1
|
Can U, Akdu S, Aktan AH. The Investigation of Kisspeptin, Spexin and Galanin in Euthyroid Women with Hashimoto's Thyroiditis. Endocr Res 2025; 50:36-42. [PMID: 39056111 DOI: 10.1080/07435800.2024.2384576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/22/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVE The hallmarks of Hashimoto's thyroiditis (HT) include the destruction of thyroid cells by leading to insulin resistance (IR), hypothyroidism, and metabolic abnormalities. Kisspeptin, spexin, and galanin control appetite and body weight (BW) to regulate metabolisms. Here, we sought to determine if galanin, kisspeptin, and spexin are linked to the pathophysiology of HT in euthyroid female individuals. METHODS Forty-five women with HT and 45 healthy control women of the same age participated in the current study. The enzyme-linked immunosorbent assay (ELISA) method was used to measure the serum levels of galanin, spexin, and kisspeptin. RESULTS In comparison to the controls, HT patients had significantly higher levels of kisspeptin (p < 0.01), galanin (p < 0.01), anti-thyroid peroxidase (anti-TPO) (p < 0.001), anti-thyroglobulin (anti-Tg) (p < 0.001), and body mass index (BMI) (p < 0.05). The two groups were comparable in terms of spexin, free triiodothyronine-3 (fT3), fT4, thyroid-stimulating hormone (TSH) levels, and homeostatic model assessment for insulin resistance (HOMA-IR). Galanin and kisspeptin were seen to have a positive correlation (p < 0.01; r = 0.786). CONCLUSIONS Euthyroid women with HT were found to have higher levels of kisspeptin and galanin. These results imply that kisspeptin and galanin may be linked to the pathogenesis of hypothyroidism, and as a result, we believe that these markers may be beneficial in the early detection and treatment of HT patients.
Collapse
Affiliation(s)
- Ummugulsum Can
- Department of Biochemistry, Konya City Hospital, Konya, Turkey
| | - Sadinaz Akdu
- Department of Biochemistry, Fethiye State Hospital, Muğla, Turkey
| | - Ahmet Hamdi Aktan
- Department of Internal Medicine, Fethiye State Hospital, Muğla, Turkey
| |
Collapse
|
2
|
Prasad K, Bhattacharya D, Shams SGE, Izarraras K, Hart T, Mayfield B, Blaszczyk MB, Zhou Z, Pajvani UB, Friedman SL, Bhattacharya M. Kisspeptin Alleviates Human Hepatic Fibrogenesis by Inhibiting TGFβ Signaling in Hepatic Stellate Cells. Cells 2024; 13:1651. [PMID: 39404414 PMCID: PMC11476267 DOI: 10.3390/cells13191651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
The peptide hormone kisspeptin attenuates liver steatosis, metabolic dysfunction-associated steatohepatitis (MASH), and fibrosis in mouse models by signaling via the kisspeptin 1 receptor (KISS1R). However, whether kisspeptin impacts fibrogenesis in the human liver is not known. We investigated the impact of a potent kisspeptin analog (KPA) on fibrogenesis using human precision-cut liver slices (hPCLS) from fibrotic livers from male patients, in human hepatic stellate cells (HSCs), LX-2, and in primary mouse HSCs. In hPCLS, 48 h and 72 h of KPA (3 nM, 100 nM) treatment decreased collagen secretion and lowered the expression of fibrogenic and inflammatory markers. Immunohistochemical studies revealed that KISS1R is expressed and localized to HSCs in MASH/fibrotic livers. In HSCs, KPA treatment reduced transforming growth factor b (TGFβ)-the induced expression of fibrogenic and inflammatory markers, in addition to decreasing TGFβ-induced collagen secretion, cell migration, proliferation, and colony formation. Mechanistically, KISS1R signaling downregulated TGFβ signaling by decreasing SMAD2/3 phosphorylation via the activation of protein phosphatases, PP2A, which dephosphorylates SMAD 2/3. This study revealed for the first time that kisspeptin reverses human hepatic fibrogenesis, thus identifying it as a new therapeutic target to treat hepatic fibrosis.
Collapse
Affiliation(s)
- Kavita Prasad
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; (K.P.); (S.G.E.S.); (K.I.); (T.H.)
| | - Dipankar Bhattacharya
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (D.B.); (S.L.F.)
| | - Shams Gamal Eldin Shams
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; (K.P.); (S.G.E.S.); (K.I.); (T.H.)
| | - Kimberly Izarraras
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; (K.P.); (S.G.E.S.); (K.I.); (T.H.)
| | - Tia Hart
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; (K.P.); (S.G.E.S.); (K.I.); (T.H.)
| | - Brent Mayfield
- Department of Medicine, Columbia University, New York, NY 10032, USA; (B.M.); (U.B.P.)
| | - Maryjka B. Blaszczyk
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; (M.B.B.); (Z.Z.)
| | - Zhongren Zhou
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; (M.B.B.); (Z.Z.)
| | - Utpal B. Pajvani
- Department of Medicine, Columbia University, New York, NY 10032, USA; (B.M.); (U.B.P.)
| | - Scott L. Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (D.B.); (S.L.F.)
| | - Moshmi Bhattacharya
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; (K.P.); (S.G.E.S.); (K.I.); (T.H.)
| |
Collapse
|
3
|
Wu Z, Chen G, Qiu C, Yan X, Xu L, Jiang S, Xu J, Han R, Shi T, Liu Y, Gao W, Wang Q, Li J, Ye F, Pan X, Zhang Z, Ning P, Zhang B, Chen J, Du Y. Structural basis for the ligand recognition and G protein subtype selectivity of kisspeptin receptor. SCIENCE ADVANCES 2024; 10:eadn7771. [PMID: 39151001 PMCID: PMC11328905 DOI: 10.1126/sciadv.adn7771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/11/2024] [Indexed: 08/18/2024]
Abstract
Kisspeptin receptor (KISS1R), belonging to the class A peptide-GPCR family, plays a key role in the regulation of reproductive physiology after stimulation by kisspeptin and is regarded as an attractive drug target for reproductive diseases. Here, we demonstrated that KISS1R can couple to the Gi/o pathway besides the well-known Gq/11 pathway. We further resolved the cryo-electron microscopy (cryo-EM) structure of KISS1R-Gq and KISS1R-Gi complexes bound to the synthetic agonist TAK448 and structure of KISS1R-Gq complex bound to the endogenous agonist KP54. The high-resolution structures provided clear insights into mechanism of KISS1R recognition by its ligand and can facilitate the design of targeted drugs with high affinity to improve treatment effects. Moreover, the structural and functional analyses indicated that conformational differences in the extracellular loops (ECLs), intracellular loops (ICLs) of the receptor, and the "wavy hook" of the Gα subunit may account for the specificity of G protein coupling for KISS1R signaling.
Collapse
Affiliation(s)
- Zhangsong Wu
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172 Shenzhen, Guangdong, China
| | - Geng Chen
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172 Shenzhen, Guangdong, China
| | - Chen Qiu
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172 Shenzhen, Guangdong, China
| | - Xiaoyi Yan
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172 Shenzhen, Guangdong, China
| | - Lezhi Xu
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172 Shenzhen, Guangdong, China
| | - Shirui Jiang
- The Huanan Affiliated Hospital of Shenzhen University, Shenzhen University, 518000 Shenzhen, Guangdong, China
| | - Jun Xu
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Runyuan Han
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tingyi Shi
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172 Shenzhen, Guangdong, China
| | - Yiming Liu
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172 Shenzhen, Guangdong, China
| | - Wei Gao
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172 Shenzhen, Guangdong, China
| | - Qian Wang
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172 Shenzhen, Guangdong, China
- The Huanan Affiliated Hospital of Shenzhen University, Shenzhen University, 518000 Shenzhen, Guangdong, China
| | - Jiancheng Li
- Instrumental Analysis Center, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Fang Ye
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172 Shenzhen, Guangdong, China
| | - Xin Pan
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172 Shenzhen, Guangdong, China
| | - Zhiyi Zhang
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172 Shenzhen, Guangdong, China
| | - Peiruo Ning
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172 Shenzhen, Guangdong, China
| | - Binghao Zhang
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172 Shenzhen, Guangdong, China
| | - Jing Chen
- Neurobiology Institute, Jining Medical University, 272067 Jining, Shandong, China
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172 Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Liang C, Li X, Song G, Schmidt SF, Sun L, Chen J, Pan X, Zhao H, Yan Y. Adipose Kiss1 controls aerobic exercise-related adaptive responses in adipose tissue energy homeostasis. FASEB J 2024; 38:e23743. [PMID: 38877852 DOI: 10.1096/fj.202302598rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/13/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024]
Abstract
Kisspeptin signaling regulates energy homeostasis. Adiposity is the principal source and receiver of peripheral Kisspeptin, and adipose Kiss1 metastasis suppressor (Kiss1) gene expression is stimulated by exercise. However, whether the adipose Kiss1 gene regulates energy homeostasis and plays a role in adaptive alterations during prolonged exercise remains unknown. Here, we investigated the role of Kiss1 role in mice and adipose tissues and the adaptive changes it induces after exercise, using adipose-specific Kiss1 knockout (Kiss1adipoq-/-) and adeno-associated virus-induced adipose tissue Kiss1-overexpressing (Kiss1adipoq over) mice. We found that adipose-derived kisspeptin signal regulates lipid and glucose homeostasis to maintain systemic energy homeostasis, but in a sex-dependent manner, with more pronounced metabolic changes in female mice. Kiss1 regulated adaptive alterations of genes and proteins in tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OxPhos) pathways in female gWAT following prolonged aerobic exercise. We could further show that adipose Kiss1 deficiency leads to reduced peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1α) protein content of soleus muscle and maximum oxygen uptake (VO2 max) of female mice after prolonged exercise. Therefore, adipose Kisspeptin may be a novel adipokine that increases organ sensitivity to glucose, lipids, and oxygen following exercise.
Collapse
Affiliation(s)
- Chunyu Liang
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
- Department of Biochemistry and Molecular Biology, Center for Functional Genomics and Tissue Plasticity (ATLAS), University of Southern Denmark (SDU), Odense, Denmark
- School of Physical Education, Guangxi University (GXU), Nanning, China
| | - Xuehan Li
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Ge Song
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Søren Fisker Schmidt
- Department of Biochemistry and Molecular Biology, Center for Functional Genomics and Tissue Plasticity (ATLAS), University of Southern Denmark (SDU), Odense, Denmark
| | - Lingyu Sun
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Jianhao Chen
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Xinliang Pan
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Haotian Zhao
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Yi Yan
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| |
Collapse
|
5
|
Joy KP, Chaube R. Kisspeptin control of hypothalamus-pituitary-ovarian functions. VITAMINS AND HORMONES 2024; 127:153-206. [PMID: 39864941 DOI: 10.1016/bs.vh.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The discovery of Kisspeptin (Kiss) has opened a new direction in research on neuroendocrine control of reproduction in vertebrates. Belonging to the RF amide family of peptides, Kiss and its cognate receptor Gpr54 (Kissr) have a long and complex evolutionary history. Multiple forms of Kiss and Kissr are identified in non-mammalian vertebrates, with the exception of birds, and monotreme mammals. However, only a single form of the ligand (KISS1/Kiss1) and receptor (KISS1R/Kiss1r) is retained in higher mammals. Kiss1 is distributed in the hypothalamus-pituitary-gonadal (HPG) axis and its primary function is to stimulate gonadotropin-releasing hormone (GnRH) secretion. Kiss1 neurons are distributed in the rostral periventricular area of the third ventricle (RP3V) and arcuate/infundibular nucleus (ARN/IFN). The ARN/IFN is considered the GnRH pulse generator controlled by steroid negative feedback, and the RP3V neurons is concerned with GnRH surge induced by steroid positive feedback in females. The Kiss1-Kiss1r signaling is important in all aspects of reproduction: puberty onset, maintenance of adult gonadal functions and reproductive aging, and hence assumes therapeutic potentials in the treatment of reproductive dysfunctions and induction of artificial reproduction. This chapter reviews involvement of Kiss1 in the control of the HPG axis functions in female mammals.
Collapse
Affiliation(s)
- K P Joy
- Retired Professor, Department of Zoology, Banaras Hindu University, Varanasi, Uttar pradesh, India.
| | - R Chaube
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar pradesh, India
| |
Collapse
|
6
|
Zhao Y, Wang Z, Chen Y, Feng M, Liu X, Chen H, Wang N, Wang Z, Cao S, Ren J, Liu X, Zhao Y, Zhang Y. Asprosin aggravates atherosclerosis via regulating the phenotype transformation of vascular smooth muscle cells. Int J Biol Macromol 2024; 268:131868. [PMID: 38677690 DOI: 10.1016/j.ijbiomac.2024.131868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
Phenotype transformation of vascular smooth muscle cells (VSMCs) plays an important role in the development of atherosclerosis. Asprosin is a newly discovered adipokine, which is critical in regulating metabolism. However, the relationship between asprosin and phenotype transformation of VSMCs in atherosclerosis remains unclear. The aim of this study is to investigate whether asprosin affects the progression of atherosclerosis by inducing phenotype transformation of VSMCs. We established an atherosclerosis model in ApoE-/- mice and administered asprosin recombinant protein and asprosin antibody to mice. Knocking down asprosin was also as an intervention. Interestingly, we found a correlation between asprosin levels and atherosclerosis. Asprosin promoted plaque formation and phenotype transformation of VSMCs. While, AspKD or asprosin antibody reduced the plaque lesion and suppressed vascular stiffness in ApoE-/- mice. Mechanistically, asprosin induced phenotype transformation of MOVAs by binding to GPR54, leading to Gαq/11 recruitment and activation of the PLC-PKC-ERK1/2-STAT3 signaling pathway. Si GPR54 or GPR54 antagonist partially inhibited the action of asprosin in MOVAs. Mutant GPR54-(267, 307) residue cancelled the binding of asprosin and GPR54. In summary, this study confirmed asprosin activated GPR54/Gαq/11-dependent ERK1/2-STAT3 signaling pathway, thereby promoting VSMCs phenotype transformation and aggravating atherosclerosis, thus providing a new target for the treatment of atherosclerosis.
