1
|
Luo F, Deng Y, Angelov B, Angelova A. Melatonin and the nervous system: nanomedicine perspectives. Biomater Sci 2025. [PMID: 40231558 DOI: 10.1039/d4bm01609b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
The mechanism of action of melatonin on the nervous system, sleep, cognitive deficits, and aging is not fully understood. Neurodegenerative diseases (ND) are one of the leading causes of disability and mortality worldwide. Sleeping and cognitive impairments also represent common and serious public health problems, particularly deteriorating with the aging process. Melatonin, as a neuromodulatory hormone, regulates circadian rhythms and the sleep-wake cycle, with functions extending to antioxidant, anti-inflammatory, neuroprotective, and anti-aging properties. However, melatonin is a hydrophobic compound with relatively low water solubility and a short half-life. While melatonin can cross the blood-brain barrier, exogenous melatonin administered orally or intravenously has poor bioavailability, undergoes rapid metabolism in the circulation, and shows limited brain accumulation, ultimately compromising its therapeutic efficacy. In recent years, the convergence of melatonin research with nanomedicine ensures safe therapeutic uses, limited drug degradation, and perspectives for targeted drug delivery to the central nervous system. Here we outline the promising neurotherapeutic properties of nanomaterials as carriers loaded with melatonin drug alone or in combinations with other active molecules.
Collapse
Affiliation(s)
- Fucen Luo
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, F-91400 Orsay, France.
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, No.1, Jinlian Road, Longwan District, Wenzhou, Zhejiang 325001, China
| | - Borislav Angelov
- Extreme Light Infrastructure ERIC, Department of Structural Dynamics, CZ-25241 Dolni Brezany, Czech Republic
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, F-91400 Orsay, France.
| |
Collapse
|
2
|
Alidadi M, Omidi N, Abdi M, Mohammadi M, Shabani M, Kashani IR. Melatonin ameliorates astrogliosis and microgliosis in a cuprizone demyelinating mouse model. Biochem Biophys Rep 2025; 41:101929. [PMID: 39926210 PMCID: PMC11803163 DOI: 10.1016/j.bbrep.2025.101929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 02/11/2025] Open
Abstract
Background and purpose Several investigations have reported that melatonin is involved in the amelioration of the inflammatory process, improvement of myelin function, and regeneration in the central nervous system (CNS). The current study aimed to evaluate the protective effect of melatonin in cuprizone (CPZ)-induced myelin damage in the corpus callosum (CC) and explore the plausible underlying mechanisms of remyelination capacity and/or neuroprotection. Method We administered cuprizone in chow either alone daily for 6 weeks or combined with simultaneously applied melatonin intra-peritoneal injections. we studied demyelination by LFB staining, oligodendrocyte staining using anti-Olig2 or anti-APC antibodies. In addition, we visualized microgliosis and astrocytosis by staining with anti-Iba-1 and anti-GFAP antibodies. Furthermore, we study the effect of melatonin on mRNA expression of Musashi-1, Hes-1 and Notch-1 genes. Results Our data showed that cuprizone intoxication caused a significant oligodendrocyte loss, demyelination, and reactive gliosis in CC. Administration of melatonin prevented the demyelination in CC as determined by Luxol fast blue staining. Furthermore, we found that the melatonin significantly suppressed the cuprizone-induced microgliosis and astrocytosis. while the frequency of oligodendrocytes (Olig2+) was significantly enhanced in the CC after melatonin administration. In addition, melatonin significantly modulated Musashi1, Hes1, and Notch1 mRNA expression in the CC of mice. Conclusion These results provide evidence that melatonin abolishes destructive cuprizone effects in the mouse corpus callosum by restoring oligodendrocyte generation, remyelination, and decreasing astrogliosis and microgliosis.
Collapse
Affiliation(s)
- Mehdi Alidadi
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Omidi
- Cardiac Primary Prevention Research Center, Tehran Heart Center AND Department of Cardiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdad Abdi
- Department of Anatomy, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Maryam Mohammadi
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Ragerdi Kashani
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Gubin D, Weinert D, Stefani O, Otsuka K, Borisenkov M, Cornelissen G. Wearables in Chronomedicine and Interpretation of Circadian Health. Diagnostics (Basel) 2025; 15:327. [PMID: 39941257 PMCID: PMC11816745 DOI: 10.3390/diagnostics15030327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/14/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025] Open
Abstract
Wearable devices have gained increasing attention for use in multifunctional applications related to health monitoring, particularly in research of the circadian rhythms of cognitive functions and metabolic processes. In this comprehensive review, we encompass how wearables can be used to study circadian rhythms in health and disease. We highlight the importance of these rhythms as markers of health and well-being and as potential predictors for health outcomes. We focus on the use of wearable technologies in sleep research, circadian medicine, and chronomedicine beyond the circadian domain and emphasize actigraphy as a validated tool for monitoring sleep, activity, and light exposure. We discuss various mathematical methods currently used to analyze actigraphic data, such as parametric and non-parametric approaches, linear, non-linear, and neural network-based methods applied to quantify circadian and non-circadian variability. We also introduce novel actigraphy-derived markers, which can be used as personalized proxies of health status, assisting in discriminating between health and disease, offering insights into neurobehavioral and metabolic status. We discuss how lifestyle factors such as physical activity and light exposure can modulate brain functions and metabolic health. We emphasize the importance of establishing reference standards for actigraphic measures to further refine data interpretation and improve clinical and research outcomes. The review calls for further research to refine existing tools and methods, deepen our understanding of circadian health, and develop personalized healthcare strategies.
Collapse
Affiliation(s)
- Denis Gubin
- Department of Biology, Tyumen Medical University, 625023 Tyumen, Russia
- Laboratory for Chronobiology and Chronomedicine, Research Institute of Biomedicine and Biomedical Technologies, Tyumen Medical University, 625023 Tyumen, Russia
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Dietmar Weinert
- Institute of Biology/Zoology, Martin Luther University, 06108 Halle-Wittenberg, Germany;
| | - Oliver Stefani
- Department Engineering and Architecture, Institute of Building Technology and Energy, Lucerne University of Applied Sciences and Arts, 6048 Horw, Switzerland;
| | - Kuniaki Otsuka
- Tokyo Women’s Medical University, Tokyo 162-8666, Japan;
- Halberg Chronobiology Center, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Mikhail Borisenkov
- Department of Molecular Immunology and Biotechnology, Institute of Physiology of Komi Science Centre, Ural Branch of the Russian Academy of Sciences, 167982 Syktyvkar, Russia;
| | - Germaine Cornelissen
- Halberg Chronobiology Center, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
4
|
Zhou Q, Wu XN, Luo WH, Huang QH, Feng LL, Wu Y, Zhang C. Discovery of Effective Inhibitors Against Phosphodiesterase 9, a Potential Therapeutic Target of Alzheimer's Disease with Antioxidant Capacities. Antioxidants (Basel) 2025; 14:123. [PMID: 40002310 PMCID: PMC11852235 DOI: 10.3390/antiox14020123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/22/2024] [Accepted: 01/08/2025] [Indexed: 02/27/2025] Open
Abstract
Alzheimer's disease (AD) is a widely recognized type of dementia that leads to progressive cognitive decline and memory loss, affecting a significant number of people and their families worldwide. Given the multifactorial nature of AD, multitarget-directed ligands (MTDLs) hold promise in developing effective drugs for AD. Phosphodiesterase-9 (PDE9) is emerging as a promising target for AD therapy. In this study, by combining a PDE9 inhibitor C33 with the antioxidant melatonin, we designed and discovered a series of pyrazolopyrimidinone derivatives that simultaneously inhibit PDE9 and possess antioxidant activities. Molecular docking, together with dynamics simulations, were applied to accelerate compound design and reduce synthetic work. Four out of the 14 compounds were validated as effective PDE9 inhibitors with comparable antioxidant activity. Notably, compounds 17b and 17d demonstrated IC50 values of 91 and 89 nM against PDE9, respectively, with good antioxidant activities (ORAC (Trolox) of 2.00 and 2.60). This work provides a new approach for designing MTDLs for the treatment of AD and offers insights for further structural modifications of PDE9 inhibitors with antioxidant capacities.
Collapse
Affiliation(s)
- Qian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China; (Q.Z.); (W.-H.L.)
| | - Xu-Nian Wu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; (X.-N.W.); (Q.-H.H.); (L.-L.F.)
| | - Wei-Hao Luo
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China; (Q.Z.); (W.-H.L.)
| | - Qing-Hua Huang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; (X.-N.W.); (Q.-H.H.); (L.-L.F.)
| | - Ling-Ling Feng
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; (X.-N.W.); (Q.-H.H.); (L.-L.F.)
| | - Yinuo Wu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; (X.-N.W.); (Q.-H.H.); (L.-L.F.)
| | - Chen Zhang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China; (Q.Z.); (W.-H.L.)
| |
Collapse
|
5
|
Yousefi T, Yousef Memar M, Ahmadi Jazi A, Zand S, Reiter RJ, Amirkhanlou S, Mostafa Mir S. Molecular pathways and biological roles of melatonin and vitamin D; effects on immune system and oxidative stress. Int Immunopharmacol 2024; 143:113548. [PMID: 39488920 DOI: 10.1016/j.intimp.2024.113548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/27/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Melatonin and vitamin D are associated with the immune system and have important functions as antioxidants. Numerous attempts have been made to identify up to date activities of these molecules in various physiological conditions. The biosynthetic pathways of melatonin and vitamin D are correlated to sun exposure in an inverse manner. Vitamin D is biosynthesized when the skin is exposed to the sun's UV radiation, while melatonin synthesis occurs in the pineal gland principally during night. Additionally, vitamin D is particularly associated with intestinal absorption, metabolism, and homeostasis of ions including calcium, magnesium. However, melatonin has biological marks and impacts on the sleep-wake cycle. The roles of vitamin D and melatonin are opposed to each other individually, but either of them is implicated in the immune system. Recently studies have shown that melatonin and vitamin D have their specific set of aberrations in different cell signaling pathways, such as serine/threonine-specific protein kinase (Akt), phosphoinositide 3-kinase (PI3K), nuclear factor-κB (NF-κB), mammalian target of rapamycin (mTOR), mitogen-activated protein kinase (MAPK), Wnt/β-catenin, and Notch. The aim of this review is to clarify the common biological functions and molecular mechanisms through which melatonin and vitamin D could deal with different signaling pathways.
Collapse
Affiliation(s)
- Tooba Yousefi
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirreza Ahmadi Jazi
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Shahabedin Zand
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX, USA
| | - Saeid Amirkhanlou
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Nephrology, Clinical Research Development Unit (CRDU), Sayad Shirazi Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| | - Seyed Mostafa Mir
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Iran.
| |
Collapse
|
6
|
Chhe K, Hegde MS, Taylor SR, Farkas ME. Circadian Effects of Melatonin Receptor-Targeting Molecules In Vitro. Int J Mol Sci 2024; 25:13508. [PMID: 39769270 PMCID: PMC11727910 DOI: 10.3390/ijms252413508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/07/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Circadian rhythms are important for maintaining homeostasis, from regulating physiological activities (e.g., sleep-wake cycle and cognitive performance) to cellular processes (e.g., cell cycle and DNA damage repair). Melatonin is a key regulator of circadian rhythms and exerts control by binding to melatonin receptor 1 (MT1), decreasing neuronal firing in the suprachiasmatic nucleus (SCN). Previous work studying effects of melatonin on circadian rhythms utilized in vivo models. Since MT1 is also expressed outside of the brain, it is important to study impacts of melatonin on circadian gene oscillations in vitro. We evaluated the effects of melatonin and an MT1 inverse agonist, UCSF7447, in U2OS circadian reporter cell lines, which facilitate detailed assessments of oscillatory changes. We report that cellular circadian rhythms are responsive to treatment with MT1-targeting molecules; their activities are not dependent upon the SCN. Corroborating in vivo data, both melatonin and UCSF7447 lengthened the periods of BMAL1 and PER2, and while melatonin delayed circadian phases, UCSF7447 advanced them. Compounds were also dosed at two different times, however this did not yield changes. Our findings indicate the importance of utilizing in vitro models and that the direct effects of melatonin likely go beyond the SCN and should be explored further.
