1
|
Jiang H, Chen H, Wang Y, Xu H, Chen H. Synthesis, bioactivity, and molecular docking studies: novel arylpiperazine derivatives as potential new-resistant AR antagonists. Front Chem 2025; 13:1557275. [PMID: 40224223 PMCID: PMC11985751 DOI: 10.3389/fchem.2025.1557275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/17/2025] [Indexed: 04/15/2025] Open
Abstract
The majority of patients with androgen-dependent prostate cancer (PCa) develop resistance to hormone therapy after approximately 18-24 months of androgen deprivation therapy treatment. During this process, PCa cells progressively lose their sensitivity to androgens and evolve into castration-resistant prostate cancer leading to uncontrolled tumor growth and ultimately the failure of endocrine therapy. To develop potential anti-prostate cancer agents, in this study, we identified a novel ether-type arylpiperazine derivative as a potent androgen receptor (AR) antagonist, uncovering a series of effective antiproliferative compounds. The derivatives (7, 11, 17, 19, 20, 21, 22, 23, and 24) demonstrated strong cytotoxicity against cancer cells, with 17, 19, 20, and 23 showing significant androgen receptor antagonistic activity (Inhibition% >60) and robust AR binding affinities. The structure-activity relationship (SAR) of these developed derivatives was discussed based on data. Docking study suggested that the compound 19 mainly bind to AR ligand binding pocket site through Van der Waals' force interactions. This research presents a promising lead compound for developing anticancer agents targeting prostate cancer therapy.
Collapse
Affiliation(s)
- Hua Jiang
- Department of Urology, The Fifth Affiliated Hospital of Zunyi Medical University (Zhuhai Sixth People’s Hospital), Zhuhai, China
| | - Haowei Chen
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, China
| | - Ya Wang
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, China
| | - Huaxin Xu
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, China
| | - Hong Chen
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, China
| |
Collapse
|
2
|
Souza DS, Vicente CM, Macheroni C, Campo VL, Porto CS. Signaling crosstalk of Galectin-3, β-catenin, and estrogen receptor in androgen-independent prostate cancer DU-145 cells. J Steroid Biochem Mol Biol 2025; 247:106679. [PMID: 39848549 DOI: 10.1016/j.jsbmb.2025.106679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
The aims of this study were to investigate the localization of non-phosphorylated β‑catenin and Galectin-3 (GAL-3), the regulation of the expression of both proteins by activation of estrogen receptors (ERs) and their role in tumorigenic characteristics of androgen-independent prostate cancer DU-145 cells. DU-145 cells were cultured in the absence (control), and presence of 17β-estradiol (E2). Cells were also untreated or pre-treated with the inhibitor of GAL‑3, VA03, or with a compound that disrupts the complex β-catenin-TCF/LEF transcription factor, PKF 118-310. Immunofluorescence assay for non-phosphorylated β-catenin and GAL-3, cell proliferation, wound healing and cell invasion assays were performed. 17β-estradiol (E2, 4 h) increased the expression of non-phosphorylated β-catenin and GAL-3. E2 also increased (2-fold) the co-localization of the fluorescence of non-phosphorylated β-catenin and GAL‑3 in the whole cells compared to the control. The up-regulation of non-phosphorylated β-catenin expression was blocked by VA03, suggesting that GAL-3 is upstream protein involved in this process. E2 (24 h) increased the cell number, migration, and invasion of the DU‑145 cells compared to control. Furthermore, PKF 118-310 completely blocked the proliferation, migration, and invasion of the DU-145 cells induced by activation of ERs. The activation of ERs increases the expression, co-localization and signaling of the GAL-3 and non-phosphorylated β-catenin in DU-145 cells. Non-phosphorylated β-catenin is downstream protein involved in proliferation, migration, and invasion of the DU‑145 cells.
Collapse
Affiliation(s)
- Deborah Simão Souza
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04039-032, Brazil
| | - Carolina Meloni Vicente
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04039-032, Brazil
| | - Carla Macheroni
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04039-032, Brazil
| | | | - Catarina Segreti Porto
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04039-032, Brazil.
| |
Collapse
|
3
|
Guo A, Chang Y, Lin J, Guo J, He Y, Wang C, Wu Z, Xing Y, Jin F, Deng Y. Resveratrol Enhances Anticancer Effects of Silybin on HepG2 Cells and H22 Tumor-bearing Mice via Inducing G2/M Phase Arrest and Increasing Bax/Bcl-2 Ratio. Comb Chem High Throughput Screen 2025; 28:89-98. [PMID: 38204247 DOI: 10.2174/0113862073263408231101105647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/21/2023] [Accepted: 09/14/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Silybin, a major flavonoid extracted from the seeds of milk thistle, has a strong hepatoprotective but weak anti-hepatoma activity. Screening another natural ingredient and combining it with silybin is expected to improve the anti-hepatoma efficacy of silybin. OBJECTIVE The objective of this study was to investigate the synergistic anti-hepatoma effect of resveratrol and silybin on HepG2 cells and H22 tumor-bearing mice in hepatocellular carcinoma (HCC) in vitro and in vivo, respectively. METHODS Cell viability, scratch wound, clone formation, cell apoptosis, cell cycle, and western blot analysis of HepG2 cells were used to investigate the synergistic effects in vitro of the combination resveratrol with silybin. Growth rates, tumor weights, organ indexes, and histological pathological examination in H22 tumor-bearing mice were used to investigate the synergistic effects in vivo. RESULTS The combination of resveratrol (50 μg/mL) and silybin (100 μg/mL) significantly suppressed cell viability, whose combination index (CI) was 1.63 (>1.15), indicating the best synergism. The combination exhibited the synergistic effect in blocking the migration and proliferative capacity of HepG2 cells in the measurement in vitro. In particular, resveratrol enhanced the upregulation of Bcl-2 expression and the downregulation of Bax expression with a concurrent increase in the Bax/Bcl-2 ratio. The combination of resveratrol (50 mg/kg) and silybin (100 mg/kg) reduced the tumor weight, inhibited the growth rate, increased the organ indexes, and destroyed the tumor tissue morphology in H22 tumor-bearing mice. CONCLUSION Resveratrol was found to exhibit synergistic anti-cancer effects with silybin on HepG2 cells and H22 tumor-bearing mice.
Collapse
Affiliation(s)
- Ailing Guo
- Department of Pharmacy, School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Yuexing Chang
- Department of Pharmacy, School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Junjie Lin
- Department of Pharmacy, School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Jia Guo
- Department of Pharmacy, School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Yu He
- Department of Pharmacy, School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Ce Wang
- Department of Pharmacy, School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Zhihuan Wu
- Department of Pharmacy, School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Yingru Xing
- Department of Pharmacy, School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Feng Jin
- Department of Pharmacy, School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Yun Deng
- Department of Pharmacy, School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| |
Collapse
|
4
|
Pant A, Moar K, Maurya PK. Impact of estradiol in inducing endometrial cancer using RL95-2. Pathol Res Pract 2024; 263:155640. [PMID: 39383736 DOI: 10.1016/j.prp.2024.155640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND Endometrial cancer is the most common gynecological malignancy that originates from the inner lining of the uterus and predominantly affects postmenopausal women. Prolonged exposure to estrogen, family history of endometrial cancer, obesity, and hormonal imbalance are some of the risk factors associated with endometrial cancer. In our study, we investigated the effect of estradiol, a potent form of estrogen at various concentrations on endometrial cell line RL95-2. METHODS Endometrial cell RL95-2 were cultured in DMEM medium with optimal conditions required to maintain the cells. MTT assay and colony formation assay were further performed after treating the cells with different concentrations of estradiol (1, 10, and 100 nM) and TAM (100 nM). Moreover, the effect of genes regulated by estradiol was also examined using microarray and validated using real-time polymerase chain reaction (qRT-PCR). RESULTS Time-dependent MTT assay shows a significant change in the ability of the cells to survive relative to concentrations. Colony formation was found to be directly proportional to the concentration of the estradiol (p < 0.05). Among genes, MMP14 (p = 0.03), SPARCL1 (p = 0.005), and CLU (p = 0.06) showed a significant up-regulation in their expression after estradiol treatment while NRN1 (p < 0.001) showed significant downregulation in expression pattern compared to control. However, the TAM treatment was found to be significantly effective after 72 h (p < 0.001) compared to control and 100 nM E2 (p = 0.0206). CONCLUSION Our study suggests that estradiol significantly contributes to regulating the viability, colony formation, and expression of genes associated with endometrial cancer.
