugal;
- Department of Sport of Science Exercise and Health, School of Life and Environmental Sciences (ECVA), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
23
|
Olaniyi KS, Areloegbe SE, Fiemotongha FE. Cardiac energy depletion in a rat model of polycystic ovarian syndrome is reversed by acetate and associated with inhibitory effect of HDAC2/mTOR. Eur J Pharmacol 2024; 962:176243. [PMID: 38048978 DOI: 10.1016/j.ejphar.2023.176243] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
In addition to the clinical manifestation of polycystic ovarian syndrome (PCOS), life-threatening diseases, especially hypertension and cardiovascular disease (CVD) are emerging critical complications of PCOS. Changes in cardiac energy remains an independent risk factor of CVD. Histone deacetylase (HDAC) inhibitors, including acetate has received attention for its beneficial role in energy regulation. Herein we hypothesized that acetate improves cardiac energy homeostasis in experimentally induced PCOS. Female Wistar rats (8-week-old) were divided into groups. To induce PCOS, 1 mg/kg of letrozole was given for 21 days. After confirmation of PCOS, acetate (200 mg/kg) was administered for 6 weeks. Rats with PCOS showed multiple ovarian cysts with androgen excess and decreased SHBG. The rats also manifested impaired glucose tolerance/hyperinsulinemia and hypertriglyceridemia. Increased systemic oxidative stress (malondialdehyde)/inflammatory (NF-kB/SDF-1) markers and nitric oxide deficiency (NO/eNOS) were observed. Though, the body weight was increased without affecting the cardiac mass index of PCOS rats. Nevertheless, there was an increase in cardiac triglyceride and oxidative stress/inflammatory markers with consequent cardiac injury, revealed by decreased levels of SIRT-1/HIF-1α and increased levels of CTGF/TGFβ-1 and plasma troponin T. These led to cardiac ATP depletion with increased AMP and AMP/ATP ratio. These alterations were accompanied by elevated levels of mTOR and HDAC2, which were reversed when treated with acetate. The present results interestingly suggest that HDAC2 inhibition by acetate reversed cardiac energy depletion and attendant cardiomorbidities in experimental PCOS model. A beneficial effect that is accompanied by suppressed expression of mTOR.
Collapse
Affiliation(s)
- Kehinde S Olaniyi
- Cardio/Endo-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria.
| | - Stephanie E Areloegbe
- Cardio/Endo-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria
| | - Faustina E Fiemotongha
- Cardio/Endo-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria
| |
Collapse
|
24
|
Shishkova D, Lobov A, Repkin E, Markova V, Markova Y, Sinitskaya A, Sinitsky M, Kondratiev E, Torgunakova E, Kutikhin A. Calciprotein Particles Induce Cellular Compartment-Specific Proteome Alterations in Human Arterial Endothelial Cells. J Cardiovasc Dev Dis 2023; 11:5. [PMID: 38248875 PMCID: PMC10816121 DOI: 10.3390/jcdd11010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024] Open
Abstract
Calciprotein particles (CPPs) are indispensable scavengers of excessive Ca2+ and PO43- ions in blood, being internalised and recycled by liver and spleen macrophages, monocytes, and endothelial cells (ECs). Here, we performed a pathway enrichment analysis of cellular compartment-specific proteomes in primary human coronary artery ECs (HCAEC) and human internal thoracic artery ECs (HITAEC) treated with primary (amorphous) or secondary (crystalline) CPPs (CPP-P and CPPs, respectively). Exposure to CPP-P and CPP-S induced notable upregulation of: (1) cytokine- and chemokine-mediated signaling, Ca2+-dependent events, and apoptosis in cytosolic and nuclear proteomes; (2) H+ and Ca2+ transmembrane transport, generation of reactive oxygen species, mitochondrial outer membrane permeabilisation, and intrinsic apoptosis in the mitochondrial proteome; (3) oxidative, calcium, and endoplasmic reticulum (ER) stress, unfolded protein binding, and apoptosis in the ER proteome. In contrast, transcription, post-transcriptional regulation, translation, cell cycle, and cell-cell adhesion pathways were underrepresented in cytosol and nuclear compartments, whilst biosynthesis of amino acids, mitochondrial translation, fatty acid oxidation, pyruvate dehydrogenase activity, and energy generation were downregulated in the mitochondrial proteome of CPP-treated ECs. Differentially expressed organelle-specific pathways were coherent in HCAEC and HITAEC and between ECs treated with CPP-P or CPP-S. Proteomic analysis of mitochondrial and nuclear lysates from CPP-treated ECs confirmed bioinformatic filtration findings.