Collapse
Affiliation(s)
- Kaitlyn Chhe
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Maya S. Hegde
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | | | - Michelle E. Farkas
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
7
|
Gubin D, Malishevskaya T, Weinert D, Zakharova E, Astakhov S, Cornelissen G. Circadian Disruption in Glaucoma: Causes, Consequences, and Countermeasures. FRONT BIOSCI-LANDMRK 2024; 29:410. [PMID: 39735989 DOI: 10.31083/j.fbl2912410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 12/31/2024]
Abstract
This review explores the intricate relationship between glaucoma and circadian rhythm disturbances. As a principal organ for photic signal reception and transduction, the eye plays a pivotal role in coordinating the body's circadian rhythms through specialized retinal ganglion cells (RGCs), particularly intrinsically photosensitive RGCs (ipRGCs). These cells are critical in transmitting light signals to the suprachiasmatic nucleus (SCN), the central circadian clock that synchronizes physiological processes to the 24-hour light-dark cycle. The review delves into the central circadian body clock, highlighting the importance of the retino-hypothalamic tract in conveying light information from the eyes to the SCN. It underscores the role of melanopsin in ipRGCs in absorbing light and initiating biochemical reactions that culminate in the synchronization of the SCN's firing patterns with the external environment. Furthermore, the review discusses local circadian rhythms within the eye, such as those affecting photoreceptor sensitivity, corneal thickness, and intraocular fluid outflow. It emphasizes the potential of optical coherence tomography (OCT) in studying structural losses of RGCs in glaucoma and the associated circadian rhythm disruption. Glaucomatous retinal damage is identified as a cause of circadian disruption, with mechanisms including oxidative stress, neuroinflammation, and direct damage to RGCs. The consequences of such disruption are complex, affecting systemic and local circadian rhythms, sleep patterns, mood, and metabolism. Countermeasures, with implications for glaucoma management, are proposed that focus on strategies to improve circadian health through balanced melatonin timing, daylight exposure, and potential chronotherapeutic approaches. The review calls for further research to elucidate the mechanisms linking glaucoma and circadian disruption and to develop effective interventions to address this critical aspect of the disease.
Collapse
Affiliation(s)
- Denis Gubin
- Department of Biology, Tyumen Medical University, 625023 Tyumen, Russia
- Laboratory for Chronobiology and Chronomedicine, Research Institute of Biomedicine and Biomedical Technologies, Tyumen Medical University, 625023 Tyumen, Russia
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | | | - Dietmar Weinert
- Institute of Biology/Zoology, Martin Luther University, 06108 Halle-Wittenberg, Germany
| | - Ekaterina Zakharova
- Yakutsk Republican Ophthalmological Clinical Hospital, 677005 Yakutsk, Russia
| | - Sergey Astakhov
- Department of Ophthalmolgy, Pavlov First State Medical University of St Petersburg, 197022 St Petersburg, Russia
| | - Germaine Cornelissen
- Halberg Chronobiology Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
8
|
Gao S, Cheng Q, Hu Y, Fan X, Liang C, Niu C, Kang Q, Wei T. Melatonin antagonizes oxidative stress-induced apoptosis in retinal ganglion cells through activating the thioredoxin-1 pathway. Mol Cell Biochem 2024; 479:3393-3404. [PMID: 38353878 DOI: 10.1007/s11010-024-04924-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 01/05/2024] [Indexed: 03/28/2024]
Abstract
This study aimed to explore the role of melatonin in oxidative stress-induced injury on retinal ganglion cells and the underlying mechanisms. The immortalized RGC-5 cells were treated with H2O2 to induce oxidative injury. Cell viability was measured by Cell Counting Kit-8, and apoptosis was determined by flow cytometry and western blot assays. Reactive oxygen species (ROS), lactate dehydrogenase (LDH), and malondialdehyde (MDA) levels were examined to evaluate oxidative stress levels. In addition, Thioredoxin-1 (Trx1) was silenced in RGC-5 cells using small interfering RNA followed by signaling pathway examination to explore the underlying mechanisms of melatonin in alleviating oxidative injury. Melatonin pre-treatment significantly alleviated H2O2-induced apoptosis in RGC-5 cells. Melatonin also markedly reversed the upregulation of cleaved-caspase 3, cleaved-caspase 9, and Bax expression and downregulation of Bcl-2 expression induced by H2O2. Further analyses presented that melatonin significantly attenuated the increase of ROS, LDH, and MDA levels in RGC-5 cells after H2O2 treatment. Melatonin also abolished the downregulated expression of Superoxide dismutase type 1, Trx1, and Thioredoxin reductase 1, and the reduced activity of thioredoxin reductase in RGC-5 cells after H2O2 treatment. Notably, Trx1 knockdown significantly mitigated the protective effect of melatonin in alleviating H2O2-induced apoptosis and oxidative stress, while administration of compound C, a common inhibitor of c-Jun N-terminal kinase (JNK) signaling, partially reversed the effect of Trx1 silencing, thereby ameliorating the apoptosis and oxidative injury induced by H2O2 in RGC-5 cells. Melatonin could significantly alleviate oxidative stress-induced injury of retinal ganglion cells via modulating Trx1-mediated JNK signaling pathway.
Collapse
Affiliation(s)
- Shan Gao
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China
| | - Qiaochu Cheng
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China
| | - Yaguang Hu
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China
| | - Xiaojuan Fan
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China
| | - Chen Liang
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China
| | - Chen Niu
- Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China
| | - Qianyan Kang
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China
| | - Ting Wei
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
9
|
Kim MS, Kim TH. Anti-Aging Tests for Middle Aged Women. J Menopausal Med 2024; 30:164-169. [PMID: 39829193 PMCID: PMC11745732 DOI: 10.6118/jmm.24012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/06/2024] [Accepted: 10/19/2024] [Indexed: 01/22/2025] Open
Abstract
The interest in aging and anti-aging research has increased significantly in recent years, leading to rapid expansion in the anti-aging market. Aging is associated with gradual physiological changes and an elevated risk of age-related ailments, and is divided into three categories: usual aging, successful aging, and pathological aging. Each category is associated with distinct implications for health and well-being. Middle-aged women who experience accelerated physiological changes that are intensified by hormonal changes during menopause are particularly vulnerable to chronic diseases. The importance of anti-aging tests is increasing since they enable early identification and intervention. Telomere length, oxidative stress markers, DNA repair markers, RNA profiles, inflammatory markers, hormone levels, and epigenetic changes are some molecular parameters studied to test for aging. In addition, a thorough review of middle-aged women's anti-aging profiles also includes monitoring the vitamin D levels and assessing the effects of endocrine-disrupting substances on ovarian aging. The application of personalized medicine paradigms, utilizing various diagnostic methods, will enable accurate risk prediction and the implementation of focused therapies, ultimately promoting the extension of health span and the improvement of quality of life in middle-aged women.
Collapse
Affiliation(s)
- Min-Sun Kim
- Department of Laboratory Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Tae-Hee Kim
- Department of Obstetrics and Gynecology, Soonchunhyang University Bucheon Hospital, Bucheon, Korea.
| |
Collapse
|
10
|
Galvani F, Cammarota M, Vacondio F, Rivara S, Boscia F. Protective Activity of Melatonin Combinations and Melatonin-Based Hybrid Molecules in Neurodegenerative Diseases. J Pineal Res 2024; 76:e70008. [PMID: 39582467 PMCID: PMC11586835 DOI: 10.1111/jpi.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024]
Abstract
The identification of protective agents for the treatment of neurodegenerative diseases is the mainstay therapeutic goal to modify the disease course and arrest the irreversible disability progression. Pharmacological therapies synergistically targeting multiple pathogenic pathways, including oxidative stress, mitochondrial dysfunction, and inflammation, are prime candidates for neuroprotection. Combination or synergistic therapy with melatonin, whose decline correlates with altered sleep/wake cycle and impaired glymphatic "waste clearance" system in neurodegenerative diseases, has a great therapeutic potential to treat inflammatory neurodegenerative states. Despite the protective outcomes observed in preclinical studies, mild or poor outcomes were observed in clinical settings, suggesting that melatonin combinations promoting synergistic actions at appropriate doses might be more suitable to treat multifactorial neurodegenerative disorders. In this review, we first summarize the key melatonin actions and pathways contributing to cell protection and its therapeutic implication in Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). We remark the major controversies in the field, mostly generated by the lack of a common consensus for the optimal dosing, molecular targets, and toxicity. Then, we review the literature investigating the efficacy of melatonin combinations with approved or investigational neuroprotective agents and of melatonin-containing hybrid molecules, both in vitro and in animal models of AD, PD, and MS, as well as the efficacy of add-on melatonin in clinical settings. We highlight the rationale for such melatonin combinations with a focus on the comparison with single-agent treatment and on the assays in which an additive or a synergistic effect has been achieved. We conclude that a better characterization of the mechanisms underlying such melatonin synergistic actions under neuroinflammation at appropriate doses needs to be tackled to advance successful clinical translation of neuroprotective melatonin combination therapies or melatonin-based hybrid molecules.
Collapse
Affiliation(s)
| | - Mariarosaria Cammarota
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, School of MedicineFederico II University of NaplesNaplesItaly
| | | | - Silvia Rivara
- Department of Food and DrugUniversity of ParmaParmaItaly
| | - Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, School of MedicineFederico II University of NaplesNaplesItaly
| |
Collapse
|
11
|
Nacarkucuk E, Bernis ME, Bremer AS, Grzelak K, Zweyer M, Maes E, Burkard H, Sabir H. Neuroprotective Effect of Melatonin in a Neonatal Hypoxia-Ischemia Rat Model Is Regulated by the AMPK/mTOR Pathway. J Am Heart Assoc 2024; 13:e036054. [PMID: 39319465 DOI: 10.1161/jaha.124.036054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/09/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Melatonin has been shown to be neuroprotective in different animal models of neonatal hypoxic-ischemic brain injury. However, its exact molecular mechanism of action remains unknown. Our aim was to prove melatonin's short- and long-term neuroprotection and investigate its role on the AMPK (AMP-activated protein kinase)/mTOR (mammalian target of rapamycin) pathway following neonatal hypoxic-ischemic brain injury. METHODS AND RESULTS Seven-day-old Wistar rat pups were exposed to hypoxia-ischemia, followed by melatonin or vehicle treatment. Detailed analysis of the AMPK/mTOR/autophagy pathway, short- and long-term neuroprotection, myelination, and oligodendrogenesis was performed at different time points. At 7 days after hypoxia-ischemia, melatonin-treated animals showed a significant decrease in tissue loss, increased oligodendrogenesis, and myelination. Long-term neurobehavioral results showed significant motor improvement following melatonin treatment. Molecular pathway analysis showed a decrease in the AMPK expression, with a significant increase at mTOR's downstream substrates, and a significant decrease at the autophagy marker levels in the melatonin group compared with the vehicle group. CONCLUSIONS Melatonin treatment reduced brain area loss and promoted oligodendrogenesis with a clear improvement of motor function. We found that melatonin associated neuroprotection is regulated via the AMPK/mTOR/autophagy pathway. Considering the beneficial effects of melatonin and the results of our study, melatonin seems to be an optimal candidate for the treatment of newborns with hypoxic-ischemic brain injury in high- as well as in low- and middle-income countries.
