1
|
Chen Q, Gao Y, Li F, Yuan L. The role of gut-islet axis in pancreatic islet function and glucose homeostasis. Diabetes Obes Metab 2025; 27:1676-1692. [PMID: 39916498 PMCID: PMC11885102 DOI: 10.1111/dom.16225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 03/08/2025]
Abstract
The gastrointestinal tract plays a vital role in the occurrence and treatment of metabolic diseases. Recent studies have convincingly demonstrated a bidirectional axis of communication between the gut and islets, enabling the gut to influence glucose metabolism and energy homeostasis in animals strongly. The 'gut-islet axis' is an essential endocrine signal axis that regulates islet function through the dialogue between intestinal microecology and endocrine metabolism. The discovery of glucagon-like peptide-1 (GLP-1), gastric inhibitory peptide (GIP) and other gut hormones has initially set up a bridge between gut and islet cells. However, the influence of other factors remains largely unknown, such as the homeostasis of the gut microbiota and the integrity of the gut barrier. Although gut microbiota primarily resides and affect intestinal function, they also affect extra-intestinal organs by absorbing and transferring metabolites derived from microorganisms. As a result of this transfer, islets may be continuously exposed to gut-derived metabolites and components. Changes in the composition of gut microbiota can damage the intestinal barrier function to varying degrees, resulting in increased intestinal permeability to bacteria and their derivatives. All these changes contribute to the severe disturbance of critical metabolic pathways in peripheral tissues and organs. In this review, we have outlined the different gut-islet axis signalling mechanisms associated with metabolism and summarized the latest progress in the complex signalling molecules of the gut and gut microbiota. In addition, we will discuss the impact of the gut renin-angiotensin system (RAS) on the various components of the gut-islet axis that regulate energy and glucose homeostasis. This work also indicates that therapeutic approaches aiming to restore gut microbial homeostasis, such as probiotics and faecal microbiota transplantation (FMT), have shown great potential in improving treatment outcomes, enhancing patient prognosis and slowing down disease progression. Future research should further uncover the molecular links between the gut-islet axis and the gut microbiota and explore individualized microbial treatment strategies, which will provide an innovative perspective and approach for the diagnosis and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Qi Chen
- Department of Endocrinology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuanyuan Gao
- Department of Endocrinology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Fangyu Li
- Department of Endocrinology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Li Yuan
- Department of Endocrinology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
2
|
Cheng H, Liu J, Zhang D, Wu J, Wu J, Zhou Y, Tan Y, Feng W, Peng C. Natural products: Harnessing the power of gut microbiota for neurological health. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156019. [PMID: 39305747 DOI: 10.1016/j.phymed.2024.156019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/19/2024] [Accepted: 09/01/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Neurological diseases are the primary cause of disability and death and impose substantial financial burdens. However, existing treatments only relieve symptoms and may cause many adverse effects. Natural products are a promising source of neurological therapeutic agents due to their excellent neuroprotective effect and safety. The gut microbiota has an essential impact on maintaining brain homeostasis via the gut-brain axis. Multiple investigations show that natural products offer neuroprotective effects by regulating gut microbiota-driven signaling networks. OBJECTIVES This review aims to provide a systematic review of how natural products promote neurological health by harnessing the power of gut microbiota. METHODS The pre-January 1, 2024 literature was gathered from several databases, including Scopus, PubMed, Google Scholar, and Web of Science, utilizing appropriate keywords. The gathered publications underwent a review process and were classified based on their study content, specifically focusing on the impact of natural products on gut microbiota and neurological health. RESULTS Here, we review how natural products promote neurological health by regulating the gut microbiota-brain axis. Specifically, we focus on the following areas. (1) Altering microorganism community structure, including increasing α-diversity and altering β-diversity. (2) Regulating the population of certain bacteria, including enriching beneficial microorganisms Akkermansia and Bifidobacterium, and inhibiting potentially hazardous microorganisms Bilophila, Klebsiella, and Helicobacter. (3) Regulating microbial neuroactive metabolites levels, including short-chain fatty acids, tryptophan and its derivatives, trimethylamine N-oxide, dopa/dopamine, γ-aminobutyric acid, and lipopolysaccharide. Furthermore, we review how natural products promote neurological health by regulating intestinal barrier homeostasis. CONCLUSION Natural products promote neurological health by harnessing the power of gut microbiota. This review will contribute to understanding how natural products promote neurological health by orchestrating the gut microbiota-brain axis.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinlu Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaochuan Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
3
|
Luo XY, Ying SQ, Cao Y, Jin Y, Jin F, Zheng CX, Sui BD. Liver-based inter-organ communication: A disease perspective. Life Sci 2024; 351:122824. [PMID: 38862061 DOI: 10.1016/j.lfs.2024.122824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/13/2024]
Abstract
Inter-organ communication through hormones, cytokines and extracellular vesicles (EVs) has emerged to contribute to the physiological states and pathological processes of the human body. Notably, the liver coordinates multiple tissues and organs to maintain homeostasis and maximize energy utilization, with the underlying mechanisms being unraveled in recent studies. Particularly, liver-derived EVs have been found to play a key role in regulating health and disease. As an endocrine organ, the liver has also been found to perform functions via the secretion of hepatokines. Investigating the multi-organ communication centered on the liver, especially in the manner of EVs and hepatokines, is of great importance to the diagnosis and treatment of liver-related diseases. This review summarizes the crosstalk between the liver and distant organs, including the brain, the bone, the adipose tissue and the intestine in noticeable situations. The discussion of these contents will add to a new dimension of organismal homeostasis and shed light on novel theranostics of pathologies.
Collapse
Affiliation(s)
- Xin-Yan Luo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | - Si-Qi Ying
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yuan Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yan Jin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Fang Jin
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Chen-Xi Zheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
| | - Bing-Dong Sui
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
4
|
Lopes GDCA, Miranda BCR, Lima JOPF, Martins JA, de Sousa AA, Nobre TA, Severo JS, da Silva TEO, Afonso MDS, Lima JDCC, de Matos Neto EM, Torres LRDO, Cintra DE, Lottenberg AM, Seelaender M, da Silva MTB, Torres-Leal FL. Brain Perception of Different Oils on Appetite Regulation: An Anorectic Gene Expression Pattern in the Hypothalamus Dependent on the Vagus Nerve. Nutrients 2024; 16:2397. [PMID: 39125278 PMCID: PMC11314563 DOI: 10.3390/nu16152397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 08/12/2024] Open
Abstract
(1) Background: We examined the effect of the acute administration of olive oil (EVOO), linseed oil (GLO), soybean oil (SO), and palm oil (PO) on gastric motility and appetite in rats. (2) Methods: We assessed food intake, gastric retention (GR), and gene expression in all groups. (3) Results: Both EVOO and GLO were found to enhance the rate of stomach retention, leading to a decrease in hunger. On the other hand, the reduction in food intake caused by SO was accompanied by delayed effects on stomach retention. PO caused an alteration in the mRNA expression of NPY, POMC, and CART. Although PO increased stomach retention after 180 min, it did not affect food intake. It was subsequently verified that the absence of an autonomic reaction did not nullify the influence of EVOO in reducing food consumption. Moreover, in the absence of parasympathetic responses, animals that received PO exhibited a significant decrease in food consumption, probably mediated by lower NPY expression. (4) Conclusions: This study discovered that different oils induce various effects on parameters related to food consumption. Specifically, EVOO reduces food consumption primarily through its impact on the gastrointestinal tract, making it a recommended adjunct for weight loss. Conversely, the intake of PO limits food consumption in the absence of an autonomic reaction, but it is not advised due to its contribution to the development of cardiometabolic disorders.
Collapse
Affiliation(s)
- Gele de Carvalho Araújo Lopes
- Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Laboratory of Metabolic Diseases Glauto Tuquarre, Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piaui, Teresina 64049-550, PI, Brazil; (G.d.C.A.L.); (B.C.R.M.); (J.O.P.F.L.); (J.A.M.); (A.A.d.S.); (T.A.N.); (J.S.S.)
| | - Brenda Caroline Rodrigues Miranda
- Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Laboratory of Metabolic Diseases Glauto Tuquarre, Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piaui, Teresina 64049-550, PI, Brazil; (G.d.C.A.L.); (B.C.R.M.); (J.O.P.F.L.); (J.A.M.); (A.A.d.S.); (T.A.N.); (J.S.S.)
| | - João Orlando Piauilino Ferreira Lima
- Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Laboratory of Metabolic Diseases Glauto Tuquarre, Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piaui, Teresina 64049-550, PI, Brazil; (G.d.C.A.L.); (B.C.R.M.); (J.O.P.F.L.); (J.A.M.); (A.A.d.S.); (T.A.N.); (J.S.S.)
| | - Jorddam Almondes Martins
- Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Laboratory of Metabolic Diseases Glauto Tuquarre, Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piaui, Teresina 64049-550, PI, Brazil; (G.d.C.A.L.); (B.C.R.M.); (J.O.P.F.L.); (J.A.M.); (A.A.d.S.); (T.A.N.); (J.S.S.)
| | - Athanara Alves de Sousa
- Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Laboratory of Metabolic Diseases Glauto Tuquarre, Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piaui, Teresina 64049-550, PI, Brazil; (G.d.C.A.L.); (B.C.R.M.); (J.O.P.F.L.); (J.A.M.); (A.A.d.S.); (T.A.N.); (J.S.S.)
| | - Taline Alves Nobre
- Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Laboratory of Metabolic Diseases Glauto Tuquarre, Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piaui, Teresina 64049-550, PI, Brazil; (G.d.C.A.L.); (B.C.R.M.); (J.O.P.F.L.); (J.A.M.); (A.A.d.S.); (T.A.N.); (J.S.S.)
| | - Juliana Soares Severo
- Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Laboratory of Metabolic Diseases Glauto Tuquarre, Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piaui, Teresina 64049-550, PI, Brazil; (G.d.C.A.L.); (B.C.R.M.); (J.O.P.F.L.); (J.A.M.); (A.A.d.S.); (T.A.N.); (J.S.S.)
| | - Tiago Eugênio Oliveira da Silva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 17012-900, SP, Brazil;
| | | | - Joana Darc Carola Correia Lima
- Cancer Metabolism Research Group, Department of Surgery and LIM26-HCFMUSP, Faculty of Medicine, University of São Paulo, São Paulo 17012-900, SP, Brazil; (J.D.C.C.L.); (M.S.)