Collapse
Affiliation(s)
- Daria Shishkova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.S.); (V.M.); (Y.M.); (A.S.); (M.S.); (E.K.); (E.T.)
| | - Arseniy Lobov
- Laboratory of Regenerative Biomedicine, Institute of Cytology of the RAS, 4 Tikhoretskiy Prospekt, 194064 St. Petersburg, Russia;
| | - Egor Repkin
- Centre for Molecular and Cell Technologies, St. Petersburg State University, Universitetskaya Embankment, 7/9, 199034 St. Petersburg, Russia;
| | - Victoria Markova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.S.); (V.M.); (Y.M.); (A.S.); (M.S.); (E.K.); (E.T.)
| | - Yulia Markova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.S.); (V.M.); (Y.M.); (A.S.); (M.S.); (E.K.); (E.T.)
| | - Anna Sinitskaya
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.S.); (V.M.); (Y.M.); (A.S.); (M.S.); (E.K.); (E.T.)
| | - Maxim Sinitsky
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.S.); (V.M.); (Y.M.); (A.S.); (M.S.); (E.K.); (E.T.)
| | - Egor Kondratiev
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.S.); (V.M.); (Y.M.); (A.S.); (M.S.); (E.K.); (E.T.)
| | - Evgenia Torgunakova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.S.); (V.M.); (Y.M.); (A.S.); (M.S.); (E.K.); (E.T.)
| | - Anton Kutikhin
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.S.); (V.M.); (Y.M.); (A.S.); (M.S.); (E.K.); (E.T.)
| |
Collapse
|
25
|
Bugga P, Manning JR, Mushala BA, Stoner MW, Sembrat J, Scott I. GCN5L1-mediated acetylation prevents Rictor degradation in cardiac cells after hypoxic stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564170. [PMID: 37961692 PMCID: PMC10634848 DOI: 10.1101/2023.10.26.564170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cardiomyocyte apoptosis and cardiac fibrosis are the leading causes of mortality in patients with ischemic heart disease. As such, these processes represent potential therapeutic targets to treat heart failure resulting from ischemic insult. We previously demonstrated that the mitochondrial acetyltransferase protein GCN5L1 regulates cardiomyocyte cytoprotective signaling in ischemia-reperfusion injury in vivo and hypoxia-reoxygenation injury in vitro. The current study investigated the mechanism underlying GCN5L1-mediated regulation of the Akt/mTORC2 cardioprotective signaling pathway. Rictor protein levels in cardiac tissues from human ischemic heart disease patients were significantly decreased relative to non-ischemic controls. Rictor protein levels were similarly decreased in cardiac AC16 cells following hypoxic stress, while mRNA levels remained unchanged. The reduction in Rictor protein levels after hypoxia was enhanced by the knockdown of GCN5L1, and was blocked by GCN5L1 overexpression. These findings correlated with changes in Rictor lysine acetylation, which were mediated by GCN5L1 acetyltransferase activity. Rictor degradation was regulated by proteasomal activity, which was antagonized by increased Rictor acetylation. Finally, we found that GCN5L1 knockdown restricted cytoprotective Akt signaling, in conjunction with decreased mTOR abundance and activity. In summary, these studies suggest that GCN5L1 promotes cardioprotective Akt/mTORC2 signaling by maintaining Rictor protein levels through enhanced lysine acetylation.
Collapse
Affiliation(s)
- Paramesha Bugga
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Janet R. Manning
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Bellina A.S. Mushala
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Michael W. Stoner
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261
| | - John Sembrat
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Iain Scott
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
26
|
Bu LL, Yuan HH, Xie LL, Guo MH, Liao DF, Zheng XL. New Dawn for Atherosclerosis: Vascular Endothelial Cell Senescence and Death. Int J Mol Sci 2023; 24:15160. [PMID: 37894840 PMCID: PMC10606899 DOI: 10.3390/ijms242015160] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Endothelial cells (ECs) form the inner linings of blood vessels, and are directly exposed to endogenous hazard signals and metabolites in the circulatory system. The senescence and death of ECs are not only adverse outcomes, but also causal contributors to endothelial dysfunction, an early risk marker of atherosclerosis. The pathophysiological process of EC senescence involves both structural and functional changes and has been linked to various factors, including oxidative stress, dysregulated cell cycle, hyperuricemia, vascular inflammation, and aberrant metabolite sensing and signaling. Multiple forms of EC death have been documented in atherosclerosis, including autophagic cell death, apoptosis, pyroptosis, NETosis, necroptosis, and ferroptosis. Despite this, the molecular mechanisms underlying EC senescence or death in atherogenesis are not fully understood. To provide a comprehensive update on the subject, this review examines the historic and latest findings on the molecular mechanisms and functional alterations associated with EC senescence and death in different stages of atherosclerosis.