Collapse
Affiliation(s)
- Efe Nacarkucuk
- Department of Neonatology and Pediatric Intensive Care Children's Hospital University of Bonn Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Bonn Germany
| | - Maria E Bernis
- Department of Neonatology and Pediatric Intensive Care Children's Hospital University of Bonn Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Bonn Germany
| | - Anna-Sophie Bremer
- Department of Neonatology and Pediatric Intensive Care Children's Hospital University of Bonn Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Bonn Germany
| | - Kora Grzelak
- Department of Neonatology and Pediatric Intensive Care Children's Hospital University of Bonn Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Bonn Germany
| | - Margit Zweyer
- Department of Neonatology and Pediatric Intensive Care Children's Hospital University of Bonn Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Bonn Germany
| | - Elke Maes
- Department of Neonatology and Pediatric Intensive Care Children's Hospital University of Bonn Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Bonn Germany
| | - Hannah Burkard
- Department of Neonatology and Pediatric Intensive Care Children's Hospital University of Bonn Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Bonn Germany
| | - Hemmen Sabir
- Department of Neonatology and Pediatric Intensive Care Children's Hospital University of Bonn Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Bonn Germany
| |
Collapse
|
12
|
Ki MR, Youn S, Kim DH, Pack SP. Natural Compounds for Preventing Age-Related Diseases and Cancers. Int J Mol Sci 2024; 25:7530. [PMID: 39062777 PMCID: PMC11276798 DOI: 10.3390/ijms25147530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Aging is a multifaceted process influenced by hereditary factors, lifestyle, and environmental elements. As time progresses, the human body experiences degenerative changes in major functions. The external and internal signs of aging manifest in various ways, including skin dryness, wrinkles, musculoskeletal disorders, cardiovascular diseases, diabetes, neurodegenerative disorders, and cancer. Additionally, cancer, like aging, is a complex disease that arises from the accumulation of various genetic and epigenetic alterations. Circadian clock dysregulation has recently been identified as an important risk factor for aging and cancer development. Natural compounds and herbal medicines have gained significant attention for their potential in preventing age-related diseases and inhibiting cancer progression. These compounds demonstrate antioxidant, anti-inflammatory, anti-proliferative, pro-apoptotic, anti-metastatic, and anti-angiogenic effects as well as circadian clock regulation. This review explores age-related diseases, cancers, and the potential of specific natural compounds in targeting the key features of these conditions.
Collapse
Affiliation(s)
- Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
- Institute of Industrial Technology, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Sol Youn
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| | - Dong Hyun Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| |
Collapse
|
13
|
Zhang W, Liu D, Yuan M, Zhu LQ. The mechanisms of mitochondrial abnormalities that contribute to sleep disorders and related neurodegenerative diseases. Ageing Res Rev 2024; 97:102307. [PMID: 38614368 DOI: 10.1016/j.arr.2024.102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Sleep is a highly intricate biological phenomenon, and its disorders play a pivotal role in numerous diseases. However, the specific regulatory mechanisms remain elusive. In recent years, the role of mitochondria in sleep disorders has gained considerable attention. Sleep deprivation not only impairs mitochondrial morphology but also decreases the number of mitochondria and triggers mitochondrial dysfunction. Furthermore, mitochondrial dysfunction has been implicated in the onset and progression of various sleep disorder-related neurological diseases, especially neurodegenerative conditions. Therefore, a greater understanding of the impact of sleep disorders on mitochondrial dysfunction may reveal new therapeutic targets for neurodegenerative diseases. In this review, we comprehensively summarize the recent key findings on the mechanisms underlying mitochondrial dysfunction caused by sleep disorders and their role in initiating or exacerbating common neurodegenerative diseases. In addition, we provide fresh insights into the diagnosis and treatment of sleep disorder-related diseases.
Collapse
Affiliation(s)
- Wentao Zhang
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Dan Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Mei Yuan
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
14
|
Bocheva G, Bakalov D, Iliev P, Tafradjiiska-Hadjiolova R. The Vital Role of Melatonin and Its Metabolites in the Neuroprotection and Retardation of Brain Aging. Int J Mol Sci 2024; 25:5122. [PMID: 38791160 PMCID: PMC11121732 DOI: 10.3390/ijms25105122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
While primarily produced in the pineal gland, melatonin's influence goes beyond its well-known role in regulating sleep, nighttime metabolism, and circadian rhythms, in the field of chronobiology. A plethora of new data demonstrates melatonin to be a very powerful molecule, being a potent ROS/RNS scavenger with anti-inflammatory, immunoregulatory, and oncostatic properties. Melatonin and its metabolites exert multiple beneficial effects in cutaneous and systemic aging. This review is focused on the neuroprotective role of melatonin during aging. Melatonin has an anti-aging capacity, retarding the rate of healthy brain aging and the development of age-related neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, amyotrophic lateral sclerosis, etc. Melatonin, as well as its metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), can reduce oxidative brain damage by shielding mitochondria from dysfunction during the aging process. Melatonin could also be implicated in the treatment of neurodegenerative conditions, by modifying their characteristic low-grade neuroinflammation. It can either prevent the initiation of inflammatory responses or attenuate the ongoing inflammation. Drawing on the current knowledge, this review discusses the potential benefits of melatonin supplementation in preventing and managing cognitive impairment and neurodegenerative diseases.
Collapse
Affiliation(s)
- Georgeta Bocheva
- Department of Pharmacology and Toxicology, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Dimitar Bakalov
- Department of Physiology and Pathophysiology, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Petar Iliev
- Department of Physiology and Pathophysiology, Medical University of Sofia, 1431 Sofia, Bulgaria
| | | |
Collapse
|
15
|
Dorranipour D, Pourjafari F, Malekpour-Afshar R, Basiri M, Hosseini M. Astrocyte response to melatonin treatment in rats under high-carbohydrate high-fat diet. J Chem Neuroanat 2024; 136:102389. [PMID: 38215799 DOI: 10.1016/j.jchemneu.2024.102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/29/2023] [Accepted: 01/07/2024] [Indexed: 01/14/2024]
Abstract
The involvement of consumption of high-carbohydrate high-fat (HCHF) diet in cognitive impairment is attributed, at least in part, to the activation of astrocytes, which contributes to the development of neuroinflammation, oxidative stress, and subsequent cognitive deficits. This study aimed to assess the influence of melatonin on cognitive impairment and astrogliosis induced by the HCHF diet in rats. Male Wistar rats were fed an HCHF diet for eight weeks to induce obesity and metabolic syndrome. Subsequently, they received oral melatonin treatment for four weeks at doses of 5 mg/kg, 10 mg/kg, and 30 mg/kg, alongside the HCHF diet. Cognitive function was evaluated using the Y-maze test, while the levels of proinflammatory cytokines, oxidative stress, and the number glial fibrillary acidic protein (GFAP) positive cells were assessed in the hippocampi and hypothalamus. The consumption of the HCHF diet resulted in weight gain, hyperlipidemia, impaired glucose tolerance, cognitive decline, neuroinflammation, oxidative stress damage, and astrogliosis in rats. Although melatonin treatment did not demonstrate beneficial effects on blood glucose and lipid metabolism, it improved the impaired working memory caused by the HCHF diet. Melatonin exhibited a dose-dependent reduction of astrogliosis, neuroinflammation, and lipid peroxidation while restored superoxide dismutase in the hippocampus and hypothalamus of HCHF diet-treated rats. These findings provide evidence that melatonin inhibits astrocyte activation, thereby attenuating inflammation and minimizing oxidative stress damage induced by the HCHF diet.
Collapse
Affiliation(s)
- Davood Dorranipour
- Department of Anatomical Sciences, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fahimeh Pourjafari
- Department of Anatomical Sciences, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Malekpour-Afshar
- Pathology and Stem Cells Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohsen Basiri
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mehran Hosseini
- Department of Anatomical Sciences, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
16
|
Gubin D. Chronotherapeutic Approaches. CHRONOBIOLOGY AND CHRONOMEDICINE 2024:536-577. [DOI: 10.1039/bk9781839167553-00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
The chapter provides a comprehensive review of current approaches to personalized chronodiagnosis and chronotherapy. We discuss circadian clock drug targets that aim to affect cellular clock machinery, circadian mechanisms of pharmacokinetics/pharmacodynamics, and chronotherapeutic approaches aimed at increasing treatment efficacy and minimizing its side effects. We explore how chronotherapy can combat acquired and compensatory drug resistance. Non-pharmacological interventions for clock preservation and enhancement are also overviewed, including light treatment, melatonin, sleep scheduling, time-restricted feeding, physical activity, and exercise.
Collapse
Affiliation(s)
- Denis Gubin
- aTyumen State Medical University, Tyumen, Russia
- bTyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russia
| |
Collapse
|
17
|
Yi YJ, Tang H, Pi PL, Zhang HW, Du SY, Ge WY, Dai Q, Zhao ZY, Li J, Sun Z. Melatonin in cancer biology: pathways, derivatives, and the promise of targeted delivery. Drug Metab Rev 2024; 56:62-79. [PMID: 38226647 DOI: 10.1080/03602532.2024.2305764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/10/2024] [Indexed: 01/17/2024]
Abstract
Melatonin, historically recognized for its primary role in regulating circadian rhythms, has expanded its influence particularly due to its wide range of biological activities. It has firmly established itself in cancer research. To highlight its versatility, we delved into how melatonin interacts with key signaling pathways, such as the Wnt/β-Catenin, PI3K, and NF-κB pathways, which play foundational roles in tumor development and progression. Notably, melatonin can intricately modulate these pathways, potentially affecting various cellular functions such as apoptosis, metastasis, and immunity. Additionally, a comprehensive review of current clinical studies provides a dual perspective. These studies confirm melatonin's potential in cancer management but also underscore its inherent limitations, particularly its limited bioavailability, which often relegates it to a supplementary role in treatments. Despite this limitation, there is an ongoing quest for innovative solutions and current advancements include the development of melatonin derivatives and cutting-edge delivery systems. By synthesizing the past, present, and future, this review provides a detailed overview of melatonin's evolving role in oncology, positioning it as a potential cornerstone in future cancer therapeutics.
Collapse
Affiliation(s)
- Yu-Juan Yi
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Hong Tang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Peng-Lai Pi
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | | | - Si-Yu Du
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Wei-Ye Ge
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Qi Dai
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Zi-Yan Zhao
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Jia Li
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zheng Sun
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
18
|
Rafiyian M, Gouyandeh F, Saati M, Davoodvandi A, Rasooli Manesh SM, Asemi R, Sharifi M, Asemi Z. Melatonin affects the expression of microRNA-21: A mini-review of current evidence. Pathol Res Pract 2024; 254:155160. [PMID: 38277748 DOI: 10.1016/j.prp.2024.155160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
Melatonin (MLT) is an endogenous hormone produced by pineal gland which possess promising anti-tumor effects. Anti-inflammatory and anti-oxidant properties of MLT, along with its immunomodulatory, proapoptotic, and anti-angiogenic properties, are often referred to the main mechanisms of its anti-tumor effects. Recent evidence has suggested that epigenetic alterations are also involved in the anti-tumor properties of MLT. Among these MLT-induced epigenetic alterations is modulation of the expression of several oncogenic and tumor suppressor microRNAs(miRNAs). MiRNAs are among the most promising and potential therapeutic and diagnostic tools in different diseases and enhanced the development of better therapeutic drugs. Suppression of oncomicroRNAs such as microRNA-21, - 20a, and - 27a as well as, up-regulation of microRNA-34 a/c are among the most important effects of MLT on microRNAs homeostasis. Recently, miR-21 has attracted the attention of scientists due to the its wide range of effects on different cancers and diseases. Regulation of this RNA may be a key to the development of better therapeutic targets. The present review will summarize the findings of in vitro and experimental studies of MLT-induced impacts on the expression of microRNAs which are involved in different models and numerous stages of tumor initiation, growth, metastasis, and chemo-resistance.
