1
|
van der Kolk BW, Pirinen E, Nicoll R, Pietiläinen KH, Heinonen S. Subcutaneous adipose tissue and skeletal muscle mitochondria following weight loss. Trends Endocrinol Metab 2025; 36:339-363. [PMID: 39289110 DOI: 10.1016/j.tem.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/19/2024]
Abstract
Obesity is a major global health issue with various metabolic complications. Both bariatric surgery and dieting achieve weight loss and improve whole-body metabolism, but vary in their ability to maintain these improvements over time. Adipose tissue and skeletal muscle metabolism are crucial in weight regulation, and obesity is linked to mitochondrial dysfunction in both tissues. The impact of bariatric surgery versus dieting on adipose tissue and skeletal muscle mitochondrial metabolism remains to be elucidated. Understanding the molecular pathways that modulate tissue metabolism following weight loss holds potential for identifying novel therapeutic targets in obesity management. This narrative review summarizes current knowledge on mitochondrial metabolism following bariatric surgery and diet-induced weight loss in adipose tissue and skeletal muscle, and sheds light on their respective effects.
Collapse
Affiliation(s)
- Birgitta W van der Kolk
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Eija Pirinen
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Finland; Faculty of Medicine, Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Rachel Nicoll
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Finland
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; HealthyWeightHub, Endocrinology, Abdominal Center, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Sini Heinonen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Internal Medicine, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
2
|
Hu Z, Chen K, Dai H, Lv Z, Li J, Yu P, Feng J, Abdulkarem AM, Wu H, He R, Li G. ROUX-en-Y gastric bypass surgery improves metabolic syndrome-related erectile dysfunction in mice via the IRS-1/PI3K/AKT/eNOS pathway. Sex Med 2024; 12:qfae029. [PMID: 38817951 PMCID: PMC11134102 DOI: 10.1093/sexmed/qfae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 04/10/2024] [Accepted: 05/05/2024] [Indexed: 06/01/2024] Open
Abstract
Objective Although many clinical studies have shown that ROUX-en-Y gastric bypass (RYGB) surgery significantly improves metabolic syndrome-related erectile dysfunction (MED), the role and mechanism are unclear. Aim In this study we used a mouse model to explore how RYGB improves MED induced by a high-fat diet (HFD). Methods We established a mouse model of metabolic syndrome by feeding an HFD for 16 weeks. The mice were randomly assigned to the standard chow diet (SCD), HFD, or RYGB groups. Body weight, fasting blood glucose, plasma insulin, and total plasma cholesterol were analyzed. Erectile responses were evaluated by determining the mean systolic blood pressure and the intracavernosal pressure (ICP). Penile histologic examination (Masson's trichrome and immunohistochemical stain) and Western blot were performed. Result Compared with the SCD group, the ICP in the sham group was significantly lower, and the ICP of the RYGB was significantly increased. Masson's trichrome and immunohistochemical staining showed that the content of endothelium and smooth muscle in the corpus cavernosum of mice with MED was significantly reduced. Western blot analysis showed a significant decrease in α-smooth muscle actin and a significant increase in osteopontin in penile tissue in the sham group, which was improved by RYGB surgery. Furthermore, RYGB significantly increased IRS-1/PI3K/Akt/eNOS phosphorylation. Clinical Translation In this study we explored the mechanism of bariatric surgery to improve erectile dysfunction associated with metabolic syndrome and provided a theoretical basis for clinical research. Strengths and Limitations First, we did not investigate the mechanism by which RYGB affects the IRS-1/PI3K/Akt/eNOS signaling pathway. Second, the effect of the IRS-1/PI3K/Akt/eNOS signaling pathway on the function of corpus cavernosum endothelial cells and smooth muscle cells remains to be investigated in cellular studies. Conclusion This study demonstrated that RYGB may not only improve metabolic parameters but also restore erectile function in MED patients. The mechanism of the therapeutic effect of RYGB may be reactivation of the IRS-1/PI3K/Akt/eNOS pathway.