Collapse
Affiliation(s)
- Anuja Pant
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Kareena Moar
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India.
| |
Collapse
|
5
|
Macheroni C, Souza DS, Porto CS, Vicente CM. Estrogen receptor activates SRC and ERK1/2 and promotes tumorigenesis in human testicular embryonic carcinoma cells NT2/D1. Exp Cell Res 2024; 442:114282. [PMID: 39413983 DOI: 10.1016/j.yexcr.2024.114282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/26/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Testicular germ cell tumors have the highest incidence in young men (between 15 and 44 years of age) and its etiology is still unclear, but its emergence on puberty suggests a hormone-dependent mechanism for the development of these tumors and their progression. We previously identified the estrogen receptor ESR1, ESR2, GPER and an isoform of ESR1, the ESR1-36 in human testicular embryonic carcinoma NT2/D1 cells, and the activation of SRC induced by ESR1 and ESR2 in these cells. Therefore, this study aimed to analyze the role of ER in the activation of ERK1/2, and the involvement of SRC and ERK1/2 on proliferation, migration, and invasion of the NT2/D1 cells. Our results showed that the activation of ESR1 (using ESR1-selective agonist PPT) or ESR2 (using ESR2-selective agonist DPN) increased phosphorylation of ERK1/2 in NT2/D1 cells. In the presence of the selective inhibitor for SRC-family kinases PP2, or the MEK specific inhibitor U0126, the effects of 17β-estradiol (E2) or PPT were blocked on proliferation and invasion of NT2/D1 cells. Finally, the proliferation, migration, and invasion of NT2/D1 cells simulated by E2 or ESR2 were also blocked by PP2 and U0126. This study provides novel insights into molecular mechanisms of ER in NT2/D1 cells by demonstrating that ER activates rapid responses molecules, including SRC and ERK1/2, which enhance the tumorigenic potential of testicular cancer cells.
Collapse
Affiliation(s)
- Carla Macheroni
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Deborah Simão Souza
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Catarina Segreti Porto
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Carolina Meloni Vicente
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil.
| |
Collapse
|
6
|
Gao P, Li C, Gong Q, Liu L, Qin R, Liu J. Sex steroid hormone residues in milk and their potential risks for breast and prostate cancer. Front Nutr 2024; 11:1390379. [PMID: 39285863 PMCID: PMC11403374 DOI: 10.3389/fnut.2024.1390379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Milk was a source of important nutrients for humans and was especially important for children and adolescents. The modern dairy animal production pattern had contributed to residual sex steroid hormones in milk. When this milk was consumed by humans, these hormones entered the body leading to hormonal disruptions and potentially increasing the risk of various types of cancers. This article reviewed the presence of residual sex steroid hormones in milk, their potential risks on human health, and their possible association with the incidence of breast and prostate cancer. The potential linkage between dairy consumption and these cancers were described in detail. The hormones present in dairy products could affect the development and progression of these types of cancer. Sex steroid hormones could interact with different signaling pathways, influencing carcinogenic cascades that could eventually lead to tumorigenesis. Given these potential health risks, the article suggested appropriate consumption of dairy products. This included being mindful not just of the amount of dairy consumed, but also the types of dairy products selected. More scientific exploration was needed, but this review provided valuable insights for health-conscious consumers and contributed to the ongoing discussion on dietary guidelines and human health.
Collapse
Affiliation(s)
- Pengyue Gao
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central MinZu University, Wuhan, China
| | - Chengyi Li
- School of Basic Medicine, Yangtze University, Jingzhou, China
| | - Quan Gong
- School of Basic Medicine, Yangtze University, Jingzhou, China
| | - Lian Liu
- School of Basic Medicine, Yangtze University, Jingzhou, China
| | - Rui Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central MinZu University, Wuhan, China
| | - Jiao Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central MinZu University, Wuhan, China
| |
Collapse
|
7
|
Figueira MI, Carvalho TMA, Macário-Monteiro J, Cardoso HJ, Correia S, Vaz CV, Duarte AP, Socorro S. The Pros and Cons of Estrogens in Prostate Cancer: An Update with a Focus on Phytoestrogens. Biomedicines 2024; 12:1636. [PMID: 39200101 PMCID: PMC11351860 DOI: 10.3390/biomedicines12081636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/14/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
The role of estrogens in prostate cancer (PCa) is shrouded in mystery, with its actions going from angelic to devilish. The findings by Huggins and Hodges establishing PCa as a hormone-sensitive cancer have provided the basis for using estrogens in therapy. However, despite the clinical efficacy in suppressing tumor growth and the panoply of experimental evidence describing its anticarcinogenic effects, estrogens were abolished from PCa treatment because of the adverse secondary effects. Notwithstanding, research work over the years has continued investigating the effects of estrogens, reporting their pros and cons in prostate carcinogenesis. In contrast with the beneficial therapeutic effects, many reports have implicated estrogens in the disruption of prostate cell fate and tissue homeostasis. On the other hand, epidemiological data demonstrating the lower incidence of PCa in Eastern countries associated with a higher consumption of phytoestrogens support the beneficial role of estrogens in counteracting cancer development. Many studies have investigated the effects of phytoestrogens and the underlying mechanisms of action, which may contribute to developing safe estrogen-based anti-PCa therapies. This review compiles the existing data on the anti- and protumorigenic actions of estrogens and summarizes the anticancer effects of several phytoestrogens, highlighting their promising features in PCa treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sílvia Socorro
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal; (M.I.F.)
| |
Collapse
|
8
|
Li J, Huang Z, Wang P, Li R, Gao L, Lai KP. Therapeutic targets of formononetin for treating prostate cancer at the single-cell level. Aging (Albany NY) 2024; 16:10380-10401. [PMID: 38874510 PMCID: PMC11236323 DOI: 10.18632/aging.205935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/22/2024] [Indexed: 06/15/2024]
Abstract
Prostate cancer is one of the serious health problems of older male, about 13% of male was affected by prostate cancer. Prostate cancer is highly heterogeneity disease with complex molecular and genetic alterations. So, targeting the gene candidates in prostate cancer in single-cell level can be a promising approach for treating prostate cancer. In the present study, we analyzed the single cell sequencing data obtained from 2 previous reports to determine the differential gene expression of prostate cancer in single-cell level. By using the network pharmacology analysis, we identified the therapeutic targets of formononetin in immune cells and tissue cells of prostate cancer. We then applied molecular docking to determine the possible direct binding of formononetin to its target proteins. Our result identified a cluster of differential gene expression in prostate cancer which can serve as novel biomarkers such as immunoglobulin kappa C for prostate cancer prognosis. The result of network pharmacology delineated the roles of formononetin's targets such CD74 and THBS1 in immune cells' function of prostate cancer. Also, formononetin targeted insulin receptor and zinc-alpha-2-glycoprotein which play important roles in metabolisms of tissue cells of prostate cancer. The result of molecular docking suggested the direct binding of formononetin to its target proteins including INSR, TNF, and CXCR4. Finally, we validated our findings by using formononetin-treated human prostate cancer cell DU145. For the first time, our result suggested the use of formononetin for treating prostate cancer through targeting different cell types in a single-cell level.