Collapse
Affiliation(s)
- Mahdi Rafiyian
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Farzaneh Gouyandeh
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Saati
- Department of Nursing, Semnan Branch, Islamic Azad University, Semnan, Islamic Republic of Iran
| | - Amirhossein Davoodvandi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | | | - Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
19
|
Asghar S, Mushtaq N, Ahmed A, Anwar L, Munawar R, Akhtar S. Potential of Tryptamine Derivatives as Multi-Target Directed Ligands for Alzheimer's Disease: AChE, MAO-B, and COX-2 as Molecular Targets. Molecules 2024; 29:490. [PMID: 38276568 PMCID: PMC10820890 DOI: 10.3390/molecules29020490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024] Open
Abstract
Extensive research has been dedicated to develop compounds that can target multiple aspects of Alzheimer's disease (AD) treatment due to a growing understanding of AD's complex multifaceted nature and various interconnected pathological pathways. In the present study, a series of biological assays were performed to evaluate the potential of the tryptamine analogues synthesized earlier in our lab as multi-target-directed ligands (MTDLs) for AD. To assess the inhibitory effects of the compounds, various in vitro assays were employed. Three compounds, SR42, SR25, and SR10, displayed significant AChE inhibitory activity, with IC50 values of 0.70 µM, 0.17 µM, and 1.00 µM, respectively. These values superseded the standard drug donepezil (1.96 µM). In the MAO-B inhibition assay, SR42 (IC50 = 43.21 µM) demonstrated superior inhibitory effects as compared to tryptamine and other derivatives. Moreover, SR22 (84.08%), SR24 (79.30%), and SR42 (75.16%) exhibited notable percent inhibition against the COX-2 enzyme at a tested concentration of 100 µM. To gain insights into their binding mode and to validate the biological results, molecular docking studies were conducted. Overall, the results suggest that SR42, a 4,5 nitro-benzoyl derivative of tryptamine, exhibited significant potential as a MTDL and warrants further investigation for the development of anti-Alzheimer agents.
Collapse
Affiliation(s)
- Saira Asghar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hamdard University, Karachi 74600, Pakistan;
| | - Nousheen Mushtaq
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Ahsaan Ahmed
- Institute of Pharmaceutical Sciences, Jinnah Sindh Medical University, Karachi 75510, Pakistan;
| | - Laila Anwar
- Department of Pharmacology, Faculty of Pharmacy, Hamdard University, Karachi 74600, Pakistan;
| | - Rabya Munawar
- Department of Pharmaceutical Chemistry, Dow College of Pharmacy, Dow University of Health Sciences, Karachi 74200, Pakistan;
| | - Shamim Akhtar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hamdard University, Karachi 74600, Pakistan;
| |
Collapse
|
20
|
Steinbach MJ, Denburg NL. Melatonin in Alzheimer's Disease: Literature Review and Therapeutic Trials. J Alzheimers Dis 2024; 101:S193-S204. [PMID: 39422936 DOI: 10.3233/jad-230760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
There are currently no effective treatments to prevent, halt, or reverse Alzheimer's disease (AD), the most common cause of dementia in older adults. Melatonin, a relatively harmless over-the-counter supplement, may offer some benefits to patients with AD. Melatonin is known for its sleep-enhancing properties, but research shows that it may provide other advantages as well, such as antioxidant and anti-amyloidogenic properties. Clinical trials for melatonin use in AD have mixed results but, overall, show modest benefits. However, it is difficult to interpret clinical research in this area as there is little standardization to guide the administration and study of melatonin. This review covers basic biology and clinical research on melatonin in AD focusing on prominent hypotheses of pathophysiology of neurodegeneration and cognitive decline in AD (i.e., amyloid and tau hypotheses, antioxidant and anti-inflammation, insulin resistance and glucose homeostasis, the cholinergic hypothesis, sleep regulation, and the hypothalamic-pituitary-adrenal axis and cortisol). This is followed by a discussion on pending clinical trials, considerations for future research protocols, and open questions in the field.
Collapse
Affiliation(s)
- Marilyn J Steinbach
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
- Department of Neurology, Division of Cognitive Neuroscience, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Natalie L Denburg
- Department of Neurology, Division of Cognitive Neuroscience, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
21
|
Keshtpour Amlashi Z, Sheida F, Anbiaee R, Tapak L, Hosseini SR, Mosaedian H, Barati N. The Effect of Melatonin on Increasing the Health Related Quality of Life in Non-Metastatic Breast Cancer Patients: Three-Year Follow up a Clinical Trial. Integr Cancer Ther 2024; 23:15347354241237520. [PMID: 38622853 PMCID: PMC11020700 DOI: 10.1177/15347354241237520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/01/2024] [Accepted: 02/20/2024] [Indexed: 04/17/2024] Open
Abstract
INTRODUCTION Although breast cancer is common worldwide, if diagnosed early and treated on time, the probability of recovery is high and patients often experience a long life. Reducing the quality of life is a common side effect in patients. Melatonin may have an important role in fatigue, sleep disorders and, as a result, the health-related quality of life (HRQoL) in people. About 184 patients with breast cancer were enrolled in 2 groups: intervention with daily melatonin intake of 18 mg for 3 years (93 patients) and the control group with placebo intake (91 patients). Health-related quality of life and the effect of melatonin on increasing that were evaluated with the EORTC QLQ-C30 questionnaire, third edition at the beginning, 2 months later and 3 years after the beginning of the study. RESULTS The general score of the HRQoL was significantly different both in the passage of time and in the comparative study of the 2 groups, and it was better in the melatonin group (P < .05). CONCLUSION Long-term use of 18 mg of melatonin for 3 years in patients with non-metastatic breast cancer can lead to an increase in the patients' quality of life.
Collapse
Affiliation(s)
| | - Fatemeh Sheida
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Robab Anbiaee
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leili Tapak
- Department of Biostatistics, School of Public Health, Modeling of No Communicable Diseases Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | | | - Nastaran Barati
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
22
|
Cardinali DP, Pandi-Perumal SR, Brown GM. Melatonin as a Chronobiotic and Cytoprotector in Non-communicable Diseases: More than an Antioxidant. Subcell Biochem 2024; 107:217-244. [PMID: 39693027 DOI: 10.1007/978-3-031-66768-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
A circadian disruption, manifested by disturbed sleep and low-grade inflammation, is commonly seen in noncommunicable diseases (NCDs). Cardiovascular, respiratory and renal disorders, diabetes and the metabolic syndrome, cancer, and neurodegenerative diseases are among the most common NCDs prevalent in today's 24-h/7 days Society. The decline in plasma melatonin, which is a conserved phylogenetic molecule across all known aerobic creatures, is a constant feature in NCDs. The daily evening melatonin surge synchronizes both the central pacemaker located in the hypothalamic suprachiasmatic nuclei (SCN) and myriads of cellular clocks in the periphery ("chronobiotic effect"). Melatonin is the prototypical endogenous chronobiotic agent. Several meta-analyses and consensus studies support the use of melatonin to treat sleep/wake cycle disturbances associated with NCDs. Melatonin also has cytoprotective properties, acting primarily not only as an antioxidant by buffering free radicals, but also by regulating inflammation, down-regulating pro-inflammatory cytokines, suppressing low-grade inflammation, and preventing insulin resistance, among other effects. Melatonin's phylogenetic conservation is explained by its versatility of effects. In animal models of NCDs, melatonin treatment prevents a wide range of low-inflammation-linked alterations. As a result, the therapeutic efficacy of melatonin as a chronobiotic/cytoprotective drug has been proposed. Sirtuins 1 and 3 are at the heart of melatonin's chronobiotic and cytoprotective function, acting as accessory components or downstream elements of circadian oscillators and exhibiting properties such as mitochondrial protection. Allometric calculations based on animal research show that melatonin's cytoprotective benefits may require high doses in humans (in the 100 mg/day range). If melatonin is expected to improve health in NCDs, the low doses currently used in clinical trials (i.e., 2-10 mg) are unlikely to be beneficial. Multicentre double-blind studies are required to determine the potential utility of melatonin in health promotion. Moreover, melatonin dosage and levels used should be re-evaluated based on preclinical research information.
Collapse
Affiliation(s)
- Daniel P Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina.
| | - Seithikurippu R Pandi-Perumal
- Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Gregory M Brown
- Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
23
|
Pappolla MA, Martins RN, Poeggeler B, Omar RA, Perry G. Oxidative Stress in Alzheimer's Disease: The Shortcomings of Antioxidant Therapies. J Alzheimers Dis 2024; 101:S155-S178. [PMID: 39422961 DOI: 10.3233/jad-240659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by gradual and progressive cognitive decline leading to dementia. At its core, the neuropathological features of AD include hallmark accumulations of amyloid-β and hyperphosphorylated tau proteins. Other harmful processes, such as oxidative stress and inflammation, contribute to the disease's neuropathological progression. This review evaluates the role of oxidative stress in AD, placing a spotlight on the disappointing outcomes of various antioxidant clinical trials. Several hypotheses are discussed that might elucidate the failures of these therapies in AD. Specifically: 1) The paradoxical and overlooked harmful implications of prooxidant intermediates, particularly stemming from conventional antioxidants like vitamins E and C; 2) The challenges and failure to appreciate the issue of bioavailability-epitomized by the dictum "no on-site protection, no protection"-and the preeminent, yet often ignored, role played by endogenous antioxidant enzymes in combating oxidative stress; 3) The influence of unrecognized etiologies, such as latent infectious agents and others, as foundational drivers of oxidative stress in AD; 4) The underestimation of the complexity of oxidative mechanisms and the necessity of multi-targeted therapeutic approaches, such as those provided by various diets; and 5) The limitations of clinical trial designs in fully capturing the effects of antioxidants on AD progression. This article also examines the outcomes of select clinical trials while highlighting the challenges and barriers these therapies pose, offering insights into potential mechanisms to overcome their marginal success.
Collapse
Affiliation(s)
- Miguel A Pappolla
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ralph N Martins
- Aging and Alzheimer's Disease Centre, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Burkhard Poeggeler
- Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Faculty of Biology and Psychology, Georg August University, Gottingen, Germany
| | - Rawhi A Omar
- Department of Pathology, University of Louisville, Louisville, KY, USA
| | - George Perry
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
24
|
Silvestro S, Raffaele I, Mazzon E. Modulating Stress Proteins in Response to Therapeutic Interventions for Parkinson's Disease. Int J Mol Sci 2023; 24:16233. [PMID: 38003423 PMCID: PMC10671288 DOI: 10.3390/ijms242216233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative illness characterized by the degeneration of dopaminergic neurons in the substantia nigra, resulting in motor symptoms and without debilitating motors. A hallmark of this condition is the accumulation of misfolded proteins, a phenomenon that drives disease progression. In this regard, heat shock proteins (HSPs) play a central role in the cellular response to stress, shielding cells from damage induced by protein aggregates and oxidative stress. As a result, researchers have become increasingly interested in modulating these proteins through pharmacological and non-pharmacological therapeutic interventions. This review aims to provide an overview of the preclinical experiments performed over the last decade in this research field. Specifically, it focuses on preclinical studies that center on the modulation of stress proteins for the treatment potential of PD. The findings display promise in targeting HSPs to ameliorate PD outcomes. Despite the complexity of HSPs and their co-chaperones, proteins such as HSP70, HSP27, HSP90, and glucose-regulated protein-78 (GRP78) may be efficacious in slowing or preventing disease progression. Nevertheless, clinical validation is essential to confirm the safety and effectiveness of these preclinical approaches.
Collapse
Affiliation(s)
| | | | - Emanuela Mazzon
- IRCCS Centro Neurolesi Bonino Pulejo, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (S.S.); (I.R.)
| |
Collapse
|
25
|
Keihani A, Mayeli A, Ferrarelli F. Circadian Rhythm Changes in Healthy Aging and Mild Cognitive Impairment. Adv Biol (Weinh) 2023; 7:e2200237. [PMID: 36403250 PMCID: PMC10199146 DOI: 10.1002/adbi.202200237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/01/2022] [Indexed: 11/21/2022]
Abstract
Disruptions in circadian rhythms can occur in healthy aging; however, these changes are more severe and pervasive in individuals with age-related and neurodegenerative diseases, such as dementia. Circadian rhythm alterations are also present in preclinical stages of dementia, for example, in patients with mild cognitive impairments (MCI); thus, providing a unique window of opportunity for early intervention in neurodegenerative disorders. Nonetheless, there is a lack of studies examining the association between relevant changes in circadian rhythms and their relationship with cognitive dysfunctions in MCI individuals. In this review, circadian system alterations occurring in MCI patients are examined compared to healthy aging individuals while also considering their association with MCI neurocognitive alterations. The main findings are that abnormal circadian changes in rest-activity, core body temperature, melatonin, and cortisol rhythms appear in the MCI stage and that these circadian rhythm disruptions are associated with some of the neurocognitive deficits observed in MCI patients. In addition, preliminary evidence indicates that interventions aimed at restoring regular circadian rhythms may prevent or halt the progress of neurodegenerative diseases and mitigate their related cognitive impairments. Future longitudinal studies with repeated follow-up assessments are needed to establish the translational potential of these findings in clinical practice.