Collapse
Affiliation(s)
- Zhenxing Hu
- Department of Urology, General Hospital of Ningxia Medical University, Ningxia Medical University, Xingqing District, Yinchuan 750000, People’s Republic of China
- Department of Urology, The First Affiliated Hospital of Yangtze University, Jingzhuo 434000, People’s Republic of China
| | - Keming Chen
- Department of Urology, General Hospital of Ningxia Medical University, Ningxia Medical University, Xingqing District, Yinchuan 750000, People’s Republic of China
| | - Haitao Dai
- Department of Urology, The First Affiliated Hospital of Yangtze University, Jingzhuo 434000, People’s Republic of China
| | - Zhiyong Lv
- Department of Urology, General Hospital of Ningxia Medical University, Ningxia Medical University, Xingqing District, Yinchuan 750000, People’s Republic of China
| | - Jian Li
- Department of Urology, General Hospital of Ningxia Medical University, Ningxia Medical University, Xingqing District, Yinchuan 750000, People’s Republic of China
| | - Puguang Yu
- Department of Urology, General Hospital of Ningxia Medical University, Ningxia Medical University, Xingqing District, Yinchuan 750000, People’s Republic of China
| | - Jiajing Feng
- Department of Urology, General Hospital of Ningxia Medical University, Ningxia Medical University, Xingqing District, Yinchuan 750000, People’s Republic of China
| | - Alqaisi Mohammed Abdulkarem
- Department of Urology, General Hospital of Ningxia Medical University, Ningxia Medical University, Xingqing District, Yinchuan 750000, People’s Republic of China
| | - Haifeng Wu
- Department of Urology, General Hospital of Ningxia Medical University, Ningxia Medical University, Xingqing District, Yinchuan 750000, People’s Republic of China
| | - Rui He
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750000, People’s Republic of China
| | - Guangyong Li
- Department of Urology, General Hospital of Ningxia Medical University, Ningxia Medical University, Xingqing District, Yinchuan 750000, People’s Republic of China
| |
Collapse
|
3
|
Stevenson M, Srivastava A, Nacher M, Hall C, Palaia T, Lee J, Zhao CL, Lau R, Ali MAE, Park CY, Schlamp F, Heffron SP, Fisher EA, Brathwaite C, Ragolia L. The Effect of Diet Composition on the Post-operative Outcomes of Roux-en-Y Gastric Bypass in Mice. Obes Surg 2024; 34:911-927. [PMID: 38191966 PMCID: PMC11926884 DOI: 10.1007/s11695-023-07052-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE Roux-en-Y gastric bypass (RYGB) leads to the improvement of many obesity-associated conditions. The degree to which post-operative macronutrient composition contributes to metabolic improvement after RYGB is understudied. METHODS A mouse model of RYGB was used to examine the effects of diet on the post-operative outcomes of RYGB. Obese mice underwent either Sham or RYGB surgery and were administered either chow or HFD and then monitored for an additional 8 weeks. RESULTS After RYGB, reductions to body weight, fat mass, and lean mass were similar regardless of diet. RYGB and HFD were independently detrimental to bone mineral density and plasma vitamin D levels. Independent of surgery, HFD accelerated hematopoietic stem and progenitor cell proliferation and differentiation and exhibited greater myeloid lineage commitment. Independent of diet, systemic iron deficiency was present after RYGB. In both Sham and RYGB groups, HFD increased energy expenditure. RYGB increased fecal energy loss, and HFD after RYGB increased fecal lipid content. RYGB lowered fasting glucose and liver glycogen levels but HFD had an opposing effect. Indices of insulin sensitivity improved independent of diet. HFD impaired improvements to dyslipidemia, NAFLD, and fibrosis. CONCLUSION Post-operative diet plays a significant role in determining the degree to which RYGB reverses obesity-induced metabolic abnormalities such as hyperglycemia, dyslipidemia, and NAFLD. Diet composition may be targeted in order to assist in the treatment of post-RYGB bone mineral density loss and vitamin D deficiency as well as to reverse myeloid lineage commitment. HFD after RYGB continues to pose a significant multidimensional health risk.
