1
|
Arimura S, Wong MKS, Inoue R, Kawano M, Shimoyama K, Fujimori C, Tokunaga K, Takagi W, Hyodo S. Functional characterization of follicle-stimulating hormone and luteinizing hormone receptors in cloudy catshark, Scyliorhinus torazame. Gen Comp Endocrinol 2024; 354:114542. [PMID: 38685391 DOI: 10.1016/j.ygcen.2024.114542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/08/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
The follicle-stimulating hormone receptor (FSHR) and luteinizing hormone receptor (LHR) in cloudy catshark were cloned, and recombinant FSHR and LHR were expressed for characterization. Ventral lobe extract (VLE) from the pituitary contains homologous FSH and LH, and it stimulated the cAMP signaling of FSHR and LHR dose-dependently. Two transcript variants of LHR (LHR-L with exon 10 and LHR-S without) were identified, and LHR-S was the dominant form with higher basal cAMP activity without VLE stimulation. Among various developmental stages of follicles, FSHR expression was mainly associated with the pre-vitellogenic and early white follicles. When follicles were recruited into vitellogenesis, the expression of FSHR decreased while of LHR was upregulated reciprocally, suggesting that LHR may also be responsible for the control of vitellogenesis in chondrichthyans. The expression of LHR-L was upregulated among maturing follicles before ovulation, indicating LHR-L could have a specific role in receiving the LH surge signal for final maturation. Plasma LH-like activity was transiently increased prior to the progesterone (P4)-surge and testosterone-drop at the beginning of P4-phase, supporting a pituitary control of follicle-maturation via LH signaling in chondrichthyans. The expression of follicular LHR was downregulated during the P4-phase when LH-like activity was high, indicating that the LH-dependent downregulation of LHR is conserved in chondrichthyans as it is in other vertebrate lineages. (213 words).
Collapse
Affiliation(s)
- Shogo Arimura
- Laboratory of Physiology, Department of Marine Biosciences, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
| | - Marty Kwok Shing Wong
- Laboratory of Physiology, Department of Marine Biosciences, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan; Center for Earth Surface System Dynamics, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
| | - Ryotaro Inoue
- Laboratory of Physiology, Department of Marine Biosciences, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
| | - Mai Kawano
- Laboratory of Physiology, Department of Marine Biosciences, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
| | - Koya Shimoyama
- Laboratory of Physiology, Department of Marine Biosciences, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
| | - Chika Fujimori
- Laboratory of Physiology, Department of Marine Biosciences, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan; Department of Biological Sciences, Faculty of Science, Hokkaido University, Kita-10 Nishi-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.
| | - Kotaro Tokunaga
- Ibaraki Prefectural Oarai Aquarium, Oarai, Ibaraki 311-1301, Japan.
| | - Wataru Takagi
- Laboratory of Physiology, Department of Marine Biosciences, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
| | - Susumu Hyodo
- Laboratory of Physiology, Department of Marine Biosciences, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan; Center for Earth Surface System Dynamics, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
| |
Collapse
|
2
|
Wei M, Liu H, Wang Y, Sun M, Shang P. Mechanisms of Male Reproductive Sterility Triggered by Dysbiosis of Intestinal Microorganisms. Life (Basel) 2024; 14:694. [PMID: 38929676 PMCID: PMC11204708 DOI: 10.3390/life14060694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/16/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
The intestinal microbiota, comprised of bacteria, archaea, and phages, inhabits the gastrointestinal tract of the organism. Male reproductive sterility is currently a prominent topic in medical research. Increasing research suggests that gut microbiota dysbiosis can result in various reproductive health problems. This article specifically investigates the impact of gut microbiota dysbiosis on male reproductive infertility development. Gut microbiota imbalances can disrupt the immune system and immune cell metabolism, affecting testicular growth and sperm production. This dysfunction can compromise the levels of hormones produced and secreted by the endocrine glands, affecting male reproductive health. Furthermore, imbalance of the gut microbiota can disrupt the gut-brain-reproductive axis, resulting in male reproductive infertility. This article explores how the imbalance of the gut microbiota impacts male reproductive infertility through immune regulation, endocrine regulation, and interactions of the gut-brain-reproductive axis, concluding with recommendations for prevention and treatment.