Collapse
Affiliation(s)
- Jiawei Li
- Department of Urology Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, PR China
| | | | - Ping Wang
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, PR China
| | - Rong Li
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, PR China
| | - Li Gao
- Department of Urology Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, PR China
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, PR China
| |
Collapse
|
9
|
Leone AG, Bonadonna S, Cassani C, Barcellini A, Sirico M, Tagliaferri B, Maccarone S, Dalu D, Ruggieri L, Ghelardi F, Lambertini M, Nardin S, Berardi R, La Verde N, Perrone F, Cinieri S, Trapani D, Pietrantonio F. Implications of hormonal carcinogenesis for transgender and gender-diverse people undergoing gender-affirming hormone therapy: an up-to-date review. BMJ ONCOLOGY 2024; 3:e000330. [PMID: 39886120 PMCID: PMC11235029 DOI: 10.1136/bmjonc-2024-000330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/21/2024] [Indexed: 02/01/2025]
Abstract
Transgender and gender-diverse (TGD) individuals face an elevated risk of cancer in comparison with the general population. This increased risk is primarily attributed to an imbalanced exposure to modifiable risk factors and a limited adherence to cancer screening programmes, stemming from historical social and economic marginalisation. Consequently, these factors contribute to poorer clinical outcomes in terms of cancer diagnosis and mortality. A focal point of interest is the potential carcinogenic effect of gender-affirming hormone therapy (GAHT). It is crucial to recognise that GAHT serves as an essential, life-saving treatment for TGD individuals. Therefore, if a demonstrated direct correlation between GAHT and elevated cancer risk emerges, essential shared decision-making discussions should occur between oncology practitioners and patients. This narrative review aims to collect and discuss evidence regarding potential correlations between GAHT and the most prevalent tumours known to be influenced by sex hormones. The objective is to comprehend how these potential carcinogenic effects impact health and inform health interventions for TGD individuals. Unfortunately, the scarcity of epidemiological data on cancer incidence in the TGD population persists due to the absence of sexual orientation and gender identity data collection in cancer centres. Consequently, in most cases, establishing a positive or negative correlation between GAHT and cancer risk remains speculative. There is an urgent need for concerted efforts from researchers and clinicians worldwide to overcome barriers and enhance cancer prevention and care in this specific population.
Collapse
Affiliation(s)
- Alberto Giovanni Leone
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Stefania Bonadonna
- Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Chiara Cassani
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Fondazione Policlinico San Matteo, Pavia, Italy
| | - Amelia Barcellini
- Clinical Department, Radiation Oncology Unit, National Center for Oncological Hadronthrapy (CNAO), Pavia, Italy
- Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Marianna Sirico
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Meldola, Italy
| | - Barbara Tagliaferri
- Medical Oncology Unit, Maugeri Clinical Research Institutes IRCCS, Pavia, Italy
| | - Stefano Maccarone
- Maugeri Clinical Research Institutes IRCCS, Pavia, Italy
- University of Pavia, Pavia, Italy
| | - Davide Dalu
- Department of Oncology, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Lorenzo Ruggieri
- Department of Oncology, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Filippo Ghelardi
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Matteo Lambertini
- Department of Medical Oncology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | - Simone Nardin
- Department of Medical Oncology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | | | - Nicla La Verde
- Department of Oncology, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Francesco Perrone
- Clinical Trial Unit, Istituto Nazionale Tumori Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Pascale, Naples, Italy
- National President, AIOM, Milan, Italy
| | - Saverio Cinieri
- Medical Oncology Unit, Ospedale di Summa A, Brindisi, Italy
- National President, Fondazione AIOM, Milan, Italy
| | - Dario Trapani
- European Institute of Oncology, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
10
|
De Lazzari G, Opattova A, Arena S. Novel frontiers in urogenital cancers: from molecular bases to preclinical models to tailor personalized treatments in ovarian and prostate cancer patients. J Exp Clin Cancer Res 2024; 43:146. [PMID: 38750579 PMCID: PMC11094891 DOI: 10.1186/s13046-024-03065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024] Open
Abstract
Over the last few decades, the incidence of urogenital cancers has exhibited diverse trends influenced by screening programs and geographical variations. Among women, there has been a consistent or even increased occurrence of endometrial and ovarian cancers; conversely, prostate cancer remains one of the most diagnosed malignancies, with a rise in reported cases, partly due to enhanced and improved screening efforts.Simultaneously, the landscape of cancer therapeutics has undergone a remarkable evolution, encompassing the introduction of targeted therapies and significant advancements in traditional chemotherapy. Modern targeted treatments aim to selectively address the molecular aberrations driving cancer, minimizing adverse effects on normal cells. However, traditional chemotherapy retains its crucial role, offering a broad-spectrum approach that, despite its wider range of side effects, remains indispensable in the treatment of various cancers, often working synergistically with targeted therapies to enhance overall efficacy.For urogenital cancers, especially ovarian and prostate cancers, DNA damage response inhibitors, such as PARP inhibitors, have emerged as promising therapeutic avenues. In BRCA-mutated ovarian cancer, PARP inhibitors like olaparib and niraparib have demonstrated efficacy, leading to their approval for specific indications. Similarly, patients with DNA damage response mutations have shown sensitivity to these agents in prostate cancer, heralding a new frontier in disease management. Furthermore, the progression of ovarian and prostate cancer is intricately linked to hormonal regulation. Ovarian cancer development has also been associated with prolonged exposure to estrogen, while testosterone and its metabolite dihydrotestosterone, can fuel the growth of prostate cancer cells. Thus, understanding the interplay between hormones, DNA damage and repair mechanisms can hold promise for exploring novel targeted therapies for ovarian and prostate tumors.In addition, it is of primary importance the use of preclinical models that mirror as close as possible the biological and genetic features of patients' tumors in order to effectively translate novel therapeutic findings "from the bench to the bedside".In summary, the complex landscape of urogenital cancers underscores the need for innovative approaches. Targeted therapy tailored to DNA repair mechanisms and hormone regulation might offer promising avenues for improving the management and outcomes for patients affected by ovarian and prostate cancers.
Collapse
Affiliation(s)
- Giada De Lazzari
- Candiolo Cancer Institute, FPO - IRCCS, Laboratory of Translational Cancer Genetics, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy
| | - Alena Opattova
- Candiolo Cancer Institute, FPO - IRCCS, Laboratory of Translational Cancer Genetics, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy
| | - Sabrina Arena
- Candiolo Cancer Institute, FPO - IRCCS, Laboratory of Translational Cancer Genetics, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy.
- Department of Oncology, University of Torino, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy.
| |
Collapse
|
11
|
Macheroni C, Leite GGF, Souza DS, Vicente CM, Lacerda JT, Moraes MN, Juliano MA, Porto CS. Activation of estrogen receptor induces differential proteomic responses mainly involving migration, invasion, and tumor development pathways in human testicular embryonal carcinoma NT2/D1 cells. J Steroid Biochem Mol Biol 2024; 237:106443. [PMID: 38092129 DOI: 10.1016/j.jsbmb.2023.106443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/27/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
The aims of the present study were to investigate the global changes on proteome of human testicular embryonal carcinoma NT2/D1 cells treated with 17β-estradiol (E2), and the effects of this hormone on migration, invasion, and colony formation of these cells. A quantitative proteomic analysis identified the presence of 1230 proteins in both E2-treated and control cells. The analysis revealed 75 differentially abundant proteins (DAPs), out of which 43 proteins displayed a higher abundance and, 30 proteins showed a lower abundance in E2-treated NT2/D1 cancer cells. Functional analysis using IPA highlighted some activation processes such as migration, invasion, metastasis, and tumor growth. Interestingly, the treatment with E2 and ERβ-selective agonist DPN increased the migration of NT2/D1 cells. On the other hand, ERα-selective agonist PPT did not modify cell migration, indicating that ERβ is the upstream receptor involved in this process. The activation of ERβ increased the invasion and anchorage‑independent growth of NT2/D1 cells more intensely than ERα. ERα and ERβ may play overlapping roles on invasion and colony formation of these cells. Further studies are required to clarify the mechanism underlying these effects. The molecular mechanisms revealed by proteomic and functional studies might also guide the development of potential targets for a better understanding of the biology of these cells and novel treatments for non-seminoma in the future.