Collapse
Affiliation(s)
- Matthew Stevenson
- Department of Biomedical Research, NYU Grossman Long Island School of Medicine, NYU Langone Hospital-Long Island, Mineola, NY, USA
| | - Ankita Srivastava
- Department of Biomedical Research, NYU Grossman Long Island School of Medicine, NYU Langone Hospital-Long Island, Mineola, NY, USA
| | - Maria Nacher
- Department of Medicine, Division of Cardiology, NYU Langone Health Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology and the Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Christopher Hall
- Department of Biomedical Research, NYU Grossman Long Island School of Medicine, NYU Langone Hospital-Long Island, Mineola, NY, USA
| | - Thomas Palaia
- Department of Biomedical Research, NYU Grossman Long Island School of Medicine, NYU Langone Hospital-Long Island, Mineola, NY, USA
| | - Jenny Lee
- Department of Biomedical Research, NYU Grossman Long Island School of Medicine, NYU Langone Hospital-Long Island, Mineola, NY, USA
| | - Chaohui Lisa Zhao
- Department of Pathology, NYU Langone Hospital-Long Island, Mineola, NY, USA
| | - Raymond Lau
- Department of Biomedical Research, NYU Grossman Long Island School of Medicine, NYU Langone Hospital-Long Island, Mineola, NY, USA
- Department of Endocrinology, NYU Langone Hospital-Long Island, Mineola, NY, USA
| | - Mohamed A E Ali
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Christopher Y Park
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Florencia Schlamp
- Department of Medicine, Division of Cardiology, NYU Langone Health Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Sean P Heffron
- Department of Medicine, Division of Cardiology, NYU Langone Health Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology and the Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Edward A Fisher
- Department of Medicine, Division of Cardiology, NYU Langone Health Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology and the Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Collin Brathwaite
- Department of Biomedical Research, NYU Grossman Long Island School of Medicine, NYU Langone Hospital-Long Island, Mineola, NY, USA
- Department of Surgery, NYU Langone Hospital-Long Island, Mineola, NY, USA
| | - Louis Ragolia
- Department of Biomedical Research, NYU Grossman Long Island School of Medicine, NYU Langone Hospital-Long Island, Mineola, NY, USA.
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY, USA.
| |
Collapse
|
4
|
Panda SS, Behera B, Ghosh R, Bagh B, Aich P. Antibiotic induced adipose tissue browning in C57BL/6 mice: An association with the metabolic profile and the gut microbiota. Life Sci 2024; 340:122473. [PMID: 38290571 DOI: 10.1016/j.lfs.2024.122473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/01/2024]
Abstract
AIMS The use of antibiotics affects health. The gut microbial dysbiosis by antibiotics is thought to be an essential pathway to influence health. It is important to have optimized energy utilization, in which adipose tissues (AT) play crucial roles in maintaining health. Adipocytes regulate the balance between energy expenditure and storage. While it is known that white adipose tissue (WAT) stores energy and brown adipose tissue (BAT) produces energy by thermogenesis, the role of an intermediate AT plays an important role in balancing host internal energy. In the current study, we tried to understand how treating an antibiotic cocktail transforms WAT into BAT or, more precisely, into beige adipose tissue (BeAT). METHODS Since antibiotic treatment perturbs the host microbiota, we wanted to understand the role of gut microbial dysbiosis in transforming WAT into BeAT in C57BL/6 mice. We further correlated the metabolic profile at the systemic level with this BeAT transformation and gut microbiota profile. KEY FINDINGS In the present study, we have reported that the antibiotic cocktail treatment increases the Proteobacteria and Actinobacteria while reducing the Bacteroidetes phylum. We observed that prolonged antibiotic treatment could induce the formation of BeAT in the inguinal and perigonadal AT. The correlation analysis showed an association between the gut microbiota phyla, beige adipose tissue markers, and serum metabolites. SIGNIFICANCE Our study revealed that the gut microbiota has a significant role in regulating the metabolic health of the host via microbiota-adipose axis communication.