Collapse
Affiliation(s)
- Mingbang Wei
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China; (M.W.); (H.L.); (Y.W.); (M.S.)
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi 860000, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Tibetan Swine, Linzhi 860000, China
| | - Huaizhi Liu
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China; (M.W.); (H.L.); (Y.W.); (M.S.)
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi 860000, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Tibetan Swine, Linzhi 860000, China
| | - Yu Wang
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China; (M.W.); (H.L.); (Y.W.); (M.S.)
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi 860000, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Tibetan Swine, Linzhi 860000, China
| | - Mingyang Sun
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China; (M.W.); (H.L.); (Y.W.); (M.S.)
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi 860000, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Tibetan Swine, Linzhi 860000, China
| | - Peng Shang
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China; (M.W.); (H.L.); (Y.W.); (M.S.)
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi 860000, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Tibetan Swine, Linzhi 860000, China
| |
Collapse
|
3
|
Zheng CY, Yu YX, Cao SY, Bai X. Epigenetics of inflammation in hypothalamus pituitary gonadal and neuroendocrine disorders. Semin Cell Dev Biol 2024; 154:340-345. [PMID: 37142487 DOI: 10.1016/j.semcdb.2023.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/01/2023] [Accepted: 04/01/2023] [Indexed: 05/06/2023]
Abstract
The hormone producing hypothalamus, pituitary and gonadal are arranged in hierarchy to form the hypothalamic-pituitary-gonadal axis (HPG axis). The axis is neuroendocrine in nature and releases hormones in response to the inputs from nervous systems. The axis maintains homeostasis and ensures smooth body functions, particularly those related to growth and reproduction. A deregulated HPG axis, such as observed under inflammation and other conditions, is therefore associated with several disorders such as polycystic ovary syndrome, functional hypothalamic amenorrhea etc. Several factors, both genetic as well as environmental, in addition to aging, obesity etc. affect HPG axis with resulting effects on puberty, sexual maturation and reproductive health. More research is now indicative of a role of epigenetics in mediating these HPG-affecting factors. Hypothalamus-secreted gonadotropin-releasing hormone is important for eventual release of sex hormones and it is subjected to several neuronal and epigenetic regulations. Gene promoter methylation as well as histone methylations and acetylations form the backbone of epigenetic regulation of HPG-axis, as the incoming reports suggest. Epigenetic events also mediate several feedback mechanisms within HPG axis and between HPG axis and the central nervous system. In addition, data is emerging for a role of non-coding RNAs, particularly the miRNAs, in regulation and normal functioning of HPG axis. Thus, the epigenetic interactions need better understanding to understand the functioning and regulation of HPG axis.
Collapse
Affiliation(s)
- Chun-Yang Zheng
- Embryo Laboratory, Jinghua Hospital of Shenyang, No. 83, Zhongshan Road, Heping District, Shenyang 110000, Liaoning Province, China
| | - Yue-Xin Yu
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, No. 5, Guangrong Street, Heping District, Shenyang 110000, Liaoning Province, China
| | - Shi-Yue Cao
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, No. 5, Guangrong Street, Heping District, Shenyang 110000, Liaoning Province, China
| | - Xue Bai
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, No. 5, Guangrong Street, Heping District, Shenyang 110000, Liaoning Province, China.
| |
Collapse
|
4
|
Kumari R, Muneshwar KN, Pathade AG, Yelne S. Unveiling the Effects of Triptorelin on Endocrine Profiles: Insights From Healthy, Polycystic Ovary Syndrome, and Hypothalamic Amenorrhea Women. Cureus 2023; 15:e44752. [PMID: 37809244 PMCID: PMC10556375 DOI: 10.7759/cureus.44752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Triptorelin, a synthetic gonadotropin-releasing hormone (GnRH) agonist, has garnered increasing attention for its profound effects on endocrine profiles across diverse populations. This review article explores triptorelin's impact on women's health by examining its effects on healthy individuals, those with polycystic ovary syndrome (PCOS), and those experiencing hypothalamic amenorrhea (HA). The mechanism of triptorelin involves a transient surge in gonadotropin release, followed by receptor desensitization, leading to downregulation of the hypothalamus-pituitary-gonadal (HPG) axis. In healthy women, triptorelin's controlled modulation of the HPG axis is a foundation for assisted reproduction techniques. In PCOS, it offers promise in restoring ovulatory function and mitigating hyperandrogenism. For HA individuals, triptorelin's potential to restore proper GnRH pulsatility emerges as a therapeutic avenue. This review emphasizes the importance of personalized approaches based on specific health conditions, highlighting triptorelin's versatility and potential applications beyond its current scope. As research progresses, triptorelin's role in endocrine management is poised to reshape women's health by optimizing hormonal equilibrium and overall well-being.