Collapse
Affiliation(s)
- Ahmadreza Keihani
- Department of Psychiatry, University of Pittsburgh, 3501 Forbes Ave, Pittsburgh, PA, 15213, USA
| | - Ahmad Mayeli
- Department of Psychiatry, University of Pittsburgh, 3501 Forbes Ave, Pittsburgh, PA, 15213, USA
| | - Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh, 3501 Forbes Ave, Pittsburgh, PA, 15213, USA
| |
Collapse
|
26
|
Tozihi M, Shademan B, Yousefi H, Avci CB, Nourazarian A, Dehghan G. Melatonin: a promising neuroprotective agent for cerebral ischemia-reperfusion injury. Front Aging Neurosci 2023; 15:1227513. [PMID: 37600520 PMCID: PMC10436333 DOI: 10.3389/fnagi.2023.1227513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Cerebral ischemia-reperfusion (CIR) injury is initiated by the generation of reactive oxygen species (ROS), which leads to the oxidation of cellular proteins, DNA, and lipids as an initial event. The reperfusion process impairs critical cascades that support cell survival, including mitochondrial biogenesis and antioxidant enzyme activity. Failure to activate prosurvival signals may result in increased neuronal cell death and exacerbation of CIR damage. Melatonin, a hormone produced naturally in the body, has high concentrations in both the cerebrospinal fluid and the brain. However, melatonin production declines significantly with age, which may contribute to the development of age-related neurological disorders due to reduced levels. By activating various signaling pathways, melatonin can affect multiple aspects of human health due to its diverse range of activities. Therefore, understanding the underlying intracellular and molecular mechanisms is crucial before investigating the neuroprotective effects of melatonin in cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Majid Tozihi
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Behrouz Shademan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Yousefi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Cigir Biray Avci
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Türkiye
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
27
|
Jurcau A, Jurcau CM. Mitochondria in Huntington's disease: implications in pathogenesis and mitochondrial-targeted therapeutic strategies. Neural Regen Res 2023; 18:1472-1477. [PMID: 36571344 PMCID: PMC10075114 DOI: 10.4103/1673-5374.360289] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Huntington's disease is a genetic disease caused by expanded CAG repeats on exon 1 of the huntingtin gene located on chromosome 4. Compelling evidence implicates impaired mitochondrial energetics, altered mitochondrial biogenesis and quality control, disturbed mitochondrial trafficking, oxidative stress and mitochondrial calcium dyshomeostasis in the pathogenesis of the disorder. Unfortunately, conventional mitochondrial-targeted molecules, such as cysteamine, creatine, coenzyme Q10, or triheptanoin, yielded negative or inconclusive results. However, future therapeutic strategies, aiming to restore mitochondrial biogenesis, improving the fission/fusion balance, and improving mitochondrial trafficking, could prove useful tools in improving the phenotype of Huntington's disease and, used in combination with genome-editing methods, could lead to a cure for the disease.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea; Neurology 3 Ward, Clinical Emergency Hospital, Oradea, Romania
| | | |
Collapse
|
28
|
Milanowski J, Kozerawski K, Falęcka W, Dudek D, Lisewska B, Lisewski P, Nuszkiewicz J, Wesołowski R, Wojtasik J, Mila-Kierzenkowska C, Szewczyk-Golec K. Changes in the Secretion of Melatonin and Selected Adipokines during the Progression of Parkinson's Disease-Preliminary Studies. Metabolites 2023; 13:metabo13050668. [PMID: 37233709 DOI: 10.3390/metabo13050668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases affecting elderly people. Considering the gap in the literature on melatonin and adipokine levels in PD patients at various stages of the disease, we conducted a study to investigate the levels of selected parameters in PD patients at the disease's early (ES) and advanced (AS) stages. Melatonin, leptin, adiponectin, and resistin concentrations were measured in the blood serum of 20 PD patients without dyskinesia (ES), 24 PD patients with dyskinesia (AS), and 20 healthy volunteers as a control group (CG). The data were analyzed using ANOVA. Melatonin was significantly lower in ES (p < 0.05) and higher in AS patients (p < 0.05) compared to CG. The level of leptin was increased both in ES (p < 0.001) and AS (p < 0.001) versus CG, while resistin was increased only in patients with dyskinesia (p < 0.05). Higher melatonin (p < 0.001) and resistin (p < 0.05) and lower leptin (p < 0.05) levels were found in AS versus ES. The main findings of the study include the changes in inflammatory markers' levels during PD and a surprising increase in melatonin level in dyskinesia patients. Further research is necessary, which will be aimed at modulating the secretion of melatonin and adipokines as a treatment target for PD.
Collapse
Affiliation(s)
- Jan Milanowski
- Students Research Club of Medical Biology, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| | - Kamil Kozerawski
- Students Research Club of Medical Biology, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| | - Weronika Falęcka
- Students Research Club of Medical Biology, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| | - Dominik Dudek
- Students Research Club of Medical Biology, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| | | | | | - Jarosław Nuszkiewicz
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| | - Roland Wesołowski
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| | - Jakub Wojtasik
- Centre for Statistical Analysis, Nicolaus Copernicus University in Toruń, Chopina 12/18 St., 87-100 Toruń, Poland
| | - Celestyna Mila-Kierzenkowska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| |
Collapse
|
29
|
Suzen S, Saso L. Melatonin as mitochondria-targeted drug. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:249-276. [PMID: 37437980 DOI: 10.1016/bs.apcsb.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Oxidative damage is associated to numerous diseases as well as aging development. Mitochondria found in most eukaryotic organisms to create the energy of the cell, generate free radicals during its action and they are chief targets of the oxidants. Mitochondrial activities outspread outside the borders of the cell and effect human physiology by modulating interactions among cells and tissues. Therefore, it has been implicated in several human disorders and conditions. Melatonin (MLT) is an endogenously created indole derivative that modifies several tasks, involving mitochondria-associated activities. These possessions make MLT a powerful defender against a selection of free radical-linked disorders. MLT lessens mitochondrial anomalies causing from extreme oxidative stress and may improve mitochondrial physiology. It is a potent and inducible antioxidant for mitochondria. MLT is produced in mitochondria of conceivably of all cells and it also appears to be a mitochondria directed antioxidant which has related defensive properties as the synthesized antioxidant molecules. This chapter summarizes the suggestion that MLT is produced in mitochondria as well as disorders of mitochondrial MLT production that may associate to a number of mitochondria-linked diseases. MLT as a mitochondria-targeted drug is also discussed.
Collapse
Affiliation(s)
- Sibel Suzen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Tandogan, Ankara, Turkey.
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
30
|
Verma AK, Singh S, Rizvi SI. Therapeutic potential of melatonin and its derivatives in aging and neurodegenerative diseases. Biogerontology 2023; 24:183-206. [PMID: 36550377 DOI: 10.1007/s10522-022-10006-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Aging is associated with increasing impairments in brain homeostasis and represents the main risk factor across most neurodegenerative disorders. Melatonin, a neuroendocrine hormone that regulates mammalian chronobiology and endocrine functions is well known for its antioxidant potential, exhibiting both cytoprotective and chronobiotic abilities. Age-related decline of melatonin disrupting mitochondrial homeostasis and cytosolic DNA-mediated inflammatory reactions in neurons is a major contributory factor in the emergence of neurological abnormalities. There is scattered literature on the possible use of melatonin against neurodegenerative mechanisms in the aging process and its associated diseases. We have searched PUBMED with many combinations of key words for available literature spanning two decades. Based on the vast number of experimental papers, we hereby review recent advancements concerning the potential impact of melatonin on cellular redox balance and mitochondrial dynamics in the context of neurodegeneration. Next, we discuss a broader explanation of the involvement of disrupted redox homeostasis in the pathophysiology of age-related diseases and its connection to circadian mechanisms. Our effort may result in the discovery of novel therapeutic approaches. Finally, we summarize the current knowledge on molecular and circadian regulatory mechanisms of melatonin to overcome neurodegenerative diseases (NDDs) such as Alzheimer's, Parkinson's, Huntington's disease, and amyotrophic lateral sclerosis, however, these findings need to be confirmed by larger, well-designed clinical trials. This review is also expected to uncover the associated molecular alterations in the aging brain and explain how melatonin-mediated circadian restoration of neuronal homeodynamics may increase healthy lifespan in age-related NDDs.
Collapse
Affiliation(s)
- Avnish Kumar Verma
- Department of Biochemistry, University of Allahabad, Allahabad, 211002, India
| | - Sandeep Singh
- Biological Psychiatry Laboratory, Hadassah Medical Center - Hebrew University, Jerusalem, Israel
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad, 211002, India.
| |
Collapse
|
31
|
Hegazy HA, Abo-ElMatty DM, Farid O, Saleh S, Ghattas MH, Omar NN. Nano-melatonin and-histidine modulate adipokines and neurotransmitters to improve cognition in HFD-fed rats: A formula to study. Biochimie 2023; 207:137-152. [PMID: 36351496 DOI: 10.1016/j.biochi.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/01/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2022]
Abstract
The established correlation between obesity and cognitive impairment portrays pharmacological products aimed at both disorders as an important therapeutic advance. Modulation of dysregulated adipokines and neurotransmitters is hence a critical aspect of the assessment of in-use drugs. At the cellular level, repairments in brain barrier integrity and cognitive flexibility are the main checkpoints. The aim of this study was to investigate whether melatonin and histidine, alone or in combination, could produce weight loss, meanwhile improve the cognitive processes. In this study, obese rat model was established by feeding high fat diet (HFD) composed of 25% fats (soybean oil) for 8 weeks, accompanied by melatonin (10 mg/kg), histidine (780 mg/kg), and combination of both in conventional form and nanoform. At the end of the study, adiposity hormones, neuronal monoamines and amino acids, brain derived neurotrophic factor (BDNF) and zonula occluden-1 (ZO-1) were assessed. HFD feeding resulted in significant weight gain and poor performance on cognitive test. Coadministration of histidine in the nanoform increased the level of ZO-1; an indicator of improving the brain barrier integrity, along with adjusting the adipokines and neurotransmitters levels, which had a positive impact on learning tasks. Cotreatment with melatonin resulted in an increase in the level of BDNF, marking ameliorated synaptic anomalies and learning disabilities, while reducing weight gain. On the other hand, the combination of melatonin and histidine reinstated the synaptic plasticity as well as brain barrier junctions, as demonstrated by increased levels of BDNF and ZO-1, positively affecting weight loss and the intellectual function.
Collapse
Affiliation(s)
- Heba Ahmed Hegazy
- Department of Biochemistry, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt.
| | - Dina M Abo-ElMatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| | - Omar Farid
- Department of Physiology, National Organization for Drug Control & Research, Giza, Egypt.
| | - Sami Saleh
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| | - Maivel H Ghattas
- Department of Medical Biochemistry, Faculty of Medicine, Port Said University, Port Said, Egypt.
| | - Nesreen Nabil Omar
- Department of Biochemistry, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt.
| |
Collapse
|
32
|
Pluta R. Comment on Minich et al. Is Melatonin the "Next Vitamin D"?: A Review of Emerging Science, Clinical Uses, Safety, and Dietary Supplements. Nutrients 2022, 14, 3934. Nutrients 2023; 15:1506. [PMID: 36986235 PMCID: PMC10058574 DOI: 10.3390/nu15061506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
I read an article by Minich D.M. et al. [...].