Collapse
MESH Headings
- Animals
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Mice
- Phenotype
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Fibrillin-1/metabolism
- Fibrillin-1/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Male
- Signal Transduction
- Disease Models, Animal
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Apolipoproteins E/metabolism
- Humans
- Extracellular Matrix Proteins/metabolism
- Extracellular Matrix Proteins/genetics
- Mice, Knockout
Collapse
Affiliation(s)
- Yu Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China; Department of Pathophysiology, Province Key Laboratory of Medicine-Food Homologous Resources and Prevention and Treatment of Metabolic Diseases, Basic Medical College, Qiqihar Medical University, Qiqihar 161000, China
| | - Zhengkai Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yi Chen
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Min Feng
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Xinxin Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Huan Chen
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Nannan Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Zhiqi Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Shifeng Cao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Jing Ren
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Xue Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yixiu Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China.
| | - Yan Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
7
|
Sliwowska JH, Woods NE, Alzahrani AR, Paspali E, Tate RJ, Ferro VA. Kisspeptin a potential therapeutic target in treatment of both metabolic and reproductive dysfunction. J Diabetes 2024; 16:e13541. [PMID: 38599822 PMCID: PMC11006622 DOI: 10.1111/1753-0407.13541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/21/2023] [Accepted: 02/03/2024] [Indexed: 04/12/2024] Open
Abstract
Kisspeptins (KPs) are proteins that were first recognized to have antimetastatic action. Later, the critical role of this peptide in the regulation of reproduction was proved. In recent years, evidence has been accumulated supporting a role for KPs in regulating metabolic processes in a sexual dimorphic manner. It has been proposed that KPs regulate metabolism both indirectly via gonadal hormones and/or directly via the kisspeptin receptor in the brain, brown adipose tissue, and pancreas. The aim of the review is to provide both experimental and clinical evidence indicating that KPs are peptides linking metabolism and reproduction. We propose that KPs could be used as a potential target to treat both metabolic and reproductive abnormalities. Thus, we focus on the consequences of disruptions in KPs and their receptors in metabolic conditions such as diabetes, undernutrition, obesity, and reproductive disorders (hypogonadotropic hypogonadism and polycystic ovary syndrome). Data from both animal models and human subjects indicate that alterations in KPs in the case of metabolic imbalance lead also to disruptions in reproductive functions. Changes both in the hypothalamic and peripheral KP systems in animal models of the aforementioned disorders are discussed. Finally, an overview of current clinical studies involving KP in fertility and metabolism show fewer studies on metabolism (15%) and only one to date on both. Presented data indicate a dynamic and emerging field of KP studies as possible therapeutic targets in treatments of both reproductive and metabolic dysfunctions.
Collapse
Affiliation(s)
- Joanna Helena Sliwowska
- Department of Veterinary Medicine and Animal Sciences, Laboratory of Neurobiology, Poznan University of Life Sciences, Poznan, Poland
| | - Nicola Elizabeth Woods
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Abdullah Rzgallah Alzahrani
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Elpiniki Paspali
- Department of Chemical Engineering, University of Strathclyde, Glasgow, UK
| | - Rothwelle Joseph Tate
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Valerie Anne Ferro
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
8
|
Patel B, Koysombat K, Mills EG, Tsoutsouki J, Comninos AN, Abbara A, Dhillo WS. The Emerging Therapeutic Potential of Kisspeptin and Neurokinin B. Endocr Rev 2024; 45:30-68. [PMID: 37467734 PMCID: PMC10765167 DOI: 10.1210/endrev/bnad023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/13/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
Kisspeptin (KP) and neurokinin B (NKB) are neuropeptides that govern the reproductive endocrine axis through regulating hypothalamic gonadotropin-releasing hormone (GnRH) neuronal activity and pulsatile GnRH secretion. Their critical role in reproductive health was first identified after inactivating variants in genes encoding for KP or NKB signaling were shown to result in congenital hypogonadotropic hypogonadism and a failure of pubertal development. Over the past 2 decades since their discovery, a wealth of evidence from both basic and translational research has laid the foundation for potential therapeutic applications. Beyond KP's function in the hypothalamus, it is also expressed in the placenta, liver, pancreas, adipose tissue, bone, and limbic regions, giving rise to several avenues of research for use in the diagnosis and treatment of pregnancy, metabolic, liver, bone, and behavioral disorders. The role played by NKB in stimulating the hypothalamic thermoregulatory center to mediate menopausal hot flashes has led to the development of medications that antagonize its action as a novel nonsteroidal therapeutic agent for this indication. Furthermore, the ability of NKB antagonism to partially suppress (but not abolish) the reproductive endocrine axis has supported its potential use for the treatment of various reproductive disorders including polycystic ovary syndrome, uterine fibroids, and endometriosis. This review will provide a comprehensive up-to-date overview of the preclinical and clinical data that have paved the way for the development of diagnostic and therapeutic applications of KP and NKB.
Collapse
Affiliation(s)
- Bijal Patel
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
| | - Kanyada Koysombat
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| | - Edouard G Mills
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| | - Jovanna Tsoutsouki
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
| | - Alexander N Comninos
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| | - Ali Abbara
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| | - Waljit S Dhillo
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| |
Collapse
|
9
|
Stress, kisspeptin, and functional hypothalamic amenorrhea. Curr Opin Pharmacol 2022; 67:102288. [PMID: 36103784 DOI: 10.1016/j.coph.2022.102288] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 01/25/2023]
Abstract
Functional hypothalamic amenorrhea (FHA) is the most common cause of secondary amenorrhea in women of reproductive age. FHA is predominantly caused by stress, decreased caloric intake, excessive exercise, or a combination thereof. These physical, psychological, and metabolic stressors cause aberration in the pulsatile release of gonadotropin-releasing hormone (GnRH) and subsequently impair function of the hypothalamic-pituitary-ovarian (HPO) axis. Various neurotransmitters acting in the central nervous system are involved in control of the HPO axis and of these, kisspeptin is one of the most important. Corticotropin-releasing hormone (CRH), also inhibits the pulsatile secretion of GnRH and also acts as an intermediary between stress factors and the reproductive system. One of the main ongoing concerns in patients with FHA is chronic hypoestrogenism, a condition, which is associated with sexual dysfunction and infertility. It may also lead to osteoporosis, and predispose to neurodegenerative and cardiovascular diseases. Treatment of FHA requires the elimination of causative factors, however, making the necessary lifestyle changes is not always easy to initiate and maintain. Broadening our knowledge of the complex neural mechanisms regulating reproductive function in which kisspeptin plays a key role can help in the development of new treatment options such as the potential of kisspeptin receptor agonists for patients with FHA.
Collapse
|
10
|
Masumi S, Lee EB, Dilower I, Upadhyaya S, Chakravarthi VP, Fields PE, Rumi MAK. The role of Kisspeptin signaling in Oocyte maturation. Front Endocrinol (Lausanne) 2022; 13:917464. [PMID: 36072937 PMCID: PMC9441556 DOI: 10.3389/fendo.2022.917464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022] Open
Abstract
Kisspeptins (KPs) secreted from the hypothalamic KP neurons act on KP receptors (KPRs) in gonadotropin (GPN) releasing hormone (GnRH) neurons to produce GnRH. GnRH acts on pituitary gonadotrophs to induce secretion of GPNs, namely follicle stimulating hormone (FSH) and luteinizing hormone (LH), which are essential for ovarian follicle development, oocyte maturation and ovulation. Thus, hypothalamic KPs regulate oocyte maturation indirectly through GPNs. KPs and KPRs are also expressed in the ovarian follicles across species. Recent studies demonstrated that intraovarian KPs also act directly on the KPRs expressed in oocytes to promote oocyte maturation and ovulation. In this review article, we have summarized published reports on the role of hypothalamic and ovarian KP-signaling in oocyte maturation. Gonadal steroid hormones regulate KP secretion from hypothalamic KP neurons, which in turn induces GPN secretion from the hypothalamic-pituitary (HP) axis. On the other hand, GPNs secreted from the HP axis act on the granulosa cells (GCs) and upregulate the expression of ovarian KPs. While KPs are expressed predominantly in the GCs, the KPRs are in the oocytes. Expression of KPs in the ovaries increases with the progression of the estrous cycle and peaks during the preovulatory GPN surge. Intrafollicular KP levels in the ovaries rise with the advancement of developmental stages. Moreover, loss of KPRs in oocytes in mice leads to failure of oocyte maturation and ovulation similar to that of premature ovarian insufficiency (POI). These findings suggest that GC-derived KPs may act on the KPRs in oocytes during their preovulatory maturation. In addition to the intraovarian role of KP-signaling in oocyte maturation, in vivo, a direct role of KP has been identified during in vitro maturation of sheep, porcine, and rat oocytes. KP-stimulation of rat oocytes, in vitro, resulted in Ca2+ release and activation of the mitogen-activated protein kinase, extracellular signal-regulated kinase 1 and 2. In vitro treatment of rat or porcine oocytes with KPs upregulated messenger RNA levels of the factors that favor oocyte maturation. In clinical trials, human KP-54 has also been administered successfully to patients undergoing assisted reproductive technologies (ARTs) for increasing oocyte maturation. Exogenous KPs can induce GPN secretion from hypothalamus; however, the possibility of direct KP action on the oocytes cannot be excluded. Understanding the direct in vivo and in vitro roles of KP-signaling in oocyte maturation will help in developing novel KP-based ARTs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - M. A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
11
|
Okada H, Kanasaki H, Tumurbaatar T, Tumurgan Z, Oride A, Kyo S. Hyperandrogenism induces proportional changes in the expression of Kiss-1, Tac2, and DynA in hypothalamic KNDy neurons. Reprod Biol Endocrinol 2022; 20:91. [PMID: 35729637 PMCID: PMC9210811 DOI: 10.1186/s12958-022-00963-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Kisspeptin released from Kiss-1 neurons in the hypothalamus plays an essential role in the control of the hypothalamic-pituitary-gonadal axis by regulating the release of gonadotropin-releasing hormone (GnRH). In this study, we examined how androgen supplementation affects the characteristics of Kiss-1 neurons. METHODS We used a Kiss-1-expressing mHypoA-55 cell model that originated from the arcuate nucleus (ARC) of the mouse hypothalamus. These cells are KNDy neurons that co-express neurokinin B (NKB) and dynorphin A (DynA). We stimulated these cells with androgens and examined them. We also examined the ARC region of the hypothalamus in ovary-intact female rats after supplementation with androgens. RESULTS Stimulation of mHypoA-55 cells with 100 nM testosterone significantly increased Kiss-1 gene expression by 3.20 ± 0.44-fold; testosterone also increased kisspeptin protein expression. The expression of Tac3, the gene encoding NKB, was also increased by 2.69 ± 0.64-fold following stimulation of mHypoA-55 cells with 100 nM testosterone. DynA gene expression in these cells was unchanged by testosterone stimulation, but it was significantly reduced at the protein level. Dihydrotestosterone (DHT) had a similar effect to testosterone in mHypoA-55 cells; kisspeptin and NKB protein expression was significantly increased by DHT, whereas it significantly reduced DynA expression. In ovary-intact female rats, DTH administration significantly increased the gene expression of Kiss-1 and Tac3, but not DynA, in the arcuate nucleus. Exogenous NKB and DynA stimulation failed to modulate Kiss-1 gene expression in mHypoA-55 cells. Unlike androgen stimulation, prolactin stimulation did not modulate kisspeptin, NKB, or DynA protein expression in these cells. CONCLUSIONS Our observations imply that hyperandrogenemia affects KNDy neurons and changes their neuronal characteristics by increasing kisspeptin and NKB levels and decreasing DynA levels. These changes might cause dysfunction of the hypothalamic-pituitary-gonadal axis.
Collapse
Affiliation(s)
- Hiroe Okada
- Department of Obstetrics and Gynecology, School of Medicine, Shimane University, 89-1 Enya Cho, Izumo, Shimane, 693-8501, Japan
| | - Haruhiko Kanasaki
- Department of Obstetrics and Gynecology, School of Medicine, Shimane University, 89-1 Enya Cho, Izumo, Shimane, 693-8501, Japan.