| | | | | | - Dennys Esper Cintra
- Laboratory of Nutritional Genomics, University of Campinas, Campinas 13083-855, SP, Brazil;
- Nutrigenomics and Lipids Research Center, CELN, School of Applied Sciences University of Campinas, São Paulo 13083-970, SP, Brazil;
- Hospital Israelita Albert Einstein (HIAE), São Paulo 05652-900, SP, Brazil
| | - Ana Maria Lottenberg
- Nutrigenomics and Lipids Research Center, CELN, School of Applied Sciences University of Campinas, São Paulo 13083-970, SP, Brazil;
- Hospital Israelita Albert Einstein (HIAE), São Paulo 05652-900, SP, Brazil
- Laboratório de Lípides (LIM10), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, University of São Paulo, São Paulo 17012-900, SP, Brazil
| | - Marília Seelaender
- Cancer Metabolism Research Group, Department of Surgery and LIM26-HCFMUSP, Faculty of Medicine, University of São Paulo, São Paulo 17012-900, SP, Brazil; (J.D.C.C.L.); (M.S.)
| | - Moisés Tolentino Bento da Silva
- Institute of Biomedical Sciences Abel Salazar, Center for Drug Discovery and Innovative Medicines, Laboratory of Physiology, Department of Immuno-Physiology and Pharmacology, University of Porto, 4099-002 Porto, Portugal
| | - Francisco Leonardo Torres-Leal
- Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Laboratory of Metabolic Diseases Glauto Tuquarre, Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piaui, Teresina 64049-550, PI, Brazil; (G.d.C.A.L.); (B.C.R.M.); (J.O.P.F.L.); (J.A.M.); (A.A.d.S.); (T.A.N.); (J.S.S.)
| |
Collapse
|
5
|
Akram N, Faisal Z, Irfan R, Shah YA, Batool SA, Zahid T, Zulfiqar A, Fatima A, Jahan Q, Tariq H, Saeed F, Ahmed A, Asghar A, Ateeq H, Afzaal M, Khan MR. Exploring the serotonin-probiotics-gut health axis: A review of current evidence and potential mechanisms. Food Sci Nutr 2024; 12:694-706. [PMID: 38370053 PMCID: PMC10867509 DOI: 10.1002/fsn3.3826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 02/20/2024] Open
Abstract
Modulatory effects of serotonin (5-Hydroxytryptamine [5-HT]) have been seen in hepatic, neurological/psychiatric, and gastrointestinal (GI) disorders. Probiotics are live microorganisms that confer health benefits to their host. Recent research has suggested that probiotics can promote serotonin signaling, a crucial pathway in the regulation of mood, cognition, and other physiological processes. Reviewing the literature, we find that peripheral serotonin increases nutrient uptake and storage, regulates the composition of the gut microbiota, and is involved in mediating neuronal disorders. This review explores the mechanisms underlying the probiotic-mediated increase in serotonin signaling, highlighting the role of gut microbiota in the regulation of serotonin production and the modulation of neurotransmitter receptors. Additionally, this review discusses the potential clinical implications of probiotics as a therapeutic strategy for disorders associated with altered serotonin signaling, such as GI and neurological disorders. Overall, this review demonstrates the potential of probiotics as a promising avenue for the treatment of serotonin-related disorders and signaling of serotonin.
Collapse
Affiliation(s)
- Noor Akram
- Department of Food and NutritionGovernment College University FaisalabadFaisalabadPakistan
| | - Zargham Faisal
- Department of Human NutritionBahauddin Zakariya University MultanMultanPakistan
| | - Rushba Irfan
- Faculty of Food Nutrition & Home SciencesUniversity of AgricultureFaisalabadPakistan
| | - Yasir Abbas Shah
- Natural & Medical Science Research CenterUniversity of NizwaNizwaOman
| | - Syeda Ayesha Batool
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Toobaa Zahid
- Department of Food and NutritionGovernment College University FaisalabadFaisalabadPakistan
| | - Aqsa Zulfiqar
- Department of Food and NutritionGovernment College University FaisalabadFaisalabadPakistan
| | - Areeja Fatima
- National Institute of Food Science & TechnologyUniversity of AgricultureFaisalabadPakistan
| | - Qudsia Jahan
- Department of Food and NutritionGovernment College University FaisalabadFaisalabadPakistan
| | - Hira Tariq
- Department of Food and NutritionGovernment College University FaisalabadFaisalabadPakistan
| | - Farhan Saeed
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Aftab Ahmed
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Aasma Asghar
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Huda Ateeq
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Afzaal
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Mahbubur Rahman Khan
- Department of Food Processing and PreservationHajee Mohammad Danesh Science & Technology UniversityDinajpurBangladesh
| |
Collapse
|
6
|
Chen W, Binbin G, Lidan S, Qiang Z, Jing H. Evolution of peptide YY analogs for the management of type 2 diabetes and obesity. Bioorg Chem 2023; 140:106808. [PMID: 37666110 DOI: 10.1016/j.bioorg.2023.106808] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/13/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023]
Abstract
Peptide YY (PYY) is a gastrointestinal hormone consisting of 36 amino acids, that is predominantly secreted by intestinal l-cells. Originally extracted from pig intestines, it belongs to the pancreatic polypeptide (PP) family, but has functions distinct from those of PP and neuropeptide Y (NPY). PYY is a potential treatment for type 2 diabetes mellitus (T2DM) because of its ability to delay gastric emptying, reduce appetite, decrease weight, and lower blood glucose. However, the clinical use of PYY is limited because it is rapidly cleared by the kidneys and degraded by enzymes. In recent years, researchers have conducted various structural modifications, including amino acid substitution, PEGylation, lipidation, and fusion of PYY with other proteins to prolong its half-life and enhance its biological activity. This study presents an overview of the recent progress on PYY, including its physiological functions, metabolites and structure-activity relationships.
Collapse
Affiliation(s)
- Wang Chen
- College of Medicine, Jiaxing University, The Affiliated Hospital of Jiaxing University, Jiaxing 314001, China
| | - Gong Binbin
- College of Pharmacy, Zhejiang University of Technology, Hangzhou 310000, China
| | - Sun Lidan
- College of Medicine, Jiaxing University, The Affiliated Hospital of Jiaxing University, Jiaxing 314001, China.
| | - Zhou Qiang
- College of Medicine, Jiaxing University, The Affiliated Hospital of Jiaxing University, Jiaxing 314001, China.
| | - Han Jing
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
7
|
Shi L, Tianqi F, Zhang C, Deng X, Zhou Y, Wang J, Wang L. High-protein compound yogurt with quinoa improved clinical features and metabolism of high-fat diet-induced nonalcoholic fatty liver disease in mice. J Dairy Sci 2023; 106:5309-5327. [PMID: 37474360 DOI: 10.3168/jds.2022-23045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/22/2023] [Indexed: 07/22/2023]
Abstract
Gut microbiota dysbiosis plays a crucial role in the occurrence and progression of nonalcoholic fatty liver disease (NAFLD), which may be influenced by nutritional supplementation. Quinoa, a type of pseudocereal, has gained prominence due to its high nutritional value and diverse applications. This study aimed to determine whether yogurt containing quinoa can ameliorate NAFLD and alleviate metabolic disorders by protecting against the divergence of gut microbiota. Our findings suggested that quinoa yogurt could significantly reduce the body weight gain and fat tissue weight of high-fat diet (HFD)-fed obese mice. In addition, quinoa yogurt significantly reduced liver steatosis and enhanced glucose homeostasis and insulin sensitivity. Additional research indicates that quinoa yogurt can reduce the levels of proinflammatory cytokines (i.e., tumor necrosis factor α, IL-1β, and IL-6) and inhibit endotoxemia and systemic inflammation. The characteristics of the gut microbiota were then determined by analyzing 16S rRNA. In addition, we discovered that the gut microbiota was disturbed by HFD consumption. Particularly, intestinal probiotics and beneficial intestinal secretions were increased, leading to the expression of glucagon-like peptide-1 in the colon, contributing to NAFLD. Furthermore, endotoxemia and systemic inflammation in HFD-fed mice were restored to the level of control mice when they were fed yogurt and quinoa. Therefore, yogurt containing quinoa can effectively alleviate NAFLD symptoms and may exert its effects via microbiome-gut-liver axis mechanisms. According to some research, the role of the enteric-liver axis may also influence metabolic disorders to reduce the development of NAFLD.
Collapse
Affiliation(s)
- Linlin Shi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China; Department of Food Quality and Safety, Jilin University, Changchun 130062, China
| | - Fang Tianqi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China; Department of Food Quality and Safety, Jilin University, Changchun 130062, China
| | - Can Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xuming Deng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yonglin Zhou
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jianfeng Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lin Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
8
|
Toft PB, Vanslette AM, Trošt K, Moritz T, Gillum MP, Bäckhed F, Arora T. Microbial metabolite p-cresol inhibits gut hormone expression and regulates small intestinal transit in mice. Front Endocrinol (Lausanne) 2023; 14:1200391. [PMID: 37534214 PMCID: PMC10391832 DOI: 10.3389/fendo.2023.1200391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/21/2023] [Indexed: 08/04/2023] Open
Abstract
p-cresol is a metabolite produced by microbial metabolism of aromatic amino acid tyrosine. p-cresol and its conjugated forms, p-cresyl sulfate and p-cresyl glucuronide, are uremic toxins that correlate positively with chronic kidney disease and diabetes pathogenesis. However, how p-cresol affects gut hormones is unclear. Here, we expose immortalized GLUTag cells to increasing concentrations of p-cresol and found that p-cresol inhibited Gcg expression and reduced glucagon-like peptide-1 (GLP-1) secretion in vitro. In mice, administration of p-cresol in the drinking water for 2 weeks reduced the transcript levels of Gcg and other gut hormones in the colon; however, it did not affect either fasting or glucose-induced plasma GLP-1 levels. Furthermore, it did not affect glucose tolerance but promoted faster small intestinal transit in mice. Overall, our data suggest that microbial metabolite p-cresol suppresses transcript levels of gut hormones and regulates small intestinal transit in mice.
Collapse
Affiliation(s)
- Pernille Baumann Toft
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amanda Marie Vanslette
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kajetan Trošt
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Moritz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthew Paul Gillum
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fredrik Bäckhed
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Physiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Tulika Arora
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Chen Y, Chen J, Li Y, Wu Y, Wu X, Zhang H, Zhang Z. Insulin-like peptide 5 is associated with insulin resistance in women with polycystic ovary syndrome. J Diabetes Complications 2023; 37:108493. [PMID: 37207506 DOI: 10.1016/j.jdiacomp.2023.108493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023]
Abstract
AIMS Insulin-like peptide 5 (INSL5) plays an important part in metabolic processes in vitro and in vivo. We hypothesized that INSL5 levels are associated with the presence of polycystic ovary syndrome (PCOS) and insulin resistance (IR). METHODS Circulating INSL5 levels were measured by an enzyme-linked immunosorbent assay in the PCOS group (n = 101) and control (n = 78) groups. The relationship between INSL5 and IR was evaluated by using regression models. RESULTS The levels of circulating INSL5 were elevated in the individuals with PCOS (P < 0.001) and significantly associated with homeostasis model assessment of insulin resistance (HOMA-IR, r = 0.434, P < 0.001; HOMA-IS, r = 0.432, P < 0.001; QUICKI, r = -0.504, P < 0.001). The subjects in the highest tertile of INSL5 levels were more likely to have PCOS (odds ratio: 12.591, 95 % confidence interval 2.616-60.605) as compared with the lowest tertile after adjustment for potential confounders. Furthermore, the multiple linear regression analyses after adjustment for confounders showed an independent association between INSL5 levels and HOMA-IR (β = 0.024, P < 0.001). CONCLUSIONS Circulating INSL5 concentration is linked to PCOS, possibly through increased insulin resistance.