Collapse
Affiliation(s)
- Riya Kumari
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Komal N Muneshwar
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Aniket G Pathade
- Research and Development, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Seema Yelne
- Nursing, Shalinitai Meghe College of Nursing, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
5
|
Shi H, Ru X, Pan S, Jiang D, Huang Y, Zhu C, Li G. Transcriptomic analysis of pituitary in female and male spotted scat (Scatophagus argus) after 17β-estradiol injection. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 41:100949. [PMID: 34942522 DOI: 10.1016/j.cbd.2021.100949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023]
Abstract
Spotted scat (Scatophagus argus) is a popular species of marine fish cultured in China. It shows normal sexual growth dimorphism. Female spotted scat grows quicker and bigger than males. Growth and reproduction are the most important traits in aquaculture. In vertebrates, the pituitary gland occupies an important position in the growth and reproduction axis. Estrogen is involved in regulating growth and reproduction in the pituitary gland in an endocrine fashion. Transcriptome sequencing of the pituitary was performed in female and male fish at 6 h after 17β-estradiol injection (4.0 μg E2/g body weight, BW). Compared with the pituitary of female and male groups, 144 and 64 genes [|log2(fold change)| ≥ 1.0 and false discovery rate (FDR) < 0.05] were significantly differentially expressed in E2-injected females and males, respectively (p < 0.05). Of these, 59 and 48 were up-regulated, and 85 and 16 were down-regulated. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathway analyses, DEGs were involved in signal pathways, such as growth, reproduction, oocyte meiosis and steroid biosynthesis. Of these, estrogen affected the expression of some sex steroid synthesis and receptor genes in the pituitary gland through feedback, such as hsd17b7, pgr and cyp19a1b, regulating the reproductive activities. Besides, some growth-related genes, such as gap43, junbb, mstn2 and insm1a responded to estrogen. E2 might affect the expression level of gh mRNA by regulating the expression levels of growth-related genes. Our results provide a theoretical basis for studying the molecular mechanism of growth and reproduction regulation at the pituitary level of spotted scat responded to E2.
Collapse
Affiliation(s)
- Hongjuan Shi
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaoying Ru
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory-Zhanjiang, Zhanjiang 524088, China
| | - Shuhui Pan
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Dongneng Jiang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yang Huang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chunhua Zhu
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Guangli Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
6
|
Lemaire LA, Cao C, Yoon PH, Long J, Levine M. The hypothalamus predates the origin of vertebrates. SCIENCE ADVANCES 2021; 7:7/18/eabf7452. [PMID: 33910896 PMCID: PMC8081355 DOI: 10.1126/sciadv.abf7452] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/09/2021] [Indexed: 05/02/2023]
Abstract
The hypothalamus coordinates neuroendocrine functions in vertebrates. To explore its evolutionary origin, we describe integrated transcriptome/connectome brain maps for swimming tadpoles of Ciona, which serves as an approximation of the ancestral proto-vertebrate. This map features several cell types related to different regions of the vertebrate hypothalamus, including the mammillary nucleus, the arcuate nucleus, and magnocellular neurons. Coronet cells express melanopsin and share additional properties with the saccus vasculosus, a specialized region of the hypothalamus that mediates photoperiodism in nontropical fishes. Comparative transcriptome analyses identified orthologous cell types for mechanosensory switch neurons, and VP+ and VPR+ relay neurons in different regions of the mouse hypothalamus. These observations provide evidence that the hypothalamus predates the evolution of the vertebrate brain. We discuss the possibility that switch neurons, coronet cells, and FoxP+ /VPR+ relay neurons comprise a behavioral circuit that helps trigger metamorphosis of Ciona larvae in response to twilight.