| | - Tuvshintugs Tumurbaatar
- Department of Obstetrics and Gynecology, School of Medicine, Shimane University, 89-1 Enya Cho, Izumo, Shimane, 693-8501, Japan
| | - Zolzaya Tumurgan
- Department of Obstetrics and Gynecology, School of Medicine, Shimane University, 89-1 Enya Cho, Izumo, Shimane, 693-8501, Japan
| | - Aki Oride
- Department of Obstetrics and Gynecology, School of Medicine, Shimane University, 89-1 Enya Cho, Izumo, Shimane, 693-8501, Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, School of Medicine, Shimane University, 89-1 Enya Cho, Izumo, Shimane, 693-8501, Japan
| |
Collapse
|
12
|
Comninos AN, Hansen MS, Courtney A, Choudhury S, Yang L, Mills EG, Phylactou M, Busbridge M, Khir M, Thaventhiran T, Bech P, Tan T, Abbara A, Frost M, Dhillo WS. Acute Effects of Kisspeptin Administration on Bone Metabolism in Healthy Men. J Clin Endocrinol Metab 2022; 107:1529-1540. [PMID: 35244717 PMCID: PMC9113799 DOI: 10.1210/clinem/dgac117] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Indexed: 12/23/2022]
Abstract
CONTEXT Osteoporosis results from disturbances in bone formation and resorption. Recent nonhuman data suggest that the reproductive hormone kisspeptin directly stimulates osteoblast differentiation in vitro and thus could have clinical therapeutic potential. However, the effects of kisspeptin on human bone metabolism are currently unknown. OBJECTIVE To assess the effects of kisspeptin on human bone metabolism in vitro and in vivo. METHODS In vitro study: of Mono- and cocultures of human osteoblasts and osteoclasts treated with kisspeptin. Clinical study: Randomized, placebo-controlled, double-blind, 2-way crossover clinical study in 26 men investigating the effects of acute kisspeptin administration (90 minutes) on human bone metabolism, with blood sampling every 30 minutes to +90 minutes. Cells for the in vitro study were from 12 male blood donors and 8 patients undergoing hip replacement surgery. Twenty-six healthy eugonadal men (age 26.8 ± 5.8 years) were included in the clinical study. The intervention was Kisspeptin (vs placebo) administration. The main outcome measures were changes in bone parameters and turnover markers. RESULTS Incubation with kisspeptin in vitro increased alkaline phosphatase levels in human bone marrow mesenchymal stem cells by 41.1% (P = .0022), and robustly inhibited osteoclastic resorptive activity by up to 53.4% (P < .0001), in a dose-dependent manner. Kisspeptin administration to healthy men increased osteoblast activity, as evidenced by a 20.3% maximal increase in total osteocalcin (P = .021) and 24.3% maximal increase in carboxylated osteocalcin levels (P = .014). CONCLUSION Collectively, these data provide the first human evidence that kisspeptin promotes osteogenic differentiation of osteoblast progenitors and inhibits bone resorption in vitro. Furthermore, kisspeptin acutely increases the bone formation marker osteocalcin but not resorption markers in healthy men, independent of downstream sex steroid levels. Kisspeptin could therefore have clinical therapeutic application in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Alexander N Comninos
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
- Endocrine Bone Unit, Imperial College Healthcare NHS Trust, London, UK
| | - Morten S Hansen
- KMEB Molecular Endocrinology Laboratory, Department of Endocrinology, Odense University Hospital, Denmark
- Department of Clinical Research, University of Southern Denmark, Denmark
| | - Alan Courtney
- Department of Clinical Biochemistry, Imperial College Healthcare NHS Trust, London, UK
| | - Sirazum Choudhury
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Clinical Biochemistry, Imperial College Healthcare NHS Trust, London, UK
| | - Lisa Yang
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Edouard G Mills
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Maria Phylactou
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Mark Busbridge
- Department of Clinical Biochemistry, Imperial College Healthcare NHS Trust, London, UK
| | - Muaza Khir
- Department of Clinical Biochemistry, Imperial College Healthcare NHS Trust, London, UK
| | - Thilipan Thaventhiran
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Paul Bech
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Clinical Biochemistry, Imperial College Healthcare NHS Trust, London, UK
| | - Tricia Tan
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Clinical Biochemistry, Imperial College Healthcare NHS Trust, London, UK
| | - Ali Abbara
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Morten Frost
- KMEB Molecular Endocrinology Laboratory, Department of Endocrinology, Odense University Hospital, Denmark
- Department of Clinical Research, University of Southern Denmark, Denmark
- Steno Diabetes Centre, Odense University Hospital, Denmark
| | - Waljit S Dhillo
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
13
|
Guzman S, Dragan M, Kwon H, de Oliveira V, Rao S, Bhatt V, Kalemba KM, Shah A, Rustgi VK, Wang H, Bech PR, Abbara A, Izzi-Engbeaya C, Manousou P, Guo JY, Guo GL, Radovick S, Dhillo WS, Wondisford FE, Babwah AV, Bhattacharya M. Targeting hepatic kisspeptin receptor ameliorates nonalcoholic fatty liver disease in a mouse model. J Clin Invest 2022; 132:145889. [PMID: 35349482 PMCID: PMC9106350 DOI: 10.1172/jci145889] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/23/2022] [Indexed: 01/27/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), the most common liver disease, has become a silent worldwide pandemic. The incidence of NAFLD correlates with the rise in obesity, type 2 diabetes, and metabolic syndrome. A hallmark featureof NAFLD is excessive hepatic fat accumulation or steatosis, due to dysregulated hepatic fat metabolism, which can progress to nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis. Currently, there are no approved pharmacotherapies to treat this disease. Here, we have found that activation of the kisspeptin 1 receptor (KISS1R) signaling pathway has therapeutic effects in NAFLD. Using high-fat diet-fed mice, we demonstrated that a deletion of hepatic Kiss1r exacerbated hepatic steatosis. In contrast, enhanced stimulation of KISS1R protected against steatosis in wild-type C57BL/6J mice and decreased fibrosis using a diet-induced mouse model of NASH. Mechanistically, we found that hepatic KISS1R signaling activates the master energy regulator, AMPK, to thereby decrease lipogenesis and progression to NASH. In patients with NAFLD and in high-fat diet-fed mice, hepatic KISS1/KISS1R expression and plasma kisspeptin levels were elevated, suggesting a compensatory mechanism to reduce triglyceride synthesis. These findings establish KISS1R as a therapeutic target to treat NASH.
Collapse
Affiliation(s)
- Stephania Guzman
- Department of Medicine, Robert Wood Johnson Medical School, and,Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | | | - Hyokjoon Kwon
- Department of Medicine, Robert Wood Johnson Medical School, and
| | | | - Shivani Rao
- Department of Medicine, Robert Wood Johnson Medical School, and
| | - Vrushank Bhatt
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | | | - Ankit Shah
- Department of Medicine, Robert Wood Johnson Medical School, and
| | - Vinod K. Rustgi
- Department of Medicine, Robert Wood Johnson Medical School, and
| | - He Wang
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Paul R. Bech
- Section of Endocrinology and Investigative Medicine and
| | - Ali Abbara
- Section of Endocrinology and Investigative Medicine and
| | | | - Pinelopi Manousou
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Jessie Y. Guo
- Department of Medicine, Robert Wood Johnson Medical School, and,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Grace L. Guo
- Department of Pharmacology and Toxicology, School of Pharmacy, and
| | - Sally Radovick
- Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | | | | | - Andy V. Babwah
- Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA.,Child Health Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Moshmi Bhattacharya
- Department of Medicine, Robert Wood Johnson Medical School, and,Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA.,Child Health Institute of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
14
|
Chaudhuri GR, Das A, Kesh SB, Bhattacharya K, Dutta S, Sengupta P, Syamal AK. Obesity and male infertility: multifaceted reproductive disruption. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2022. [DOI: 10.1186/s43043-022-00099-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
Background
The global prevalence of obesity has soared to a concerning height in the past few decades. Interestingly, the global decline in semen quality is a parallel occurrence that urges researchers to evaluate if obesity is among the most essential causatives of male infertility or subfertility.
Main body
Obesity may alter the synchronized working of the reproductive-endocrine milieu, mainly the hypothalamic-pituitary-gonadal (HPG) axis along with its crosstalks with other reproductive hormones. Obesity-mediated impairment in semen parameters may include several intermediate factors, which include physical factors, essentially increased scrotal temperature due to heavy adipose tissue deposits, and systemic inflammation and oxidative stress (OS) initiated by various adipose tissue-derived pro-inflammatory mediators. Obesity, via its multifaceted mechanisms, may modulate sperm genetic and epigenetic conformation, which severely disrupt sperm functions. Paternal obesity reportedly has significant adverse effects upon the outcome of assisted reproductive techniques (ARTs) and the overall health of offspring. Given the complexity of the underlying mechanisms and rapid emergence of new evidence-based hypotheses, the concept of obesity-mediated male infertility needs timely updates and pristine understanding.
Conclusions
The present review comprehensively explains the possible obesity-mediated mechanisms, especially via physical factors, OS induction, endocrine modulation, immune alterations, and genetic and epigenetic changes, which may culminate in perturbed spermatogenesis, disrupted sperm DNA integrity, compromised sperm functions, and diminished semen quality, leading to impaired male reproductive functions.
Collapse
|
15
|
Ibrahim SA, Adnan AA, Gahzi ST. Serum Level of Inhibin B and Kisspeptin, as well as Their Correlation with Biochemical Factors in Obese Adult Patients. ARCHIVES OF RAZI INSTITUTE 2022; 77:703-707. [PMID: 36284976 PMCID: PMC9548286 DOI: 10.22092/ari.2022.356954.1945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/16/2022] [Indexed: 05/24/2023]
Abstract
Obesity is one of the most important global health problems causing serious health risks and early death in human. It is also associated with disturbance of homeostasis of hormones and immunological biochemical factors inside the human body. This study aimed to evaluate the serum level of inhibin B and kisspeptin among Iraqi obese adult people and other biochemical parameters correlated with obesity. Inhibin B and levels of kisspeptin were evaluated in the samples of serum from 40 Iraqi obese adult patients and 30 healthy non-obese individuals. A significant decrease (P<0.0001) was observed in the kisspeptin level in both males and females, compared to the control group. Moreover, inhibin B decreased significantly in obese females only (P<0.001), while there was no differences between males and the control group in this regard. Finally, body mass index, serum glutamic pyruvic transaminase (SGPT), and leptin showed negative correlation with kisspeptin (0.01, 0.5, and 0.01), respectively. However, a positive association was observed with the level of Ca in the serum. On the other hand, inhibin B confirmed a positive correlation with SGPT. The present study revealed a significant increase in inhibin B and kisspeptin, with SGPT and Ca in the serum of obese patients, which could lead to complications and health problems among these patients.
Collapse
Affiliation(s)
- S A Ibrahim
- Basic Science Department, College of Nursing, University of Baghdad, Baghdad, Iraq
| | - A A Adnan
- Basic Science Department, College of Nursing, University of Baghdad, Baghdad, Iraq
| | - S T Gahzi
- Basic Science Department, College of Nursing, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
16
|
Lee EB, Dilower I, Marsh CA, Wolfe MW, Masumi S, Upadhyaya S, Rumi MAK. Sexual Dimorphism in Kisspeptin Signaling. Cells 2022; 11:1146. [PMID: 35406710 PMCID: PMC8997554 DOI: 10.3390/cells11071146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 02/05/2023] Open
Abstract
Kisspeptin (KP) and kisspeptin receptor (KPR) are essential for the onset of puberty, development of gonads, and maintenance of gonadal function in both males and females. Hypothalamic KPs and KPR display a high degree of sexual dimorphism in expression and function. KPs act on KPR in gonadotropin releasing hormone (GnRH) neurons and induce distinct patterns of GnRH secretion in males and females. GnRH acts on the anterior pituitary to secrete gonadotropins, which are required for steroidogenesis and gametogenesis in testes and ovaries. Gonadal steroid hormones in turn regulate the KP neurons. Gonadal hormones inhibit the KP neurons within the arcuate nucleus and generate pulsatile GnRH mediated gonadotropin (GPN) secretion in both sexes. However, the numbers of KP neurons in the anteroventral periventricular nucleus and preoptic area are greater in females, which release a large amount of KPs in response to a high estrogen level and induce the preovulatory GPN surge. In addition to the hypothalamus, KPs and KPR are also expressed in various extrahypothalamic tissues including the liver, pancreas, fat, and gonads. There is a remarkable difference in circulating KP levels between males and females. An increased level of KPs in females can be linked to increased numbers of KP neurons in female hypothalamus and more KP production in the ovaries and adipose tissues. Although the sexually dimorphic features are well characterized for hypothalamic KPs, very little is known about the extrahypothalamic KPs. This review article summarizes current knowledge regarding the sexual dimorphism in hypothalamic as well as extrahypothalamic KP and KPR system in primates and rodents.
Collapse
Affiliation(s)
- Eun Bee Lee
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (I.D.); (S.M.); (S.U.)
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.A.M.); (M.W.W.)
| | - Iman Dilower
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (I.D.); (S.M.); (S.U.)
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.A.M.); (M.W.W.)
| | - Courtney A. Marsh
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.A.M.); (M.W.W.)
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Michael W. Wolfe
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.A.M.); (M.W.W.)
| | - Saeed Masumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (I.D.); (S.M.); (S.U.)
| | - Sameer Upadhyaya
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (I.D.); (S.M.); (S.U.)
| | - Mohammad A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (I.D.); (S.M.); (S.U.)
| |
Collapse
|
17
|
Abdullah DM, Alsemeh AE, Khamis T. Semaglutide early intervention attenuated testicular dysfunction by targeting the GLP-1-PPAR-α-Kisspeptin-Steroidogenesis signaling pathway in a testicular ischemia-reperfusion rat model. Peptides 2022; 149:170711. [PMID: 34920048 DOI: 10.1016/j.peptides.2021.170711] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022]
Abstract
Testicular torsion is a serious emergency and a well-known cause of male infertility. It represents 10 %-15 % of scrotal diseases in children. Kisspeptin (KISS1) is a hormone secreted from the hypothalamic nuclei and testis, but its role in testis is not fully understood. Semaglutide is a novel antidiabetic glucagon-like peptide 1 (GLP-1) analog. Hence, we designed the current study to elucidate the possible ameliorative effect of semaglutide on ischemia/reperfusion-induced testicular dysfunction in rats and highlight the role of the testicular GLP-1/PCG-1α-PPAR-α-KISS1 signaling pathway. We randomly divided 50 male Sprague Dawley into five equal groups (10 rats each): SHAM, exendin 9-39 -treated (EX), testicular torsion/detorsion (T/D), testicular torsion/detorsion and semaglutide-treated (SEM + T/D), and testicular torsion/detorsion, exendin, and semaglutide-treated (EX + SEM + T/D). We quantified serum follicle-stimulating hormone, luteinizing hormone, total testosterone, testicular oxidative stress markers, testicular gene expression of GLP-1/KISS1 pathway-related genes (KISS1, KISS1R, GLP-1, GLP-1R, PGC-1α, PPAR-α), steroidogenesis pathway-related genes (STAR, CYP11A1, CYP17A1, HSD17B3, CYP19A1), HO-1, Nrf-2, and testicular protein expression of HIF-1α, TNF-α, NF-κβ, Caspase-3, FAS, proliferating cell nuclear antigen, and KISS1 through testicular histopathology and immunohistochemistry assays. Testicular torsion/detorsion markedly elevated proapoptotic, proinflammatory, and oxidative stress marker levels, noticeably downregulating the expression of GLP-1/KISS1 and steroidogenesis pathway-related proteins. Semaglutide administration significantly ameliorated all these deleterious effects. Nevertheless, injecting exendin, a GLP1-R antagonist, before semaglutide abolished all the documented improvements. We concluded that semaglutide ameliorated ischemia/reperfusion-induced testicular dysfunction by modulating the GLP-1/PGC-1α-PPAR-α/KISS1/steroidogenesis signaling pathway, improving testicular oxidative state, and suppressing testicular inflammation and apoptosis.