Collapse
Affiliation(s)
- Carla Macheroni
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP 04039-032, Brazil
| | - Giuseppe Gianini Figueirêdo Leite
- Division of Infectious Diseases, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP 04039-032, Brazil
| | - Deborah Simão Souza
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP 04039-032, Brazil
| | - Carolina Meloni Vicente
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP 04039-032, Brazil
| | - José Thalles Lacerda
- Department of Physiology, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, Butantã, São Paulo, SP 05508-090, Brazil
| | - Maria Nathália Moraes
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Av. Conceição 515, Diadema, São Paulo, SP, 09920-000, Brazil
| | - Maria Aparecida Juliano
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100, Vila Clementino, São Paulo, SP 04044-020, Brazil
| | - Catarina Segreti Porto
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP 04039-032, Brazil.
| |
Collapse
|
12
|
Zhang H, Zheng C, Chen W, Li X, Wang J, Wang T, Zhao Q, Huang H, Li Y, Yang C, Xie K, Pan S, Wang B, Wang C, Tang Y, Li K, Liu J, Wang L. PP2 alleviates the progression of osteoarthritis by inhibiting Wnt/β-catenin and activating TGF-β/Smad signaling. Int Immunopharmacol 2023; 124:110948. [PMID: 37774483 DOI: 10.1016/j.intimp.2023.110948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 10/01/2023]
Abstract
OBJECTIVE We aimed to explore the effect and mechanism of the Src inhibitor PP2 on osteoarthritis (OA) progression. METHODS The protein expressions of Src, p-Src (y418) and p-FAK in normal and OA human chondrocytes were detected by immunofluorescence (IF) analysis. Chondrocytes from the femur and tibial plateau of 3-day-old mice were extracted and inoculated into 6-well plates. The chondrocytes were co-cultured with IL-1β and different doses of PP2, and then the degeneration of extracellular matrix was analyzed. A mouse OA model was induced by destabilizing medial meniscectomy of the right knee. Two weeks after the operation, different doses of PP2 were injected intraperitoneally. The drug was given three times a week for 6 weeks, and then the mice were sacrificed. Histopathological, IF and immunoblotting analyses were used to detect key OA catabolic markers and protein expression and related signaling. RESULTS The levels of Src, p-Src (y418) and p-FAK in the knee cartilage tissue of patients with OA were abnormally increased. After chondrocytes were co-treated with IL-1β and different doses of PP2, the results showed that PP2 reduced the abnormal increase of β-catenin, p-β-catenin and other proteins induced by IL-1β, and reversed the decrease of p-Smad3, aggrecan and collagen Ⅱ protein levels. Meanwhile, intraperitoneal injection of PP2 in vivo significantly reduced the degeneration of articular cartilage in the OA mouse model. CONCLUSION Our data indicate that targeting Src with PP2 protected against cartilage destruction in an OA mouse model by inhibiting Wnt/β-catenin and activating TGF-β/Smad signaling, suggesting that Src may be a potential therapeutic target for OA treatment.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseass, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Baise, 533000, Guangxi, China
| | - Chuanchuan Zheng
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseass, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Baise, 533000, Guangxi, China
| | - Wei Chen
- Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Xiaoqiang Li
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseass, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Baise, 533000, Guangxi, China
| | - Jinshu Wang
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseass, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Baise, 533000, Guangxi, China
| | - Taikun Wang
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseass, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Baise, 533000, Guangxi, China
| | - Qi Zhao
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseass, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Baise, 533000, Guangxi, China
| | - Hao Huang
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseass, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Baise, 533000, Guangxi, China
| | - Yiting Li
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseass, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Baise, 533000, Guangxi, China
| | - Chengliang Yang
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseass, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Baise, 533000, Guangxi, China
| | - Kegong Xie
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseass, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Baise, 533000, Guangxi, China
| | - Shengcai Pan
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseass, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Baise, 533000, Guangxi, China
| | - Binghao Wang
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseass, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Baise, 533000, Guangxi, China
| | - Chong Wang
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan, Guangdong 523820, China
| | - Yujin Tang
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseass, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Baise, 533000, Guangxi, China.
| | - Kai Li
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510630, China.
| | - Jia Liu
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseass, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Baise, 533000, Guangxi, China.
| | - Liqiang Wang
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
13
|
Belluti S, Imbriano C, Casarini L. Nuclear Estrogen Receptors in Prostate Cancer: From Genes to Function. Cancers (Basel) 2023; 15:4653. [PMID: 37760622 PMCID: PMC10526871 DOI: 10.3390/cancers15184653] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/01/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Estrogens are almost ubiquitous steroid hormones that are essential for development, metabolism, and reproduction. They exert both genomic and non-genomic action through two nuclear receptors (ERα and ERβ), which are transcription factors with disregulated functions and/or expression in pathological processes. In the 1990s, the discovery of an additional membrane estrogen G-protein-coupled receptor augmented the complexity of this picture. Increasing evidence elucidating the specific molecular mechanisms of action and opposing effects of ERα and Erβ was reported in the context of prostate cancer treatment, where these issues are increasingly investigated. Although new approaches improved the efficacy of clinical therapies thanks to the development of new molecules targeting specifically estrogen receptors and used in combination with immunotherapy, more efforts are needed to overcome the main drawbacks, and resistance events will be a challenge in the coming years. This review summarizes the state-of-the-art on ERα and ERβ mechanisms of action in prostate cancer and promising future therapies.
Collapse
Affiliation(s)
- Silvia Belluti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.B.); (C.I.)
| | - Carol Imbriano
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.B.); (C.I.)
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale di Baggiovara, 41126 Modena, Italy
| |
Collapse
|
14
|
Jefferi NES, Shamhari A‘A, Noor Azhar NKZ, Shin JGY, Kharir NAM, Azhar MA, Hamid ZA, Budin SB, Taib IS. The Role of ERα and ERβ in Castration-Resistant Prostate Cancer and Current Therapeutic Approaches. Biomedicines 2023; 11:biomedicines11030826. [PMID: 36979805 PMCID: PMC10045750 DOI: 10.3390/biomedicines11030826] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/11/2023] Open
Abstract
Castration-resistant prostate cancer, or CRPC, is an aggressive stage of prostate cancer (PCa) in which PCa cells invade nearby or other parts of the body. When a patient with PCa goes through androgen deprivation therapy (ADT) and the cancer comes back or worsens, this is called CRPC. Instead of androgen-dependent signalling, recent studies show the involvement of the estrogen pathway through the regulation of estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) in CRPC development. Reduced levels of testosterone due to ADT lead to low ERβ functionality in inhibiting the proliferation of PCa cells. Additionally, ERα, which possesses androgen independence, continues to promote the proliferation of PCa cells. The functions of ERα and ERβ in controlling PCa progression have been studied, but further research is needed to elucidate their roles in promoting CRPC. Finding new ways to treat the disease and stop it from becoming worse will require a clear understanding of the molecular processes that can lead to CRPC. The current review summarizes the underlying processes involving ERα and ERβ in developing CRPC, including castration-resistant mechanisms after ADT and available medication modification in mitigating CRPC progression, with the goal of directing future research and treatment.
Collapse
Affiliation(s)
- Nur Erysha Sabrina Jefferi
- Center of Diagnostics, Therapeutics and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Asma’ ‘Afifah Shamhari
- Center of Diagnostics, Therapeutics and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Nur Khayrin Zulaikha Noor Azhar
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Joyce Goh Yi Shin
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Nur Annisa Mohd Kharir
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Muhammad Afiq Azhar
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Zariyantey Abd Hamid
- Center of Diagnostics, Therapeutics and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Siti Balkis Budin
- Center of Diagnostics, Therapeutics and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Izatus Shima Taib
- Center of Diagnostics, Therapeutics and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
- Correspondence: ; Tel.: +0603-92897608
| |
Collapse
|
15
|
Souza DS, Macheroni C, Pereira GJS, Vicente CM, Porto CS. Molecular regulation of prostate cancer by Galectin-3 and estrogen receptor. Front Endocrinol (Lausanne) 2023; 14:1124111. [PMID: 36936148 PMCID: PMC10020622 DOI: 10.3389/fendo.2023.1124111] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Prostate cancer remains the most prevalent cancer among men worldwide. This cancer is hormone-dependent; therefore, androgen, estrogen, and their receptors play an important role in development and progression of this disease, and in emergence of the castration-resistant prostate cancer (CRPC). Galectins are a family of β-galactoside-binding proteins which are frequently altered (upregulated or downregulated) in a wide range of tumors, participating in different stages of tumor development and progression, but the molecular mechanisms which regulate its expression are still poorly understood. This review provides an overview of the current and emerging knowledge on Galectin-3 in cancer biology with focus on prostate cancer and the interplay with estrogen receptor (ER) signaling pathways, present in androgen-independent prostate cancer cells. We suggest a molecular mechanism where ER, Galectin-3 and β-catenin can modulate nuclear transcriptional events, such as, proliferation, migration, invasion, and anchorage-independent growth of androgen-independent prostate cancer cells. Despite a number of achievements in targeted therapy for prostate cancer, CRPC may eventually develop, therefore new effective drug targets need urgently to be found. Further understanding of the role of Galectin-3 and ER in prostate cancer will enhance our understanding of the molecular mechanisms of prostate cancer development and the future treatment of this disease.