Collapse
Affiliation(s)
- Yijie Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, China.
| | - Jun Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, China.
| | - Yiyi Li
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, China
| | - Yi Wu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, China
| | - Xiaoyu Wu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, China
| | - Hongyan Zhang
- Department of the Reproductive Endocrinology Division, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, Zhejiang 310008, China.
| | - Zhifen Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, China; Department of the Reproductive Endocrinology Division, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, Zhejiang 310008, China.
| |
Collapse
|
10
|
Zolotarev VA, Murovets VO, Sepp AL, Sozontov EA, Lukina EA, Khropycheva RP, Pestereva NS, Ivleva IS, El Mehdi M, Lahaye E, Chartrel N, Fetissov SO. Protein Extract of a Probiotic Strain of Hafnia alvei and Bacterial ClpB Protein Improve Glucose Tolerance in Mice. Int J Mol Sci 2023; 24:10590. [PMID: 37445766 DOI: 10.3390/ijms241310590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
A commercial strain of Hafnia alvei (H. alvei) 4597 bacteria was shown to reduce food intake and promote weight loss, effects possibly induced by the bacterial protein ClpB, an antigen-mimetic of the anorexigenic α-melanocyte-stimulating hormone. A decrease in the basal plasma glucose levels was also observed in overweight fasted humans and mice receiving H. alvei. However, it is not known whether H. alvei influences sweet taste preference and whether its protein extract or ClpB are sufficient to increase glucose tolerance; these are the objectives tested in the present study. C57BL/6J male mice were kept under standard diet and were gavaged daily for 17 days with a suspension of H. alvei (4.5 × 107 CFU/animal) or with H. alvei total protein extract (5 μg/animal) or saline as a control. Sweet taste preference was analyzed via a brief-access licking test with sucrose solution. Glucose tolerance tests (GTT) were performed after the intraperitoneal (IP) or intragastric (IG) glucose administration at the 9th and 15th days of gavage, respectively. The expression of regulatory peptides' mRNA levels was assayed in the hypothalamus. In another experiment performed in non-treated C57BL/6J male mice, effects of acute IP administration of recombinant ClpB protein on glucose tolerance were studied by both IP- and IG-GTT. Mice treated with the H. alvei protein extract showed an improved glucose tolerance in IP-GTT but not in IG-GTT. Both groups treated with H. alvei bacteria or protein extract showed a reduction of pancreatic tissue weight but without significant changes to basal plasma insulin. No significant effects of H. alvei bacteria or its total protein extract administration were observed on the sweet taste preference, insulin tolerance and expression of regulatory peptides' mRNA in the hypothalamus. Acute administration of ClpB in non-treated mice increased glucose tolerance during the IP-GTT but not the IG-GTT, and reduced basal plasma glucose levels. We conclude that both the H. alvei protein extract introduced orally and the ClpB protein administered via IP improve glucose tolerance probably by acting at the glucose postabsorptive level. Moreover, H. alvei probiotic does not seem to influence the sweet taste preference. These results justify future testing of both the H. alvei protein extract and ClpB protein in animal models of diabetes.
Collapse
Affiliation(s)
- Vasiliy A Zolotarev
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint-Petersburg, Russia
| | - Vladimir O Murovets
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint-Petersburg, Russia
| | - Anastasiya L Sepp
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint-Petersburg, Russia
| | - Egor A Sozontov
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint-Petersburg, Russia
| | - Ekaterina A Lukina
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint-Petersburg, Russia
| | - Raisa P Khropycheva
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint-Petersburg, Russia
| | - Nina S Pestereva
- Institute of Experimental Medicine, 197376 Saint-Petersburg, Russia
| | - Irina S Ivleva
- Institute of Experimental Medicine, 197376 Saint-Petersburg, Russia
| | - Mouna El Mehdi
- Inserm UMR1239 Laboratory, Team: Regulatory Peptides-Energy Metabolism and Motivated Behavior, University of Rouen Normandie, 76130 Mont-Saint-Aignan, France
| | - Emilie Lahaye
- Inserm UMR1239 Laboratory, Team: Regulatory Peptides-Energy Metabolism and Motivated Behavior, University of Rouen Normandie, 76130 Mont-Saint-Aignan, France
| | - Nicolas Chartrel
- Inserm UMR1239 Laboratory, Team: Regulatory Peptides-Energy Metabolism and Motivated Behavior, University of Rouen Normandie, 76130 Mont-Saint-Aignan, France
| | - Sergueï O Fetissov
- Inserm UMR1239 Laboratory, Team: Regulatory Peptides-Energy Metabolism and Motivated Behavior, University of Rouen Normandie, 76130 Mont-Saint-Aignan, France
| |
Collapse
|
11
|
Sorski L, Gidron Y. The Vagal Nerve, Inflammation, and Diabetes-A Holy Triangle. Cells 2023; 12:1632. [PMID: 37371102 DOI: 10.3390/cells12121632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/23/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Type 2 diabetic mellitus (T2DM) is a common chronic disease and a substantial risk factor of other fatal illnesses. At its core is insulin resistance, where chronic low-level inflammation is among its main causes. Thus, it is crucial to modulate this inflammation. This review paper provides scientific neuroimmunological evidence on the protective roles of the vagal nerve in T2DM. First, the vagus inhibits inflammation in a reflexive manner via neuroendocrine and neuroimmunological routes. This may also occur at the level of brain networks. Second, studies have shown that vagal activity, as indexed by heart-rate variability (HRV), is inversely related to diabetes and that low HRV is a predictor of T2DM. Finally, some emerging evidence shows that vagal nerve activation may reduce biomarkers and processes related to diabetes. Future randomized controlled trials are needed to test the effects of vagal nerve activation on T2DM and its underlying anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Liat Sorski
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yori Gidron
- Department of Nursing, Faculty of Social Welfare and Health Sciences, Haifa University, Haifa 3498838, Israel
| |
Collapse
|
12
|
Jansen A, Aaseth JO, Lyche JL, Berg JP, Müller MHB, Lydersen S, Farup PG. Do changes in persistent organic pollutants after bariatric surgery cause endocrine disruption? CHEMOSPHERE 2023; 313:137461. [PMID: 36470361 DOI: 10.1016/j.chemosphere.2022.137461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Bariatric surgery results in weight loss, marked endocrine changes and the release of persistent organic pollutants (POPs). The release of POPs might cause endocrine disruption. The study aimed to explore associations between POPs and adiponectin, leptin and ghrelin in subjects undergoing bariatric surgery. METHODS The study included 63 subjects with severe obesity (men/women: 13/50), age (years): 45.0 (8.5), and BMI (kg/m2) 39.1 (3.4). Analyses of adiponectin, leptin and ghrelin and POPs (hexachlorobenzene (HCB), dichlorodiphenyldichloroethylene (p,p'-DDE), polychlorinated biphenyl (PCB) 118 (dioxin-like compound; dl), and sum 6 PCB (PCB 28, -52, -101, -138, -153, and -180) were performed before and 12 months after bariatric surgery. RESULTS There were significant increases in adiponectin and all POPs and a fall in leptin after surgery. The main finding was the highly significant associations between adiponectin and all POPs. The increase in HCB explained 38% of the variation in adiponectin. CONCLUSIONS If the POP-associated increase in adiponectin is a causal effect, the release of POPs might have important clinical consequences. Adiponectin has both positive and negative clinical effects exerted by essentially unknown mechanisms. The effects of released POPs on the metabolic functions in subjects undergoing bariatric surgery deserve further evaluation.
Collapse
Affiliation(s)
- Aina Jansen
- Department of Surgery, Innlandet Hospital Trust, N-2819 Gjøvik, Norway
| | - Jan O Aaseth
- Department of Research, Innlandet Hospital Trust, N-2381Brumunddal, Norway; Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, N-2418 Elverum, Norway
| | - Jan L Lyche
- Department of Paraclinical Sciences, Norwegian University of Life Sciences (NMBU), N-1433 Ås, Norway
| | - Jens P Berg
- Department of Medical Biochemistry, Oslo University Hospital, N-0450 Oslo, Norway; Institute of Clinical Medicine, University of Oslo, N-0316 Oslo, Norway
| | - Mette H B Müller
- Section for Experimental Biomedicine, Norwegian University of Life Sciences (NMBU), N-1433 Ås, Norway
| | - Stian Lydersen
- Regional Centre for Child and Youth Mental Health and Child Welfare, Department of Mental Health, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Per G Farup
- Department of Research, Innlandet Hospital Trust, N-2381Brumunddal, Norway; Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, N-7491Trondheim, Norway.
| |
Collapse
|
13
|
Zhai X, Liu J, Yu M, Zhang Q, Li M, Zhao N, Liu J, Song Y, Ma L, Li R, Qiao Z, Zhao G, Wang R, Xiao X. Nontargeted metabolomics reveals the potential mechanism underlying the association between birthweight and metabolic disturbances. BMC Pregnancy Childbirth 2023; 23:14. [PMID: 36624413 PMCID: PMC9830726 DOI: 10.1186/s12884-023-05346-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
AIMS The aim of this study was to characterize the metabolites associated with small- and large-gestational-age newborns in maternal and cord blood, and to investigate potential mechanisms underlying the association between birthweight and metabolic disturbances. RESEARCH DESIGN AND METHODS We recorded detailed anthropometric data of mother-offspring dyads. Untargeted metabolomic assays were performed on 67 pairs of cord blood and maternal fasting plasma samples including 16 pairs of small-for-gestational (SGA, < 10th percentile) dyads, 28 pairs of appropriate-for-gestational (AGA, approximate 50 percentile) dyads, and 23 pairs of large-for-gestational (LGA, > 90th percentile) dyads. The association of metabolites with newborn birthweight was conducted to screen for metabolites with U-shaped and line-shaped distributions. The association of metabolites with maternal and fetal phenotypes was also performed. RESULTS We found 2 types of metabolites that changed in different patterns according to newborn birthweight. One type of metabolite exhibited a "U-shaped" trend of abundance fluctuation in the SGA-AGA-LGA groups. The results demonstrated that cuminaldehyde level was lower in the SGA and LGA groups, and its abundance in cord blood was negatively correlated with maternal BMI (r = -0.352 p = 0.009) and weight gain (r = -0.267 p = 0.043). 2-Methoxy-estradiol-17b 3-glucuronide, which showed enrichment in the SGA and LGA groups, was positively correlated with homocysteine (r = 0.44, p < 0.001) and free fatty acid (r = 0.42, p < 0.001) in maternal blood. Serotonin and 13(S)-HODE were the second type of metabolites, denoted as "line-shaped", which both showed increasing trends in the SGA-AGA-LGA groups in both maternal and cord blood and were both significantly positively correlated with maternal BMI before pregnancy. Moreover, cuminaldehyde, serotonin, 13(S)-HODE and some lipid metabolites showed a strong correlation between maternal and cord blood. CONCLUSIONS These investigations demonstrate broad-scale metabolomic differences associated with newborn birthweight in both pregnant women and their newborns. The U-shaped metabolites associated with both the SGA and LGA groups might explain the U-shaped association between birthweight and metabolic dysregulation. The line-shaped metabolites might participate in intrauterine growth regulation. These observations might help to provide new insights into the insulin resistance and the risk of metabolic disturbance of SGA and LGA babies in adulthood and might identify potential new markers for adverse newborn outcomes in pregnant women.