Collapse
Affiliation(s)
- Doaa M Abdullah
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Amira Ebrahim Alsemeh
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt.
| |
Collapse
|
18
|
Sivalingam M, Ogawa S, Trudeau VL, Parhar IS. Conserved functions of hypothalamic kisspeptin in vertebrates. Gen Comp Endocrinol 2022; 317:113973. [PMID: 34971635 DOI: 10.1016/j.ygcen.2021.113973] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022]
Abstract
Hypothalamic kisspeptin encoded by KISS1/Kiss1 gene emerged as a regulator of the reproductive axis in mammals following the discovery of the kisspeptin receptor (Kissr) and its role in reproduction. Kisspeptin-Kissr systems have been investigated in various vertebrates, and a conserved sequence of kisspeptin-Kissr has been identified in most vertebrate species except in the avian linage. In addition, multiple paralogs of kisspeptin sequences have been identified in the non-mammalian vertebrates. The allegedly conserved role of kisspeptin-Kissr in reproduction became debatable when kiss/kissr genes-deficient zebrafish and medaka showed no apparent effect on the onset of puberty, sexual development, maturation and reproductive capacity. Therefore, it is questionable whether the role of kisspeptin in reproduction is conserved among vertebrate species. Here we discuss from a comparative and evolutional aspect the diverse functions of kisspeptin and its receptor in vertebrates. Primarily this review focuses on the role of hypothalamic kisspeptin in reproductive and non-reproductive functions that are conserved in vertebrate species.
Collapse
Affiliation(s)
- Mageswary Sivalingam
- Brain Research Institute, Jeffery Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Petaling Jaya, Selangor, Malaysia
| | - Satoshi Ogawa
- Brain Research Institute, Jeffery Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Petaling Jaya, Selangor, Malaysia
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Ishwar S Parhar
- Brain Research Institute, Jeffery Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Petaling Jaya, Selangor, Malaysia.
| |
Collapse
|
19
|
Huang Y, Liu Q, Huang G, Wen J, Chen G. Hypothalamic Kisspeptin Neurons Regulates Energy Metabolism and Reproduction Under Chronic Stress. Front Endocrinol (Lausanne) 2022; 13:844397. [PMID: 35685211 PMCID: PMC9170882 DOI: 10.3389/fendo.2022.844397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Stress activates the hypothalamic-pituitary-adrenal (HPA) axis, affecting energy homeostasis and reproduction. The aim of this study was to investigate whether stress affected energy metabolism and reproduction through the glucocorticoid receptor on Kisspeptin neurons in the hypothalamus. METHODS Four groups included control group, chronic restraint stress group, Kisspeptin specific glucocorticoid receptor knock out group (KGRKO) and KGRKO+stress group. Body weight, food intake, estrous cycle of female mice, serum sex hormone levels, serum corticosterone and prolactin, Kisspeptin expression in the hypothalamus were measured. RESULTS The restraint stress group showed a significant weight loss compared with the control group. KGRKO+restraint stress group had a reduced weight loss, suggesting that restraint stress might partially affect the energy metabolism through GR on Kisspeptin neurons. In terms of reproductive function, the restraint stress group and the KGRKO+restraint stress group showed missing pre-estrus period or prolonged estrous cycles. Serum LH and FSH in KGRKO + restraint stress group decreased significantly compared with KGRKO group. However, no significant difference in the level of serum testosterone was observed. After restraint stress, the levels of serum cortisol and prolactin in male and female mice were significantly higher than the control group, and the hypothalamus Kiss1 gene mRNA expression and Kisspeptin protein expression were significantly decreased. CONCLUSION Chronic restraint stress induced weight loss and negative changes in reproduction, which were partially mediated by glucocorticoid receptor on Kisspeptin neurons in the hypothalamus.
Collapse
Affiliation(s)
- Yinqiong Huang
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Qinyu Liu
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Guifeng Huang
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Junping Wen
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
- *Correspondence: Gang Chen, ; Junping Wen,
| | - Gang Chen
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Key Laboratory of Medical Analysis, Fujian Academy of Medical, Fuzhou, China
- *Correspondence: Gang Chen, ; Junping Wen,
| |
Collapse
|
20
|
Wang B, Mechaly AS, Somoza GM. Overview and New Insights Into the Diversity, Evolution, Role, and Regulation of Kisspeptins and Their Receptors in Teleost Fish. Front Endocrinol (Lausanne) 2022; 13:862614. [PMID: 35392133 PMCID: PMC8982144 DOI: 10.3389/fendo.2022.862614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/21/2022] [Indexed: 01/04/2023] Open
Abstract
In the last two decades, kisspeptin (Kiss) has been identified as an important player in the regulation of reproduction and other physiological functions in vertebrates, including several fish species. To date, two ligands (Kiss1, Kiss2) and three kisspeptin receptors (Kissr1, Kissr2, Kissr3) have been identified in teleosts, likely due to whole-genome duplication and loss of genes that occurred early in teleost evolution. Recent results in zebrafish and medaka mutants have challenged the notion that the kisspeptin system is essential for reproduction in fish, in marked contrast to the situation in mammals. In this context, this review focuses on the role of kisspeptins at three levels of the reproductive, brain-pituitary-gonadal (BPG) axis in fish. In addition, this review compiled information on factors controlling the Kiss/Kissr system, such as photoperiod, temperature, nutritional status, sex steroids, neuropeptides, and others. In this article, we summarize the available information on the molecular diversity and evolution, tissue expression and neuroanatomical distribution, functional significance, signaling pathways, and gene regulation of Kiss and Kissr in teleost fishes. Of particular note are recent advances in understanding flatfish kisspeptin systems, which require further study to reveal their structural and functional diversity.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- *Correspondence: Bin Wang, ; Alejandro S. Mechaly, ; Gustavo M. Somoza,
| | - Alejandro S. Mechaly
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Mar del Plata, Argentina
- Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Argentina
- *Correspondence: Bin Wang, ; Alejandro S. Mechaly, ; Gustavo M. Somoza,
| | - Gustavo M. Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
- *Correspondence: Bin Wang, ; Alejandro S. Mechaly, ; Gustavo M. Somoza,
| |
Collapse
|
21
|
Kirsch P, Kunadia J, Shah S, Agrawal N. Metabolic effects of prolactin and the role of dopamine agonists: A review. Front Endocrinol (Lausanne) 2022; 13:1002320. [PMID: 36246929 PMCID: PMC9562454 DOI: 10.3389/fendo.2022.1002320] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Prolactin is a polypeptide hormone that is well known for its role in reproductive physiology. Recent studies highlight its role in neurohormonal appetite regulation and metabolism. Elevated prolactin levels are widely associated with worsening metabolic disease, but it appears that low prolactin levels could also be metabolically unfavorable. This review discusses the pathophysiology of prolactin related metabolic changes, and the less commonly recognized effects of prolactin on adipose tissue, pancreas, liver, and small bowel. Furthermore, the effect of dopamine agonists on the metabolic profiles of patients with hyperprolactinemia are discussed as well.
Collapse
Affiliation(s)
- Polly Kirsch
- New York University (NYU) Grossman School of Medicine, NYU Langone Health, New York, NY, United States
| | - Jessica Kunadia
- Department of Medicine, NYU Langone Health, New York, NY, United States
| | - Shruti Shah
- New York University (NYU) Grossman School of Medicine, NYU Langone Health, New York, NY, United States
| | - Nidhi Agrawal
- Department of Medicine, NYU Langone Health, New York, NY, United States
- *Correspondence: Nidhi Agrawal,
| |
Collapse
|
22
|
Endocrinopathies and Male Infertility. LIFE (BASEL, SWITZERLAND) 2021; 12:life12010010. [PMID: 35054403 PMCID: PMC8779600 DOI: 10.3390/life12010010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 01/22/2023]
Abstract
Male infertility is approaching a concerning prevalence worldwide, and inflicts various impacts on the affected couple. The hormonal assessment is a vital component of male fertility evaluation as endocrine disorders are markedly reversible causatives of male infertility. Precise hormonal regulations are prerequisites to maintain normal male fertility parameters. The core male reproductive event, spermatogenesis, entails adequate testosterone concentration, which is produced via steroidogenesis in the Leydig cells. Physiological levels of both the gonadotropins are needed to achieve normal testicular functions. The hypothalamus-derived gonadotropin-releasing hormone (GnRH) is considered the supreme inducer of the gonadotropins and thereby the subsequent endocrine reproductive events. This hypothalamic–pituitary–gonadal (HPG) axis may be modulated by the thyroidal or adrenal axis and numerous other reproductive and nonreproductive hormones. Disruption of this fine hormonal balance and their crosstalk leads to a spectrum of endocrinopathies, inducing subfertility or infertility in men. This review article will discuss the most essential endocrinopathies associated with male factor infertility to aid precise understanding of the endocrine disruptions-mediated male infertility to encourage further research to reveal the detailed etiology of male infertility and perhaps to develop more customized therapies for endocrinopathy-induced male infertility.
Collapse
|
23
|
Ghaderpour S, Ghiasi R, Heydari H, Keyhanmanesh R. The relation between obesity, kisspeptin, leptin, and male fertility. Horm Mol Biol Clin Investig 2021; 43:235-247. [PMID: 34931507 DOI: 10.1515/hmbci-2021-0058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/22/2021] [Indexed: 11/15/2022]
Abstract
Over the past decades, obesity and infertility in men increased in parallel, and the association between both phenomena have been examined by several researchers. despite the fact that there is no agreement, obesity appears to affect the reproductive potential of men through various mechanisms, such as changes in the hypothalamic-pituitary-testicular (HPT) axis, spermatogenesis, sperm quality and/or alteration of sexual health. Leptin is a hormone produced by the adipose tissue, and its production elevates with increasing body fat. Many studies have supported the relationship between raised leptin production and reproductive function regulation. In fact, Leptin acts on the HPT axis in men at all levels. However, most obese men are insensitive to increased production of endogenous leptin and functional leptin resistance development. Recently, it has been recommended that Kisspeptin neurons mediate the leptin's effects on the reproductive system. Kisspeptin binding to its receptor on gonadotropin-releasing hormone (GnRH) neurons, activates the mammal's reproductive axis and stimulates GnRH release. Increasing infertility associated with obesity is probably mediated by the Kisspeptin-GnRH pathway. In this review, the link between obesity, kisspeptin, leptin, and male fertility will be discussed.
Collapse
Affiliation(s)
- Saber Ghaderpour
- Department of Physiology, Tabriz Faculty of Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rafighe Ghiasi
- Department of Physiology, Tabriz Faculty of Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Heydari
- Department of Physiology, Tabriz Faculty of Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Keyhanmanesh
- Department of Physiology, Tabriz Faculty of Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Cintra RG, Wajnsztejn R, Trevisan CM, Zaia V, Laganà AS, Bianco B, Montagna E. Kisspeptin Levels in Girls with Precocious Puberty: A Systematic Review and Meta-Analysis. Horm Res Paediatr 2021; 93:589-598. [PMID: 33887744 DOI: 10.1159/000515660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Kisspeptin (KP) is a key player in the regulation of the release of gonadotropin-releasing hormone (GnRH), which increases the secretion of gonadotropin during puberty to establish reproductive function and regulate the hypothalamic-pituitary-gonadal axis. Premature activation of GnRH secretion leads to idiopathic/central gonadotropin-dependent precocious puberty (CPP). We aimed to compare the blood KP concentrations in girls with CPP and healthy controls. METHODS A systematic review and meta-analysis was performed. We searched MEDLINE, EMBASE, The Cochrane Library, and SciELO. Random-effects model and standardized mean difference (SMD) were used. Heterogeneity was assessed through I2. Meta-regression considered patient age, KP fraction, and analytical method for KP measurement. RESULTS The 11 studies included comprised 316 CPP patients and 251 controls. Higher KP levels in the CPP group were found (SMD 1.53; CI 95% = 0.56-2.51). Subgroup analysis revealed association with patient age (p = 0.048), indicating a positive correlation between elevation in KP concentration and age in CPP group. A group of patients with precocious thelarche (PT) from 5 of the included studies comprising 121 patients showed higher levels of KP (1.10; -0.25-2.45: CI 95%) and high heterogeneity (I2 = 91%). The CPP/PT ratio for KP level indicates KP 36% higher on CPP than PT patients. CONCLUSIONS A consistent difference in KP levels between girls with CPP and controls was identified. While there are important limitations in KP assays which argue against its use as a diagnostic tool, the KP levels in CPP versus control and PT children are consistent with the predicted mechanisms and pathophysiology of CPP.
Collapse
Affiliation(s)
- Rafael Guerra Cintra
- Postgraduate Program in Health Sciences, Faculdade de Medicina do ABC/Centro Universitário Saúde ABC, Santo André, Brazil.,Department of Neurosciences, Discipline of Neurology, Faculdade de Medicina do ABC/Centro Universitário Saúde ABC, Santo André, Brazil
| | - Rubens Wajnsztejn
- Department of Neurosciences, Discipline of Neurology, Faculdade de Medicina do ABC/Centro Universitário Saúde ABC, Santo André, Brazil
| | - Camila Martins Trevisan
- Postgraduate Program in Health Sciences, Faculdade de Medicina do ABC/Centro Universitário Saúde ABC, Santo André, Brazil
| | - Victor Zaia
- Postgraduate Program in Health Sciences, Faculdade de Medicina do ABC/Centro Universitário Saúde ABC, Santo André, Brazil
| | - Antonio Simone Laganà
- Department of Obstetrics and Gynecology, "Filippo Del Ponte" Hospital, University of Insubria, Varese, Italy
| | - Bianca Bianco
- Department of Collective Health, Discipline of Sexual and Reproductive Health and Populational Genetics, Faculdade de Medicina do ABC/Centro Universitário Saúde ABC, Santo André, Brazil
| | - Erik Montagna
- Postgraduate Program in Health Sciences, Faculdade de Medicina do ABC/Centro Universitário Saúde ABC, Santo André, Brazil
| |
Collapse
|
25
|
Extrahypothalamic Control of Energy Balance and Its Connection with Reproduction: Roles of the Amygdala. Metabolites 2021; 11:metabo11120837. [PMID: 34940594 PMCID: PMC8708157 DOI: 10.3390/metabo11120837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 11/24/2022] Open
Abstract
Body energy and metabolic homeostasis are exquisitely controlled by multiple, often overlapping regulatory mechanisms, which permit the tight adjustment between fuel reserves, internal needs, and environmental (e.g., nutritional) conditions. As such, this function is sensitive to and closely connected with other relevant bodily systems, including reproduction and gonadal function. The aim of this mini-review article is to summarize the most salient experimental data supporting a role of the amygdala as a key brain region for emotional learning and behavior, including reward processing, in the physiological control of feeding and energy balance. In particular, a major focus will be placed on the putative interplay between reproductive signals and amygdala pathways, as it pertains to the control of metabolism, as complementary, extrahypothalamic circuit for the integral control of energy balance and gonadal function.