Collapse
Affiliation(s)
- Laurence A Lemaire
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Chen Cao
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Peter H Yoon
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Juanjuan Long
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Michael Levine
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
7
|
Trudeau VL, Somoza GM. Multimodal hypothalamo-hypophysial communication in the vertebrates. Gen Comp Endocrinol 2020; 293:113475. [PMID: 32240708 DOI: 10.1016/j.ygcen.2020.113475] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/21/2020] [Accepted: 03/28/2020] [Indexed: 12/13/2022]
Abstract
The vertebrate pituitary is arguably one of the most complex endocrine glands from the evolutionary, anatomical and functional perspectives. The pituitary plays a master role in endocrine physiology for the control of growth, metabolism, reproduction, water balance, and the stress response, among many other key processes. The synthesis and secretion of pituitary hormones are under the control of neurohormones produced by the hypothalamus. Under this conceptual framework, the communication between the hypophysiotropic brain and the pituitary gland is at the foundation of our understanding of endocrinology. The anatomy of the connections between the hypothalamus and the pituitary gland has been described in different vertebrate classes, revealing diverse modes of communication together with varying degrees of complexity. In this context, the evolution and variation in the neuronal, neurohemal, endocrine and paracrine modes will be reviewed in light of recent discoveries, and a re-evaluation of earlier observations. There appears to be three main hypothalamo-pituitary communication systems: 1. Diffusion, best exemplified by the agnathans; 2. Direct innervation of the adenohypophysis, which is most developed in teleost fish, and 3. The median eminence/portal blood vessel system, most conspicuously developed in tetrapods, showing also considerable variation between classes. Upon this basic classification, there exists various combinations possible, giving rise to taxon and species-specific, multimodal control over major physiological processes. Intrapituitary paracrine regulation and communication between folliculostellate cells and endocrine cells are additional processes of major importance. Thus, a more complex evolutionary picture of hypothalamo-hypophysial communication is emerging. There is currently little direct evidence to suggest which neuroendocrine genes may control the evolution of one communication system versus another. However, studies at the developmental and intergenerational timescales implicate several genes in the angiogenesis and axonal guidance pathways that may be important.
Collapse
Affiliation(s)
- Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| | - Gustavo M Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Buenos Aires B7130IWA, Argentina.
| |
Collapse
|
8
|
Lang AS, Austin SH, Harris RM, Calisi RM, MacManes MD. Stress-mediated convergence of splicing landscapes in male and female rock doves. BMC Genomics 2020; 21:251. [PMID: 32293250 PMCID: PMC7092514 DOI: 10.1186/s12864-020-6600-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/20/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The process of alternative splicing provides a unique mechanism by which eukaryotes are able to produce numerous protein products from the same gene. Heightened variability in the proteome has been thought to potentiate increased behavioral complexity and response flexibility to environmental stimuli, thus contributing to more refined traits on which natural and sexual selection can act. While it has been long known that various forms of environmental stress can negatively affect sexual behavior and reproduction, we know little of how stress can affect the alternative splicing associated with these events, and less still about how splicing may differ between sexes. Using the model of the rock dove (Columba livia), our team previously uncovered sexual dimorphism in the basal and stress-responsive gene transcription of a biological system necessary for facilitating sexual behavior and reproduction, the hypothalamic-pituitary-gonadal (HPG) axis. In this study, we delve further into understanding the mechanistic underpinnings of how changes in the environment can affect reproduction by testing the alternative splicing response of the HPG axis to an external stressor in both sexes. RESULTS This study reveals dramatic baseline differences in HPG alternative splicing between males and females. However, after subjecting subjects to a restraint stress paradigm, we found a significant reduction in these differences between the sexes. In both stress and control treatments, we identified a higher incidence of splicing activity in the pituitary in both sexes as compared to other tissues. Of these splicing events, the core exon event is the most abundant form of splicing and more frequently occurs in the coding regions of the gene. Overall, we observed less splicing activity in the 3'UTR (untranslated region) end of transcripts than the 5'UTR or coding regions. CONCLUSIONS Our results provide vital new insight into sex-specific aspects of the stress response on the HPG axis at an unprecedented proximate level. Males and females uniquely respond to stress, yet exhibit splicing patterns suggesting a convergent, optimal splicing landscape for stress response. This information has the potential to inform evolutionary theory as well as the development of highly-specific drug targets for stress-induced reproductive dysfunction.