Collapse
Affiliation(s)
- Xiao Zhai
- grid.413106.10000 0000 9889 6335Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730 China
| | - Jieying Liu
- grid.413106.10000 0000 9889 6335Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730 China ,grid.413106.10000 0000 9889 6335Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730 China
| | - Miao Yu
- grid.413106.10000 0000 9889 6335Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730 China
| | - Qian Zhang
- grid.413106.10000 0000 9889 6335Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730 China
| | - Ming Li
- grid.413106.10000 0000 9889 6335Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730 China
| | - Nan Zhao
- grid.413106.10000 0000 9889 6335Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730 China
| | - Juntao Liu
- grid.413106.10000 0000 9889 6335Department of Obstetrics & Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730 China
| | - Yingna Song
- grid.413106.10000 0000 9889 6335Department of Obstetrics & Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730 China
| | - Liangkun Ma
- grid.413106.10000 0000 9889 6335Department of Obstetrics & Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730 China
| | - Rongrong Li
- grid.413106.10000 0000 9889 6335Department of Clinical Nutrition, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730 China
| | - Zongxu Qiao
- grid.478131.80000 0004 9334 6499Department of Obstetrics & Gynecology, Xingtai People’s Hospital, Xingtai, Hebei 054000 People’s Republic of China
| | - Guifen Zhao
- grid.478131.80000 0004 9334 6499Department of Obstetrics & Gynecology, Xingtai People’s Hospital, Xingtai, Hebei 054000 People’s Republic of China
| | - Ruiping Wang
- grid.478131.80000 0004 9334 6499Department of Obstetrics & Gynecology, Xingtai People’s Hospital, Xingtai, Hebei 054000 People’s Republic of China
| | - Xinhua Xiao
- grid.413106.10000 0000 9889 6335Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730 China
| |
Collapse
|
14
|
Shi Y, Qin L, Wu M, Zheng J, Xie T, Shao Z. Gut neuroendocrine signaling regulates synaptic assembly in C. elegans. EMBO Rep 2022; 23:e53267. [PMID: 35748387 DOI: 10.15252/embr.202153267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 11/09/2022] Open
Abstract
Synaptic connections are essential to build a functional brain. How synapses are formed during development is a fundamental question in neuroscience. Recent studies provided evidence that the gut plays an important role in neuronal development through processing signals derived from gut microbes or nutrients. Defects in gut-brain communication can lead to various neurological disorders. Although the roles of the gut in communicating signals from its internal environment to the brain are well known, it remains unclear whether the gut plays a genetically encoded role in neuronal development. Using C. elegans as a model, we uncover that a Wnt-endocrine signaling pathway in the gut regulates synaptic development in the brain. A canonical Wnt signaling pathway promotes synapse formation through regulating the expression of the neuropeptides encoding gene nlp-40 in the gut, which functions through the neuronally expressed GPCR/AEX-2 receptor during development. Wnt-NLP-40-AEX-2 signaling likely acts to modulate neuronal activity. Our study reveals a genetic role of the gut in synaptic development and identifies a novel contribution of the gut-brain axis.
Collapse
Affiliation(s)
- Yanjun Shi
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu Qin
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengting Wu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junyu Zheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Xie
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiyong Shao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Structural and immunoendocrine remodeling in gut, pancreas and thymus in weaning rats fed powdered milk diets rich in Maillard reactants. Sci Rep 2022; 12:4039. [PMID: 35260716 PMCID: PMC8904556 DOI: 10.1038/s41598-022-08001-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 02/28/2022] [Indexed: 11/26/2022] Open
Abstract
Western diet is extending worldwide and suspected to be associated with various metabolic diseases. Many food products have skim milk powder added to it and, during processing, lactose reacts with milk proteins and Maillard reaction products (MRPs) are formed. Dietary MRPs are suggested risk factors for metabolic dysregulation, but the mechanisms behind are still enigmatic. Here we describe that weaning rats fed diets rich in MRPs are affected in both their immune and endocrine systems. Marked structural changes in pancreas, intestine and thymus are noted already after 1 week of exposure. The pancreatic islets become sparser, the intestinal mucosa is thinner, and thymus displays increased apoptosis and atrophy. Glucagon- like peptide-1 (GLP-1) seems to play a key role in that the number of GLP-1 expressing cells is up-regulated in endocrine pancreas but down-regulated in the intestinal mucosa. Further, intestinal GLP-1-immunoreactive cells are juxta positioned not only to nerve fibres and tuft cells, as previously described, but also to intraepithelial CD3 positive T cells, rendering them a strategic location in metabolic regulation. Our results suggest dietary MRPs to cause metabolic disorders, dysregulation of intestinal GLP-1- immunoreactive cells, arrest in pancreas development and thymus atrophy.
Collapse
|
16
|
Men Z, Cao M, Gong Y, Hua L, Zhang R, Zhu X, Tang L, Jiang X, Xu S, Li J, Che L, Lin Y, Feng B, Fang Z, Wu D, Zhuo Y. Microbial and metabolomic mechanisms mediating the effects of dietary inulin and cellulose supplementation on porcine oocyte and uterine development. J Anim Sci Biotechnol 2022; 13:14. [PMID: 35033192 PMCID: PMC8760789 DOI: 10.1186/s40104-021-00657-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022] Open
Abstract
Background Dietary fiber (DF) is often eschewed in swine diet due to its anti-nutritional effects, but DF is attracting growing attention for its reproductive benefits. The objective of this study was to investigate the effects of DF intake level on oocyte maturation and uterine development, to determine the optimal DF intake for gilts, and gain microbial and metabolomic insight into the underlying mechanisms involved. Methods Seventy-six Landrace × Yorkshire (LY) crossbred replacement gilts of similar age (92.6 ± 0.6 d; mean ± standard deviation [SD]) and body weight (BW, 33.8 ± 3.9 kg; mean ± SD) were randomly allocated to 4 dietary treatment groups (n = 19); a basal diet without extra DF intake (DF 1.0), and 3 dietary groups ingesting an extra 50% (DF 1.5), 75% (DF 1.75), and 100% (DF 2.0) dietary fiber mixture consisting of inulin and cellulose (1:4). Oocyte maturation and uterine development were assessed on 19 d of the 2nd oestrous cycle. Microbial diversity of faecal samples was analysed by high-throughput pyrosequencing (16S rRNA) and blood samples were subjected to untargeted metabolomics. Results The rates of oocytes showing first polar bodies after in vitro maturation for 44 h and uterine development increased linearly with increasing DF intake; DF 1.75 gilts had a 19.8% faster oocyte maturation rate and a 48.9 cm longer uterus than DF 1.0 gilts (P < 0.05). Among the top 10 microbiota components at the phylum level, 8 increased linearly with increasing DF level, and the relative abundance of 30 of 53 microbiota components at the genus level (> 0.1%) increased linearly or quadratically with increasing DF intake. Untargeted metabolic analysis revealed significant changes in serum metabolites that were closely associated with microbiota, including serotonin, a gut-derived signal that stimulates oocyte maturation. Conclusions The findings provide evidence of the benefits of increased DF intake by supplementing inulin and cellulose on oocyte maturation and uterine development in gilts, and new microbial and metabolomic insight into the mechanisms mediating the effects of DF on reproductive performance of replacement gilts. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00657-0.
Collapse
Affiliation(s)
- Zhaoyue Men
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China.,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Meng Cao
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Yuechan Gong
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Lun Hua
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Ruihao Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China.,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Xin Zhu
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China.,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Lianchao Tang
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Xuemei Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Jian Li
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Lianqiang Che
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Yan Lin
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Zhengfeng Fang
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China.
| |
Collapse
|
17
|
Mooli RGR, Mukhi D, Pasupulati AK, Evers SS, Sipula IJ, Jurczak M, Seeley RJ, Shah YM, Ramakrishnan SK. Intestinal HIF-2α Regulates GLP-1 Secretion via Lipid Sensing in L-Cells. Cell Mol Gastroenterol Hepatol 2021; 13:1057-1072. [PMID: 34902628 PMCID: PMC8873605 DOI: 10.1016/j.jcmgh.2021.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Compelling evidence shows that glucagon-like peptide-1 (GLP-1) has a profound effect in restoring normoglycemia in type 2 diabetic patients by increasing pancreatic insulin secretion. Although L-cells are the primary source of circulating GLP-1, the current therapies do not target L-cells to increase GLP-1 levels. Our study aimed to determine the molecular underpinnings of GLP-1 secretion as an impetus to identify new interventions to target endogenous L-cells. METHODS We used genetic mouse models of intestine-specific overexpression of hypoxia-inducible factor (HIF)-1α and HIF-2α (VhlΔIE), conditional overexpression of intestinal HIF-2α (Hif-2αLSL;Vilin-Cre/ERT2), and intestine-specific HIF-2α knockout mice (Hif-2αΔIE) to show that HIF signaling, especially HIF-2α, regulates GLP-1 secretion. RESULTS Our data show that intestinal HIF signaling improved glucose homeostasis in a GLP-1-dependent manner. Intestinal HIF potentiated GLP-1 secretion via the lipid sensor G-protein-coupled receptor (GPR)40 enriched in L-cells. We show that HIF-2α regulates GPR40 in L-cells and potentiates fatty acid-induced GLP-1 secretion via extracellular regulated kinase (ERK). Using a genetic model of intestine-specific overexpression of HIF-2α, we show that HIF-2α is sufficient to increase GLP-1 levels and attenuate diet-induced metabolic perturbations such as visceral adiposity, glucose intolerance, and hepatic steatosis. Lastly, we show that intestinal HIF-2α signaling acts as a priming mechanism crucial for postprandial lipid-mediated GLP-1 secretion. Thus, disruption of intestinal HIF-2α decreases GLP-1 secretion. CONCLUSIONS In summary, we show that intestinal HIF signaling, particularly HIF-2α, regulates the lipid sensor GPR40, which is crucial for the lipid-mediated GLP-1 secretion, and suggest that HIF-2α is a potential target to induce endogenous GLP-1 secretion.