Collapse
|
16
|
Gadkar S, Thakur M, Desouza J, Bhowmick S, Patel V, Chaudhari U, Acharya KK, Sachdeva G. Estrogen receptor expression is modulated in human and mouse prostate epithelial cells during cancer progression. Steroids 2022; 184:109036. [PMID: 35413338 DOI: 10.1016/j.steroids.2022.109036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/28/2022] [Accepted: 04/07/2022] [Indexed: 11/21/2022]
Abstract
Substantial data posit estrogen receptors (ERs) as promising targets for prostate cancer (PCa) therapeutics. However, the trials on assessing the chemo-preventive or therapeutic potential of ER targeting drugs or selective estrogen receptor modulators (SERMs) have not yet established their clinical benefits. This could be ascribed to a possible modulation in the ER expression during PCa progression. Further it is warranted to test various ER targeting drugs in appropriate preclinical models that simulate human ER expression pattern during PCa progression. The study was undertaken to revisit the existing data on the epithelial ER expression pattern in human cancerous prostates and experimentally determine whether these patterns are replicated in TRAMP (Transgenic Adenocarcinoma of Mouse Prostate) mice, a model for human PCa. Estradiol (E2) binding to the plasma membrane of the epithelial cells and its modulation during the PCa progression in TRAMP were also investigated. A reassessment of the existing data revealed a trend towards downregulation in the epithelial expression of wild-type ESR1 transcripts in high-grade PCa, compared to non-cancerous prostate in humans. Next, epithelial cell-enriched populations from TRAMP prostates (TP) displaying low-grade prostatic intraepithelial neoplasia (LGPIN), high-grade PIN (HGPIN), HGPIN with well-differentiated carcinoma (PIN + WDC), WDC (equivalent to grade 2/3 human PCa), and poorly-differentiated carcinoma (PDC-equivalent to grade 4/5 human PCa) revealed significantly higher Esr1 and Esr2 levels in HGPIN and significantly reduced levels in WDC, compared to respective age-matched control prostates. These patterns for the nuclear ERs were similar to the trend shown by E2 binding to the plasma membrane of the epithelial cells during PCa progression in TRAMP. E2 binding to epithelial cells (EpCAM+), though significantly higher in TPs displaying LGPIN, decreased significantly as the disease progressed to WDC. The study highlights a reduction in the epithelial ESR level with the PCa progression and this pattern was evident in both humans and TRAMP. These observations may have major implications in refining PCa therapeutics targeting ER.
Collapse
Affiliation(s)
- Sushama Gadkar
- Cell Physiology and Pathology Laboratory, Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), Mumbai 400012, India
| | - Mohini Thakur
- Cell Physiology and Pathology Laboratory, Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), Mumbai 400012, India
| | - Junita Desouza
- Cell Physiology and Pathology Laboratory, Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), Mumbai 400012, India
| | - Shilpa Bhowmick
- Viral Immunopathogenesis Laboratory, ICMR-NIRRCH, Mumbai 400012, India
| | - Vainav Patel
- Viral Immunopathogenesis Laboratory, ICMR-NIRRCH, Mumbai 400012, India
| | - Uddhav Chaudhari
- Cell Physiology and Pathology Laboratory, Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), Mumbai 400012, India
| | - Kshitish K Acharya
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Shodhaka Life Sciences Pvt. Ltd., Bengaluru (Bangalore) 560100, India
| | - Geetanjali Sachdeva
- Cell Physiology and Pathology Laboratory, Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), Mumbai 400012, India.
| |
Collapse
|
17
|
Bechmann N, Calsina B, Richter S, Pietzsch J. Therapeutic Potential of Nitric Oxide‒Releasing Selective Estrogen Receptor Modulators in Malignant Melanoma. J Invest Dermatol 2022; 142:2217-2227. [PMID: 34990694 DOI: 10.1016/j.jid.2021.12.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 11/19/2021] [Accepted: 12/13/2021] [Indexed: 10/24/2022]
Abstract
Malignant melanoma has a steadily increasing incidence, but treatment options are still limited, and the prognosis for patients, especially for men, is poor. To investigate whether targeting estrogen receptor (ER) signaling is a valid therapeutic approach, we retrospectively analyzed ER gene expression profiles in 448 patients with melanoma. High ERα gene (ESR1) expression was associated with improved overall survival (hazard ratio = 0.881; 95% confidence interval = 0.793-0.979; P = 0.018) and increased with tumor stage, whereas ERβ gene (ESR2) expression did not change with tumor progression. This seemingly protective function of ERα led us to speculate that specific targeting of ERβ has a therapeutic benefit in malignant melanoma. An ERβ-selective ER modulator with nitric oxide‒releasing moiety (nitric oxide‒releasing selective ER modulator 4d [NO-SERM 4d]) significantly reduced the prometastatic behavior of two melanoma cell lines (A2058 and MEL-JUSO). Epithelial‒mesenchymal transition in melanoma is consistent with a switch from E- to N-cadherin expression, mediating the invasive phenotype. NO-SERM 4d reduced N-cadherin expression and impaired spheroid formation in A2058 cells. In addition, the growth of A2058 spheroids was significantly reduced, confirming the antitumorigenic potential of NO-SERM 4d. Targeting ERβ signaling combined with targeted nitric oxide release represents a promising therapeutic approach in malignant melanoma that has the potential to prevent metastatic spread and reduce tumor growth.
Collapse
Affiliation(s)
- Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Faculty of Medicine Carl Gustav Carus, School of Medicine, Technische Universität Dresden, Dresden, Germany; Department of Medicine III, University Hospital Carl Gustav Carus, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Department of Experimental Diabetology (DIAB), German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| | - Bruna Calsina
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain; Hereditary Endocrine Cancer Group, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Susan Richter
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Faculty of Medicine Carl Gustav Carus, School of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum, Dresden-Rossendorf, Dresden, Germany; Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
18
|
Tong D. Selective estrogen receptor modulators contribute to prostate cancer treatment by regulating the tumor immune microenvironment. J Immunother Cancer 2022; 10:jitc-2021-002944. [PMID: 35383112 PMCID: PMC8984050 DOI: 10.1136/jitc-2021-002944] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2022] [Indexed: 11/19/2022] Open
Abstract
Prostate cancer (PC) has previously been established as a cold tumor and develops in an inert immunosuppressive environment. Current research focuses on altering the immune microenvironment of PC from cold to hot; thus, in the present review, the diverse roles of estrogen and estrogen receptor (ER) signaling was examined in the tumor cell and tumor immune microenvironment (TIM). We hypothesized that ERα promotes PC progression and ERβ impedes epithelial-mesenchymal transition in PC cells, while in the TIM, ERβ mediates the immunosuppressive environment, and low levels of ERα is associated with disease development. Selective estrogen receptor modulators (SERMs) or selective ER degraders play diverse roles in the regulation of ER isoforms. Patients with PC may benefit from the use of SERMs, including raloxifene, in combination with anti-PD1/PD-L1 checkpoint immunotherapy, or TGF-β or Wnt antagonists. The present review demonstrated that immunotherapy-based strategies combined with SERMs may be an option for the future of PC-targeting therapy.