Collapse
Affiliation(s)
- Andrew S Lang
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, USA.
| | - Suzanne H Austin
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, USA
| | - Rayna M Harris
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, USA
| | - Rebecca M Calisi
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, USA
| | - Matthew D MacManes
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, USA
| |
Collapse
|
9
|
Abhari K, Mousavi Khaneghah A. Alternative extraction techniques to obtain, isolate and purify proteins and bioactive from aquaculture and by-products. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 92:35-52. [PMID: 32402446 DOI: 10.1016/bs.afnr.2019.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Oceans cover more than 70% of the earth's surface and provide a great ecosystem for habitat of a large divers of marine species. The marine species are rich sources of bioactive compound that can be applied in medicine, pharmacology and food industry. Besides the marine species, fish processing industry also produces substantial volumes of by-products that can be used for a variety of purposes. Thus, it is important to find approaches to access to these valuable compounds. Nowadays, more factors have been considered in selecting an appropriate method for extraction of bioactive compounds such as consume less time and solvent, to be fast and ecofriendly. Concerns regarding entering the pollutions to the environment resulted to invest on the methods practicable with less chemical solvents and even green ones, however, implementation of stricter regulations and policies is required to encourage researchers to set up the procedures with reduced toxic agents to guarantee the environmental safety. In the current chapter the most common marine derived compounds and innovative methods for their extraction will be discussed.
Collapse
Affiliation(s)
- Khadijeh Abhari
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, State University of Campinas (UNICAMP), São Paulo, Brazil.
| |
Collapse
|
10
|
Dufour S, Quérat B, Tostivint H, Pasqualini C, Vaudry H, Rousseau K. Origin and Evolution of the Neuroendocrine Control of Reproduction in Vertebrates, With Special Focus on Genome and Gene Duplications. Physiol Rev 2019; 100:869-943. [PMID: 31625459 DOI: 10.1152/physrev.00009.2019] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In humans, as in the other mammals, the neuroendocrine control of reproduction is ensured by the brain-pituitary gonadotropic axis. Multiple internal and environmental cues are integrated via brain neuronal networks, ultimately leading to the modulation of the activity of gonadotropin-releasing hormone (GnRH) neurons. The decapeptide GnRH is released into the hypothalamic-hypophysial portal blood system and stimulates the production of pituitary glycoprotein hormones, the two gonadotropins luteinizing hormone and follicle-stimulating hormone. A novel actor, the neuropeptide kisspeptin, acting upstream of GnRH, has attracted increasing attention in recent years. Other neuropeptides, such as gonadotropin-inhibiting hormone/RF-amide related peptide, and other members of the RF-amide peptide superfamily, as well as various nonpeptidic neuromediators such as dopamine and serotonin also provide a large panel of stimulatory or inhibitory regulators. This paper addresses the origin and evolution of the vertebrate gonadotropic axis. Brain-pituitary neuroendocrine axes are typical of vertebrates, the pituitary gland, mediator and amplifier of brain control on peripheral organs, being a vertebrate innovation. The paper reviews, from molecular and functional perspectives, the evolution across vertebrate radiation of some key actors of the vertebrate neuroendocrine control of reproduction and traces back their origin along the vertebrate lineage and in other metazoa before the emergence of vertebrates. A focus is given on how gene duplications, resulting from either local events or from whole genome duplication events, and followed by paralogous gene loss or conservation, might have shaped the evolutionary scenarios of current families of key actors of the gonadotropic axis.
Collapse
Affiliation(s)
- Sylvie Dufour
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Bruno Quérat
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hervé Tostivint
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Catherine Pasqualini
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hubert Vaudry
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Karine Rousseau
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| |
Collapse
|
11
|
Li J, Cheng CHK. Evolution of gonadotropin signaling on gonad development: insights from gene knockout studies in zebrafish. Biol Reprod 2019; 99:686-694. [PMID: 29718109 DOI: 10.1093/biolre/ioy101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/25/2018] [Indexed: 11/13/2022] Open
Abstract
Gonadal development is precisely regulated by the two gonadotropins luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Much progress on understanding the functions of LH and FSH signaling on gonad development has been achieved in the past decades, mostly from studies in mammals, especially genetic studies in both mouse and human. The functions of both LH and FSH signaling in nonmammalian species are still largely unknown. In recent years, using zebrafish, a teleost phylogenetically distant from mammals, we and others have genetically analyzed the functions of gonadotropins and their receptors through gene knockout studies. In this review, we will summarize the pertinent findings and discuss how the actions of gonadotropin signaling on gonad development have evolved during evolution from fish to mammals.