Collapse
Affiliation(s)
- Raja Gopal Reddy Mooli
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dhanunjay Mukhi
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anil K. Pasupulati
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Ian J. Sipula
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael Jurczak
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Yatrik M. Shah
- Department of Molecular and Integrative Physiology, Ann Arbor, Michigan,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Sadeesh K. Ramakrishnan
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania,Correspondence Address correspondence to: Sadeesh K. Ramakrishnan, PhD, Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15237. fax: (412) 648-3290.
| |
Collapse
|
18
|
Wang Z, Zeng M, Wang Z, Qin F, Wang Y, Chen J, Christian M, He Z. Food phenolics stimulate adipocyte browning via regulating gut microecology. Crit Rev Food Sci Nutr 2021:1-27. [PMID: 34738509 DOI: 10.1080/10408398.2021.1997905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Fat browning has piqued the interest of researchers as a potential target for treating obesity and related metabolic disorders. Recruitment of brown adipocytes leads to enhanced energy dissipation and reduced adiposity, thus facilitating the maintenance of metabolic homeostasis. Evidence is increasing to support the crucial roles of polyphenols and gut microecology in turning fat "brown". However, it is not clear whether the intestinal microecology is involved in polyphenol-mediated regulation of adipose browning, so this concept is worthy of exploration. In this review, we summarize the current knowledge, mostly from studies with murine models, supporting the concept that the effects of food phenolics on brown fat activation and white fat browning can be attributed to their regulatory actions on gut microecology, including microbial community profile, gut metabolites, and gut-derived hormones. Furthermore, the potential underlying pathways involved are also discussed. Basically, understanding gut microecology paves the way to determine the underlying roles and mechanisms of food phenolics in adipose browning.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Yongzhi Wang
- Food and Beverage Department of Damin Food (Zhangzhou) Co., Ltd, Zhangzhou, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Mark Christian
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
19
|
Sun EW, Matusica D, Wattchow DA, McCluskey A, Robinson PJ, Keating DJ. Dynamin regulates L cell secretion in human gut. Mol Cell Endocrinol 2021; 535:111398. [PMID: 34274446 DOI: 10.1016/j.mce.2021.111398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/01/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND The mechanochemical enzyme dynamin mediates endocytosis and regulates neuroendocrine cell exocytosis. Enteroendocrine L cells co-secrete the anorectic gut hormones glucagon-like peptide 1 (GLP-1) and peptide YY (PYY) postprandially and is a potential therapeutic target for metabolic diseases. In the present study, we aimed to determine if dynamin is implicated in human L cell secretion. METHODS Western blot was performed on the murine L cell line GLUTag. Static incubation of human colonic mucosae with activators and inhibitors of dynamin was carried out. GLP-1 and PYY contents of the secretion supernatants were assayed using ELISA. RESULTS AND CONCLUSION s: Both dynamin I and II are expressed in GLUTag cells. The dynamin activator Ryngo 1-23 evoked significant GLP-1 and PYY release from human colonic mucosae while the dynamin inhibitor Dynole 3-42 significantly inhibited release triggered by known L cell secretagogues. Thus, the cell signaling regulator dynamin is able to bi-directionally regulate L cell hormone secretion in the human gut and may represent a novel target for gastrointestinal-targeted metabolic drug development.
Collapse
Affiliation(s)
- Emily Wl Sun
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Dusan Matusica
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | | | - Adam McCluskey
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Philip J Robinson
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW, Australia
| | - Damien J Keating
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia.
| |
Collapse
|
20
|
Sun EW, Iepsen EW, Pezos N, Lumsden AL, Martin AM, Schober G, Isaacs NJ, Rayner CK, Nguyen NQ, de Fontgalland D, Rabbitt P, Hollington P, Wattchow DA, Hansen T, Holm JC, Liou AP, Jackson VM, Torekov SS, Young RL, Keating DJ. A Gut-Intrinsic Melanocortin Signaling Complex Augments L-Cell Secretion in Humans. Gastroenterology 2021; 161:536-547.e2. [PMID: 33848536 DOI: 10.1053/j.gastro.2021.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Hypothalamic melanocortin 4 receptors (MC4R) are a key regulator of energy homeostasis. Brain-penetrant MC4R agonists have failed, as concentrations required to suppress food intake also increase blood pressure. However, peripherally located MC4R may also mediate metabolic benefits of MC4R activation. Mc4r transcript is enriched in mouse enteroendocrine L cells and peripheral administration of the endogenous MC4R agonist, α-melanocyte stimulating hormone (α-MSH), triggers the release of the anorectic hormones Glucagon-like peptide-1 (GLP-1) and peptide tyrosine tyrosine (PYY) in mice. This study aimed to determine whether pathways linking MC4R and L-cell secretion exist in humans. DESIGN GLP-1 and PYY levels were assessed in body mass index-matched individuals with or without loss-of-function MC4R mutations following an oral glucose tolerance test. Immunohistochemistry was performed on human intestinal sections to characterize the mucosal MC4R system. Static incubations with MC4R agonists were carried out on human intestinal epithelia, GLP-1 and PYY contents of secretion supernatants were assayed. RESULTS Fasting PYY levels and oral glucose-induced GLP-1 secretion were reduced in humans carrying a total loss-of-function MC4R mutation. MC4R was localized to L cells and regulates GLP-1 and PYY secretion from ex vivo human intestine. α-MSH immunoreactivity in the human intestinal epithelia was predominantly localized to L cells. Glucose-sensitive mucosal pro-opiomelanocortin cells provide a local source of α-MSH that is essential for glucose-induced GLP-1 secretion in small intestine. CONCLUSION Our findings describe a previously unidentified signaling nexus in the human gastrointestinal tract involving α-MSH release and MC4R activation on L cells in an autocrine and paracrine fashion. Outcomes from this study have direct implications for targeting mucosal MC4R to treat human metabolic disorders.
Collapse
Affiliation(s)
- Emily W Sun
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Eva W Iepsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Nektaria Pezos
- Nutrition, Diabetes and Metabolism, Lifelong Health, South Australia Health and Medical Research Institute, Adelaide, Australia; Adelaide Medical School and NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Australia
| | - Amanda L Lumsden
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Alyce M Martin
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Gudrun Schober
- Nutrition, Diabetes and Metabolism, Lifelong Health, South Australia Health and Medical Research Institute, Adelaide, Australia; Adelaide Medical School and NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Australia
| | - Nichole J Isaacs
- Nutrition, Diabetes and Metabolism, Lifelong Health, South Australia Health and Medical Research Institute, Adelaide, Australia; Adelaide Medical School and NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Australia
| | - Christopher K Rayner
- Adelaide Medical School and NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Australia; Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, Australia
| | - Nam Q Nguyen
- Adelaide Medical School and NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Australia; Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, Australia
| | | | - Philippa Rabbitt
- Department of Surgery, Flinders Medical Centre, Bedford Park, Australia
| | - Paul Hollington
- Department of Surgery, Flinders Medical Centre, Bedford Park, Australia
| | - David A Wattchow
- Department of Surgery, Flinders Medical Centre, Bedford Park, Australia
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jens-Christian Holm
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; Department of Pediatrics, Holbæk University Hospital, Holbæk, Denmark
| | - Alice P Liou
- Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts
| | - V Margaret Jackson
- Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts
| | - Signe S Torekov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
| | - Richard L Young
- Nutrition, Diabetes and Metabolism, Lifelong Health, South Australia Health and Medical Research Institute, Adelaide, Australia; Adelaide Medical School and NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Australia.
| | - Damien J Keating
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, Australia.
| |
Collapse
|
21
|
Therapeutic potential of targeting intestinal bitter taste receptors in diabetes associated with dyslipidemia. Pharmacol Res 2021; 170:105693. [PMID: 34048925 DOI: 10.1016/j.phrs.2021.105693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 12/19/2022]
Abstract
Intestinal release of incretin hormones after food intake promotes glucose-dependent insulin secretion and regulates glucose homeostasis. The impaired incretin effects observed in the pathophysiologic abnormality of type 2 diabetes have triggered the pharmacological development of incretin-based therapy through the activation of glucagon-like peptide-1 (GLP-1) receptor, including GLP-1 receptor agonists (GLP-1 RAs) and dipeptidyl peptidase 4 (DPP4) inhibitors. In the light of the mechanisms involved in the stimulation of GLP-1 secretion, it is a fundamental question to explore whether glucose and lipid homeostasis can be manipulated by the digestive system in response to nutrient ingestion and taste perception along the gastrointestinal tract. While glucose is a potent stimulant of GLP-1 secretion, emerging evidence highlights the importance of bitter tastants in the enteroendocrine secretion of gut hormones through activation of bitter taste receptors. This review summarizes bitter chemosensation in the intestines for GLP-1 secretion and metabolic regulation based on recent advances in biological research of bitter taste receptors and preclinical and clinical investigation of bitter medicinal plants, including bitter melon, hops strobile, and berberine-containing herbs (e.g. coptis rhizome and barberry root). Multiple mechanisms of action of relevant bitter phytochemicals are discussed with the consideration of pharmacokinetic studies. Current evidence suggests that specific agonists targeting bitter taste receptors, such as human TAS2R1 and TAS2R38, may provide both metabolic benefits and anti-inflammatory effects with the modulation of the enteroendocrine hormone secretion and bile acid turnover in metabolic syndrome individuals or diabetic patients with dyslipidemia-related comorbidities.