Collapse
Affiliation(s)
- Swati Sagarika Panda
- School of Biological Sciences, National Institute of Science Education and Research (NISER), P.O. - Bhimpur-Padanpur, Jatni - 752050, Dist. -Khurda, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, Maharashtra, India
| | - Biplab Behera
- School of Biological Sciences, National Institute of Science Education and Research (NISER), P.O. - Bhimpur-Padanpur, Jatni - 752050, Dist. -Khurda, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, Maharashtra, India
| | - Rahul Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), P.O. - Bhimpur-Padanpur, Jatni - 752050, Dist. -Khurda, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, Maharashtra, India
| | - Bidraha Bagh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), P.O. - Bhimpur-Padanpur, Jatni - 752050, Dist. -Khurda, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, Maharashtra, India
| | - Palok Aich
- School of Biological Sciences, National Institute of Science Education and Research (NISER), P.O. - Bhimpur-Padanpur, Jatni - 752050, Dist. -Khurda, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, Maharashtra, India.
| |
Collapse
|
5
|
Hankir MK. Gut microbiota turn up the heat after bariatric surgery. Cell Stress 2023; 7:90-94. [PMID: 37693093 PMCID: PMC10485695 DOI: 10.15698/cst2023.10.290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/13/2023] [Indexed: 09/12/2023] Open
Abstract
Bariatric surgeries like vertical sleeve gastrectomy (VSG) and Roux-en-Y gastric bypass (RYGB) cause well-established shifts in the gut microbiota, but how this contributes to their unique metabolic benefits is poorly understood. Jin et al and Yadav et al now provide two complementary lines of evidence suggesting that gut microbiota-derived metabolites after VSG and RYGB activate thermogenesis in fat through distinct mechanisms, to in turn promote weight loss and/or improvements in glycemic control.
Collapse
Affiliation(s)
- Mohammed K. Hankir
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
6
|
Wen X, Palma-Gudiel H, Miao G, Chen M, Huo Z, Peng H, Anton S, Hu G, Brock R, Brantley PJ, Zhao J. DNA methylation is differentially associated with glycemic outcomes by different types of weight-loss interventions: an epigenome-wide association study. Clin Epigenetics 2023; 15:108. [PMID: 37393279 PMCID: PMC10314401 DOI: 10.1186/s13148-023-01522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/19/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND Alterations in DNA methylation (DNAm) have been reported to be a mechanism by which bariatric surgeries resulted in considerable metabolic improvements. Previous studies have mostly focused on change in DNAm following weight-loss interventions, yet whether DNAm prior to intervention can explain the variability in glycemic outcomes has not been investigated. Here, we aim to examine whether baseline DNAm is differentially associated with glycemic outcomes induced by different types of weight-loss interventions. METHODS Participants were 75 adults with severe obesity who underwent non-surgical intensive medical intervention (IMI), adjustable gastric band (BAND) or Roux-en-Y gastric bypass (RYGB) (n = 25 each). Changes in fasting plasma glucose (FPG) and glycated hemoglobin (HbA1c) were measured at 1-year after intervention. DNAm was quantified by Illumina 450 K arrays in baseline peripheral blood DNA. Epigenome-wide association studies were performed to identify CpG probes that modify the effects of different weight-loss interventions on glycemic outcomes, i.e., changes in FPG and HbA1c, by including an interaction term between types of intervention and DNAm. Models were adjusted for weight loss and baseline clinical factors. RESULTS Baseline DNAm levels at 3216 and 117 CpGs were differentially associated with changes in FPG and HbA1c, respectively, when comparing RYGB versus IMI. Of these, 79 CpGs were significant for both FPG and HbA1c. The identified genes are enriched in adaptive thermogenesis, temperature homeostasis and regulation of cell population proliferation. Additionally, DNAm at 6 CpGs was differentially associated with changes in HbA1c when comparing RYGB versus BAND. CONCLUSIONS Baseline DNAm is differentially associated with glycemic outcomes in response to different types of weight-loss interventions, independent of weight loss and other clinical factors. Such findings provided initial evidence that baseline DNAm levels may serve as potential biomarkers predictive of differential glycemic outcomes in response to different types of weight-loss interventions.