Collapse
Affiliation(s)
- Jianzhen Li
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Christopher H K Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
12
|
Wu JJ, Zhou YL, Wang ZW, Li GH, Jin FP, Cui LL, Gao HT, Li XP, Zhou L, Gui JF. Comparative Transcriptome Analysis Reveals Differentially Expressed Genes and Signaling Pathways Between Male and Female Red-Tail Catfish (Mystus wyckioides). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:463-474. [PMID: 30941640 DOI: 10.1007/s10126-019-09894-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
Sexual dimorphism is widespread in fish species. The red-tail catfish (Mystus wyckioides) is a commercially important catfish in the lower reaches of the Lancang River and the Mekong basin, and it shows a growth advantage in males. Here, RNA-seq was for the first time used to explore the gene expression difference between the sexes in the hypothalamus and pituitary of red-tail catfish, respectively. In the hypothalamus, 5732 and 271 unigenes have significantly higher and lower expressions, respectively, in males compared with females. KEGG analysis showed that 212 DEGs were annotated to 216 signaling pathways, and enrichment analysis suggested different levels of cAMP and glutamatergic synapse signaling between male and female hypothalami and some of the DEGs appear involved in gonad development and growth. In the pituitary, we found only 19 differentially expressed unigenes, which were annotated to 32 signaling pathways, most of which play important roles in gonad development.
Collapse
Affiliation(s)
- Jun-Jie Wu
- Yunnan Institute of Fishery Sciences Research, Kunming, 650111, China
| | - Yu-Lin Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Guang-Hua Li
- Yunnan Institute of Fishery Sciences Research, Kunming, 650111, China
| | - Fang-Peng Jin
- Yunnan Institute of Fishery Sciences Research, Kunming, 650111, China
| | - Li-Li Cui
- Yunnan Institute of Fishery Sciences Research, Kunming, 650111, China
| | - Hai-Tao Gao
- Yunnan Institute of Fishery Sciences Research, Kunming, 650111, China
| | - Xin-Ping Li
- Xishuangbanna Native Fish Research and Breeding Center, Xishuangbanna, 666100, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
13
|
Fang X, Wu L, Yang L, Song L, Cai J, Luo F, Wei J, Zhou L, Wang D. Nuclear progestin receptor (Pgr) knockouts resulted in subfertility in male tilapia (Oreochromis niloticus). J Steroid Biochem Mol Biol 2018; 182:62-71. [PMID: 29705270 DOI: 10.1016/j.jsbmb.2018.04.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/30/2018] [Accepted: 04/22/2018] [Indexed: 12/25/2022]
Abstract
It was documented that 17α, 20β-dihydroxy-4-pregnen-3-one (DHP), a fish specific progestin, might play critical roles in spermatogenesis, sperm maturation and spermiation partially through activating nuclear receptor (Pgr). However, no direct evidence is available to demonstrate the functions of DHP in fish spermatogenesis. To further elucidate the roles of DHP in teleosts, we generated a pgr homozygous mutant line in XY Nile tilapia (Oreochromis niloticus). Pgr gene mutation resulted in the development of a smaller, thinner testis and a lower GSI compared with normal testis. Pgr gene knockout led to irregular arrangement of spermatogenic cysts, decline of sperm count and sperm motility. Significant decrease of spermatocytes and spermatozoa was observed, which was further proved by the PCNA and Ph3 staining. Real-time PCR analysis demonstrated that mutation of pgr gene resulted in a significant up-regulation of steroidogenesis-related genes of cyp17a, cyp11b2, StAR, scc, 20β-HSD, and sf1, and down-regulation of fshb, fshr, oct4, sycp3, cdk1, prm, cyclinB1, cyclinB2 and cdc25 genes. Furthermore, both Immunohistochemistry and Western blotting experiments revealed a remarkable increase of Cyp17a1, Cyp17a2 and Cyp11b2 expressions in the pgr-/- testis. EIA measurement showed that an evident increase of 11-KT level was found in the pgr-/- XY fish. There was a significant increase in the mortality of offspring when crossing pgr-/- XY fish with wild type XX fish. Increased TUNEL staining and enhanced apoptosis maker gene (bax) expressions were also observed. Taken together, our data suggested that DHP-activated physiology via pgr is crucial for the fertility in the XY tilapia.