Collapse
|
22
|
Effect of Obesity on the Expression of Nutrient Receptors and Satiety Hormones in the Human Colon. Nutrients 2021; 13:nu13041271. [PMID: 33924402 PMCID: PMC8070384 DOI: 10.3390/nu13041271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Receptors located on enteroendocrine cells (EECs) of the colon can detect nutrients in the lumen. These receptors regulate appetite through a variety of mechanisms, including hormonal and neuronal signals. We assessed the effect of obesity on the expression of these G-protein coupled receptors (GPCRs) and hormones at both mRNA and protein level. Methods: qPCR and immunohistochemistry were used to examine colonic tissue from cohorts of patients from the Netherlands (proximal and sigmoid tissue) and the United Kingdom (tissue from across the colon) and patients were grouped by body mass index (BMI) value (BMI < 25 and BMI ≥ 25). Results: The mRNA expression of the hormones/signaling molecules serotonin, glucagon, peptide YY (PYY), CCK and somatostatin were not significantly different between BMI groups. GPR40 mRNA expression was significantly increased in sigmoid colon samples in the BMI ≥ 25 group, but not proximal colon. GPR41, GPR109a, GPR43, GPR120, GPRC6A, and CaSR mRNA expression were unaltered between low and high BMI. At the protein level, serotonin and PYY containing cell numbers were similar in high and low BMI groups. Enterochromaffin cells (EC) showed high degree of co-expression with amino acid sensing receptor, CaSR while co-expression with PYY containing L-cells was limited, regardless of BMI. Conclusions: While expression of medium/long chain fatty acid receptor GPR40 was increased in the sigmoid colon of the high BMI group, expression of other nutrient sensing GPCRs, and expression profiles of EECs involved in peripheral mechanisms of appetite regulation were unchanged. Collectively, these data suggest that in human colonic tissue, EEC and nutrient-sensing receptor expression profiles are not affected despite changes to BMI.
Collapse
|
23
|
Malaguarnera R, Scamporrino A, Filippello A, Di Mauro S, Minardo A, Purrello F, Piro S. The entero-insular axis: a journey in the physiopathology of diabetes. EXPLORATION OF MEDICINE 2020. [DOI: 10.37349/emed.2020.00025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Glycemic homeostasis is an essential mechanism for the proper working of an organism. However, balance in blood lipid and protein levels also plays an important role. The discovery of the hormone insulin and the description of its function for glycemic control made fundamental scientific progress in this field. However, since then our view of the problem has been deeply influenced only in terms of glucose and insulin (in an insulin-centric and glucose-centric way). Based on recent scientific discoveries, a fine and sophisticated network of hormonal and metabolic interactions, involving almost every apparatus and tissue of the human body, has been theorized. Efficient metabolic homeostasis is founded on these intricate interactions. Although it is still not fully defined, this complex network can undergo alterations that lead to metabolic disorders such as diabetes mellitus (DM). The endocrine pancreas plays a crucial role in the metabolic balance of an organism, but insulin is just one of the elements involved and each single pancreatic islet hormone is worthy of our concern. Moreover, pancreatic hormones need to be considered in a general view, concerning both their systemic function as direct mediators and as hormones, which, in turn, are regulated by other hormones or other substances. This more complex scenario should be taken into account for a better understanding of the pathophysiology and the therapeutic algorithms of DM. As a consequence, improvements in modern medicine could help to contemplate this new perspective. This review is focused on some aspects of gut-pancreas interaction, aiming to integrate this synergy into a wider context involving other organs and tissues.
Collapse
Affiliation(s)
- Roberta Malaguarnera
- School of Human and Social Sciences, “Kore” University of Enna, 94100 Enna, Italy
| | - Alessandra Scamporrino
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy
| | - Agnese Filippello
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy
| | - Stefania Di Mauro
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy
| | - Alessandro Minardo
- Department of Anaesthesiology and Intensive Care Medicine, IRCCS Gemelli, 00168 Rome, Italy
| | - Francesco Purrello
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy
| | - Salvatore Piro
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy
| |
Collapse
|
24
|
Haj-Yehia E, Mertens RW, Kahles F, Rückbeil MV, Rau M, Moellmann J, Biener M, Almalla M, Schroeder J, Giannitsis E, Katus HA, Marx N, Lehrke M. Peptide YY (PYY) Is Associated with Cardiovascular Risk in Patients with Acute Myocardial Infarction. J Clin Med 2020; 9:E3952. [PMID: 33291235 PMCID: PMC7762108 DOI: 10.3390/jcm9123952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
AIMS Recent studies have found circulating concentrations of the gastrointestinal hormone GLP-1 to be an excellent predictor of cardiovascular risk in patients with myocardial infarction. This illustrates a yet not appreciated crosstalk between the gastrointestinal and cardiovascular systems, which requires further investigation. The gut-derived hormone Peptide YY (PYY) is secreted from the same intestinal L-cells as GLP-1. Relevance of PYY in the context of cardiovascular disease has not been explored. In this study, we aimed to investigate PYY serum concentrations in patients with acute myocardial infarction and to evaluate their association with cardiovascular events. MATERIAL AND METHODS PYY levels were assessed in 834 patients presenting with acute myocardial infarction (553 Non-ST-Elevation Myocardial Infarction (NSTEMI) and 281 ST-Elevation Myocardial Infarction (STEMI)) at the time of hospital admission. The composite outcomes of first occurrence of cardiovascular death, nonfatal myocardial infarction, nonfatal stroke (3-P-MACE), and all-cause mortality were assessed with a median follow-up of 338 days. RESULTS PYY levels were significantly associated with age and cardiovascular risk factors, including hypertension, diabetes, and kidney function in addition to biomarkers of heart failure (NT-pro BNP) and inflammation (hs-CRP). Further, PYY was significantly associated with 3-P-MACE (HR: 1.7; 95% CI: 1-2.97; p = 0.0495) and all-cause mortality (HR: 2.69; 95% CI: 1.61-4.47; p = 0.0001) by univariable Cox regression analyses, which was however lost after adjusting for multiple confounders. CONCLUSIONS PYY levels are associated with parameters of cardiovascular risk as well as cardiovascular events and mortality in patients presenting with acute myocardial infarction. However, this significant association is lost after adjustment for further confounders.
Collapse
Affiliation(s)
- Elias Haj-Yehia
- Department of Internal Medicine I-Cardiology, University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (E.H.-Y.); (R.W.M.); (F.K.); (M.R.); (J.M.); (M.A.); (J.S.); (N.M.)
| | - Robert Werner Mertens
- Department of Internal Medicine I-Cardiology, University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (E.H.-Y.); (R.W.M.); (F.K.); (M.R.); (J.M.); (M.A.); (J.S.); (N.M.)
| | - Florian Kahles
- Department of Internal Medicine I-Cardiology, University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (E.H.-Y.); (R.W.M.); (F.K.); (M.R.); (J.M.); (M.A.); (J.S.); (N.M.)
| | - Marcia Viviane Rückbeil
- Department of Medical Statistics, University Hospital Aachen, Pauwelsstraße 19, 52074 Aachen, Germany;
| | - Matthias Rau
- Department of Internal Medicine I-Cardiology, University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (E.H.-Y.); (R.W.M.); (F.K.); (M.R.); (J.M.); (M.A.); (J.S.); (N.M.)
| | - Julia Moellmann
- Department of Internal Medicine I-Cardiology, University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (E.H.-Y.); (R.W.M.); (F.K.); (M.R.); (J.M.); (M.A.); (J.S.); (N.M.)
| | - Moritz Biener
- Department of Cardiology, Angiology, and Pneumology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (M.B.); (E.G.); (H.A.K.)
| | - Mohammad Almalla
- Department of Internal Medicine I-Cardiology, University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (E.H.-Y.); (R.W.M.); (F.K.); (M.R.); (J.M.); (M.A.); (J.S.); (N.M.)
| | - Jörg Schroeder
- Department of Internal Medicine I-Cardiology, University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (E.H.-Y.); (R.W.M.); (F.K.); (M.R.); (J.M.); (M.A.); (J.S.); (N.M.)
| | - Evangelos Giannitsis
- Department of Cardiology, Angiology, and Pneumology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (M.B.); (E.G.); (H.A.K.)
| | - Hugo Albert Katus
- Department of Cardiology, Angiology, and Pneumology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (M.B.); (E.G.); (H.A.K.)
| | - Nikolaus Marx
- Department of Internal Medicine I-Cardiology, University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (E.H.-Y.); (R.W.M.); (F.K.); (M.R.); (J.M.); (M.A.); (J.S.); (N.M.)
| | - Michael Lehrke
- Department of Internal Medicine I-Cardiology, University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (E.H.-Y.); (R.W.M.); (F.K.); (M.R.); (J.M.); (M.A.); (J.S.); (N.M.)
| |
Collapse
|
25
|
Yang T, Yang H, Heng C, Wang H, Chen S, Hu Y, Jiang Z, Yu Q, Wang Z, Qian S, Wang J, Wang T, Du L, Lu Q, Yin X. Amelioration of non-alcoholic fatty liver disease by sodium butyrate is linked to the modulation of intestinal tight junctions in db/db mice. Food Funct 2020; 11:10675-10689. [PMID: 33216087 DOI: 10.1039/d0fo01954b] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The intestinal microenvironment, a potential factor that contributes to the development of non-alcoholic fatty liver disease (NALFD) and type 2 diabetes (T2DM), has a close relationship with intestinal tight junctions (TJs). Here, we show that the disruption of intestinal TJs in the intestines of 16-week-old db/db mice and in high glucose (HG)-cultured Caco-2 cells can both be improved by sodium butyrate (NaB) in a dose-dependent manner in vitro and in vivo. Accompanying the improved intestinal TJs, NaB not only relieved intestine inflammation of db/db mice and HG and LPS co-cultured Caco-2 cells but also restored intestinal Takeda G-protein-coupled (TGR5) expression, resulting in up-regulated serum GLP-1 levels. Subsequently, the GLP-1 analogue Exendin-4 was used to examine the improvement of lipid accumulation in HG and free fatty acid (FFA) co-cultured HepG2 cells. Finally, we used 16-week-old db/db mice to examine the hepatoprotective effects of NaB and its producing strain Clostridium butyricum. Our data showed that NaB and Clostridium butyricum treatment significantly reduced the levels of blood glucose and serum transaminase and markedly reduced T2DM-induced histological alterations of the liver, together with improved liver inflammation and lipid accumulation. These findings suggest that NaB and Clostridium butyricum are a potential adjuvant treatment strategy for T2DM-induced NAFLD; their hepatoprotective effect was linked to the modulation of intestinal TJs, causing the restoration of glucose and lipid metabolism and the improvement of inflammation in hepatocytes.
Collapse
Affiliation(s)
- Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Beumer J, Gehart H, Clevers H. Enteroendocrine Dynamics - New Tools Reveal Hormonal Plasticity in the Gut. Endocr Rev 2020; 41:5856764. [PMID: 32531023 PMCID: PMC7320824 DOI: 10.1210/endrev/bnaa018] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022]
Abstract
The recent intersection of enteroendocrine cell biology with single-cell technologies and novel in vitro model systems has generated a tremendous amount of new data. Here we highlight these recent developments and explore how these findings contribute to the understanding of endocrine lineages in the gut. In particular, the concept of hormonal plasticity, the ability of endocrine cells to produce different hormones over the course of their lifetime, challenges the classic notion of cell types. Enteroendocrine cells travel in the course of their life through different signaling environments that directly influence their hormonal repertoire. In this context, we examine how enteroendocrine cell fate is determined and modulated by signaling molecules such as bone morphogenetic proteins (BMPs) or location along the gastrointestinal tract. We analyze advantages and disadvantages of novel in vitro tools, adult stem cell or iPS-derived intestinal organoids, that have been crucial for recent findings on enteroendocrine development and plasticity. Finally, we illuminate the future perspectives of the field and discuss how understanding enteroendocrine plasticity can lead to new therapeutic approaches.