Collapse
Affiliation(s)
- Xiaoxiao Wen
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, 2004 Mowry Road, CTRB 4230, Gainesville, FL, 32610, USA
| | - Helena Palma-Gudiel
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, 2004 Mowry Road, CTRB 4230, Gainesville, FL, 32610, USA
| | - Guanhong Miao
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, 2004 Mowry Road, CTRB 4230, Gainesville, FL, 32610, USA
| | - Mingjing Chen
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, 2004 Mowry Road, CTRB 4230, Gainesville, FL, 32610, USA
| | - Zhiguang Huo
- Department of Biostatistics, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Hao Peng
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Stephen Anton
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Gang Hu
- Chronic Disease Epidemiology Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Ricky Brock
- Behavioral Medicine Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Phillip J Brantley
- Behavioral Medicine Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Jinying Zhao
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, 2004 Mowry Road, CTRB 4230, Gainesville, FL, 32610, USA.
| |
Collapse
|
7
|
Hankir MK, Kovatcheva-Datchary P, Springer R, Hoffmann A, Vogel J, Seyfried F, Arora T. Gut Microbiota Contribution to Weight-Independent Glycemic Improvements after Gastric Bypass Surgery. Microbiol Spectr 2023; 11:e0510922. [PMID: 37022171 PMCID: PMC10269853 DOI: 10.1128/spectrum.05109-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/02/2023] [Indexed: 04/07/2023] Open
Abstract
Roux-en-Y gastric bypass surgery (RYGB) leads to improved glycemic control in individuals with severe obesity beyond the effects of weight loss alone. Here, We addressed the potential contribution of gut microbiota in mediating this favourable surgical outcome by using an established preclinical model of RYGB. 16S rRNA sequencing revealed that RYGB-treated Zucker fatty rats had altered fecal composition of various bacteria at the phylum and species levels, including lower fecal abundance of an unidentified Erysipelotrichaceae species, compared with both sham-operated (Sham) and body weight-matched to RYGB-treated (BWM) rats. Correlation analysis further revealed that fecal abundance of this unidentified Erysipelotrichaceae species linked with multiple indices of glycemic control uniquely in RYGB-treated rats. Sequence alignment of this Erysipelotrichaceae species identified Longibaculum muris to be the most closely related species, and its fecal abundance positively correlated with oral glucose intolerance in RYGB-treated rats. In fecal microbiota transplant experiments, the improved oral glucose tolerance of RYGB-treated compared with BWM rats could partially be transferred to recipient germfree mice, independently of body weight. Unexpectedly, providing L. muris as a supplement to RYGB recipient mice further improved oral glucose tolerance, while administering L. muris alone to chow-fed or Western style diet-challenged conventionally raised mice had minimal metabolic impact. Taken together, our findings provide evidence that the gut microbiota contributes to weight loss-independent improvements in glycemic control after RYGB and demonstrate how correlation of a specific gut microbiota species with a host metabolic trait does not imply causation. IMPORTANCE Metabolic surgery remains the most effective treatment modality for severe obesity and its comorbidities, including type 2 diabetes. Roux-en-Y gastric bypass (RYGB) is a commonly performed type of metabolic surgery that reconfigures gastrointestinal anatomy and profoundly remodels the gut microbiota. While it is clear that RYGB is superior to dieting when it comes to improving glycemic control, the extent to which the gut microbiota contributes to this effect remains untested. In the present study, we uniquely linked fecal Erysipelotrichaceae species, including Longibaculum muris, with indices of glycemic control after RYGB in genetically obese and glucose-intolerant rats. We further show that the weight loss-independent improvements in glycemic control in RYGB-treated rats can be transmitted via their gut microbiota to germfree mice. Our findings provide rare causal evidence that the gut microbiota contributes to the health benefits of metabolic surgery and have implications for the development of gut microbiota-based treatments for type 2 diabetes.