Collapse
Affiliation(s)
- Lan-Lan Bu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.-L.B.); (D.-F.L.)
| | - Huan-Huan Yuan
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
| | - Ling-Li Xie
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Min-Hua Guo
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
| | - Duan-Fang Liao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.-L.B.); (D.-F.L.)
| | - Xi-Long Zheng
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
27
|
He Y, Chen X, Liu M, Zuo L, Zhai Z, Zhou L, Li G, Chen L, Qi G, Jing C, Hao G. The potential DNA methylation markers of cardiovascular disease in patients with type 2 diabetes. BMC Med Genomics 2023; 16:242. [PMID: 37828521 PMCID: PMC10568935 DOI: 10.1186/s12920-023-01689-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND DNA methylation is associated with cardiovascular (CV) disease. However, in type 2 diabetes (T2D) patients, the role of gene methylation in the development of CV disease is under-studied. We aimed to identify the CV disease-related DNA methylation loci in patients with T2D and to explore the potential pathways underlying the development of CV disease using a two-stage design. METHODS The participants were from the Jinan Diabetes Cohort Study (JNDCS), an ongoing longitudinal study designed to evaluate the development of CV risk in patients with T2D. In the discovery cohort, 10 diabetic patients with CV events at baseline were randomly selected as the case group, and another 10 diabetic patients without CV events were matched for sex, age, smoking status, and body mass index as the control group. In 1438 T2D patients without CV disease at baseline, 210 patients with CV events were identified after a mean 6.5-year follow-up. Of whom, 100 patients who experienced CV events during the follow-up were randomly selected as cases, and 100 patients who did not have CV events were randomly selected as the control group in the validation cohort. Reduced representation bisulfite sequencing and Targeted Bisulfite Sequencing were used to measure the methylation profiles in the discovery and validation cohort, respectively. RESULTS In the discover cohort, 127 DMRs related to CV disease were identified in T2D patients. Further, we validated 23 DMRs mapped to 25 genes, of them, 4 genes (ARSG, PNPLA6, NEFL, and CRYGEP) for the first time were reported. There was evidence that the addition of DNA methylation data improved the prediction performance of CV disease in T2D patients. Pathway analysis identified some significant signaling pathways involved in CV comorbidities, T2D, and inflammation. CONCLUSIONS In this study, we identified 23 DMRs mapped to 25 genes associated with CV disease in T2D patients, of them, 4 DMRs for the first time were reported. DNA methylation testing may help identify a high CV-risk population in T2D patients.
Collapse
Affiliation(s)
- Yunbiao He
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, 601 West Huangpu Road, Guangzhou, 510632, Guangdong, China
| | - Xia Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, 601 West Huangpu Road, Guangzhou, 510632, Guangdong, China
| | - Mingliang Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, 601 West Huangpu Road, Guangzhou, 510632, Guangdong, China
| | - Lei Zuo
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, 601 West Huangpu Road, Guangzhou, 510632, Guangdong, China
| | - Zhiyu Zhai
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, 601 West Huangpu Road, Guangzhou, 510632, Guangdong, China
| | - Long Zhou
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, 601 West Huangpu Road, Guangzhou, 510632, Guangdong, China
| | - Guangzhen Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, 601 West Huangpu Road, Guangzhou, 510632, Guangdong, China
| | - Li Chen
- Department of Medicine, Medical College of Georgia, Georgia Prevention Institute, Augusta University, Augusta, GA, USA
| | - Guolong Qi
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, 601 West Huangpu Road, Guangzhou, 510632, Guangdong, China.
- Department of Epidemiology, School of Medicine, Jinan University, 601 West Huangpu Road, Guangzhou, 510632, Guangdong, China.
| | - Chunxia Jing
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, 601 West Huangpu Road, Guangzhou, 510632, Guangdong, China.
- Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, China.