Collapse
Affiliation(s)
- Joep Beumer
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, CT Utrecht, The Netherlands
| | - Helmuth Gehart
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, CT Utrecht, The Netherlands.,Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, CT Utrecht, The Netherlands.,Oncode Institute, Hubrecht Institute, CT Utrecht, The Netherlands
| |
Collapse
|
27
|
Zhou X, Ding G, Li J, Xiang X, Rushworth E, Song W. Physiological and Pathological Regulation of Peripheral Metabolism by Gut-Peptide Hormones in Drosophila. Front Physiol 2020; 11:577717. [PMID: 33117196 PMCID: PMC7552570 DOI: 10.3389/fphys.2020.577717] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
The gastrointestinal (GI) tract in both vertebrates and invertebrates is now recognized as a major source of signals modulating, via gut-peptide hormones, the metabolic activities of peripheral organs, and carbo-lipid balance. Key advances in the understanding of metabolic functions of gut-peptide hormones and their mediated interorgan communication have been made using Drosophila as a model organism, given its powerful genetic tools and conserved metabolic regulation. Here, we summarize recent studies exploring peptide hormones that are involved in the communication between the midgut and other peripheral organs/tissues during feeding conditions. We also highlight the emerging impacts of fly gut-peptide hormones on stress sensing and carbo-lipid metabolism in various disease models, such as energy overload, pathogen infection, and tumor progression. Due to the functional similarity of intestine and its derived peptide hormones between Drosophila and mammals, it can be anticipated that findings obtained in the fly system will have important implications for the understanding of human physiology and pathology.
Collapse
Affiliation(s)
- Xiaoya Zhou
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Guangming Ding
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Jiaying Li
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Xiaoxiang Xiang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Elisabeth Rushworth
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Wei Song
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| |
Collapse
|
28
|
Leicht CA, James LJ, Briscoe JHB, Hoekstra SP. Hot water immersion acutely increases postprandial glucose concentrations. Physiol Rep 2020; 7:e14223. [PMID: 31642205 PMCID: PMC6805849 DOI: 10.14814/phy2.14223] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic hot water immersion (HWI) confers health benefits, including a reduction in fasting blood glucose concentration. Here we investigate acute glycemic control immediately after HWI. Ten participants (age: 25 ± 6 years, body mass: 84 ± 14 kg, height 1.85 ± 0.09 m) were immersed in water (39°C) to the neck (HWI) or sat at room temperature (CON) for 60 min. One hour afterward they underwent an oral glucose tolerance test (OGTT), with blood collected before and after HWI/CON and during the 2 h OGTT. Glucose incremental area under the curve (iAUC) during the OGTT was higher for HWI (HWI 233 ± 88, CON 156 ± 79 mmol·L-1 ·2 h, P = 0.02). Insulin iAUC did not differ between conditions (HWI 4309 ± 3660, CON 3893 ± 3031 mU·L-1 ·2 h, P = 0.32). Core temperature increased to 38.6 ± 0.2°C during HWI, but was similar between trials during the OGTT (HWI 37.0 ± 0.2, CON 36.9 ± 0.4°C, P = 0.34). Directly following HWI, plasma average adrenaline and growth hormone concentrations increased 2.7 and 10.7-fold, respectively (P < 0.001). Plasma glucagon-like peptide-1, peptide YY, and acylated ghrelin concentrations were not different between trials during the OGTT (P > 0.11). In conclusion, HWI increased postprandial glucose concentration to an OGTT, which was accompanied by acute elevations of stress hormones following HWI. The altered glycemic control appears to be unrelated to changes in gut hormones during the OGTT.
Collapse
Affiliation(s)
- Christof A Leicht
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, United Kingdom.,The Peter Harrison Centre for Disability Sport, Loughborough University, Loughborough, United Kingdom
| | - Lewis J James
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Jane H B Briscoe
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Sven P Hoekstra
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, United Kingdom.,The Peter Harrison Centre for Disability Sport, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
29
|
Gut-Pancreas-Liver Axis as a Target for Treatment of NAFLD/NASH. Int J Mol Sci 2020; 21:ijms21165820. [PMID: 32823659 PMCID: PMC7461212 DOI: 10.3390/ijms21165820] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents the most common form of chronic liver disease worldwide. Due to its association with obesity and diabetes and the fall in hepatitis C virus morbidity, cirrhosis in NAFLD is becoming the most frequent indication to liver transplantation, but the pathogenetic mechanisms are still not completely understood. The so-called gut-liver axis has gained enormous interest when data showed that its alteration can lead to NAFLD development and might favor the occurrence of non-alcoholic steatohepatitis (NASH). Moreover, several therapeutic approaches targeting the gut-pancreas-liver axis, e.g., incretins, showed promising results in NASH treatment. In this review, we describe the role of incretin hormones in NAFLD/NASH pathogenesis and treatment and how metagenomic/metabolomic alterations in the gut microbiota can lead to NASH in the presence of gut barrier modifications favoring the passage of bacteria or bacterial products in the portal circulation, i.e., bacterial translocation.
Collapse
|
30
|
Wang H, Liu S, Li J, Wang L, Wang X, Zhao J, Jiao H, Lin H. 5-Hydroxytryptophan Suppresses the Abdominal Fat Deposit and Is Beneficial to the Intestinal Immune Function in Broilers. Front Physiol 2020; 11:655. [PMID: 32595527 PMCID: PMC7304481 DOI: 10.3389/fphys.2020.00655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 05/22/2020] [Indexed: 11/24/2022] Open
Abstract
Background Serotonin (5-HT), a monoaminergic neurotransmitter, involves in the regulation of many physiological functions. In the present study, the effects of 5-hydroxytryptophan (5-HTP), the precursor of 5-HT, on lipid metabolism and intestinal immune function in broiler chickens were investigated in chickens. Methods Two hundred broilers were divided randomly into two groups and fed separately with a corn-soybean basal diet (CD) or the basal diet supplemented with 0.2% 5-HTP. Results The results showed that 5-HTP reduced (P < 0.05) feed intake and the abdominal fat pad weight. 5-HTP treatment tended to upregulate the mRNA level of adiponectin receptor 1 (ADP1R) and ADP2R in abdominal fat but had no significant influence on their protein levels (P > 0.05). In 5-HTP-chickens, lipopolysaccharide exposure decreased secretory immunoglobulin A (sIgA) concentrations in serum and the duodenal contents. Expression of mRNA encoding interleukin (IL), tumor necrosis factor-α (TNF-α), and transforming growth factor-β (TGF-β) decreased after 5-HTP treatment; however, LPS increased expression significantly in 5-HTP-treated chickens compared with CD chickens. In 5-HTP-chickens, the phosphorylation of mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) were reduced, but the phosphorylation of ribosomal p70S6 kinase (p70S6K) was increased in the duodenum. Conclusion In summary, the result suggests that dietary 5-HTP supplementation reduces accumulation of abdominal fat and is beneficial to intestinal immune function.
Collapse
Affiliation(s)
- Hui Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Shaoqiong Liu
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China
| | - Jun Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Liyuan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Xiaojuan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Jingpeng Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Hongchao Jiao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Hai Lin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
31
|
The ever-changing roles of serotonin. Int J Biochem Cell Biol 2020; 125:105776. [PMID: 32479926 DOI: 10.1016/j.biocel.2020.105776] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022]
Abstract
Serotonin (5-HT) has traditional roles as a key neurotransmitter in the central nervous system and as a regulatory hormone controlling a broad range of physiological functions. Perhaps the most classically-defined functions of 5-HT are centrally in the control of mood, sleep and anxiety and peripherally in the modulation of gastrointestinal motility. A more recently appreciated role for 5-HT has emerged, however, as an important metabolic hormone contributing to glucose homeostasis and adiposity, with a causal relationship existing between circulating 5-HT levels and metabolic diseases. Almost all peripheral 5-HT is derived from specialised enteroendocrine cells, called enterochromaffin (EC) cells, located throughout the length of the lining of the gastrointestinal tract. EC cells are important luminal sensory cells that can detect and respond to an array of ingested nutrients, as well as luminal gut microbiota and their associated metabolites. Intriguingly, the interaction between gut microbiota and EC cells is dynamic in nature and has strong implications for host physiology. In this review, we discuss the traditional and modern functions of 5-HT and highlight an emerging pathway by which gut microbiota influences host health. Serotonin, also known as 5-hydroxytryptamine (5-HT), is an important neurotransmitter, growth factor and hormone that mediates a range of physiological functions. In mammals, serotonin is synthesized from the essential amino acid tryptophan by the rate-limiting enzyme tryptophan hydroxylase (TPH), for which there are two isoforms expressed in distinct cell types throughout the body. Tph1 is mainly expressed by specialized gut endocrine cells known as enterochromaffin (EC) cells and by other non-neuronal cell types such as adipocytes (Walther et al., 2003). Tph2 is primarily expressed in neurons of the raphe nuclei of the brain stem and a subset of neurons in the enteric nervous system (ENS) (Yabut et al., 2019). As 5-HT cannot readily cross the blood-brain barrier, the central and peripheral pools of 5-HT are anatomically separated and as such, act in their own distinct manners (Martin et al., 2017c). In this review we discuss the peripheral roles of serotonin, with particular focus on the interaction of gut-derived serotonin with the gut microbiota, and address emerging evidence linking this relationship with host homeostasis.