Collapse
Affiliation(s)
- Ryszard Pluta
- Department of Pathophysiology, Medical University of Lublin, 20090 Lublin, Poland
| |
Collapse
|
33
|
Light, Water, and Melatonin: The Synergistic Regulation of Phase Separation in Dementia. Int J Mol Sci 2023; 24:ijms24065835. [PMID: 36982909 PMCID: PMC10054283 DOI: 10.3390/ijms24065835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
The swift rise in acceptance of molecular principles defining phase separation by a broad array of scientific disciplines is shadowed by increasing discoveries linking phase separation to pathological aggregations associated with numerous neurodegenerative disorders, including Alzheimer’s disease, that contribute to dementia. Phase separation is powered by multivalent macromolecular interactions. Importantly, the release of water molecules from protein hydration shells into bulk creates entropic gains that promote phase separation and the subsequent generation of insoluble cytotoxic aggregates that drive healthy brain cells into diseased states. Higher viscosity in interfacial waters and limited hydration in interiors of biomolecular condensates facilitate phase separation. Light, water, and melatonin constitute an ancient synergy that ensures adequate protein hydration to prevent aberrant phase separation. The 670 nm visible red wavelength found in sunlight and employed in photobiomodulation reduces interfacial and mitochondrial matrix viscosity to enhance ATP production via increasing ATP synthase motor efficiency. Melatonin is a potent antioxidant that lowers viscosity to increase ATP by scavenging excess reactive oxygen species and free radicals. Reduced viscosity by light and melatonin elevates the availability of free water molecules that allow melatonin to adopt favorable conformations that enhance intrinsic features, including binding interactions with adenosine that reinforces the adenosine moiety effect of ATP responsible for preventing water removal that causes hydrophobic collapse and aggregation in phase separation. Precise recalibration of interspecies melatonin dosages that account for differences in metabolic rates and bioavailability will ensure the efficacious reinstatement of the once-powerful ancient synergy between light, water, and melatonin in a modern world.
Collapse
|
34
|
Chronic Administration of Melatonin: Physiological and Clinical Considerations. Neurol Int 2023; 15:518-533. [PMID: 36976674 PMCID: PMC10053496 DOI: 10.3390/neurolint15010031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Background: Exogenous melatonin is commonly used to treat insomnia, other sleep problems, and numerous medical illnesses, including Alzheimer’s disease, autism spectrum disorder, and mild cognitive impairment in adults and children. There is evolving information regarding issues with the use of chronic melatonin. Methods: The present investigation was a narrative review. Results: Melatonin usage has risen dramatically in recent years. Many countries only allow melatonin prescriptions. In the United States (U.S.), it is classified as a dietary supplement accessible over the counter and can be derived from animals, microorganisms, or, most commonly, made synthetically. No regulatory agency oversees its manufacturing or sale in the U.S. melatonin concentration of marketed preparations varies widely between product labels and manufacturers. Melatonin’s ability to induce sleep is detectable. However, it is modest for most people. Sleep length appears to be less important in sustained-release preparations. The optimal dosage is unknown, and routinely used amounts vary substantially. Melatonin’s short-term negative effects are minimal, resolve at medicine cessation, and do not usually prevent usage overall. Much research on long-term melatonin administration has found no difference between exogenous melatonin and placebo in terms of long-term negative effects. Conclusion: Melatonin at low to moderate dosages (approximately 5–6 mg daily or less) appears safe. Long-term usage appears to benefit certain patient populations, such as those with autism spectrum disorder. Studies investigating potential benefits in reducing cognitive decline and increased longevity are ongoing. However, it is widely agreed that the long-term effects of taking exogenous melatonin have been insufficiently studied and warrant additional investigation.
Collapse
|
35
|
Potes Y, Cachán-Vega C, Antuña E, García-González C, Menéndez-Coto N, Boga JA, Gutiérrez-Rodríguez J, Bermúdez M, Sierra V, Vega-Naredo I, Coto-Montes A, Caballero B. Benefits of the Neurogenic Potential of Melatonin for Treating Neurological and Neuropsychiatric Disorders. Int J Mol Sci 2023; 24:ijms24054803. [PMID: 36902233 PMCID: PMC10002978 DOI: 10.3390/ijms24054803] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
There are several neurological diseases under which processes related to adult brain neurogenesis, such cell proliferation, neural differentiation and neuronal maturation, are affected. Melatonin can exert a relevant benefit for treating neurological disorders, given its well-known antioxidant and anti-inflammatory properties as well as its pro-survival effects. In addition, melatonin is able to modulate cell proliferation and neural differentiation processes in neural stem/progenitor cells while improving neuronal maturation of neural precursor cells and newly created postmitotic neurons. Thus, melatonin shows relevant pro-neurogenic properties that may have benefits for neurological conditions associated with impairments in adult brain neurogenesis. For instance, the anti-aging properties of melatonin seem to be linked to its neurogenic properties. Modulation of neurogenesis by melatonin is beneficial under conditions of stress, anxiety and depression as well as for the ischemic brain or after a brain stroke. Pro-neurogenic actions of melatonin may also be beneficial for treating dementias, after a traumatic brain injury, and under conditions of epilepsy, schizophrenia and amyotrophic lateral sclerosis. Melatonin may represent a pro-neurogenic treatment effective for retarding the progression of neuropathology associated with Down syndrome. Finally, more studies are necessary to elucidate the benefits of melatonin treatments under brain disorders related to impairments in glucose and insulin homeostasis.
Collapse
Affiliation(s)
- Yaiza Potes
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Asturias, Spain
- Correspondence: (Y.P.); (B.C.); Tel.: +34-985102767 (Y.P.); +34-985102784 (B.C.)
| | - Cristina Cachán-Vega
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Eduardo Antuña
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Claudia García-González
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Nerea Menéndez-Coto
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Jose Antonio Boga
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - José Gutiérrez-Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Manuel Bermúdez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Verónica Sierra
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), 33300 Villaviciosa, Asturias, Spain
| | - Ignacio Vega-Naredo
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Asturias, Spain
| | - Ana Coto-Montes
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Asturias, Spain
| | - Beatriz Caballero
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Asturias, Spain
- Correspondence: (Y.P.); (B.C.); Tel.: +34-985102767 (Y.P.); +34-985102784 (B.C.)
| |
Collapse
|
36
|
Jalali N, Firouzabadi MD, Mirshekar A, Khalili P, Ravangard AR, Ahmadi J, Askari PS, Jalali Z. Cross-sectional analysis of potential risk factors of the pineal gland calcification. BMC Endocr Disord 2023; 23:49. [PMID: 36855104 PMCID: PMC9972749 DOI: 10.1186/s12902-023-01301-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
The Pineal gland (PG) is the site of production of melatonin as an important central hormone in the body. It is not known yet whether PG calcification (PGC) is an age-associated physiological process or a pathologic condition caused by lifestyle-factors and metabolic-dysregulations.Here, we performed a cross-sectional analysis on 586 patients referred to have Computed Tomographic (CT) scans (above 15 years old), in the Ali Ebne Abi Taleb hospital radiology center in 2017-2018. Based on the CT-scans of the brain, the presence of PGC was recorded and a score of scale 0 to 6 (PGC_score) was calculated for its intensity based on the volume and the Hounsfield units of the calcified pineal. Logistic and ordered logistic regression tests were employed to determine potential risk factor of PGC and higher PGC_score, respectively, testing the factors age, sex, history of cardiovascular and metabolic diseases, smoking and opioid use. We found male sex (OR: 2.30 (95% CI:1.39-3.82) and smoking cigarettes (OR: 4.47 (95% CI:1.01-19.78)) as the main potential risk factors for the pineal gland calcification. For PGC_score, we found age to be dose-dependently associated with PGC_score only in patients aged below 63 (p-trend < 0.001). Stratifying for age, in patients < 63 years old, we found age, male sex (positive association) and dyslipidemia (negative association) as the main significantly associated factors of PGC_score. On the contrary, in patients aged > = 63, cigarette smoking was the only significantly associated factor of higher PGC_score.In conclusion, our results indicate that at ages below 63, age, male sex and blood lipid are the main associated factors of higher PGC, but at ages above that, the lifestyle factor smoking is significantly associated with higher pineal gland calcification.
Collapse
Affiliation(s)
- Nazanin Jalali
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Neurology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Ali Mirshekar
- Department of Radiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Parvin Khalili
- Social Determinants of Health Research Centre, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Epidemiology, School of Public Health, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Amir Reza Ravangard
- Student Research Committee, Zabol University of Medical Sciences, Rafsanjan, Iran
| | - Jafar Ahmadi
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Radiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Pooya Saeed Askari
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Zahra Jalali
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
37
|
Verma AK, Singh S, Rizvi SI. Aging, circadian disruption and neurodegeneration: Interesting interplay. Exp Gerontol 2023; 172:112076. [PMID: 36574855 DOI: 10.1016/j.exger.2022.112076] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/26/2022] [Accepted: 12/22/2022] [Indexed: 12/26/2022]
Abstract
The circadian system is an intricate molecular network of coordinating circadian clocks that organize the internal synchrony of the organism in response to the environment. These rhythms are maintained by genetically programmed positive and negative auto-regulated transcriptional and translational feedback loops that sustain 24-hour oscillations in mRNA and protein components of the endogenous circadian clock. Since inter and intracellular activity of the central pacemaker appears to reduce with aging, the interaction between the circadian clock and aging continues to elude our understanding. In this review article, we discuss circadian clock components at the molecular level and how aging adversely affects circadian clock functioning in rodents and humans. The natural decline in melatonin levels with aging strongly contributes to circadian dysregulation resulting in the development of neurological anomalies. Additionally, inappropriate environmental conditions such as Artificial Light at Night (ALAN) can cause circadian disruption or chronodisruption (CD) which can result in a variety of pathological diseases, including premature aging. Furthermore, we summarize recent evidence suggesting that CD may also be a predisposing factor for the development of age-related neurodegenerative diseases (NDDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), although more investigation is required to prove this link. Finally, certain chrono-enhancement approaches have been offered as intervention strategies to prevent, alleviate, or mitigate the impacts of CD. This review thus aims to bring together recent advancements in the chronobiology of the aging process, as well as its role in NDDs.
Collapse
Affiliation(s)
- Avnish Kumar Verma
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India
| | - Sandeep Singh
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India; Psychedelics Research Group, Biological Psychiatry Laboratory and Hadassah BrainLabs, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India.
| |
Collapse
|
38
|
Pluta R, Furmaga-Jabłońska W, Januszewski S, Tarkowska A. Melatonin: A Potential Candidate for the Treatment of Experimental and Clinical Perinatal Asphyxia. Molecules 2023; 28:1105. [PMID: 36770769 PMCID: PMC9919754 DOI: 10.3390/molecules28031105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Perinatal asphyxia is considered to be one of the major causes of brain neurodegeneration in full-term newborns. The worst consequence of perinatal asphyxia is neurodegenerative brain damage, also known as hypoxic-ischemic encephalopathy. Hypoxic-ischemic encephalopathy is the leading cause of mortality in term newborns. To date, due to the complex mechanisms of brain damage, no effective or causal treatment has been developed that would ensure complete neuroprotection. Although hypothermia is the standard of care for hypoxic-ischemic encephalopathy, it does not affect all changes associated with encephalopathy. Therefore, there is a need to develop effective treatment strategies, namely research into new agents and therapies. In recent years, it has been pointed out that natural compounds with neuroprotective properties, such as melatonin, can be used in the treatment of hypoxic-ischemic encephalopathy. This natural substance with anti-inflammatory, antioxidant, anti-apoptotic and neurofunctional properties has been shown to have pleiotropic prophylactic or therapeutic effects, mainly against experimental brain neurodegeneration in hypoxic-ischemic neonates. Melatonin is a natural neuroprotective hormone, which makes it promising for the treatment of neurodegeneration after asphyxia. It is supposed that melatonin alone or in combination with hypothermia may improve neurological outcomes in infants with hypoxic-ischemic encephalopathy. Melatonin has been shown to be effective in the last 20 years of research, mainly in animals with perinatal asphyxia but, so far, no clinical trials have been performed on a sufficient number of newborns. In this review, we summarize the advantages and limitations of melatonin research in the treatment of experimental and clinical perinatal asphyxia.