- Department of Epidemiology, School of Medicine, Jinan University, 601 West Huangpu Road, Guangzhou, 510632, Guangdong, China.
| | - Guang Hao
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, 601 West Huangpu Road, Guangzhou, 510632, Guangdong, China.
- Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, China.
| |
Collapse
|
28
|
Li K, Zeng X, Liu P, Zeng X, Lv J, Qiu S, Zhang P. The Role of Inflammation-Associated Factors in Head and Neck Squamous Cell Carcinoma. J Inflamm Res 2023; 16:4301-4315. [PMID: 37791117 PMCID: PMC10544098 DOI: 10.2147/jir.s428358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/16/2023] [Indexed: 10/05/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), which originates in the head or neck tissues, is characterized by high rates of recurrence and metastasis. Inflammation is important in HNSCC prognosis. Inflammatory cells and their secreted factors contribute to the various stages of HNSCC development through multiple mechanisms. In this review, the mechanisms through which inflammatory factors, signaling pathways, and cells contribute to the initiation and progression of HNSCC have been discussed in detail. Furthermore, the diagnostic and therapeutic potential of targeting inflammation in HNSCC has been discussed to gain new insights into improving patient prognosis.
Collapse
Affiliation(s)
- Kang Li
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, People’s Republic of China
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, People’s Republic of China
| | - Xianhai Zeng
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, People’s Republic of China
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, People’s Republic of China
| | - Peng Liu
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, People’s Republic of China
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, People’s Republic of China
| | - Xiaoxia Zeng
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, People’s Republic of China
| | - Jie Lv
- School of Computer Science and Engineering, Yulin Normal University, Yulin, Guangxi, People’s Republic of China
| | - Shuqi Qiu
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, People’s Republic of China
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, People’s Republic of China
| | - Peng Zhang
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, People’s Republic of China
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
29
|
Lee J, Sung KW, Bae EJ, Yoon D, Kim D, Lee JS, Park DH, Park DY, Mun SR, Kwon SC, Kim HY, Min JO, Lee SJ, Suh YH, Kwon YT. Targeted degradation of ⍺-synuclein aggregates in Parkinson's disease using the AUTOTAC technology. Mol Neurodegener 2023; 18:41. [PMID: 37355598 PMCID: PMC10290391 DOI: 10.1186/s13024-023-00630-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/31/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND There are currently no disease-modifying therapeutics for Parkinson's disease (PD). Although extensive efforts were undertaken to develop therapeutic approaches to delay the symptoms of PD, untreated α-synuclein (α-syn) aggregates cause cellular toxicity and stimulate further disease progression. PROTAC (Proteolysis-Targeting Chimera) has drawn attention as a therapeutic modality to target α-syn. However, no PROTACs have yet shown to selectively degrade α-syn aggregates mainly owing to the limited capacity of the proteasome to degrade aggregates, necessitating the development of novel approaches to fundamentally eliminate α-syn aggregates. METHODS We employed AUTOTAC (Autophagy-Targeting Chimera), a macroautophagy-based targeted protein degradation (TPD) platform developed in our earlier studies. A series of AUTOTAC chemicals was synthesized as chimeras that bind both α-syn aggregates and p62/SQSTM1/Sequestosome-1, an autophagic receptor. The efficacy of Autotacs was evaluated to target α-syn aggregates to phagophores and subsequently lysosomes for hydrolysis via p62-dependent macroautophagy. The target engagement was monitored by oligomerization and localization of p62 and autophagic markers. The therapeutic efficacy to rescue PD symptoms was characterized in cultured cells and mice. The PK/PD (pharmacokinetics/pharmacodynamics) profiles were investigated to develop an oral drug for PD. RESULTS ATC161 induced selective degradation of α-syn aggregates at DC50 of ~ 100 nM. No apparent degradation was observed with monomeric α-syn. ATC161 mediated the targeting of α-syn aggregates to p62 by binding the ZZ domain and accelerating p62 self-polymerization. These p62-cargo complexes were delivered to autophagic membranes for lysosomal degradation. In PD cellular models, ATC161 exhibited therapeutic efficacy to reduce cell-to-cell transmission of α-syn and to rescue cells from the damages in DNA and mitochondria. In PD mice established by injecting α-syn preformed fibrils (PFFs) into brain striata via stereotaxic surgery, oral administration of ATC161 at 10 mg/kg induced the degradation of α-syn aggregates and reduced their propagation. ATC161 also mitigated the associated glial inflammatory response and improved muscle strength and locomotive activity. CONCLUSION AUTOTAC provides a platform to develop drugs for PD. ATC161, an oral drug with excellent PK/PD profiles, induces selective degradation of α-syn aggregates in vitro and in vivo. We suggest that ATC161 is a disease-modifying drug that degrades the pathogenic cause of PD.