Collapse
Affiliation(s)
- Xuelian Fang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Limin Wu
- College of Fisheries, Henan Normal University, Xinxiang, HeNan, 453007, PR China
| | - Lanying Yang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Lingyun Song
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Jing Cai
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Feng Luo
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Jing Wei
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China.
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
14
|
Lovejoy DA, Michalec OM, Hogg DW, Wosnick DI. Role of elasmobranchs and holocephalans in understanding peptide evolution in the vertebrates: Lessons learned from gonadotropin releasing hormone (GnRH) and corticotropin releasing factor (CRF) phylogenies. Gen Comp Endocrinol 2018; 264:78-83. [PMID: 28935583 DOI: 10.1016/j.ygcen.2017.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/06/2017] [Accepted: 09/13/2017] [Indexed: 10/18/2022]
Abstract
The cartilaginous fishes (Class Chondrichthyes) comprise two morphologically distinct subclasses; Elasmobranchii and Holocephali. Evidence indicates early divergence of these subclasses, suggesting monophyly of their lineage. However, such a phylogenetic understanding is not yet developed within two highly conserved peptide lineages, GnRH and CRF. Various GnRH forms exist across the Chondrichthyes. Although 4-7 immunoreactive forms have been described in Elasmobranchii, only one has been elucidated in Holocephali. In contrast, Chondrichthyan CRF phylogeny follows a pattern more consistent with vertebrate evolution. For example, three forms are expressed within the lamprey, with similar peptides present within the genome of the Callorhinchus milii, a holocephalan. Although these findings are consistent with recent evidence regarding the phylogenetic age of Chondrichthyan lineages, CRF evolution in vertebrates remains elusive. Assuming that the Elasmobranchii and Holocephali are part of a monocladistic clade within the Chondrichthyes, we interpret the findings of GnRH and CRF to be products of their respective lineages.
Collapse
Affiliation(s)
- David A Lovejoy
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada.
| | - Ola M Michalec
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - David W Hogg
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - David I Wosnick
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Amano M, Amiya N, Yokoyama T, Onikubo K, Yamamoto N, Takahashi A. Immunohistochemical detection of corticotropin-releasing hormone (CRH) in the brain and pituitary of the hagfish, Eptatretus burgeri. Gen Comp Endocrinol 2016; 236:174-180. [PMID: 27444128 DOI: 10.1016/j.ygcen.2016.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 06/21/2016] [Accepted: 07/16/2016] [Indexed: 10/21/2022]
Abstract
The distribution of corticotropin-releasing hormone (CRH) in the brain and pituitary of the hagfish Eptatretus burgeri, representing the earliest branch of vertebrates, was examined by immunohistochemistry to better understand the neuroendocrine system of hagfish. CRH-immunoreactive (ir) cell bodies were detected in the preoptic nucleus, periventricular preoptic nucleus, infundibular nucleus of the hypothalamus, and in the nucleus "A" of Kusunoki et al. (1982) in the medulla oblongata. In the brain, CRH-ir fibers were detected in almost all areas except for the olfactory bulb and telencephalon. Bundles of CRH-ir fibers were detected in the dorsal wall of the neurohypophysis. However, CRH-ir fibers were distant from adrenocorticotropic hormone (ACTH) cells in the adenohypophysis, as studied by dual-label immunohistochemistry. Cortisol and corticosterone were detected in the plasma by a combination of reverse-phase high performance liquid chromatography and a time-resolved fluoroimmunoassay. These results suggest that in the hagfish, CRH, ACTH, and corticosteroids exist and that CRH released in the neurohypophysis likely reaches the adenohypophysis via diffusion.