Collapse
|
26
|
Schaefer J, Vilos AG, Vilos GA, Bhattacharya M, Babwah AV. Uterine kisspeptin receptor critically regulates epithelial estrogen receptor α transcriptional activity at the time of embryo implantation in a mouse model. Mol Hum Reprod 2021; 27:gaab060. [PMID: 34524460 PMCID: PMC8786495 DOI: 10.1093/molehr/gaab060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/07/2021] [Indexed: 12/14/2022] Open
Abstract
Embryo implantation failure is a major cause of infertility in women of reproductive age and a better understanding of uterine factors that regulate implantation is required for developing effective treatments for female infertility. This study investigated the role of the uterine kisspeptin receptor (KISS1R) in the molecular regulation of implantation in a mouse model. To conduct this study, a conditional uterine knockout (KO) of Kiss1r was created using the Pgr-Cre (progesterone receptor-CRE recombinase) driver. Reproductive profiling revealed that while KO females exhibited normal ovarian function and mated successfully to stud males, they exhibited significantly fewer implantation sites, reduced litter size and increased neonatal mortality demonstrating that uterine KISS1R is required for embryo implantation and a healthy pregnancy. Strikingly, in the uterus of Kiss1r KO mice on day 4 (D4) of pregnancy, the day of embryo implantation, KO females exhibited aberrantly elevated epithelial ERα (estrogen receptor α) transcriptional activity. This led to the temporal misexpression of several epithelial genes [Cftr (Cystic fibrosis transmembrane conductance regulator), Aqp5 (aquaporin 5), Aqp8 (aquaporin 8) and Cldn7 (claudin 7)] that mediate luminal fluid secretion and luminal opening. As a result, on D4 of pregnancy, the lumen remained open disrupting the final acquisition of endometrial receptivity and likely accounting for the reduction in implantation events. Our data clearly show that uterine KISS1R negatively regulates ERα signaling at the time of implantation, in part by inhibiting ERα overexpression and preventing detrimentally high ERα activity. To date, there are no reports on the regulation of ERα by KISS1R; therefore, this study has uncovered an important and powerful regulator of uterine ERα during early pregnancy.
Collapse
Affiliation(s)
- Jennifer Schaefer
- Laboratory of Human Growth and Reproductive Development, Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- School of Graduate Studies, Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Angelos G Vilos
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - George A Vilos
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Moshmi Bhattacharya
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- Child Health Institute of New Jersey, New Brunswick, NJ, USA
| | - Andy V Babwah
- Laboratory of Human Growth and Reproductive Development, Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- School of Graduate Studies, Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Child Health Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
27
|
Huang Y, Guo Y, Huang L, Fang Y, Li D, Liu R, Lu Q, Ren R, Tang L, Lian L, Hu Y, Tang J, Chen G, Zhang JH. Kisspeptin-54 attenuates oxidative stress and neuronal apoptosis in early brain injury after subarachnoid hemorrhage in rats via GPR54/ARRB2/AKT/GSK3β signaling pathway. Free Radic Biol Med 2021; 171:99-111. [PMID: 33989759 PMCID: PMC8388553 DOI: 10.1016/j.freeradbiomed.2021.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023]
Abstract
Oxidative stress-induced neuron apoptosis plays a crucial role in the early brain injury (EBI) after subarachnoid hemorrhage (SAH). Kisspeptin has been reported as antioxidant to reduce oxidative stress-induced neuronal cell death through G protein-coupled receptor 54 (GPR54). The goal of this study was to determine the neuroprotection of the Kisspeptin/GRP54 signaling pathway against EBI after SAH. Two hundred and ninety-two Sprague Dawley male rats were used and SAH was induced by the endovascular perforation. Exogenous Kisspeptin 54 (KP54) was delivered intranasally. Small interfering ribonucleic acid (siRNA) for endogenous KISS1, a selective GPR54 antagonist kisspeptin 234, or β-arrestin 2 siRNA for ARRB2 (a functional adaptor of GPR54) were administered intracerebroventricularly. Post-SAH evaluations included neurobehavioral tests, SAH grade, Western blot, immunofluorescence, Fluoro-Jade C, TUNEL, and Nissl staining. The results showed that endogenous KISS1 knockdown aggravated but exogenous KP54 (1.0 nmol/kg) treatment attenuated neurological deficits, brain oxidative stress, and neuronal apoptosis at 24 h after SAH. The benefits of KP54 persisted to 28 days after SAH, which significantly improved cognitive function in SAH rats. The GPR54 blockade or the ARRB2 knockout offset the neuroprotective effects of KP54 in SAH rats. In conclusion, our results suggested that administration of KP54 attenuated oxidative stress, neuronal apoptosis and neurobehavioral impairments through GPR54/ARRB2/AKT/GSK3β signaling pathway after SAH in rat. Thus, KP54 may provide an effective treatment strategy for SAH patients.
Collapse
Affiliation(s)
- Yi Huang
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, Zhejiang, 315010, China; Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA; Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Yong Guo
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA; Cerebrovascular Center, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Lei Huang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA; Department of Neurosurgery, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Dujuan Li
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Rui Liu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Qin Lu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Reng Ren
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Lihui Tang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Lifei Lian
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Yongmei Hu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Gao Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA; Department of Neurosurgery, Loma Linda University, Loma Linda, CA, 92350, USA; Department of Anesthesiology, Loma Linda University, Loma Linda, CA, 92350, USA.
| |
Collapse
|
28
|
Yamazaki J, Meagawa S, Jelinek J, Yokoyama S, Nagata N, Yuki M, Takiguchi M. Obese status is associated with accelerated DNA methylation change in peripheral blood of senior dogs. Res Vet Sci 2021; 139:193-199. [PMID: 34358922 DOI: 10.1016/j.rvsc.2021.07.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/29/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022]
Abstract
Obesity and its associated comorbidities constitute a major and growing health problem worldwide not only involved with people but also dogs and cats. Although few genetic mutations have been associated with obesity in dogs, molecular mechanism remains to be clearly understood. Given the fact that DNA methylation leads to gene expression variability and has plasticity affected by metabolic phenotypes such as obesity in human, the objective of this study is to identify obesity-associated differentially methylated cytosine-phosphate-guanine (CpG) dinucleotide sites in dogs. With genome-wide DNA methylation analysis using next-generation sequencing for blood samples from fourteen Miniature dachshunds with body condition score (BCS) 4-5 and BCS ≥6, over 100,000 sites could be analysed to identify genomic locations of differentially methylated CpG sites. As a result, 191 differentially methylated CpG sites (89 CpG sites were hypermethylated in BCS ≥6 and 102 were hypermethylated in BCS 4-5) were identified. These sites included promoter regions of Kisspeptin receptor (KISS1R) and Calcyphosine 2 (CAPS2) genes which were subsequently validated by bisulfite-pyrosequencing for another set of 157 dog blood samples. KISS1R methylation levels were found to be higher in BCS ≥6 group than BCS 4-5 in senior (>84 months) dogs. Especially male dogs but not female dogs as well as uncastrated male dogs but not castrated male dogs showed this trend. DNA methylation of KISS1R gene will be useful for understanding of comprehensive epigenetic change in obese dogs.
Collapse
Affiliation(s)
- Jumpei Yamazaki
- Translational Research Unit, Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Japan; One Health Research Center, Hokkaido University, Japan.
| | - Shinji Meagawa
- Department of Pediatrics, MD Anderson Cancer Center, Houston, Tx, USA
| | | | - Shoko Yokoyama
- Translational Research Unit, Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Japan
| | - Noriyuki Nagata
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Japan
| | - Masashi Yuki
- Yuki Animal Hospital, 2-99 Kiba-cho, Minato-ku, Aichi, Japan
| | - Mitsuyoshi Takiguchi
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Japan
| |
Collapse
|
29
|
Growth Hormone (GH) Treatment Decreases Plasma Kisspeptin Levels in GH-Deficient Adults with Prader-Willi Syndrome. J Clin Med 2021; 10:jcm10143054. [PMID: 34300220 PMCID: PMC8306252 DOI: 10.3390/jcm10143054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/27/2022] Open
Abstract
Obesity and growth hormone (GH)-deficiency are consistent features of Prader-Willi syndrome (PWS). Centrally, kisspeptin is involved in regulating reproductive function and can stimulate hypothalamic hormones such as GH. Peripherally, kisspeptin signaling influences energy and metabolic status. We evaluated the effect of 12-month GH treatment on plasma kisspeptin levels in 27 GH-deficient adult PWS patients and analyzed its relationship with metabolic and anthropometric changes. Twenty-seven matched obese subjects and 22 healthy subjects were also studied. Before treatment, plasma kisspeptin concentrations in PWS and obese subjects were similar (140.20 (23.5-156.8) pg/mL vs. 141.96 (113.9-165.6) pg/mL, respectively, p = 0.979)) and higher (p = 0.019) than in healthy subjects (124.58 (107.3-139.0) pg/mL); plasma leptin concentrations were similar in PWS and obese subjects (48.15 (28.80-67.10) ng/mL vs. 33.10 (20.50-67.30) ng/mL, respectively, p = 0.152) and higher (p < 0.001) than in healthy subjects (14.80 (11.37-67.30) ng/mL). After GH therapy, lean body mass increased 2.1% (p = 0.03), total fat mass decreased 1.6% (p = 0.005), and plasma kisspeptin decreased to levels observed in normal-weight subjects (125.1(106.2-153.4) pg/mL, p = 0.027). BMI and leptin levels remained unchanged. In conclusion, 12-month GH therapy improved body composition and decreased plasma kisspeptin in GH deficient adults with PWS. All data are expressed in median (interquartile range).
Collapse
|
30
|
Gorkem U, Kan O, Bostanci MO, Taskiran D, Inal HA. Kisspeptin and Hematologic Parameters as Predictive Biomarkers for First-Trimester Abortions. Medeni Med J 2021; 36:98-105. [PMID: 34239761 PMCID: PMC8226412 DOI: 10.5222/mmj.2021.32549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/04/2021] [Indexed: 11/28/2022] Open
Abstract
Objective Spontaneous abortion is the most common complication of early pregnancy, affecting up to 20% of recognized pregnancies. Kisspeptin is predominantly released by placental syncytiotrophoblasts, and regulates their placental invasion into the uterine matrices. We aimed to establish an association of serum kisspeptin levels with pregnancy outcomes during the early gestational stage of the first trimester. Method In this prospective study, 90 pregnant women in their 7 to 8 6/7 gestational weeks were classified into three groups: (i) The control group, consisting of healthy pregnant women (n=30), (ii) the threatened abortion group (n=30), and (iii) the spontaneous abortion group (n=30). The maternal serum samples were analyzed for complete blood count parameters and kisspeptin levels. Results There was no statistical difference regarding body mass index (BMI) and gestational age (p=0.370). Regarding detailed obstetric notations, including gravida, parity, abortion, and living children, socioeconomic levels, and employment rates, all study groups were comparable (p>0.05, for all). No significant association was found regarding the biochemical parameters of complete blood count, including neutrophil, lymphocyte, and platelet concentrations, as well as neutrophil-to-lymphocyte ratios (NLR) and platelet-to-lymphocyte ratios (PLR) (p>0.05, for all). The median serum kisspeptin levels of the study groups did not differ between the groups (p=0.153). Correlation analysis revealed no significant relationship between serum kisspeptin levels and other study parameters in any study groups (p>0.05, for all) Conclusion We found no statistically significant relationship between serum kisspeptin concentrations and pregnancy outcomes in the early gestational stage of the first trimester, and serum kisspeptin concentrations did not seem to be a reliable marker to distinguish abortion status from viable pregnancy.
Collapse
Affiliation(s)
- Umit Gorkem
- Hitit University, Medical Faculty, Department of Obstetric and Gynecology, Corum, Turkey
| | - Ozgur Kan
- Hitit University Medical Faculty, Departmant of Obstetric and Gynecology, Corum, Turkey
| | | | - Deniz Taskiran
- Hitit University Medical Faculty, Departmant of Obstetric and Gynecology, Corum, Turkey
| | - Hasan Ali Inal
- Konya Training and Research Hospital, Departmant of Obstetric and Gynecology, Konya, Turkey
| |
Collapse
|
31
|
Oviedo-Ojeda MF, Roque-Jiménez JA, Whalin M, Lee-Rangel HA, Relling AE. Effect of supplementation with different fatty acid profile to the dam in early gestation and to the offspring on the finishing diet on offspring growth and hypothalamus mRNA expression in sheep. J Anim Sci 2021; 99:6153448. [PMID: 33640974 DOI: 10.1093/jas/skab064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Supplementation with omega-3 and omega-9 fatty acids (FA) during late gestation regulates offspring development; however, their effect in the first third of gestation is unknown in sheep. The objective of this experiment was to evaluate the effects of the maternal supplementation with an enriched source of monounsaturated FA (MUFA) or an enriched source of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) during the first third of gestation on productive performance on ewes and offspring, and hypothalamic neuropeptides on offspring. Seventy-nine post-weaning lambs, born of sheep supplemented in the first third of gestation with 1.61% Ca salts rich with MUFA or EPA+DHA (dam supplementation, DS), were distributed in a 2×2 factorial arrangement of treatments to finishing diets containing 1.48% of Ca salts of MUFA or EPA+DHA (lamb supplementation, LS). The finishing period of the offspring lasted for 56 d. During the finishing period dry matter intake (DMI, daily) and body weight (BW) were recorded. Plasma was collected for metabolites analysis. Twenty-four lambs were slaughtered, and hypothalamus was collected for mRNA expression of hormone receptors, neuropeptides, and lipid transport genes. The data were analyzed with a mixed model in SAS (9.4) using repeated measurements, when needed. There was a DS×LS interaction for BW (P = 0.10) where LS with EPA+DHA born from DS with MUFA were heavier than the other 3 treatments. Lambs born from DS with MUFA have a greater DMI (P < 0.01) than the offspring born from DS with EPA+DHA. Lambs born from MUFA supplemented dams had a greater (P ≤ 0.05) hypothalamus mRNA expression for cocaine and amphetamine regulated transcript, growth hormone receptor, metastasis suppressor 1, leptin receptor, pro-opiomelanocortin, and Neuropeptide Y. These results indicate that growth depends not on the type of FA during the finishing phase but the interaction of different sources of FA ad different stages. Also, supplementation with FA during early pregnancy changes productive performance and neuropeptides' mRNA expression of lambs independently of the finishing diet.