Collapse
Affiliation(s)
- Ryszard Pluta
- Ecotech-Complex Analytical and Programme Centre for Advanced Environmentally-Friendly Technologies, Marie Curie-Skłodowska University in Lublin, 20-612 Lublin, Poland
| | - Wanda Furmaga-Jabłońska
- Department of Neonate and Infant Pathology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Sławomir Januszewski
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Agata Tarkowska
- Department of Neonate and Infant Pathology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
39
|
Tuft C, Matar E, Menczel Schrire Z, Grunstein RR, Yee BJ, Hoyos CM. Current Insights into the Risks of Using Melatonin as a Treatment for Sleep Disorders in Older Adults. Clin Interv Aging 2023; 18:49-59. [PMID: 36660543 PMCID: PMC9842516 DOI: 10.2147/cia.s361519] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
Exogenous melatonin is commonly used for sleep disorders in older adults, and its use is increasing over time. It appears to have modest efficacy in treating insomnia and circadian rhythm sleep-wake disorders. Melatonin is commonly perceived to be a safe alternative to other hypnotics and is available without prescription in some jurisdictions. New evidence suggests that endogenous melatonin has pleomorphic effects on multiple organ systems, many of which are poorly understood. This narrative review summarizes the current evidence regarding the safety of melatonin in older adults (defined by age over 65 years). Melatonin appears to have a favorable safety profile in this population, however there is a dearth of evidence regarding the safety of prolonged use. There are several factors which increase the risk of adverse effects of melatonin in older adults, and these should be taken into consideration when prescribing to this population.
Collapse
Affiliation(s)
- Colin Tuft
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Elie Matar
- Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney Medical School, Sydney, NSW, Australia
| | - Zoe Menczel Schrire
- Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney Medical School, Sydney, NSW, Australia
| | - Ronald R Grunstein
- Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney Medical School, Sydney, NSW, Australia,Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Brendon J Yee
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia,Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney Medical School, Sydney, NSW, Australia,Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Camilla M Hoyos
- Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney Medical School, Sydney, NSW, Australia,School of Psychology, Faculty of Science, The University of Sydney, Sydney, NSW, Australia,Correspondence: Camilla M Hoyos, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney Medical School, Sydney, NSW, Australia, Tel +61 2 9114 0409, Email
| |
Collapse
|
40
|
Shukla M, Vincent B. Melatonin as a Harmonizing Factor of Circadian Rhythms, Neuronal Cell Cycle and Neurogenesis: Additional Arguments for Its Therapeutic Use in Alzheimer's Disease. Curr Neuropharmacol 2023; 21:1273-1298. [PMID: 36918783 PMCID: PMC10286584 DOI: 10.2174/1570159x21666230314142505] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/07/2022] [Accepted: 12/31/2022] [Indexed: 03/16/2023] Open
Abstract
The synthesis and release of melatonin in the brain harmonize various physiological functions. The apparent decline in melatonin levels with advanced aging is an aperture to the neurodegenerative processes. It has been indicated that down regulation of melatonin leads to alterations of circadian rhythm components, which further causes a desynchronization of several genes and results in an increased susceptibility to develop neurodegenerative diseases. Additionally, as circadian rhythms and memory are intertwined, such rhythmic disturbances influence memory formation and recall. Besides, cell cycle events exhibit a remarkable oscillatory system, which is downstream of the circadian phenomena. The linkage between the molecular machinery of the cell cycle and complex fundamental regulatory proteins emphasizes the conjectural regulatory role of cell cycle components in neurodegenerative disorders such as Alzheimer's disease. Among the mechanisms intervening long before the signs of the disease appear, the disturbances of the circadian cycle, as well as the alteration of the machinery of the cell cycle and impaired neurogenesis, must hold our interest. Therefore, in the present review, we propose to discuss the underlying mechanisms of action of melatonin in regulating the circadian rhythm, cell cycle components and adult neurogenesis in the context of AD pathogenesis with the view that it might further assist to identify new therapeutic targets.
Collapse
Affiliation(s)
- Mayuri Shukla
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
- Present Address: Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 10210, Bangkok, Thailand
| | - Bruno Vincent
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
- Institute of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, INSERM, CNRS, Sophia-Antipolis, 06560, Valbonne, France
| |
Collapse
|
41
|
Chachaj A, Gąsiorowski K, Szuba A, Sieradzki A, Leszek J. The Lymphatic System In The Brain Clearance Mechanisms - New Therapeutic Perspectives For Alzheimer's Disease. Curr Neuropharmacol 2023; 21:380-391. [PMID: 35410605 PMCID: PMC10190136 DOI: 10.2174/1570159x20666220411091332] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 03/05/2022] [Accepted: 04/06/2022] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide. Pathological deposits of neurotoxic proteins within the brain, such as amyloid-ß and hyperphosphorylated tau tangles, are the prominent features in AD. According to recent studies, the newly discovered brain lymphatic system was demonstrated to be crucial in the clearance of metabolic macromolecules from the brain. Meningeal lymphatic vessels located in the dura mater drain the fluid, macromolecules, and immune cells from cerebrospinal fluid (CSF) and transport them, as lymph, to the deep cervical lymph nodes. The lymphatic system provides the perivascular exchange of CSF with interstitial fluid (ISF) and ensures the homeostasis of neuronal interstitial space. In this review, we aim to summarize recent findings on the role of the lymphatic system in AD pathophysiology and discuss possible therapeutic perspectives, targeting the lymphatic clearance mechanisms within the brain.
Collapse
Affiliation(s)
- Angelika Chachaj
- Department of Angiology, Hypertension and Diabetology, Wroclaw Medical University, Wroclaw, Poland
| | | | - Andrzej Szuba
- Department of Angiology, Hypertension and Diabetology, Wroclaw Medical University, Wroclaw, Poland
| | - Adrian Sieradzki
- Department of Nervous System Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Jerzy Leszek
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
42
|
Shimura T, Shiga R, Sasatani M, Kamiya K, Ushiyama A. Melatonin and MitoEbselen-2 Are Radioprotective Agents to Mitochondria. Genes (Basel) 2022; 14:45. [PMID: 36672786 PMCID: PMC9858905 DOI: 10.3390/genes14010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Mitochondria are responsible for controlling cell death during the early stages of radiation exposure, but their perturbations are associated with late effects of radiation-related carcinogenesis. Therefore, it is important to protect mitochondria to mitigate the harmful effects of radiation throughout life. The glutathione peroxidase (GPx) enzyme is essential for the maintenance of mitochondrial-derived reactive oxygen species (ROS) levels. However, radiation inactivates the GPx, resulting in metabolic oxidative stress and prolonged cell injury in irradiated normal human fibroblasts. Here, we used the GPx activator N-acetyl-5-methoxy-tryptamine (melatonin) and a mitochondria-targeted mimic of GPx MitoEbselen-2 to stimulate the GPx. A commercial GPx activity assay kit was used to measure the GPx activity. ROS levels were determined by using some ROS indicators. Protein expression associated with the response of mitochondria to radiation was assessed using immunostaining. Concurrent pre-administration or post-administration of melatonin or MitoEbselen-2 with radiation maintained GPx activity and ROS levels and suppressed mitochondrial radiation responses associated with cellular damage and radiation-related carcinogenesis. In conclusion, melatonin and MitoEbselen-2 prevented radiation-induced mitochondrial injury and metabolic oxidative stress by targeting mitochondria. These drugs have the potential to protect against acute radiation injury and late effects of carcinogenesis in a variety of radiation scenarios assuming pre-administration or post-administration.
Collapse
Affiliation(s)
- Tsutomu Shimura
- Department of Environmental Health, National Institute of Public Health, Wako 351-0197, Japan
| | - Rina Shiga
- Meiji Pharmaceutical University, Kiyose 204-8588, Japan
| | - Megumi Sasatani
- Department of Experimental Oncology, Research Center for Radiation Genome Medicine, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, Hiroshima 734-8553, Japan
| | - Kenji Kamiya
- Department of Experimental Oncology, Research Center for Radiation Genome Medicine, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, Hiroshima 734-8553, Japan
| | - Akira Ushiyama
- Department of Environmental Health, National Institute of Public Health, Wako 351-0197, Japan
| |
Collapse
|
43
|
Verghese JP, Terry A, de Natale ER, Politis M. Research Evidence of the Role of the Glymphatic System and Its Potential Pharmacological Modulation in Neurodegenerative Diseases. J Clin Med 2022; 11:jcm11236964. [PMID: 36498538 PMCID: PMC9735716 DOI: 10.3390/jcm11236964] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The glymphatic system is a unique pathway that utilises end-feet Aquaporin 4 (AQP4) channels within perivascular astrocytes, which is believed to cause cerebrospinal fluid (CSF) inflow into perivascular space (PVS), providing nutrients and waste disposal of the brain parenchyma. It is theorised that the bulk flow of CSF within the PVS removes waste products, soluble proteins, and products of metabolic activity, such as amyloid-β (Aβ). In the experimental model, the glymphatic system is selectively active during slow-wave sleep, and its activity is affected by both sleep dysfunction and deprivation. Dysfunction of the glymphatic system has been proposed as a potential key driver of neurodegeneration. This hypothesis is indirectly supported by the close relationship between neurodegenerative diseases and sleep alterations, frequently occurring years before the clinical diagnosis. Therefore, a detailed characterisation of the function of the glymphatic system in human physiology and disease would shed light on its early stage pathophysiology. The study of the glymphatic system is also critical to identifying means for its pharmacological modulation, which may have the potential for disease modification. This review will critically outline the primary evidence from literature about the dysfunction of the glymphatic system in neurodegeneration and discuss the rationale and current knowledge about pharmacological modulation of the glymphatic system in the animal model and its potential clinical applications in human clinical trials.
Collapse
|
44
|
Cardinali DP, Brown GM, Pandi-Perumal SR. Possible Application of Melatonin in Long COVID. Biomolecules 2022; 12:1646. [PMID: 36358996 PMCID: PMC9687267 DOI: 10.3390/biom12111646] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 07/30/2023] Open
Abstract
Clinical sequelae and symptoms for a considerable number of COVID-19 patients can linger for months beyond the acute stage of SARS-CoV-2 infection, "long COVID". Among the long-term consequences of SARS-CoV-2 infection, cognitive issues (especially memory loss or "brain fog"), chronic fatigue, myalgia, and muscular weakness resembling myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) are of importance. Melatonin may be particularly effective at reducing the signs and symptoms of SARS-CoV-2 infection due to its functions as an antioxidant, anti-inflammatory, and immuno-modulatory agent. Melatonin is also a chronobiotic medication effective in treating delirium and restoring the circadian imbalance seen in COVID patients in the intensive care unit. Additionally, as a cytoprotector, melatonin aids in the prevention of several COVID-19 comorbidities, including diabetes, metabolic syndrome, and ischemic and non-ischemic cardiovascular diseases. This narrative review discusses the application of melatonin as a neuroprotective agent to control cognitive deterioration ("brain fog") and pain in the ME/CFS syndrome-like documented in long COVID. Further studies on the therapeutic use of melatonin in the neurological sequelae of SARS-CoV-2 infection are warranted.
Collapse
Affiliation(s)
- Daniel P. Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires C1107AAZ, Argentina
| | - Gregory M. Brown
- Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Seithikurippu R. Pandi-Perumal
- Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| |
Collapse
|
45
|
BÜYÜK B, MALÇOK ÜA. Effect of miRs-17/20 on Vasospasm in Subarachnoid Hemorrhage Model of Rats. ACTA MEDICA ALANYA 2022. [DOI: 10.30565/medalanya.1152279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aim: To investigate the effects of melatonin and miRNA-17/20 administration on vasospasm and vascular damage on the bacillary artery in the Subarachnoid hemorrhage (SAH) model of rats.
Methods: Rats were divided into 6 groups: Sham,SAH,SAH+NegmiRNA,SAH+MEL,SAH-miRs-17/20 group,SAH+MEL+miRs-17/20.For creating the SAH model the skin was cut with a vertical incision in the anterior region of the head.120 µL of fresh non-heparinized autologous arterial blood collected from the tail artery was injected into the prechiasmatic cistern under aseptic conditions. All steps in the Sham were the same as in the SAH group, except for blood injection. In the SAH+NegmiRs-17/20, miRs-17/20 miRNA Mimic-Negative Control#1 was administered 1 hour after SAH operation. In the SAH+MEL,10 mg/kg melatonin was administered intraperitoneally 1 hour after the SAH operation. In the SAH-miRs-17/20,mimic-miR-17 and mimic-miR-20 were given intranasally 1 hour after the SAH operation.In the SAH+MEL+miRs-17/20,intranasal mimic-miR-17 and intraperitoneal melatonin were administered 1 hour after the SAH operation. Brain samples, including the bacillary artery, were taken and subjected to routine tissue processing procedures. Vessel samples were evaluated and graded in histological sections stained with the H-E method in terms of vasospasm, edema in the tunica media, and folding of the lamina elastica interna.