Collapse
Affiliation(s)
- Mohammed K. Hankir
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital Wurzburg, Wurzburg, Germany
| | - Petia Kovatcheva-Datchary
- Institute for Molecular Infection Biology, University of Wurzburg, Wurzburg, Germany
- Department of Pediatrics, University Hospital Wurzburg, Wurzburg, Germany
| | - Rebecca Springer
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital Wurzburg, Wurzburg, Germany
| | - Annett Hoffmann
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital Wurzburg, Wurzburg, Germany
| | - Jörg Vogel
- Institute for Molecular Infection Biology, University of Wurzburg, Wurzburg, Germany
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Wurzburg, Germany
| | - Florian Seyfried
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital Wurzburg, Wurzburg, Germany
| | - Tulika Arora
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Jin Z, Meng W, Xiao T, Deng J, Wang J, Wen J, Chen K, Wang L, Liu J, Li Q, He J, Wang Z, Liu W, Liu F. Vertical sleeve gastrectomy-derived gut metabolite licoricidin activates beige fat thermogenesis to combat obesity. Theranostics 2023; 13:3103-3116. [PMID: 37284437 PMCID: PMC10240825 DOI: 10.7150/thno.81893] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/17/2023] [Indexed: 06/08/2023] Open
Abstract
Obesity is a chronic metabolic disease, affecting individuals throughout the world. Bariatric surgery such as vertical sleeve gastrectomy (VSG) provides sustained weight loss and improves glucose homeostasis in obese mice and humans. However, the precise underlying mechanisms remain elusive. In this study, we investigated the potential roles and the mechanisms of action of gut metabolites in VSG-induced anti-obesity effect and metabolic improvement. Methods: High-fat diet (HFD)-fed C57BL/6J mice were subjected to VSG. Energy dissipation in mice was monitored using metabolic cage experiments. The effects of VSG on gut microbiota and metabolites were determined by 16S rRNA sequencing and metabolomics, respectively. The metabolic beneficial effects of the identified gut metabolites were examined in mice by both oral administration and fat pad injection of the metabolites. Results: VSG in mice greatly increased thermogenic gene expression in beige fat, which was correlated with increased energy expenditure. VSG reshaped gut microbiota composition, resulting in elevated levels of gut metabolites including licoricidin. Licoricidin treatment promoted thermogenic gene expression in beige fat by activating the Adrb3-cAMP-PKA signaling pathway, leading to reduced body weight gain in HFD-fed mice. Conclusions: We identify licoricidin, which mediates the crosstalk between gut and adipose tissue in mice, as a VSG-provoked anti-obesity metabolite. Identification of anti-obesity small molecules should provide new insights into treatment options for obesity and its associated metabolic diseases.
Collapse
Affiliation(s)
- Zhangliu Jin
- Department of General Surgery, Division of Biliopancreatic and Metabolic Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Wen Meng
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Cardiometabolic Medicine of Hunan Province, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Ting Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Cardiometabolic Medicine of Hunan Province, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
- Department of Hepatology, Hunan Children's Hospital, Changsha 410000, Hunan, China
| | - Jiangming Deng
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Cardiometabolic Medicine of Hunan Province, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jing Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Cardiometabolic Medicine of Hunan Province, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jie Wen
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Cardiometabolic Medicine of Hunan Province, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Kai Chen
- Department of General Surgery, Division of Biliopancreatic and Metabolic Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Liwen Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Cardiometabolic Medicine of Hunan Province, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Juanhong Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Cardiometabolic Medicine of Hunan Province, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Qingxin Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Cardiometabolic Medicine of Hunan Province, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jieyu He
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Cardiometabolic Medicine of Hunan Province, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zheng Wang
- College of Bioscience & Biotechnology of Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Wei Liu
- Department of General Surgery, Division of Biliopancreatic and Metabolic Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Feng Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Cardiometabolic Medicine of Hunan Province, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| |