Collapse
Affiliation(s)
- Dali Tong
- Department of Urological Surgery, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| |
Collapse
|
19
|
Lin Q, Cao J, Du X, Yang K, Yang X, Liang Z, Shi J, Zhang J. CYP1B1-catalyzed 4-OHE2 promotes the castration resistance of prostate cancer stem cells by estrogen receptor α-mediated IL6 activation. Cell Commun Signal 2022; 20:31. [PMID: 35292057 PMCID: PMC8922936 DOI: 10.1186/s12964-021-00807-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/22/2021] [Indexed: 11/10/2022] Open
Abstract
Background Resistance to androgen deprivation therapy remains a major challenge for the clinical treatment of patients with castration-resistant prostate cancer (CRPC). CYP1B1, a critical enzyme that catalyzes the conversion of estradiol to 4-Hydroxy-17β-estradiol (4-OHE2), has been reported to promote the development and progression of hormone-related cancer, but its role in CRPC is unclear. Methods To explore the underlying mechanism which CYP1B1 promotes the prostate cancer stem cells (PCSCs) characteristics, bioinformatics analyses of human clinical prostate cancer (PCa) datasets were performed. CYP1B1, IL6, and estrogen receptor-α (ERα) expression levels were evaluated in PCa and CRPC tissues via immunohistochemistry. The high-performance liquid chromatography-mass spectrometry assay was carried out to examine intracellular 4-OHE2 levels. Serum-free suspension culture and flow cytometry assays were performed to evaluate PCSCs. Chromatin immunoprecipitation was used to validate that 4-OHE2 recruited ERα to the IL6 promoter. Results CYP1B1 expression was significantly increased in CRPC tissues and androgen-independent PCa cell lines. CYP1B1+ PCa cells were significantly enriched in bicalutamide-treated LNCaP cells, and CYP1B1 knockdown reduced the cell viability under bicalutamide treatment. In addition, CYP1B1 knockdown decreased the intracellular 4-OHE2 concentration, accompanied by reduced PCSC characteristics. In PCa cells, 4-OHE2 stimulated ERα transcriptional activity and upregulated the expression of IL6 and downstream genes of the IL6-STAT3 signaling. 4-OHE2 increased cell viability under bicalutamide treatment and promoted PCSC characteristics, while IL6 neutralizing antibody reversed these effects. Mechanistically, siERα and the ER antagonist ICI182780 significantly attenuated 4-OHE2-induced IL6 expression, and 4-OHE2 promoted the binding of ERα to the estrogen response element of the IL6 promoter. Conclusions Our findings indicate that CYP1B1-catalyzed 4-OHE2 enhanced PCSC characteristics and attenuated bicalutamide sensitivity by ERα-mediated the IL6-STAT3 pathway activation. Our study further emphasizes the role of CYP1B1 in castration resistance and illustrates a novel mechanism of CRPC development. Graphical Abstract ![]()
Video Abstract.
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-021-00807-x.
Collapse
Affiliation(s)
- Qimei Lin
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Jiasong Cao
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin, 300071, China.,Tianjin Key Lab of Human Development and Reproductive Regulation, Tianjin Central Hospital of Obstetrics and Gynecology, Nankai University, Tianjin, 300071, China
| | - Xiaoling Du
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Kuo Yang
- Department of Urology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Xu Yang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Zhixian Liang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Jiandang Shi
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin, 300071, China.
| | - Ju Zhang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
20
|
Schröder SK, Pinoé-Schmidt M, Weiskirchen R. Lipocalin-2 (LCN2) Deficiency Leads to Cellular Changes in Highly Metastatic Human Prostate Cancer Cell Line PC-3. Cells 2022; 11:cells11020260. [PMID: 35053376 PMCID: PMC8773519 DOI: 10.3390/cells11020260] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 02/01/2023] Open
Abstract
The transporter protein lipocalin-2 (LCN2) also termed neutrophil-gelatinase-associated lipocalin (NGAL) has pleiotropic effects in tumorigenesis in various cancers. Since the precise role of LCN2 in prostate cancer (PCa) is poorly understood, we aimed to elucidate its functions in PCa in vitro. For this purpose, LCN2 was transiently suppressed or permanently depleted in human PC-3 cells using siRNA or CRISPR/Cas9-mediated knockout. Effects of LCN2 suppression on expression of different tumorigenic markers were investigated by Western blot analysis and RT-qPCR. LCN2 knockout cells were analyzed for cellular changes and their ability to cope endoplasmic stress compared to parenteral PC-3 cells. Reduced LCN2 was accompanied by decreased expression of IL-1β and Cx43. In PC-3 cells, LCN2 deficiency leads to reduced proliferation, diminished expression of pro-inflammatory cytokines, lower adhesion, and disrupted F-actin distribution. In addition, IL-1β expression strongly correlated with LCN2 levels. LCN2 knockout cells showed enhanced and sustained activation of unfolded protein response proteins when treated with tunicamycin or cultured under glucose deprivation. Interestingly, an inverse correlation between phosphorylation of eukaryotic initiation factor 2 α subunit (p-eIF2α) and LCN2 expression was observed suggesting that LCN2 triggers protein synthesis under stress conditions. The finding that LCN2 depletion leads to significant phenotypic and cellular changes in PC-3 cells adds LCN2 as a valuable target for the treatment of PCa.
Collapse
|
21
|
Javaroni V. Editorial Comment: Testosterone replacement therapy (TRT) and prostate cancer: An updated systematic review with a focus on previous or active localized prostate cancer. Int Braz J Urol 2021; 48:188-195. [PMID: 34735092 PMCID: PMC8691234 DOI: 10.1590/s1677-5538.ibju.2022.01.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Valter Javaroni
- Departamento de Andrologia, Hospital Federal do Andaraí, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
22
|
Stoen MJ, Andersen S, Rakaee M, Pedersen MI, Ingebriktsen LM, Donnem T, Lombardi APG, Kilvaer TK, Busund LTR, Richardsen E. Overexpression of miR-20a-5p in Tumor Epithelium Is an Independent Negative Prognostic Indicator in Prostate Cancer-A Multi-Institutional Study. Cancers (Basel) 2021; 13:cancers13164096. [PMID: 34439249 PMCID: PMC8394585 DOI: 10.3390/cancers13164096] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary MicroRNAs (miRs) have critical regulatory roles in cell functions, and are involved in prostate cancer tumorigenesis. miR-20a-5p is a member of the oncogenic miR-17-92 cluster. Overexpressed miR-20a-5p has been shown to increase both cell proliferation and cell migration in cancers. The aim of our cohort study was to evaluate the prognostic role of miR-20a-5p in prostate cancer. We found miR-20a-5p associated with biochemical failure in tumor epithelium and tumor stroma. In the multivariable analysis miR-20a-5p in tumor epithelium was found to be an independent prognostic predictor for biochemical failure. In the functional studies, migration and invasion were significantly increased in miR-20a-5p transfected prostate cancer cell lines. In conclusion, high miR-20a-5p expression in tumor epithelium is a negative independent prognostic factor for biochemical failure in prostate cancer. Abstract Objective: assessing the prognostic role of miR-20a-5p, in terms of clinical outcome, in a large multi-institutional cohort study. Methods: Tissue microarrays from 535 patients’ prostatectomy specimens were constructed. In situ hybridization was performed to assess the expression level of miR-20a-5p in different tissue subregions: tumor stroma (TS) and tumor epithelium (TE). In vitro analysis was performed on prostate cancer cell lines. Results: A high miR-20a-5p expression was found negatively in association with biochemical failure in TE, TS and TE + TS (p = 0.001, p = 0.003 and p = 0.001, respectively). Multivariable analysis confirmed that high miR-20a-5p expression in TE independently predicts dismal prognosis for biochemical failure (HR = 1.56, 95% CI: 1.10–2.21, p = 0.014). Both DU145 and PC3 cells exhibited increased migration ability after transient overexpression of miR-20a-5p, as well as significant elevation of invasion in DU145 cells. Conclusion: A high miR-20a-5p expression in tumor epithelium is an independent negative predictor for biochemical prostate cancer recurrence.
Collapse
Affiliation(s)
- Maria J. Stoen
- Translational Cancer Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, N-9037 Tromso, Norway; (L.M.I.); (A.P.G.L.); (T.K.K.); (L.-T.R.B.); (E.R.)
- Correspondence: ; Tel.: +47-97419736
| | - Sigve Andersen
- Translational Cancer Research Group, Institute of Clinical Medicine, UiT The Arctic University of Norway, N-9037 Tromso, Norway; (S.A.); (M.R.); (M.I.P.); (T.D.)