Collapse
Affiliation(s)
- Masafumi Amano
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan.
| | - Noriko Amiya
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Takehiko Yokoyama
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Kengo Onikubo
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Naoyuki Yamamoto
- Laboratory of Fish Biology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Akiyoshi Takahashi
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| |
Collapse
|
16
|
Cheung RCF, Ng TB, Wong JH. Marine Peptides: Bioactivities and Applications. Mar Drugs 2015; 13:4006-43. [PMID: 26132844 PMCID: PMC4515606 DOI: 10.3390/md13074006] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 12/11/2022] Open
Abstract
Peptides are important bioactive natural products which are present in many marine species. These marine peptides have high potential nutraceutical and medicinal values because of their broad spectra of bioactivities. Their antimicrobial, antiviral, antitumor, antioxidative, cardioprotective (antihypertensive, antiatherosclerotic and anticoagulant), immunomodulatory, analgesic, anxiolytic anti-diabetic, appetite suppressing and neuroprotective activities have attracted the attention of the pharmaceutical industry, which attempts to design them for use in the treatment or prevention of various diseases. Some marine peptides or their derivatives have high commercial values and had reached the pharmaceutical and nutraceutical markets. A large number of them are already in different phases of the clinical and preclinical pipeline. This review highlights the recent research in marine peptides and the trends and prospects for the future, with special emphasis on nutraceutical and pharmaceutical development into marketed products.
Collapse
Affiliation(s)
- Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China.
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China.
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
17
|
Nishiyama M, Uchida K, Abe N, Nozaki M. Molecular cloning of cytochrome P450 side-chain cleavage and changes in its mRNA expression during gonadal development of brown hagfish, Paramyxine atami. Gen Comp Endocrinol 2015; 212:1-9. [PMID: 25623145 DOI: 10.1016/j.ygcen.2015.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 01/11/2015] [Accepted: 01/16/2015] [Indexed: 11/25/2022]
Abstract
Since hagfishes are considered the most primitive vertebrate known, extant or extinct, studies on their reproduction are indispensable for understanding phylogenetic aspects of vertebrate reproduction. However, little information is available on the endocrine regulation of the gonadal function in the hagfish. Based on EST analysis of the testis of the brown hagfish (Paramyxine atami), P450 side chain cleavage (CYP11A), which is the first and essential enzyme for steroidogenesis in jawed vertebrates, was cloned. The deduced amino acid sequence of hagfish CYP11A shows high identity to other animal forms especially in two functional domains, adrenodoxin binding domain and heme-binding domain. In the phylogenetic analysis, hagfish CYP11A forms a clade with the vertebrate CYP11A. Following the real-time PCR analysis, CYP11A mRNA expression levels were clearly correlated to the developmental stages of gonads in both sexes of the brown hagfish. By in situ hybridization, CYP11A mRNA signals were found in the theca cells of the ovarian follicles and Leydig cells and the tubule-boundary cells of the testis. These molecular and histological evidences are suggesting that CYP11A plays functional roles as a steroidogenic enzyme in gonadal development. Moreover, native GTH purified from hagfish pituitary stimulated the transcriptional levels of CYP11A in the organ-cultured testis in vitro, clearly suggesting that the steroidogenic activity of the hagfish is under the control of the pituitary GTH. It is suggested that vertebrates, during their early evolution, have established the pituitary-gonadal reproductive system.
Collapse
Affiliation(s)
- Maki Nishiyama
- Sado Marine Biological Station, Faculty of Science, Niigata University, Tassha, Sado, Niigata 952-2135, Japan; Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata, Niigata 950-2181, Japan
| | - Katsuhisa Uchida
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Kibanadai-nishi, Miyazaki 889-2192, Japan
| | - Nozomi Abe
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ten-noudai, Tsukuba, Ibaraki 305-8572, Japan
| | - Masumi Nozaki
- Sado Marine Biological Station, Faculty of Science, Niigata University, Tassha, Sado, Niigata 952-2135, Japan.
| |
Collapse
|
18
|
Meccariello R, Fasano S, Pierantoni R, Cobellis G. Modulators of hypothalamic-pituitary-gonadal axis for the control of spermatogenesis and sperm quality in vertebrates. Front Endocrinol (Lausanne) 2014; 5:135. [PMID: 25183961 PMCID: PMC4135230 DOI: 10.3389/fendo.2014.00135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 08/02/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rosaria Meccariello
- Dipartimento di Scienze Motorie e del Benessere (DiSMEB), Parthenope University of Naples, Naples, Italy
| | - Silvia Fasano
- Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - Riccardo Pierantoni
- Department of Experimental Medicine, Second University of Naples, Naples, Italy
- *Correspondence:
| | - Gilda Cobellis
- Department of Experimental Medicine, Second University of Naples, Naples, Italy
| |
Collapse
|