Collapse
Affiliation(s)
- Mario Francisco Oviedo-Ojeda
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH 44691, USA.,Universidad Autónoma de San Luis Potosí, Facultad de Agronomía y Veterinaria, San Luis Potosí 78175, México
| | - José Alejandro Roque-Jiménez
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH 44691, USA.,Universidad Autónoma de San Luis Potosí, Facultad de Agronomía y Veterinaria, San Luis Potosí 78175, México
| | - Megan Whalin
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH 44691, USA
| | - Héctor Aarón Lee-Rangel
- Universidad Autónoma de San Luis Potosí, Facultad de Agronomía y Veterinaria, San Luis Potosí 78175, México
| | - Alejandro Enrique Relling
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH 44691, USA
| |
Collapse
|
32
|
Akkaya H. Kisspeptin-10 Administration Regulates
mTOR and AKT Activities and Oxidative Stress in Mouse Cardiac Tissue. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021020095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Torres E, Velasco I, Franssen D, Heras V, Gaytan F, Leon S, Navarro VM, Pineda R, Candenas ML, Romero-Ruiz A, Tena-Sempere M. Congenital ablation of Tacr2 reveals overlapping and redundant roles of NK2R signaling in the control of reproductive axis. Am J Physiol Endocrinol Metab 2021; 320:E496-E511. [PMID: 33427049 PMCID: PMC8828271 DOI: 10.1152/ajpendo.00346.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tachykinin (TAC) signaling is an important element in the central control of reproduction. TAC family is mainly composed of substance P (SP), neurokinin A (NKA), and NKB, which bind preferentially to NK1, NK2, and NK3 receptors, respectively. While most studies have focused on the reproductive functions of NKB/NK3R, and to a lesser extent SP/NK1R, the relevance of NK2R, encoded by Tacr2, remains poorly characterized. Here, we address the physiological roles of NK2R in regulating the reproductive axis by characterizing a novel mouse line with congenital ablation of Tacr2. Activation of NK2R evoked acute luteinizing hormone (LH) responses in control mice, similar to those of agonists of NK1R and NK3R. Despite the absence of NK2R, Tacr2-/- mice displayed only partially reduced LH responses to an NK2R agonist, which, nonetheless, were abrogated after blockade of NK3R in Tacr2-/- males. While Tacr2-/- mice displayed normal pubertal timing, LH pulsatility was partially altered in Tacr2-/- females in adulthood, with suppression of basal LH levels, but no changes in the number of LH pulses. In addition, trends for increase in breeding intervals were detected in Tacr2-/- mice. However, null animals of both sexes were fertile, with no changes in estrous cyclicity or sex preference in social behavioral tests. In conclusion, stimulation of NK2R elicited LH responses in mice, while congenital ablation of Tacr2 partially suppressed basal and stimulated LH secretion, with moderate reproductive impact. Our data support a modest, albeit detectable, role of NK2R in the control of the gonadotropic axis, with partially overlapping and redundant functions with other tachykinin receptors.NEW & NOTEWORTHY We have explored here the impact of congenital ablation of the gene (Tacr2) encoding the tachykinin receptor, NK2R, in terms of neuroendocrine control of the reproductive axis, using a novel Tacr2 KO mouse line. Our data support a modest, albeit detectable, role of NK2R in the control of the gonadotropic axis, with partially overlapping and redundant functions with other tachykinin receptors.
Collapse
Affiliation(s)
- Encarnacion Torres
- Department of Cell Biology, Physiology and Immunology, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| | - Inmaculada Velasco
- Department of Cell Biology, Physiology and Immunology, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| | - Delphine Franssen
- Department of Cell Biology, Physiology and Immunology, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| | - Violeta Heras
- Department of Cell Biology, Physiology and Immunology, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| | - Francisco Gaytan
- Department of Cell Biology, Physiology and Immunology, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| | - Silvia Leon
- Department of Cell Biology, Physiology and Immunology, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
- Division of Endocrinology, Department of Medicine, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Victor M Navarro
- Division of Endocrinology, Department of Medicine, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rafael Pineda
- Department of Cell Biology, Physiology and Immunology, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| | - M Luz Candenas
- Instituto de Investigaciones Químicas, CSIC, Seville, Spain
| | - Antonio Romero-Ruiz
- Department of Cell Biology, Physiology and Immunology, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| | - Manuel Tena-Sempere
- Department of Cell Biology, Physiology and Immunology, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| |
Collapse
|
34
|
Atabey M, Aykota MR, Özel Mİ, Arslan G. Short-term changes and correlations of plasma spexin, kisspeptin, and galanin levels after laparoscopic sleeve gastrectomy. Surg Today 2021; 51:651-658. [PMID: 33555434 DOI: 10.1007/s00595-021-02240-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/08/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE To determine the circulating levels of spexin, kisspeptin, galanin, and the correlations between these peptides after laparoscopic sleeve gastrectomy (LSG). METHODS The plasma levels of the spexin, kisspeptin, and galanin and metabolic parameters (body mass index, weight loss, % excess weight loss, body fat, fasting glucose, HbA1C, and cholesterol levels) were measured (baseline, 1 month, and 3 months) and correlated in thirty adult individuals with obesity (22 female and 8 male) after LSG. RESULTS The body mass index (BMI), body fat, fasting glucose, total and low-density lipoprotein cholesterol decreased, while high-density lipoprotein cholesterol and % EWL (excess weight loss) increased at 3 months after surgery. The plasma spexin levels increased at 3 months, kisspeptin levels increased at 1 month and stabilized afterward, and galanin levels decreased at 3 months after LSG. Significant correlations were found between metabolic parameters with spexin, kisspeptin, and galanin. In addition, spexin and kisspeptin were negatively correlated with galanin, while spexin was positively correlated with kisspeptin. CONCLUSIONS The biochemical data reveal evidence that LSG causes an increase in the levels of spexin, and kisspeptin and a decrease in galanin levels. Our findings, therefore, suggest a possible interaction between these novel peptides, which have potential roles in obesity and glucose metabolism.
Collapse
Affiliation(s)
- Mustafa Atabey
- Department of General Surgery, Faculty of Medicine, University of Biruni, Istanbul, Turkey.
| | - Muhammed Raşid Aykota
- Department of General Surgery, Faculty of Medicine, University of Pamukkale, Denizli, Turkey
| | - Mehmet İlker Özel
- Department of General Surgery, Şarkışla Public Hospital, Sivas, Turkey
| | - Gökhan Arslan
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayis, Samsun, Turkey
| |
Collapse
|
35
|
Heydari H, Ghiasi R, Ghaderpour S, Keyhanmanesh R. The Mechanisms Involved in Obesity-Induced Male Infertility. Curr Diabetes Rev 2021; 17:259-267. [PMID: 32814535 DOI: 10.2174/1573399816666200819114032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/20/2020] [Accepted: 07/29/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Obesity resulted by imbalance between the intake of energy and energy consumption can lead to growth and metabolic disease development in people. Both in obese men and animal models, several studies indicate that obesity leads to male infertility. OBJECTIVE This review has discussed some mechanisms involved in obesity-induced male infertility. METHODS Online documents were searched through Science Direct, Pubmed, Scopus, and Google Scholar websites dating from 1959 to recognize studies on obesity, kisspeptin, leptin, and infertility. RESULTS Obesity induced elevated inflammatory cytokines and oxidative stress can affect male reproductive functions, including spermatogenesis disorders, reduced male fertility power and hormones involved in the hypothalamus-pituitary-gonadal axis. CONCLUSION There is significant evidence that obesity resulted in male infertility. Obesity has a negative effect on male reproductive function via several mechanisms such as inflammation and oxidative stress.
Collapse
Affiliation(s)
- Hamed Heydari
- Department of Physiology, Tabriz Faculty of Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rafighe Ghiasi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saber Ghaderpour
- Department of Physiology, Tabriz Faculty of Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Keyhanmanesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
36
|
Qin L, Sitticharoon C, Petyim S, Keadkraichaiwat I, Sririwichitchai R, Maikeaw P, Churintaraphan M, Sripong C. Roles of kisspeptin in IVF/ICSI-treated infertile women and in human granulosa cells. Exp Biol Med (Maywood) 2020; 246:996-1010. [PMID: 33327782 DOI: 10.1177/1535370220981006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Kisspeptin, a crucial central regulator of reproduction, has been used as a trigger in in vitro fertilization (IVF) treatment. This study aimed to investigate the roles of kisspeptin in IVF treatment in infertile females (n = 30); and in steroidogenesis in human granulosa-like tumor cell line (KGN). In the human study, blood was collected at three time points including (1) the beginning of gonadotropin stimulation (Phase I), (2) around eight days after gonadotropin stimulation (Phase II), and (3) on the day of ovum pick-up (Phase III). Follicular fluid (FF) was collected at Phase III. Serum human chorionic gonadotropin (hCG) was measured 15 days after embryo transfer and fetal heart beats were determined around 42 days of menstrual cycle to classify the subjects into successful and unsuccessful groups. FF kisspeptin levels were higher in successful compared with unsuccessful subjects (P < 0.01). Kisspeptin levels were significantly higher in FF than in serum in successful subjects (P < 0.05) but were comparable in unsuccessful subjects. Serum kisspeptin was comparable among three phases in the successful group but its levels in Phase III were significantly lower compared with Phase I in the unsuccessful group (P < 0.01). Serum kisspeptin in Phase II/III had positive correlations with serum E2 in Phases II and III and the outcomes of IVF/intracytoplasmic sperm injection (ICSI) treatment including serum hCG levels. For the cell experiment (n = 3), kisspeptin treatment in the presence of FSH together with IGF-1 enhanced CYP19A1 (aromatase) mRNA expression compared with control. FSH alone increased aromatase concentrations in the supernatant compared with control and kisspeptin at the dose of 10-2 mmol/L with FSH enhanced aromatase concentrations in the supernatant compared with FSH alone (P < 0.001 all). In conclusion, kisspeptin enhanced aromatase expression and secretion and was associated with positive outcomes of IVF/ICSI treatment. Further studies regarding supplementation of kisspeptin could reveal its beneficial effects on IVF/ICSI treatment.
Collapse
Affiliation(s)
- Lixian Qin
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chantacha Sitticharoon
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Somsin Petyim
- Department of Obstetrics and Gynecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Issarawan Keadkraichaiwat
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Rungnapa Sririwichitchai
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pailin Maikeaw
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Malika Churintaraphan
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chanakarn Sripong
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
37
|
D’Occhio MJ, Campanile G, Baruselli PS. Peripheral action of kisspeptin at reproductive tissues-role in ovarian function and embryo implantation and relevance to assisted reproductive technology in livestock: a review. Biol Reprod 2020; 103:1157-1170. [PMID: 32776148 PMCID: PMC7711897 DOI: 10.1093/biolre/ioaa135] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/23/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
Kisspeptin (KISS1) is encoded by the KISS1 gene and was initially found to be a repressor of metastasis. Natural mutations in the KISS1 receptor gene (KISS1R) were subsequently shown to be associated with idiopathic hypothalamic hypogonadism and impaired puberty. This led to interest in the role of KISS1 in reproduction. It was established that KISS1 had a fundamental role in the control of gonadotropin releasing hormone (GnRH) secretion. KISS1 neurons have receptors for leptin and estrogen receptor α (ERα), which places KISS1 at the gateway of metabolic (leptin) and gonadal (ERα) regulation of GnRH secretion. More recently, KISS1 has been shown to act at peripheral reproductive tissues. KISS1 and KISS1R genes are expressed in follicles (granulosa, theca, oocyte), trophoblast, and uterus. KISS1 and KISS1R proteins are found in the same tissues. KISS1 appears to have autocrine and paracrine actions in follicle and oocyte maturation, trophoblast development, and implantation and placentation. In some studies, KISS1 was beneficial to in vitro oocyte maturation and blastocyst development. The next phase of KISS1 research will explore potential benefits on embryo survival and pregnancy. This will likely involve longer-term KISS1 treatments during proestrus, early embryo development, trophoblast attachment, and implantation and pregnancy. A deeper understanding of the direct action of KISS1 at reproductive tissues could help to achieve the next step change in embryo survival and improvement in the efficiency of assisted reproductive technology.