Collapse
Affiliation(s)
- Jihoon Lee
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- AUTOTAC Bio Inc., Changkyunggung-Ro 254, Jongno-Gu, Seoul, 03077, Republic of Korea
| | - Ki Woon Sung
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- AUTOTAC Bio Inc., Changkyunggung-Ro 254, Jongno-Gu, Seoul, 03077, Republic of Korea
| | - Eun-Jin Bae
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Neuroscience Research Institute, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Dabin Yoon
- AUTOTAC Bio Inc., Changkyunggung-Ro 254, Jongno-Gu, Seoul, 03077, Republic of Korea
- Department of Physical Education, Sejong University, Seoul, 05006, Republic of Korea
| | - Dasarang Kim
- AUTOTAC Bio Inc., Changkyunggung-Ro 254, Jongno-Gu, Seoul, 03077, Republic of Korea
| | - Jin Saem Lee
- AUTOTAC Bio Inc., Changkyunggung-Ro 254, Jongno-Gu, Seoul, 03077, Republic of Korea
| | - Da-Ha Park
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Neuroscience Research Institute, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Daniel Youngjae Park
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Su Ran Mun
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Soon Chul Kwon
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Hye Yeon Kim
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Joo-Ok Min
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Neuroscience Research Institute, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Seung-Jae Lee
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Neuroscience Research Institute, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Neuramedy Co. Ltd, Seoul, 04796, Republic of Korea
- Convergence Research Center for Dementia, Seoul National University Medical Research Center, Seoul, 03080, Republic of Korea
| | - Young Ho Suh
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
- Neuroscience Research Institute, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
| | - Yong Tae Kwon
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
- AUTOTAC Bio Inc., Changkyunggung-Ro 254, Jongno-Gu, Seoul, 03077, Republic of Korea.
- Convergence Research Center for Dementia, Seoul National University Medical Research Center, Seoul, 03080, Republic of Korea.
- Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
| |
Collapse
|
30
|
Wu Q, Lv Q, Liu X, Ye X, Cao L, Wang M, Li J, Yang Y, Li L, Wang S. Natural compounds from botanical drugs targeting mTOR signaling pathway as promising therapeutics for atherosclerosis: A review. Front Pharmacol 2023; 14:1083875. [PMID: 36744254 PMCID: PMC9894899 DOI: 10.3389/fphar.2023.1083875] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/05/2023] [Indexed: 01/22/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease that is a major cause of cardiovascular diseases (CVDs), including coronary artery disease, hypertension, myocardial infarction, and heart failure. Hence, the mechanisms of AS are still being explored. A growing compendium of evidence supports that the activity of the mechanistic/mammalian target of rapamycin (mTOR) is highly correlated with the risk of AS. The mTOR signaling pathway contributes to AS progression by regulating autophagy, cell senescence, immune response, and lipid metabolism. Various botanical drugs and their functional compounds have been found to exert anti- AS effects by modulating the activity of the mTOR signaling pathway. In this review, we summarize the pathogenesis of AS based on the mTOR signaling pathway from the aspects of immune response, autophagy, cell senescence, and lipid metabolism, and comb the recent advances in natural compounds from botanical drugs to inhibit the mTOR signaling pathway and delay AS development. This review will provide a new perspective on the mechanisms and precision treatments of AS.
Collapse
Affiliation(s)
- Qian Wu
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Qianyu Lv
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao’an Liu
- Capital University of Medical, Beijing, China
| | - Xuejiao Ye
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Linlin Cao
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Manshi Wang
- Beijing Xicheng District Guangwai Hospital, Beijing, China
| | - Junjia Li
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Yingtian Yang
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Lanlan Li
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Shihan Wang
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
31
|
Signaling Pathways in Inflammation and Cardiovascular Diseases: An Update of Therapeutic Strategies. IMMUNO 2022. [DOI: 10.3390/immuno2040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Inflammatory processes represent a pivotal element in the development and complications of cardiovascular diseases (CVDs). Targeting these processes can lead to the alleviation of cardiomyocyte (CM) injury and the increase of reparative mechanisms. Loss of CMs from inflammation-associated cardiac diseases often results in heart failure (HF). Evidence of the crosstalk between nuclear factor-kappa B (NF-κB), Hippo, and mechanistic/mammalian target of rapamycin (mTOR) has been reported in manifold immune responses and cardiac pathologies. Since these signaling cascades regulate a broad array of biological tasks in diverse cell types, their misregulation is responsible for the pathogenesis of many cardiac and vascular disorders, including cardiomyopathies and atherosclerosis. In response to a myriad of proinflammatory cytokines, which induce reactive oxygen species (ROS) production, several molecular mechanisms are activated within the heart to inaugurate the structural remodeling of the organ. This review provides a global landscape of intricate protein–protein interaction (PPI) networks between key constituents of NF-κB, Hippo, and mTOR signaling pathways as quintessential targetable candidates for the therapy of cardiovascular and inflammation-related diseases.