Results: The co-administration of melatonin and miRs-17/20 reduced the vasospasm and edema formation in the vessel wall. It has also been demonstrated that the application of miRs-17/20 after SAH alone reduces the development of edema in the vessel wall and folding of the internasal lamina elastica due to vasospasm.
Conclusion:It has been shown that miRs-17/20 can reduce vasospasm in the vessel wall and prevent vessel damage by reducing edema.
Collapse
|
46
|
Hardeland R. Redox Biology of Melatonin: Discriminating Between Circadian and Noncircadian Functions. Antioxid Redox Signal 2022; 37:704-725. [PMID: 35018802 PMCID: PMC9587799 DOI: 10.1089/ars.2021.0275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/31/2021] [Indexed: 12/15/2022]
Abstract
Melatonin has not only to be seen as a regulator of circadian clocks. In addition to its chronobiotic functions, it displays other actions, especially in cell protection. This includes antioxidant, anti-inflammatory, and mitochondria-protecting effects. Although protection is also modulated by the circadian system, the respective actions of melatonin can be distinguished and differ with regard to dose requirements in therapeutic settings. It is the aim of this article to outline these differences in terms of function, signaling, and dosage. Focus has been placed on both the nexus and the dissecting properties between circadian and noncircadian mechanisms. This has to consider details beyond the classic view of melatonin's role, such as widespread synthesis in extrapineal tissues, formation in mitochondria, effects on the mitochondrial permeability transition pore, and secondary signaling, for example, via upregulation of sirtuins and by regulating noncoding RNAs, especially microRNAs. The relevance of these findings, the differences and connections between circadian and noncircadian functions of melatonin shed light on the regulation of inflammation, including macrophage/microglia polarization, damage-associated molecular patterns, avoidance of cytokine storms, and mitochondrial functions, with numerous consequences to antioxidative protection, that is, aspects of high actuality with regard to deadly viral and bacterial diseases. Antioxid. Redox Signal. 37, 704-725.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Goettingen, Goettingen, Germany
| |
Collapse
|
47
|
Maurya SK, Gupta S, Bakshi A, Kaur H, Jain A, Senapati S, Baghel MS. Targeting mitochondria in the regulation of neurodegenerative diseases: A comprehensive review. J Neurosci Res 2022; 100:1845-1861. [PMID: 35856508 DOI: 10.1002/jnr.25110] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/21/2022] [Accepted: 07/09/2022] [Indexed: 11/09/2022]
Abstract
Mitochondria are one of the essential cellular organelles. Apart from being considered as the powerhouse of the cell, mitochondria have been widely known to regulate redox reaction, inflammation, cell survival, cell death, metabolism, etc., and are implicated in the progression of numerous disease conditions including neurodegenerative diseases. Since brain is an energy-demanding organ, mitochondria and their functions are important for maintaining normal brain homeostasis. Alterations in mitochondrial gene expression, mutations, and epigenetic modification contribute to inflammation and neurodegeneration. Dysregulation of reactive oxygen species production by mitochondria and aggregation of proteins in neurons leads to alteration in mitochondria functions which further causes neuronal death and progression of neurodegeneration. Pharmacological studies have prioritized mitochondria as a possible drug target in the regulation of neurodegenerative diseases. Therefore, the present review article has been intended to provide a comprehensive understanding of mitochondrial role in the development and progression of neurodegenerative diseases mainly Alzheimer's, Parkinson's, multiple sclerosis, and amyotrophic lateral sclerosis followed by possible intervention and future treatment strategies to combat mitochondrial-mediated neurodegeneration.
Collapse
Affiliation(s)
| | - Suchi Gupta
- Stem Cell Facility, All India Institute of Medical Sciences, Delhi, India
| | - Amrita Bakshi
- Department of Zoology, University of Delhi, Delhi, India
| | - Harpreet Kaur
- Department of Zoology, University of Delhi, Delhi, India.,Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Arushi Jain
- Immunogenomics Laboratory, Department of Human Genetics & Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Sabyasachi Senapati
- Immunogenomics Laboratory, Department of Human Genetics & Molecular Medicine, Central University of Punjab, Bathinda, India
| | | |
Collapse
|
48
|
Tarakcioglu E, Tastan B, Arioz BI, Tufekci KU, Genc S. Melatonin Alters the miRNA Transcriptome of Inflammasome Activation in Murine Microglial Cells. Neurochem Res 2022; 47:3202-3211. [PMID: 35842554 DOI: 10.1007/s11064-022-03674-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/13/2022] [Accepted: 07/01/2022] [Indexed: 12/01/2022]
Abstract
Systemic inflammation can have devastating effects on the central nervous system via its resident immune cells, the microglia. One of the primary mediators of this inflammation is inflammasomes, multiprotein complexes that trigger a release of inflammatory proteins when activated. Melatonin, a hormone with anti-inflammatory effects, is an attractive candidate for suppressing such inflammation. In this study, we have investigated how melatonin alters the microRNA (miRNA) transcriptome of microglial cells. For that purpose, we have performed RNA sequencing on a lipopolysaccharide and adenosine triphosphate (LPS + ATP) induced NLR family pyrin domain containing 3 (NLRP3) inflammasome activation model in the N9 mouse microglial cell line, with and without melatonin pre-treatment. We have identified 136 differentially expressed miRNAs in cells exposed to LPS + ATP compared to controls and 10 differentially expressed miRNAs in melatonin pre-treated cells compared to the inflammasome group. We have identified miR-155-3p as a miRNA that is upregulated with inflammasome activation and downregulated with melatonin treatment. We further confirmed this pattern of miR-155-3p expression in the brains of mice injected intraperitoneally with LPS. Moreover, an overexpression study with miRNA-155-3p mimic supported the idea that the protective effects of melatonin in NLRP3 inflammasome activation are partly associated with miRNA-155-3p inhibition.
Collapse
Affiliation(s)
- Emre Tarakcioglu
- Izmir Biomedicine and Genome Center, 35340, Izmir, Balcova, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340, Izmir, Turkey
| | - Bora Tastan
- Izmir Biomedicine and Genome Center, 35340, Izmir, Balcova, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340, Izmir, Turkey
| | - Burak I Arioz
- Izmir Biomedicine and Genome Center, 35340, Izmir, Balcova, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340, Izmir, Turkey
| | - Kemal Ugur Tufekci
- Department of Health Care Services, Vocational School of Health Services, Izmir Democracy University, 35290, Izmir, Turkey.,Center for Brain and Neuroscience Research, Izmir Democracy University, 35290, Izmir, Turkey
| | - Sermin Genc
- Izmir Biomedicine and Genome Center, 35340, Izmir, Balcova, Turkey. .,Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, 35340, Izmir, Turkey.
| |
Collapse
|
49
|
Cecon E, Fernandois D, Renault N, Coelho CFF, Wenzel J, Bedart C, Izabelle C, Gallet S, Le Poder S, Klonjkowski B, Schwaninger M, Prevot V, Dam J, Jockers R. Melatonin drugs inhibit SARS-CoV-2 entry into the brain and virus-induced damage of cerebral small vessels. Cell Mol Life Sci 2022; 79:361. [PMID: 35697820 PMCID: PMC9191404 DOI: 10.1007/s00018-022-04390-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 02/07/2023]
Abstract
COVID-19 is a complex disease with short- and long-term respiratory, inflammatory and neurological symptoms that are triggered by the infection with SARS-CoV-2. Invasion of the brain by SARS-CoV-2 has been observed in humans and is postulated to be involved in post-COVID state. Brain infection is particularly pronounced in the K18-hACE2 mouse model of COVID-19. Prevention of brain infection in the acute phase of the disease might thus be of therapeutic relevance to prevent long-lasting symptoms of COVID-19. We previously showed that melatonin or two prescribed structural analogs, agomelatine and ramelteon delay the onset of severe clinical symptoms and improve survival of SARS-CoV-2-infected K18-hACE2 mice. Here, we show that treatment of K18-hACE2 mice with melatonin and two melatonin-derived marketed drugs, agomelatine and ramelteon, prevents SARS-CoV-2 entry in the brain, thereby reducing virus-induced damage of small cerebral vessels, immune cell infiltration and brain inflammation. Molecular modeling analyses complemented by experimental studies in cells showed that SARS-CoV-2 entry in endothelial cells is prevented by melatonin binding to an allosteric-binding site on human angiotensin-converting enzyme 2 (ACE2), thus interfering with ACE2 function as an entry receptor for SARS-CoV-2. Our findings open new perspectives for the repurposing of melatonergic drugs and its clinically used analogs in the prevention of brain infection by SARS-CoV-2 and COVID-19-related long-term neurological symptoms.
Collapse
Affiliation(s)
- Erika Cecon
- Université Paris Cité, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - Daniela Fernandois
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, UMR-S 1172, FHU 1000 Days for Health, Lille, France
| | - Nicolas Renault
- Univ Lille, INSERM, CHU Lille, U-1286 - INFINTE - Institute for Translational Research in Inflammation, 59000, Lille, France
| | - Caio Fernando Ferreira Coelho
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, UMR-S 1172, FHU 1000 Days for Health, Lille, France
| | - Jan Wenzel
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center for Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), Hamburg-Lübeck-Kiel, Hamburg, Germany
| | - Corentin Bedart
- Univ Lille, INSERM, CHU Lille, U-1286 - INFINTE - Institute for Translational Research in Inflammation, 59000, Lille, France.,Par'Immune, Bio-incubateur Eurasanté, 70 rue du Dr. Yersin, 59120, Loos-Lez-Lille, France
| | - Charlotte Izabelle
- Université Paris Cité, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - Sarah Gallet
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, UMR-S 1172, FHU 1000 Days for Health, Lille, France
| | - Sophie Le Poder
- UMR Virologie, INRAE, ANSES, École Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Bernard Klonjkowski
- UMR Virologie, INRAE, ANSES, École Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center for Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), Hamburg-Lübeck-Kiel, Hamburg, Germany
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, UMR-S 1172, FHU 1000 Days for Health, Lille, France
| | - Julie Dam
- Université Paris Cité, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - Ralf Jockers
- Université Paris Cité, Institut Cochin, INSERM, CNRS, 75014, Paris, France.
| |
Collapse
|
50
|
Eroğlu İ, Eroğlu BÇ. Potential role of tryptophan catabolism in cancer-related cognitive impairment. Nutrition 2022; 103-104:111765. [PMID: 35908496 DOI: 10.1016/j.nut.2022.111765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/31/2022] [Indexed: 12/24/2022]
Abstract
Oncology may be the most rapidly expanding field in medicine, with several innovative diagnostic and therapeutic procedures appearing daily. Advances in oncology have improved the survival rate for patients with cancer and promoting quality of life is now one of the goals in the care of these patients. Patients face a variety of disease- and treatment-related side effects, including anorexia, nausea, vomiting, recurring infections, and sleep difficulties. Cancer-related cognitive impairment (CRCI) is an overlooked clinical condition found in oncologic practice, particularly in patients with breast cancer. Although several potential mechanisms for CRCI have been hypothesized, to our knowledge, the exact mechanism is still unknown. Alterations in the tryptophan kynurenine pathway have been shown to impair cognitive skills in several mental illnesses. However, its possible function in CRCI has yet to be investigated. The aim of this was to examine the possible interactions between tryptophan catabolism and CRCI.
Collapse
Affiliation(s)
- İmdat Eroğlu
- Hacettepe University Faculty of Medicine, Department of Internal Medicine, Ankara, Turkey.
| | - Burcu Çelik Eroğlu
- Hacettepe University Faculty of Medicine, Department of Internal Medicine, Ankara, Turkey
| |
Collapse
|