Collapse
Affiliation(s)
- Michael J D’Occhio
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Pietro S Baruselli
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
38
|
Patel R, Smith JT. Novel actions of kisspeptin signaling outside of GnRH-mediated fertility: a potential role in energy balance. Domest Anim Endocrinol 2020; 73:106467. [PMID: 32278499 DOI: 10.1016/j.domaniend.2020.106467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 01/08/2023]
Abstract
Kisspeptin, encoded by Kiss1 gene expressing neurons in the hypothalamus, is a requisite for fertility and now appears critical in the regulation of energy balance. Kisspeptin neurons, particularly those in the arcuate nucleus (ARC), receive information directly and indirectly from a diverse array of brain regions including the bed nucleus of the stria terminalis, amygdala, interpeduncular nucleus, hippocampus, and cortex. On the other hand, kisspeptin neuron projections clearly extend to GnRH neuron cell bodies in rodents, sheep, and primates and beyond to other-non-GnRH-brain areas. Kiss1r, the kisspeptin receptor, is expressed on GnRH neurons and also in additional brain areas and peripheral tissues, indicating a nonreproductive role. Kisspeptin neurons clearly receive signals pertinent to deviations in energy balance but are now recognized as a novel neuroendocrine player in the fine balance of energy intake and expenditure. Mice that have a dysfunctional gene for Kiss1r develop an obese and diabetic phenotype. The mechanism behind this altered metabolic state is still mostly unknown; however, Kiss1r expression in the pancreas and brown adipose tissue is clearly functional and required for normal glucose tolerance and energy expenditure, respectively. Kisspeptin neurons in the ARC also participate in the generation of circadian rhythms, specifically those concerning food intake and metabolism, offering a potential explanation for the obesity in Kiss1r knockout mice. Overall, the discoveries of new mechanistic roles for kisspeptin in both normal and pathophysiologic states of energy balance may lead to further understating of obesity prevalence and novel therapeutic targets and interventions.
Collapse
Affiliation(s)
- R Patel
- School of Human Sciences, M309, The University of Western Australia, 35 Stirling Highway Crawley, Perth, Western Australia, Australia 6009
| | - J T Smith
- School of Human Sciences, M309, The University of Western Australia, 35 Stirling Highway Crawley, Perth, Western Australia, Australia 6009.
| |
Collapse
|
39
|
|
40
|
Romero-Ruiz A, Skorupskaite K, Gaytan F, Torres E, Perdices-Lopez C, Mannaerts BM, Qi S, Leon S, Manfredi-Lozano M, Lopez-Rodriguez C, Avendaño MS, Sanchez-Garrido MA, Vazquez MJ, Pinilla L, van Duin M, Kohout TA, Anderson RA, Tena-Sempere M. Kisspeptin treatment induces gonadotropic responses and rescues ovulation in a subset of preclinical models and women with polycystic ovary syndrome. Hum Reprod 2020; 34:2495-2512. [PMID: 31820802 PMCID: PMC6936723 DOI: 10.1093/humrep/dez205] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/25/2019] [Indexed: 12/14/2022] Open
Abstract
STUDY QUESTION Can kisspeptin treatment induce gonadotrophin responses and ovulation in preclinical models and anovulatory women with polycystic ovary syndrome (PCOS)? SUMMARY ANSWER Kisspeptin administration in some anovulatory preclinical models and women with PCOS can stimulate reproductive hormone secretion and ovulation, albeit with incomplete efficacy. WHAT IS KNOWN ALREADY PCOS is a prevalent, heterogeneous endocrine disorder, characterized by ovulatory dysfunction, hyperandrogenism and deregulated gonadotrophin secretion, in need of improved therapeutic options. Kisspeptins (encoded by Kiss1) are master regulators of the reproductive axis, acting mainly at GnRH neurons, with kisspeptins being an essential drive for gonadotrophin-driven ovarian follicular maturation and ovulation. Altered Kiss1 expression has been found in rodent models of PCOS, although the eventual pathophysiological role of kisspeptins in PCOS remains unknown. STUDY DESIGN, SIZE, DURATION Gonadotrophin and ovarian/ovulatory responses to kisspeptin-54 (KP-54) were evaluated in three preclinical models of PCOS, generated by androgen exposures at different developmental windows, and a pilot exploratory cohort of anovulatory women with PCOS. PARTICIPANTS/MATERIALS, SETTING, METHODS Three models of PCOS were generated by exposure of female rats to androgens at different periods of development: PNA (prenatal androgenization; N = 20), NeNA (neonatal androgenization; N = 20) and PWA (post-weaning androgenization; N = 20). At adulthood (postnatal day 100), rats were subjected to daily treatments with a bolus of KP-54 (100 μg/kg, s.c.) or vehicle for 11 days (N = 10 per model and treatment). On Days 1, 4, 7 and 11, LH and FSH responses were assessed at different time-points within 4 h after KP-54 injection, while ovarian responses, in terms of follicular maturation and ovulation, were measured at the end of the treatment. In addition, hormonal (gonadotrophin, estrogen and inhibin B) and ovulatory responses to repeated KP-54 administration, at doses of 6.4-12.8 nmol/kg, s.c. bd for 21 days, were evaluated in a pilot cohort of anovulatory women (N = 12) diagnosed with PCOS, according to the Rotterdam criteria. MAIN RESULTS AND THE ROLE OF CHANCE Deregulated reproductive indices were detected in all PCOS models: PNA, NeNA and PWA. Yet, anovulation was observed only in NeNA and PWA rats. However, while anovulatory NeNA rats displayed significant LH and FSH responses to KP-54 (P < 0.05), which rescued ovulation, PWA rats showed blunted LH secretion after repeated KP-54 injection and failed to ovulate. In women with PCOS, KP-54 resulted in a small rise in LH (P < 0.05), with an equivalent elevation in serum estradiol levels (P < 0.05). Two women showed growth of a dominant follicle with subsequent ovulation, one woman displayed follicle growth but not ovulation and desensitization was observed in another patient. No follicular response was detected in the other women. LIMITATIONS, REASONS FOR CAUTION While three different preclinical PCOS models were used in order to capture the heterogeneity of clinical presentations of the syndrome, it must be noted that rat models recapitulate many but not all the features of this condition. Additionally, our pilot study was intended as proof of principle, and the number of participants is low, but the convergent findings in preclinical and clinical studies reinforce the validity of our conclusions. WIDER IMPLICATIONS OF THE FINDINGS Our first-in-rodent and -human studies demonstrate that KP-54 administration in anovulatory preclinical models and women with PCOS can stimulate reproductive hormone secretion and ovulation, albeit with incomplete efficacy. As our rat models likely reflect the diversity of PCOS phenotypes, our results argue for the need of personalized management of anovulatory dysfunction in women with PCOS, some of whom may benefit from kisspeptin-based treatments. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by research agreements between Ferring Research Institute and the Universities of Cordoba and Edinburgh. K.S. was supported by the Wellcome Trust Scottish Translational Medicine and Therapeutics Initiative (STMTI). Some of this work was undertaken in the MRC Centre for Reproductive Health which is funded by the MRC Centre grant MR/N022556/1. M.T.-S. is a member of CIBER Fisiopatología de la Obesidad y Nutrición, which is an initiative of Instituto de Salud Carlos III. Dr Mannaerts is an employee of Ferring International PharmaScience Center (Copenhagen, Denmark), and Drs Qi, van Duin and Kohout are employees of the Ferring Research Institute (San Diego, USA). Dr Anderson and Dr Tena-Sempere were recipients of a grant support from the Ferring Research Institute, and Dr Anderson has undertaken consultancy work and received speaker fees outside this study from Merck, IBSA, Roche Diagnostics, NeRRe Therapeutics and Sojournix Inc. Dr Skorupskaite was supported by the Wellcome Trust through the Scottish Translational Medicine and Therapeutics Initiative 102419/Z/13/A. The other authors have no competing interest.
Collapse
Affiliation(s)
- A Romero-Ruiz
- Department of Cell Biology, Physiology & Immunology, University of Córdoba, 14004 Córdoba, Spain.,Maimónides Institute of Biomedical Research of Córdoba (IMIBIC)/Reina Sofia University Hospital, 14004 Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - K Skorupskaite
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - F Gaytan
- Department of Cell Biology, Physiology & Immunology, University of Córdoba, 14004 Córdoba, Spain.,Maimónides Institute of Biomedical Research of Córdoba (IMIBIC)/Reina Sofia University Hospital, 14004 Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - E Torres
- Department of Cell Biology, Physiology & Immunology, University of Córdoba, 14004 Córdoba, Spain.,Maimónides Institute of Biomedical Research of Córdoba (IMIBIC)/Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - C Perdices-Lopez
- Department of Cell Biology, Physiology & Immunology, University of Córdoba, 14004 Córdoba, Spain.,Maimónides Institute of Biomedical Research of Córdoba (IMIBIC)/Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - B M Mannaerts
- Ferring International PharmaScience Center, Copenhagen, Denmark
| | - S Qi
- Ferring Research Institute, San Diego, CA 92121, USA
| | - S Leon
- Department of Cell Biology, Physiology & Immunology, University of Córdoba, 14004 Córdoba, Spain.,Maimónides Institute of Biomedical Research of Córdoba (IMIBIC)/Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - M Manfredi-Lozano
- Department of Cell Biology, Physiology & Immunology, University of Córdoba, 14004 Córdoba, Spain.,Maimónides Institute of Biomedical Research of Córdoba (IMIBIC)/Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - C Lopez-Rodriguez
- Department of Cell Biology, Physiology & Immunology, University of Córdoba, 14004 Córdoba, Spain.,Maimónides Institute of Biomedical Research of Córdoba (IMIBIC)/Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - M S Avendaño
- Department of Cell Biology, Physiology & Immunology, University of Córdoba, 14004 Córdoba, Spain.,Maimónides Institute of Biomedical Research of Córdoba (IMIBIC)/Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - M A Sanchez-Garrido
- Department of Cell Biology, Physiology & Immunology, University of Córdoba, 14004 Córdoba, Spain.,Maimónides Institute of Biomedical Research of Córdoba (IMIBIC)/Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - M J Vazquez
- Department of Cell Biology, Physiology & Immunology, University of Córdoba, 14004 Córdoba, Spain.,Maimónides Institute of Biomedical Research of Córdoba (IMIBIC)/Reina Sofia University Hospital, 14004 Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - L Pinilla
- Department of Cell Biology, Physiology & Immunology, University of Córdoba, 14004 Córdoba, Spain.,Maimónides Institute of Biomedical Research of Córdoba (IMIBIC)/Reina Sofia University Hospital, 14004 Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - M van Duin
- Ferring Research Institute, San Diego, CA 92121, USA
| | - T A Kohout
- Ferring Research Institute, San Diego, CA 92121, USA
| | - R A Anderson
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - M Tena-Sempere
- Department of Cell Biology, Physiology & Immunology, University of Córdoba, 14004 Córdoba, Spain.,Maimónides Institute of Biomedical Research of Córdoba (IMIBIC)/Reina Sofia University Hospital, 14004 Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain.,FiDiPro Program, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland
| |
Collapse
|
41
|
Abstract
The significance of KISS1 goes beyond its original discovery as a metastasis suppressor. Its function as a neuropeptide involved in diverse physiologic processes is more well studied. Enthusiasm regarding KISS1 has cumulated in clinical trials in multiple fields related to reproduction and metabolism. But its cancer therapeutic space is unsettled. This review focuses on collating data from cancer and non-cancer fields in order to understand shared and disparate signaling that might inform clinical development in the cancer therapeutic and biomarker space. Research has focused on amino acid residues 68-121 (kisspeptin 54), binding to the KISS1 receptor and cellular responses. Evidence and counterevidence regarding this canonical pathway require closer look at the covariates so that the incredible potential of KISS1 can be realized.
Collapse
Affiliation(s)
- Thuc Ly
- Department of Cancer Biology, Kansas University Medical Center, 3901 Rainbow Blvd. - MS1071, Kansas City, KS, 66160, USA
| | - Sitaram Harihar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Danny R Welch
- Department of Cancer Biology, Kansas University Medical Center, 3901 Rainbow Blvd. - MS1071, Kansas City, KS, 66160, USA.
- University of Kansas Cancer Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA.
| |
Collapse
|
42
|
Dong TS, Vu JP, Oh S, Sanford D, Pisegna JR, Germano P. Intraperitoneal Treatment of Kisspeptin Suppresses Appetite and Energy Expenditure and Alters Gastrointestinal Hormones in Mice. Dig Dis Sci 2020; 65:2254-2263. [PMID: 31729619 DOI: 10.1007/s10620-019-05950-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Kisspeptin is a neuropeptide that plays an integral role in the regulation of energy intake and reproduction by acting centrally on the hypothalamus-pituitary-gonadal axis. Our current study explores for the first time the effects of a pharmacological treatment of intraperitoneal kisspeptin-10 on murine feeding behavior, respirometry parameters, energy balance, and metabolic hormones. METHODS Two groups (n = 16) of age- and sex-matched C57BL/6 wild-type adult mice were individually housed in metabolic cages and intraperitoneally injected with either kisspeptin-10 (2 nmol in 200 µl of saline) (10 µM) or vehicle before the beginning of a dark-phase cycle. Microstructure of feeding and drinking behavior, respirometry gases, respiratory quotient (RQ), total energy expenditure (TEE), metabolic hormones, oral glucose tolerance, and lipid profiles were measured. RESULTS Intraperitoneal treatment with kisspeptin-10 caused a significant reduction in food intake, meal frequency, meal size, and eating rate. Kisspeptin-10 significantly decreased TEE during both the dark and light phase cycles, while also increasing the RQ during the dark-phase cycle. In addition, mice injected with kisspeptin-10 had significantly higher plasma levels of insulin (343.8 pg/ml vs. 106.4 pg/ml; p = 0.005), leptin (855.5 pg/ml vs. 173.1 pg/ml; p = 0.02), resistin (9411.1 pg/ml vs. 4116.5 pg/ml; p = 0.001), and HDL (147.6 mg/dl vs 97.1 mg/dl; p = 0.04). CONCLUSION A pharmacological dose of kisspeptin-10 significantly altered metabolism by suppressing food intake, meal size, eating rate, and TEE while increasing the RQ. These changes were linked to increased levels of insulin, leptin, resistin, and HDL. The current results suggest that a peripheral kisspeptin treatment could alter metabolism and energy homeostasis by suppressing appetite, food intake, and fat accumulation.