Collapse
|
32
|
Lipopolysaccharides and Cellular Senescence: Involvement in Atherosclerosis. Int J Mol Sci 2022; 23:ijms231911148. [PMID: 36232471 PMCID: PMC9569556 DOI: 10.3390/ijms231911148] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the vascular walls related to aging. Thus far, the roles of cellular senescence and bacterial infection in the pathogenesis of atherosclerosis have been speculated to be independent of each other. Some types of macrophages, vascular endothelial cells, and vascular smooth muscle cells are in a senescent state at the sites of atherosclerotic lesions. Likewise, bacterial infections and accumulations of lipopolysaccharide (LPS), an outer-membrane component of Gram-negative bacteria, have also been observed in the atherosclerotic lesions of patients. This review introduces the integration of these two potential pathways in atherosclerosis. Previous studies have suggested that LPS directly induces cellular senescence in cultured monocytes/macrophages and vascular cells. In addition, LPS enhances the inflammatory properties (senescence-associated secretory phenotype [SASP]) of senescent endothelial cells. Thus, LPS derived from Gram-negative bacteria could exaggerate the pathogenesis of atherosclerosis by inducing and enhancing cellular senescence and the SASP-associated inflammatory properties of specific vascular cells in atherosclerotic lesions. This proposed mechanism can provide novel approaches to preventing and treating this common age-related disease.
Collapse
|
33
|
Abdelrahman AA, Bunch KL, Sandow PV, Cheng PNM, Caldwell RB, Caldwell RW. Systemic Administration of Pegylated Arginase-1 Attenuates the Progression of Diabetic Retinopathy. Cells 2022; 11:cells11182890. [PMID: 36139465 PMCID: PMC9497170 DOI: 10.3390/cells11182890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
Diabetic retinopathy (DR) is a serious complication of diabetes that results from sustained hyperglycemia, hyperlipidemia, and oxidative stress. Under these conditions, inducible nitric oxide synthase (iNOS) expression is upregulated in the macrophages (MΦ) and microglia, resulting in increased production of reactive oxygen species (ROS) and inflammatory cytokines, which contribute to disease progression. Arginase 1 (Arg1) is a ureohydrolase that competes with iNOS for their common substrate, L-arginine. We hypothesized that the administration of a stable form of Arg1 would deplete L-arginine’s availability for iNOS, thus decreasing inflammation and oxidative stress in the retina. Using an obese Type 2 diabetic (T2DM) db/db mouse, this study characterized DR in this model and determined if systemic treatment with pegylated Arg1 (PEG-Arg1) altered the progression of DR. PEG-Arg1 treatment of db/db mice thrice weekly for two weeks improved visual function compared with untreated db/db controls. Retinal expression of inflammatory factors (iNOS, IL-1β, TNF-α, IL-6) was significantly increased in the untreated db/db mice compared with the lean littermate controls. The increased retinal inflammatory and oxidative stress markers in db/db mice were suppressed with PEG-Arg1 treatment. Additionally, PEG-Arg1 treatment restored the blood–retinal barrier (BRB) function, as evidenced by the decreased tissue albumin extravasation and an improved endothelial ZO-1 tight junction integrity compared with untreated db/db mice.
Collapse
Affiliation(s)
- Ammar A. Abdelrahman
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Katharine L. Bunch
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Porsche V. Sandow
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Paul N-M Cheng
- Bio-Cancer Treatment International, Bioinformatics Building, Hong Kong Science Park, Tai Po, Hong Kong SAR 511513, China
| | - Ruth B. Caldwell
- Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Cell Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - R. William Caldwell
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Correspondence: ; Tel.: +1-706-721-2345
| |
Collapse
|