Collapse
|
32
|
Blaner WS, Brun PJ, Calderon RM, Golczak M. Retinol-binding protein 2 (RBP2): biology and pathobiology. Crit Rev Biochem Mol Biol 2020; 55:197-218. [PMID: 32466661 DOI: 10.1080/10409238.2020.1768207] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Retinol-binding protein 2 (RBP2; originally cellular retinol-binding protein, type II (CRBPII)) is a 16 kDa cytosolic protein that in the adult is localized predominantly to absorptive cells of the proximal small intestine. It is well established that RBP2 plays a central role in facilitating uptake of dietary retinoid, retinoid metabolism in enterocytes, and retinoid actions locally within the intestine. Studies of mice lacking Rbp2 establish that Rbp2 is not required in times of dietary retinoid-sufficiency. However, in times of dietary retinoid-insufficiency, the complete lack of Rbp2 gives rise to perinatal lethality owing to RBP2 absence in both placental (maternal) and neonatal tissues. Moreover, when maintained on a high-fat diet, Rbp2-knockout mice develop obesity, glucose intolerance and a fatty liver. Unexpectedly, recent investigations have demonstrated that RBP2 binds long-chain 2-monoacylglycerols (2-MAGs), including the canonical endocannabinoid 2-arachidonoylglycerol, with very high affinity, equivalent to that of retinol binding. Crystallographic studies establish that 2-MAGs bind to a site within RBP2 that fully overlaps with the retinol binding site. When challenged orally with fat, mucosal levels of 2-MAGs in Rbp2 null mice are significantly greater than those of matched controls establishing that RBP2 is a physiologically relevant MAG-binding protein. The rise in MAG levels is accompanied by elevations in circulating levels of the hormone glucose-dependent insulinotropic polypeptide (GIP). It is not understood how retinoid and/or MAG binding to RBP2 affects the functions of this protein, nor is it presently understood how these contribute to the metabolic and hormonal phenotypes observed for Rbp2-deficient mice.
Collapse
Affiliation(s)
- William S Blaner
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Pierre-Jacques Brun
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Rossana M Calderon
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Marcin Golczak
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
33
|
Gimeno RE, Briere DA, Seeley RJ. Leveraging the Gut to Treat Metabolic Disease. Cell Metab 2020; 31:679-698. [PMID: 32187525 PMCID: PMC7184629 DOI: 10.1016/j.cmet.2020.02.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/23/2019] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
Abstract
25 years ago, the future of treating obesity and diabetes focused on end organs known to be involved in energy balance and glucose regulation, including the brain, muscle, adipose tissue, and pancreas. Today, the most effective therapies are focused around the gut. This includes surgical options, such as vertical sleeve gastrectomy and Roux-en-Y gastric bypass, that can produce sustained weight loss and diabetes remission but also extends to pharmacological treatments that simulate or amplify various signals that come from the gut. The purpose of this Review is to discuss the wealth of approaches currently under development that seek to further leverage the gut as a source of novel therapeutic opportunities with the hope that we can achieve the effects of surgical interventions with less invasive and more scalable solutions.
Collapse
Affiliation(s)
- Ruth E Gimeno
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA
| | - Daniel A Briere
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
34
|
Lee SA, Yang KJZ, Brun PJ, Silvaroli JA, Yuen JJ, Shmarakov I, Jiang H, Feranil JB, Li X, Lackey AI, Krężel W, Leibel RL, Libien J, Storch J, Golczak M, Blaner WS. Retinol-binding protein 2 (RBP2) binds monoacylglycerols and modulates gut endocrine signaling and body weight. SCIENCE ADVANCES 2020; 6:eaay8937. [PMID: 32195347 PMCID: PMC7065888 DOI: 10.1126/sciadv.aay8937] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/16/2019] [Indexed: 05/09/2023]
Abstract
Expressed in the small intestine, retinol-binding protein 2 (RBP2) facilitates dietary retinoid absorption. Rbp2-deficient (Rbp2-/- ) mice fed a chow diet exhibit by 6-7 months-of-age higher body weights, impaired glucose metabolism, and greater hepatic triglyceride levels compared to controls. These phenotypes are also observed when young Rbp2-/- mice are fed a high fat diet. Retinoids do not account for the phenotypes. Rather, RBP2 is a previously unidentified monoacylglycerol (MAG)-binding protein, interacting with the endocannabinoid 2-arachidonoylglycerol (2-AG) and other MAGs with affinities comparable to retinol. X-ray crystallographic studies show that MAGs bind in the retinol binding pocket. When challenged with an oil gavage, Rbp2-/- mice show elevated mucosal levels of 2-MAGs. This is accompanied by significantly elevated blood levels of the gut hormone GIP (glucose-dependent insulinotropic polypeptide). Thus, RBP2, in addition to facilitating dietary retinoid absorption, modulates MAG metabolism and likely signaling, playing a heretofore unknown role in systemic energy balance.
Collapse
Affiliation(s)
- Seung-Ah Lee
- Department of Medicine, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Kryscilla Jian Zhang Yang
- Department of Medicine, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Pierre-Jacques Brun
- Department of Medicine, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Josie A. Silvaroli
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Jason J. Yuen
- Department of Medicine, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Igor Shmarakov
- Department of Medicine, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Hongfeng Jiang
- Department of Medicine, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jun B. Feranil
- Department of Medicine, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Xueting Li
- PhD Program in Nutritional and Metabolic Biology, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Atreju I. Lackey
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, USA
| | - Wojciech Krężel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, U1258, CNRS, UMR 7104, Unistra, Illkirch 67404, France
| | - Rudolph L. Leibel
- Department of Pediatrics, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jenny Libien
- Department of Pathology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Judith Storch
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, USA
| | - Marcin Golczak
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, USA
| | - William S. Blaner
- Department of Medicine, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
35
|
Enhanced GIP Secretion in Obesity Is Associated with Biochemical Alteration and miRNA Contribution to the Development of Liver Steatosis. Nutrients 2020; 12:nu12020476. [PMID: 32069846 PMCID: PMC7071278 DOI: 10.3390/nu12020476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 12/16/2022] Open
Abstract
Nutrient excess enhances glucose-dependent insulinotropic polypeptide (GIP) secretion, which may in turn contribute to the development of liver steatosis. We hypothesized that elevated GIP levels in obesity may affect markers of liver injury through microRNAs. The study involved 128 subjects (body mass index (BMI) 25–40). Fasting and postprandial GIP, glucose, insulin, and lipids, as well as fasting alanine aminotransferase (ALT), γ-glutamyltransferase (GGT), cytokeratin-18, fibroblast growth factor (FGF)-19, and FGF-21 were determined. TaqMan low density array was used for quantitative analysis of blood microRNAs. Fasting GIP was associated with ALT [β = 0.16 (confidence interval (CI): 0.01–0.32)], triglycerides [β = 0.21 (95% CI: 0.06–0.36], and FGF-21 [β = 0.20 (95%CI: 0.03–0.37)]; and postprandial GIP with GGT [β = 0.17 (95%CI: 0.03–0.32)]. The odds ratio for elevated fatty liver index (>73%) was 2.42 (95%CI: 1.02–5.72) for high GIP versus low GIP patients. The miRNAs profile related to a high GIP plasma level included upregulated miR-136-5p, miR-320a, miR-483-5p, miR-520d-5p, miR-520b, miR-30e-3p, and miR-571. Analysis of the interactions of these microRNAs with gene expression pathways suggests their potential contribution to the regulation of the activity of genes associated with insulin resistance, fatty acids metabolism, and adipocytokines signaling. Exaggerated fasting and postprandial secretion of GIP in obesity are associated with elevated liver damage markers as well as FGF-21 plasma levels. Differentially expressed microRNAs suggest additional, epigenetic factors contributing to the gut–liver cross-talk.
Collapse
|
36
|
Martin AM, Sun EW, Keating DJ. Mechanisms controlling hormone secretion in human gut and its relevance to metabolism. J Endocrinol 2019; 244:R1-R15. [PMID: 31751295 PMCID: PMC6892457 DOI: 10.1530/joe-19-0399] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/18/2019] [Indexed: 12/16/2022]
Abstract
The homoeostatic regulation of metabolism is highly complex and involves multiple inputs from both the nervous and endocrine systems. The gut is the largest endocrine organ in our body and synthesises and secretes over 20 different hormones from enteroendocrine cells that are dispersed throughout the gut epithelium. These hormones include GLP-1, PYY, GIP, serotonin, and CCK, each of whom play pivotal roles in maintaining energy balance and glucose homeostasis. Some are now the basis of several clinically used glucose-lowering and weight loss therapies. The environment in which these enteroendocrine cells exist is also complex, as they are exposed to numerous physiological inputs including ingested nutrients, circulating factors and metabolites produced from neighbouring gut microbiome. In this review, we examine the diverse means by which gut-derived hormones carry out their metabolic functions through their interactions with different metabolically important organs including the liver, pancreas, adipose tissue and brain. Furthermore, we discuss how nutrients and microbial metabolites affect gut hormone secretion and the mechanisms underlying these interactions.
Collapse
Affiliation(s)
- Alyce M Martin
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Emily W Sun
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Damien J Keating
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Correspondence should be addressed to D J Keating:
| |
Collapse
|
37
|
Volkoff H. Fish as models for understanding the vertebrate endocrine regulation of feeding and weight. Mol Cell Endocrinol 2019; 497:110437. [PMID: 31054868 DOI: 10.1016/j.mce.2019.04.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 12/17/2022]
Abstract
The frequencies of eating disorders and obesity have increased worldwide in recent years. Their pathophysiologies are still unclear, but recent evidence suggests that they might be related to changes in endocrine and neural factors that regulate feeding and energy homeostasis. In order to develop efficient therapeutic drugs, a more thorough knowledge of the neuronal circuits and mechanisms involved is needed. Although to date, rodents have mostly been used models in the area of neuroscience and neuroendocrinology, an increasing number of studies use non-mammalian vertebrates, in particular fish, as model systems. Fish present several advantages over mammalian models and they share genetic and physiological homology to mammals with close similarities in the mechanisms involved in the neural and endocrine regulation of appetite. This review briefly describes the regulation of feeding in two model species, goldfish and zebrafish, how this regulation compares to that in mammals, and how these fish could be used for studies on endocrine regulation of eating and weight and its dysregulations.
Collapse
Affiliation(s)
- Helene Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|
38
|
Holtzman B, Ackerman KE. Measurement, Determinants, and Implications of Energy Intake in Athletes. Nutrients 2019; 11:E665. [PMID: 30893893 PMCID: PMC6472042 DOI: 10.3390/nu11030665] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/09/2019] [Accepted: 03/15/2019] [Indexed: 12/28/2022] Open
Abstract
Appropriate energy intake is important for the health and performance of athletes. When an athlete's energy intake is not concordant with energy expenditure, short- and long-term performance can be compromised and negative health effects may arise. The energy intake patterns of athletes are subject to numerous effectors, including exercise response, time, and availability of food. To assess different determinants of energy intake in athletes, we reviewed recent literature regarding the response of appetite-regulating hormones to exercise, appetite perceptions following exercise, chronic exercise-induced adaptations regarding appetite, and social factors regarding energy intake. Additionally, we discussed consequences of aberrant energy intake. The purpose of this review is to clarify understanding about energy intake in athletes and provide insights into methods toward maintaining proper energy intake.
Collapse
Affiliation(s)
- Bryan Holtzman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Female Athlete Program, Division of Sports Medicine and Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA.
| | - Kathryn E Ackerman
- Female Athlete Program, Division of Sports Medicine and Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA.
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA.
- Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|