Collapse
Affiliation(s)
- Tien S Dong
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | - John P Vu
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Department of Medicine and Human Genetics, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- AbbVie, Sunnyvale, CA, USA
| | - Suwan Oh
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Department of Medicine and Human Genetics, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Daniel Sanford
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Department of Medicine and Human Genetics, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Joseph R Pisegna
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Department of Medicine and Human Genetics, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Patrizia Germano
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- CURE/Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles, CA, USA
- Division of Pulmonary and Critical Care, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
43
|
Dugershaw BB, Aengenheister L, Hansen SSK, Hougaard KS, Buerki-Thurnherr T. Recent insights on indirect mechanisms in developmental toxicity of nanomaterials. Part Fibre Toxicol 2020; 17:31. [PMID: 32653006 PMCID: PMC7353685 DOI: 10.1186/s12989-020-00359-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/14/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Epidemiological and animal studies provide compelling indications that environmental and engineered nanomaterials (NMs) pose a risk for pregnancy, fetal development and offspring health later in life. Understanding the origin and mechanisms underlying NM-induced developmental toxicity will be a cornerstone in the protection of sensitive populations and the design of safe and sustainable nanotechnology applications. MAIN BODY Direct toxicity originating from NMs crossing the placental barrier is frequently assumed to be the key pathway in developmental toxicity. However, placental transfer of particles is often highly limited, and evidence is growing that NMs can also indirectly interfere with fetal development. Here, we outline current knowledge on potential indirect mechanisms in developmental toxicity of NMs. SHORT CONCLUSION Until now, research on developmental toxicity has mainly focused on the biodistribution and placental translocation of NMs to the fetus to delineate underlying processes. Systematic research addressing NM impact on maternal and placental tissues as potential contributors to mechanistic pathways in developmental toxicity is only slowly gathering momentum. So far, maternal and placental oxidative stress and inflammation, activation of placental toll-like receptors (TLRs), impairment of placental growth and secretion of placental hormones, and vascular factors have been suggested to mediate indirect developmental toxicity of NMs. Therefore, NM effects on maternal and placental tissue function ought to be comprehensively evaluated in addition to placental transfer in the design of future studies of developmental toxicity and risk assessment of NM exposure during pregnancy.
Collapse
Affiliation(s)
- Battuja Batbajar Dugershaw
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Empa, Lerchenfeldstrasse 5, 9014, St.Gallen, Switzerland
| | - Leonie Aengenheister
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Empa, Lerchenfeldstrasse 5, 9014, St.Gallen, Switzerland
| | - Signe Schmidt Kjølner Hansen
- National Research Centre for the Working Environment, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Karin Sørig Hougaard
- National Research Centre for the Working Environment, Copenhagen, Denmark.,Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Tina Buerki-Thurnherr
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Empa, Lerchenfeldstrasse 5, 9014, St.Gallen, Switzerland.
| |
Collapse
|
44
|
Arnone MI, Oliveri P. Unravelling the evolutionary history of kisspeptin. eLife 2020; 9:58599. [PMID: 32538354 PMCID: PMC7295571 DOI: 10.7554/elife.58599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 11/22/2022] Open
Abstract
Experiments in sea cucumbers reveal how the physiological responses regulated by a neuropeptide called kisspeptin have evolved.
Collapse
Affiliation(s)
- Maria I Arnone
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Paola Oliveri
- Centre for Life's Origins and Evolution, University College London, London, United Kingdom.,Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
45
|
Watanabe T, Sato K. Roles of the kisspeptin/GPR54 system in pathomechanisms of atherosclerosis. Nutr Metab Cardiovasc Dis 2020; 30:889-895. [PMID: 32409274 DOI: 10.1016/j.numecd.2020.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/11/2019] [Accepted: 02/28/2020] [Indexed: 12/11/2022]
Abstract
AIMS Kisspeptin-10 (KP-10), a potent vasoconstrictor and inhibitor of angiogenesis, and its receptor, GPR54, have currently received much attention with respect to atherosclerosis, since both KP-10 and GPR54 are expressed at high levels in atheromatous plaques and restenotic lesions after wire-injury. The present review introduces the emerging roles of the KP-10/GPR54 system in atherosclerosis. DATA SYNTHESIS KP-10 suppresses migration and proliferation of human umbilical vein endothelial cells (HUVECs), and induces senescence in HUVECs. KP-10 increases adhesion of human monocytes to HUVECs. KP-10 also stimulates expression of interleukin-6, tumor necrosis factor-α, monocyte chemotactic protein-1, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin genes in HUVECs. KP-10 enhances oxidized low-density lipoprotein-induced foam cell formation associated with upregulation of CD36 and acyl-coenzyme A: cholesterol acyltransferase-1 in human monocyte-derived macrophages. In human aortic smooth muscle cells, KP-10 suppresses angiotensin II-induced migration and proliferation, however, it enhances apoptosis and activities of matrix metalloproteinase (MMP)-2 and MMP-9 by upregulation of extracellular signal-regulated kinase 1/2, p38, Bax, and caspase-3. Four-week-infusion of KP-10 into Apoe-/- mice accelerates development of aortic atherosclerotic lesions with increased monocyte/macrophage infiltration and vascular inflammation, also, it decreases intraplaque vascular smooth muscle cell content. Proatherosclerotic effects of endogenous and exogenous KP-10 were completely attenuated upon infusion of P234, a GPR54 antagonist, in Apoe-/- mice. CONCLUSION These findings suggest that KP-10 may contribute to acceleration of progression and to the instability of atheromatous plaques, leading to rupture of plaques. This GPR54 antagonist may be useful for the prevention and treatment of atherosclerosis. Thus, the KP-10/GPR54 system may serve as a novel therapeutic target for atherosclerotic diseases.
Collapse
Affiliation(s)
- Takuya Watanabe
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan; Department of Internal Medicine, Ushioda General Hospital/Clinic, Yokohama, Japan.
| | - Kengo Sato
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan; Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|
46
|
Leisegang K, Sengupta P, Agarwal A, Henkel R. Obesity and male infertility: Mechanisms and management. Andrologia 2020; 53:e13617. [PMID: 32399992 DOI: 10.1111/and.13617] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity is considered a global health problem affecting more than a third of the population. Complications of obesity include cardiovascular diseases, type 2 diabetes mellitus, malignancy (including prostatic cancer), neurodegeneration and accelerated ageing. In males, these further include erectile dysfunction, poor semen quality and subclinical prostatitis. Although poorly understood, important mediators of obesity that may influence the male reproductive system include hyperinsulinemia, hyperleptinemia, chronic inflammation and oxidative stress. Obesity is known to disrupt male fertility and the reproduction potential, particularly through alteration in the hypothalamic-pituitary-gonadal axis, disruption of testicular steroidogenesis and metabolic dysregulation, including insulin, cytokines and adipokines. Importantly, obesity and its underlying mediators result in a negative impact on semen parameters, including sperm concentration, motility, viability and normal morphology. Moreover, obesity inhibits chromatin condensation, DNA fragmentation, increases apoptosis and epigenetic changes that can be transferred to the offspring. This review discusses the impact of obesity on the male reproductive system and fertility, including associated mechanisms. Furthermore, weight management strategies, lifestyle changes, prescription medication, and complementary and alternative medicine in the management of obesity-induced subfertility is discussed.
Collapse
Affiliation(s)
- Kristian Leisegang
- School of Natural Medicine, University of the Western Cape, Cape Town, South Africa
| | - Pallav Sengupta
- Department of Physiology, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Selangor, Malaysia
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ralf Henkel
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.,Department of Medical Bioscience, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
47
|
Stoker C, Andreoli MF, Kass L, Bosquiazzo VL, Rossetti MF, Canesini G, Luque EH, Ramos JG. Perinatal exposure to bisphenol A (BPA) impairs neuroendocrine mechanisms regulating food intake and kisspetin system in adult male rats. Evidences of metabolic disruptor hypothesis. Mol Cell Endocrinol 2020; 499:110614. [PMID: 31606416 DOI: 10.1016/j.mce.2019.110614] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/27/2019] [Accepted: 10/07/2019] [Indexed: 12/31/2022]
Abstract
Bisphenol A (BPA) is a compound used in the polymerization of plastic polycarbonates. It is an endocrine disruptor and it has been postulated to be an obesogen. Our objective was to determine the influence of perinatal exposure to BPA on body weight, hormone levels, metabolic parameters and hypothalamic signals that regulate food intake and kisspeptin system in adult male rats. Male rats were exposed to 50 μg/kg/day of BPA or vehicle from day 9 of gestation to weaning in the drinking water. Since weaning, they were fed with control or high fat diet for 20 weeks. Perinatal exposure to BPA impaired glucose homeostasis, induced obesity and increased food intake in adult male rats altering hypothalamic signals, partially mimicking and/or producing an exacerbation of the effects of feeding fat diet. We also observed an increase in kisspeptin expression by BPA exposure. Evidences shown in this work support the metabolic disruptor hypothesis for BPA.
Collapse
Affiliation(s)
- Cora Stoker
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina.
| | - M Florencia Andreoli
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina.
| | - Laura Kass
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina.
| | - Verónica L Bosquiazzo
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina.
| | - M Florencia Rossetti
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina.
| | - G Canesini
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina.
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina.
| | - Jorge G Ramos
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina.
| |
Collapse
|
48
|
Boutari C, Bouzoni E, Joshi A, Stefanakis K, Farr OM, Mantzoros CS. Metabolism updates: new directions, techniques, and exciting research that is broadening the horizons. Metabolism 2020; 102:154009. [PMID: 31715175 DOI: 10.1016/j.metabol.2019.154009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Chrysoula Boutari
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Eirini Bouzoni
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Aditya Joshi
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Konstantinos Stefanakis
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Olivia M Farr
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA 02130, USA.
| |
Collapse
|
49
|
Huang C, Wang HY, Wang ME, Hsu MC, Wu YHS, Jiang YF, Wu LS, Jong DS, Chiu CH. Kisspeptin-Activated Autophagy Independently Suppresses Non-Glucose-Stimulated Insulin Secretion from Pancreatic β-Cells. Sci Rep 2019; 9:17451. [PMID: 31767891 PMCID: PMC6877614 DOI: 10.1038/s41598-019-53826-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/01/2019] [Indexed: 01/08/2023] Open
Abstract
Previous studies have demonstrated the important role of kisspeptin in impaired glucose-stimulated insulin secretion (GSIS). In addition, it was reported that the activation of autophagy in pancreatic β-cells decreases insulin secretion by selectively degrading insulin granules. However, it is currently unknown whether kisspeptin suppresses GSIS in β-cells by activating autophagy. To investigate the involvement of autophagy in kisspeptin-regulated insulin secretion, we overexpressed Kiss1 in NIT-1 cells to mimic the long-term exposure of pancreatic β-cells to kisspeptin during type 2 diabetes (T2D). Interestingly, our data showed that although kisspeptin potently decreases the intracellular proinsulin and insulin ((pro)insulin) content and insulin secretion of NIT-1 cells, autophagy inhibition using bafilomycin A1 and Atg5 siRNAs only rescues basal insulin secretion, not kisspeptin-impaired GSIS. We also generated a novel in vivo model to investigate the long-term exposure of kisspeptin by osmotic pump. The in vivo data demonstrated that kisspeptin lowers GSIS and (pro)insulin levels and also activated pancreatic autophagy in mice. Collectively, our data demonstrated that kisspeptin suppresses both GSIS and non-glucose-stimulated insulin secretion of pancreatic β-cells, but only non-glucose-stimulated insulin secretion depends on activated autophagic degradation of (pro)insulin. Our study provides novel insights for the development of impaired insulin secretion during T2D progression.
Collapse
Affiliation(s)
- Chien Huang
- Laboratory of Animal Physiology, Department of Animal Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Hao-Yi Wang
- Laboratory of Animal Physiology, Department of Animal Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Mu-En Wang
- Laboratory of Animal Physiology, Department of Animal Science and Technology, National Taiwan University, Taipei, 10617, Taiwan.,Department of Pathology, Duke University School of Medicine, Duke Cancer Institute, Duke University, Durham, NC, 27514, USA
| | - Meng-Chieh Hsu
- Laboratory of Animal Physiology, Department of Animal Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Hsieng Samuel Wu
- Laboratory of Animal Physiology, Department of Animal Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Fan Jiang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Leang-Shin Wu
- Laboratory of Animal Physiology, Department of Animal Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - De-Shien Jong
- Laboratory of Animal Physiology, Department of Animal Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Chih-Hsien Chiu
- Laboratory of Animal Physiology, Department of Animal Science and Technology, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
50
|
Dufour S, Quérat B, Tostivint H, Pasqualini C, Vaudry H, Rousseau K. Origin and Evolution of the Neuroendocrine Control of Reproduction in Vertebrates, With Special Focus on Genome and Gene Duplications. Physiol Rev 2019; 100:869-943. [PMID: 31625459 DOI: 10.1152/physrev.00009.2019] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In humans, as in the other mammals, the neuroendocrine control of reproduction is ensured by the brain-pituitary gonadotropic axis. Multiple internal and environmental cues are integrated via brain neuronal networks, ultimately leading to the modulation of the activity of gonadotropin-releasing hormone (GnRH) neurons. The decapeptide GnRH is released into the hypothalamic-hypophysial portal blood system and stimulates the production of pituitary glycoprotein hormones, the two gonadotropins luteinizing hormone and follicle-stimulating hormone. A novel actor, the neuropeptide kisspeptin, acting upstream of GnRH, has attracted increasing attention in recent years. Other neuropeptides, such as gonadotropin-inhibiting hormone/RF-amide related peptide, and other members of the RF-amide peptide superfamily, as well as various nonpeptidic neuromediators such as dopamine and serotonin also provide a large panel of stimulatory or inhibitory regulators. This paper addresses the origin and evolution of the vertebrate gonadotropic axis. Brain-pituitary neuroendocrine axes are typical of vertebrates, the pituitary gland, mediator and amplifier of brain control on peripheral organs, being a vertebrate innovation. The paper reviews, from molecular and functional perspectives, the evolution across vertebrate radiation of some key actors of the vertebrate neuroendocrine control of reproduction and traces back their origin along the vertebrate lineage and in other metazoa before the emergence of vertebrates. A focus is given on how gene duplications, resulting from either local events or from whole genome duplication events, and followed by paralogous gene loss or conservation, might have shaped the evolutionary scenarios of current families of key actors of the gonadotropic axis.
Collapse
Affiliation(s)
- Sylvie Dufour
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Bruno Quérat
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hervé Tostivint
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Catherine Pasqualini
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hubert Vaudry
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Karine Rousseau
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| |
Collapse
|