Collapse
|
9
|
Omran F, Murphy AM, Younis AZ, Kyrou I, Vrbikova J, Hainer V, Sramkova P, Fried M, Ball G, Tripathi G, Kumar S, McTernan PG, Christian M. The impact of metabolic endotoxaemia on the browning process in human adipocytes. BMC Med 2023; 21:154. [PMID: 37076885 PMCID: PMC10116789 DOI: 10.1186/s12916-023-02857-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/03/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Dysfunctional adipose tissue (AT) is known to contribute to the pathophysiology of metabolic disease, including type 2 diabetes mellitus (T2DM). This dysfunction may occur, in part, as a consequence of gut-derived endotoxaemia inducing changes in adipocyte mitochondrial function and reducing the proportion of BRITE (brown-in-white) adipocytes. Therefore, the present study investigated whether endotoxin (lipopolysaccharide; LPS) directly contributes to impaired human adipocyte mitochondrial function and browning in human adipocytes, and the relevant impact of obesity status pre and post bariatric surgery. METHODS Human differentiated abdominal subcutaneous (AbdSc) adipocytes from participants with obesity and normal-weight participants were treated with endotoxin to assess in vitro changes in mitochondrial function and BRITE phenotype. Ex vivo human AbdSc AT from different groups of participants (normal-weight, obesity, pre- and 6 months post-bariatric surgery) were assessed for similar analyses including circulating endotoxin levels. RESULTS Ex vivo AT analysis (lean & obese, weight loss post-bariatric surgery) identified that systemic endotoxin negatively correlated with BAT gene expression (p < 0.05). In vitro endotoxin treatment of AbdSc adipocytes (lean & obese) reduced mitochondrial dynamics (74.6% reduction; p < 0.0001), biogenesis (81.2% reduction; p < 0.0001) and the BRITE phenotype (93.8% reduction; p < 0.0001). Lean AbdSc adipocytes were more responsive to adrenergic signalling than obese AbdSc adipocytes; although endotoxin mitigated this response (92.6% reduction; p < 0.0001). CONCLUSIONS Taken together, these data suggest that systemic gut-derived endotoxaemia contributes to both individual adipocyte dysfunction and reduced browning capacity of the adipocyte cell population, exacerbating metabolic consequences. As bariatric surgery reduces endotoxin levels and is associated with improving adipocyte functionality, this may provide further evidence regarding the metabolic benefits of such surgical interventions.
Collapse
Affiliation(s)
- Farah Omran
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK
| | - Alice M Murphy
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Awais Z Younis
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry, CV1 5FB, UK
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | | | | | | | | | - Graham Ball
- Medical Technology Research Centre, Anglia Ruskin University, Cambridge, UK
| | - Gyanendra Tripathi
- Human Sciences Research Centre, College of Life and Natural Sciences, University of Derby, Derby, DE22 1GB, UK
| | - Sudhesh Kumar
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Philip G McTernan
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| | - Mark Christian
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| |
Collapse
|
10
|
Latteri S, Sofia M, Puleo S, Di Vincenzo A, Cinti S, Castorina S. Mechanisms linking bariatric surgery to adipose tissue, glucose metabolism, fatty liver disease and gut microbiota. Langenbecks Arch Surg 2023; 408:101. [PMID: 36826628 PMCID: PMC9957865 DOI: 10.1007/s00423-023-02821-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 01/25/2023] [Indexed: 02/25/2023]
Abstract
PURPOSE In the last 20 years, bariatric surgery has achieved an important role in translational and clinical research because of obesity comorbidities. Initially, a tool to lose weight, bariatric surgery now has been shown to be involved in several metabolic pathways. METHODS We conducted a narrative review discussing the underlying mechanisms that could explain the impact of bariatric surgery and the relationship between obesity and adipose tissue, T2D, gut microbiota, and NAFLD. RESULTS Bariatric surgery has an impact in the relation between obesity and type 2 diabetes, but in addition it induces the white-to-brown adipocyte trans-differentiation, by enhancing thermogenesis. Another issue is the connection of bariatric surgery with the gut microbiota and its role in the complex mechanism underlying weight gain. CONCLUSION Bariatric surgery modifies gut microbiota, and these modifications influence lipid metabolism, leading to improvement of non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Saverio Latteri
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Maria Sofia
- Department of General Surgery, Cannizzaro Hospital, Via Messina 829, 95126, Catania, Italy.