- Department of Oncology, University Hospital of North Norway, N-9038 Tromso, Norway
| | - Mehrdad Rakaee
- Translational Cancer Research Group, Institute of Clinical Medicine, UiT The Arctic University of Norway, N-9037 Tromso, Norway; (S.A.); (M.R.); (M.I.P.); (T.D.)
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mona I. Pedersen
- Translational Cancer Research Group, Institute of Clinical Medicine, UiT The Arctic University of Norway, N-9037 Tromso, Norway; (S.A.); (M.R.); (M.I.P.); (T.D.)
| | - Lise M. Ingebriktsen
- Translational Cancer Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, N-9037 Tromso, Norway; (L.M.I.); (A.P.G.L.); (T.K.K.); (L.-T.R.B.); (E.R.)
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, N-5021 Bergen, Norway
| | - Tom Donnem
- Translational Cancer Research Group, Institute of Clinical Medicine, UiT The Arctic University of Norway, N-9037 Tromso, Norway; (S.A.); (M.R.); (M.I.P.); (T.D.)
- Department of Oncology, University Hospital of North Norway, N-9038 Tromso, Norway
| | - Ana P. G. Lombardi
- Translational Cancer Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, N-9037 Tromso, Norway; (L.M.I.); (A.P.G.L.); (T.K.K.); (L.-T.R.B.); (E.R.)
| | - Thomas K. Kilvaer
- Translational Cancer Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, N-9037 Tromso, Norway; (L.M.I.); (A.P.G.L.); (T.K.K.); (L.-T.R.B.); (E.R.)
- Department of Oncology, University Hospital of North Norway, N-9038 Tromso, Norway
| | - Lill-Tove R. Busund
- Translational Cancer Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, N-9037 Tromso, Norway; (L.M.I.); (A.P.G.L.); (T.K.K.); (L.-T.R.B.); (E.R.)
- Department of Clinical Pathology, University Hospital of North Norway, N-9038 Tromso, Norway
| | - Elin Richardsen
- Translational Cancer Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, N-9037 Tromso, Norway; (L.M.I.); (A.P.G.L.); (T.K.K.); (L.-T.R.B.); (E.R.)
- Department of Clinical Pathology, University Hospital of North Norway, N-9038 Tromso, Norway
| |
Collapse
|
23
|
Barati N, Tafrihi M, A Najafi SM. Membrane Localization of β-Catenin in Prostate Cancer PC3 Cells Treated with Teucrium persicum Boiss. Extract. Nutr Cancer 2021; 74:1819-1828. [PMID: 34343037 DOI: 10.1080/01635581.2021.1961829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Teucrium persicum Boiss. is an Iranian endemic plant which belongs to the Lamiaceae family and has been used to relieve pains in traditional Iranian medicine. We have previously found that treatment of prostate cancer PC3 cells with Teucrium persicum extract leads to the formation of small populations of epithelial cells. β-Catenin is a component of cell adherens junctions in epithelial cells and therefore, in this study, we have investigated the effect of Teucrium persicum extract on expression, cellular localization, and transcriptional activity of β-Catenin protein in PC-3 cells. Indirect immunofluorescence microscopy results showed that the cells treated with T. persicum extract had higher levels of β-Catenin protein at the cell membrane. Western blotting experiments produced consistent results. Gene expression studies by using a few β-Catenin-target genes including c-MYC, CYCLIN D1, and a reporter Luciferase gene under the control of several β-Catenin/TCF binding elements showed that treatment of PC3 cells with the methanolic extract of T. persicum decreases the transcriptional activities of β-Catenin. The results of this study provide further support for the anticancer properties of T. persicum. Definitely, more detailed molecular investigations are needed to find the mechanism(s) behind these effects. Highlightsβ-Catenin protein is a main component of Wnt signaling pathway and adherens junction.Activation of Wnt signaling pathway affects translocation of β-Catenin.Teucrium persicum extract induces β-Catenin localization at cell membrane.Teucrium persicum affects the transcriptional activity of β-Catenin.It stabilizes E-cadherin/β-Catenin protein complex and adherens junction.
Collapse
Affiliation(s)
- Narges Barati
- Department of Cell and Molecular Biology, School of Biology, University of Tehran, Tehran, Iran
| | - Majid Tafrihi
- Department of Molecular and Cell Biology, Faculty of Sciences, University of Mazandaran, Babolsar, Mazandaran, Iran
| | - S Mahmoud A Najafi
- Department of Cell and Molecular Biology, School of Biology, University of Tehran, Tehran, Iran
| |
Collapse
|
24
|
Menyailo ME, Bokova UA, Ivanyuk EE, Khozyainova AA, Denisov EV. Metastasis Prevention: Focus on Metastatic Circulating Tumor Cells. Mol Diagn Ther 2021; 25:549-562. [PMID: 34287797 DOI: 10.1007/s40291-021-00543-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 12/13/2022]
Abstract
Metastasis is the main cause of cancer death. Metastatic foci are derived from tumor cells that detach from the primary tumor and then enter the circulation. Circulating tumor cells (CTCs) are generally associated with a high probability of distant metastasis and a negative prognosis. Most CTCs die in the bloodstream, and only a few cells form metastases. Such metastatic CTCs have a stem-like and hybrid epithelial-mesenchymal phenotype, can avoid immune surveillance, and show increased therapy resistance. Targeting metastatic CTCs and their progenitors in primary tumors and their descendants, particularly disseminated tumor cells, represents an attractive strategy for metastasis prevention. However, current therapeutic strategies mainly target the primary tumor and only indirectly affect metastasis-initiating cells. Here, we consider potential methods for preventing metastasis based on targeting molecular and cellular features of metastatic CTCs, including CTC clusters. Also, we emphasize current knowledge gaps in CTC biology that should be addressed to develop highly effective therapeutics and strategies for metastasis suppression.
Collapse
Affiliation(s)
- Maxim E Menyailo
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Ustinia A Bokova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Elena E Ivanyuk
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Anna A Khozyainova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Evgeny V Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Kooperativny Str. 5, Tomsk, 634009, Russia.
| |
Collapse
|
25
|
Stoen MJ, Andersen S, Rakaee M, Pedersen MI, Ingebriktsen LM, Bremnes RM, Donnem T, Lombardi APG, Kilvaer TK, Busund LT, Richardsen E. High expression of miR-17-5p in tumor epithelium is a predictor for poor prognosis for prostate cancer patients. Sci Rep 2021; 11:13864. [PMID: 34226620 PMCID: PMC8257715 DOI: 10.1038/s41598-021-93208-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 06/15/2021] [Indexed: 02/04/2023] Open
Abstract
MicroRNAs (miRs) are small non-coding RNA molecules, which are involved in the development of various malignancies, including prostate cancer (PCa). miR-17-5p is considered the most prominent member of the miR-17-92 cluster, with an essential regulatory function of fundamental cellular processes. In many malignancies, up-regulation of miR-17-5p is associated with worse outcome. In PCa, miR-17-5p has been reported to increase cell proliferation and the risk of metastasis. In this study, prostatectomy specimens from 535 patients were collected. Tissue microarrays were constructed and in situ hybridization was performed, followed by scoring of miR-17-5p expression on different tumor compartments. High expression of miR-17-5p in tumor epithelium was associated with biochemical failure (BF, p < 0.001) and clinical failure (CF, p = 0.019). In multivariate analyses, high miR-17-5p expression in tumor epithelial cells was an independent negative prognostic factor for BF (HR 1.87, 95% CI 1.32-2.67, p < 0.001). In vitro analyses confirmed association between overexpression of miR-17-5p and proliferation, migration and invasion in prostate cancer cell lines (PC3 and DU145). In conclusion, our study suggests that a high cancer cell expression of miR-17-5p was an independent negative prognostic factor in PCa.
Collapse
Affiliation(s)
- Maria Jenvin Stoen
- Translational Cancer Research Group, Institute of Medical Biology, UiT the Arctic University of Norway, 9037, Tromso, Norway.
| | - S Andersen
- Translational Cancer Research Group, Institute of Clinical Medicine, UiT the Arctic University of Norway, Tromso, Norway.,Department of Oncology, University Hospital of North Norway, Tromso, Norway
| | - M Rakaee
- Translational Cancer Research Group, Institute of Medical Biology, UiT the Arctic University of Norway, 9037, Tromso, Norway.,Translational Cancer Research Group, Institute of Clinical Medicine, UiT the Arctic University of Norway, Tromso, Norway
| | - M I Pedersen
- Translational Cancer Research Group, Institute of Clinical Medicine, UiT the Arctic University of Norway, Tromso, Norway
| | - L M Ingebriktsen
- Translational Cancer Research Group, Institute of Medical Biology, UiT the Arctic University of Norway, 9037, Tromso, Norway.,Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, 5021, Bergen, Norway
| | - R M Bremnes
- Translational Cancer Research Group, Institute of Clinical Medicine, UiT the Arctic University of Norway, Tromso, Norway.,Department of Oncology, University Hospital of North Norway, Tromso, Norway
| | - T Donnem
- Translational Cancer Research Group, Institute of Clinical Medicine, UiT the Arctic University of Norway, Tromso, Norway.,Department of Oncology, University Hospital of North Norway, Tromso, Norway
| | - A P G Lombardi
- Translational Cancer Research Group, Institute of Medical Biology, UiT the Arctic University of Norway, 9037, Tromso, Norway
| | - T K Kilvaer
- Translational Cancer Research Group, Institute of Medical Biology, UiT the Arctic University of Norway, 9037, Tromso, Norway.,Department of Oncology, University Hospital of North Norway, Tromso, Norway
| | - L T Busund
- Translational Cancer Research Group, Institute of Medical Biology, UiT the Arctic University of Norway, 9037, Tromso, Norway.,Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway
| | - E Richardsen
- Translational Cancer Research Group, Institute of Medical Biology, UiT the Arctic University of Norway, 9037, Tromso, Norway.,Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway
| |
Collapse
|
26
|
Comparison of Androgen Receptor, VEGF, HIF-1, Ki67 and MMP9 Expression between Non-Metastatic and Metastatic Stages in Stromal and Tumor Cells of Oral Squamous Cell Carcinoma. Life (Basel) 2021; 11:life11040336. [PMID: 33920263 PMCID: PMC8069576 DOI: 10.3390/life11040336] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
Objectives: Oral squamous cell carcinoma (OSCC) is the most common oral malignancy with low survival as it is very often diagnosed at an advanced stage, which is why the accurate profiling of the tumor is essential. The aim of this study was to, for the first time, compare in OSCC the frequency of AR, VEGF, MMP9, HiF1beta and Ki67 between the non-metastatic and metastatic disease. Materials and Methods: In the study, 96 non-metastatic and 91 metastatic OSCC patients were analysed for AR, VEGF, MMP9, HiF1beta and Ki67 levels by immunohistochemistry. Results: All of the tested biomarkers significantly differed between non-metastatic and metastatic disease. A significant association was found between >/=20% AR positive epithelium cells in cytoplasm, Ki67 and VEGF in cancer stroma. Ki67, HiF1beta, VEGF and MMP9 were significantly associated with TNM stages. Conclusion: Our results show for the first time an interplay between AR, VEGF, MMP9, HiF1beta and Ki67 in OSCC which may contribute to better diagnostics and therapy selection.
Collapse
|
27
|
Estrogen Receptor Signaling Pathways Involved in Invasion and Colony Formation of Androgen-Independent Prostate Cancer Cells PC-3. Int J Mol Sci 2021; 22:ijms22031153. [PMID: 33503805 PMCID: PMC7865506 DOI: 10.3390/ijms22031153] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 12/18/2022] Open
Abstract
Castration-resistant prostate cancer (CRPC) is an advanced and androgen-independent form of prostate cancer. Recent studies of rapid actions mediated by estrogen in the prostate and its relationship with CRPC are emerging. We have previously shown that estrogen receptor (ER) promotes migration and invasion of the androgen-independent prostate cancer cells PC-3, but the signaling pathways involved in these events remain to be elucidated. Therefore, this study aimed to analyze the role of ERα and ERβ in the activation of SRC, and the involvement of SRC and PI3K/AKT on invasion and colony formation of the PC-3 cells. Our results showed that the activation of ERα (using ERα-selective agonist PPT) and ERβ (using ERβ-selective agonist DPN) increased phosphorylation of SRC in PC-3 cells. In the presence of the selective inhibitor for SRC-family kinases PP2, the effects of DPN and PPT on transmigration and soft agar colony formation assays were decreased. Furthermore, SRC is involved in the expression of the non-phosphorylated β-catenin. Finally, using PI3K specific inhibitor Wortmannin and AKT inhibitor MK2206, we showed that PI3K/AKT are also required for invasion and colony formation of PC-3 cells simulated by ER. This study provides novel insights into molecular mechanisms of ER in PC-3 cells by demonstrating that ER, located outside the cell nucleus, activates rapid responses molecules, including SRC and PI3K/AKT, which enhance the tumorigenic potential of prostate cancer cells, increasing cell proliferation, migration, invasion, and tumor formation.
Collapse
|
28
|
Ramírez-de-Arellano A, Pereira-Suárez AL, Rico-Fuentes C, López-Pulido EI, Villegas-Pineda JC, Sierra-Diaz E. Distribution and Effects of Estrogen Receptors in Prostate Cancer: Associated Molecular Mechanisms. Front Endocrinol (Lausanne) 2021; 12:811578. [PMID: 35087479 PMCID: PMC8786725 DOI: 10.3389/fendo.2021.811578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/15/2021] [Indexed: 12/19/2022] Open
Abstract
Estrogens are hormones that have been extensively presented in many types of cancer such as breast, uterus, colorectal, prostate, and others, due to dynamically integrated signaling cascades that coordinate cellular growth, differentiation, and death which can be potentially new therapeutic targets. Despite the historical use of estrogens in the pathogenesis of prostate cancer (PCa), their biological effect is not well known, nor their role in carcinogenesis or the mechanisms used to carry their therapeutic effects of neoplastic in prostate transformation. The expression and regulation of the estrogen receptors (ERs) ERα, ERβ, and GPER stimulated by agonists and antagonists, and related to prostate cancer cells are herein reviewed. Subsequently, the structures of the ERs and their splice variants, the binding of ligands to ERs, and the effect on PCa are provided. Finally, we also assessed the contribution of molecular simulation which can help us to search and predict potential estrogenic activities.
Collapse
Affiliation(s)
- Adrián Ramírez-de-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ana Laura Pereira-Suárez
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Cecilia Rico-Fuentes
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Mexico
| | - Edgar Iván López-Pulido
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Mexico
| | - Julio César Villegas-Pineda
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Erick Sierra-Diaz
- Departamentos de Clínicas Quirúrgicas y Salud Pública, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Urología, Hospital de Especialidades Centro Médico Nacional de Occidente, Guadalajara, Mexico
- *Correspondence: Erick Sierra-Diaz,
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Hyperadiposity, as present in obesity, is a substantial threat to cancer risk and prognosis. Studies that have investigated the link between obesity and tumor progression have proposed several mechanistic frameworks, yet, these mechanisms are not fully defined. Further, a comprehensive understanding of how these various mechanisms may interact to create a dynamic disease state is lacking in the current literature. RECENT FINDINGS Recent work has begun to explore not only discrete mechanisms by which obesity may promote tumor growth (for instance, metabolic and growth factor functions of insulin; inflammatory cytokines; adipokines; and others), but also how these putative tumor-promoting factors may interact. SUMMARY This review will highlight the present understanding of obesity, as it relates to tumor development and progression. First, we will introduce the impact of obesity in cancer within the dynamic tumor microenvironment, which will serve as a theme to frame this review. The core of this review will discuss recently proposed mechanisms that implicate obesity in tumor progression, including chronic inflammation and the role of pro-inflammatory cytokines, adipokines, hormones, and genetic approaches. Furthermore, we intend to offer current insight in targeting adipose tissue during the development of cancer prevention and treatment strategies.
Collapse
Affiliation(s)
- Andin Fosam
- Department of Internal Medicine
- Department of Cellular & Molecular Physiology, School of Medicine Yale University, TAC, New Haven, Connecticut, USA
| | - Rachel J Perry
- Department of Internal Medicine
- Department of Cellular & Molecular Physiology, School of Medicine Yale University, TAC, New Haven, Connecticut, USA
| |
Collapse
|