| | - Stefano Puleo
- Mediterranean Foundation "GB Morgagni", Catania, Italy
| | - Angelica Di Vincenzo
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University, Via Tronto 10A, 60020, Ancona, Italy
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University, Via Tronto 10A, 60020, Ancona, Italy
| | - Sergio Castorina
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
- Mediterranean Foundation "GB Morgagni", Catania, Italy
| |
Collapse
|
11
|
Seyfried F, Springer R, Hoffmann A, Gruber M, Otto C, Schlegel N, Hankir MK. Gastric bypass surgery weight loss-independently induces gut Il-22 release in association with improved glycemic control in obese Zucker fatty rats. Metabol Open 2022; 17:100212. [PMID: 36992680 PMCID: PMC10040960 DOI: 10.1016/j.metop.2022.100212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Background Roux-en-Y gastric bypass surgery (RYGB) improves glycemic control in individuals with severe obesity beyond the effects of weight loss alone. To identify potential underlying mechanisms, we asked how equivalent weight loss from RYGB and from chronic caloric restriction impact gut release of the metabolically beneficial cytokine interleukin-22 (Il-22). Methods Obese male Zucker fatty rats were randomized into sham-operated (Sham), RYGB, and sham-operated, body weight-matched to RYGB (BWM) groups. Food intake and body weight were measured regularly for 4 weeks. An oral glucose tolerance test (OGTT) was performed on postoperative day 27. Portal vein plasma, systemic plasma, and whole-wall samples from throughout the gut were collected on postoperative day 28. Gut Il-22 mRNA expression was determined by real-time quantitative PCR. Plasma Il-22 levels were determined by enzyme-linked immunosorbant assay (ELISA). Results RYGB and BWM rats had lower food intake and body weight as well as superior blood glucose clearing capability compared with Sham rats. RYGB rats also had superior blood glucose clearing capability compared with BWM rats despite having similar body weights and higher food intake. Il-22 mRNA expression was approximately 100-fold higher specifically in the upper jejunum in RYGB rats compared with Sham rats. Il-22 protein was only detectable in portal vein (34.1 ± 9.4 pg/mL) and systemic (46.9 ± 10.5 pg/mL) plasma in RYGB rats. Area under the curve of blood glucose during the OGTT, but not food intake or body weight, negatively correlated with portal vein and systemic plasma Il-22 levels in RYGB rats. Conclusions These results suggest that induction of gut Il-22 release might partly account for the weight loss-independent improvements in glycemic control after RYGB, and further support the use of this cytokine for the treatment of metabolic disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mohammed K. Hankir
- Corresponding author. Center of Operative Medicine, Oberduerrbacherstrasse 6, 97080, Wuerzburg, Germany.
| |
Collapse
|
12
|
Machado SA, Pasquarelli-do-Nascimento G, da Silva DS, Farias GR, de Oliveira Santos I, Baptista LB, Magalhães KG. Browning of the white adipose tissue regulation: new insights into nutritional and metabolic relevance in health and diseases. Nutr Metab (Lond) 2022; 19:61. [PMID: 36068578 PMCID: PMC9446768 DOI: 10.1186/s12986-022-00694-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/19/2022] [Indexed: 12/11/2022] Open
Abstract
Adipose tissues are dynamic tissues that play crucial physiological roles in maintaining health and homeostasis. Although white adipose tissue and brown adipose tissue are currently considered key endocrine organs, they differ functionally and morphologically. The existence of the beige or brite adipocytes, cells displaying intermediary characteristics between white and brown adipocytes, illustrates the plastic nature of the adipose tissue. These cells are generated through white adipose tissue browning, a process associated with augmented non-shivering thermogenesis and metabolic capacity. This process involves the upregulation of the uncoupling protein 1, a molecule that uncouples the respiratory chain from Adenosine triphosphate synthesis, producing heat. β-3 adrenergic receptor system is one important mediator of white adipose tissue browning, during cold exposure. Surprisingly, hyperthermia may also induce beige activation and white adipose tissue beiging. Physical exercising copes with increased levels of specific molecules, including Beta-Aminoisobutyric acid, irisin, and Fibroblast growth factor 21 (FGF21), which induce adipose tissue browning. FGF21 is a stress-responsive hormone that interacts with beta-klotho. The central roles played by hormones in the browning process highlight the relevance of the individual lifestyle, including circadian rhythm and diet. Circadian rhythm involves the sleep-wake cycle and is regulated by melatonin, a hormone associated with UCP1 level upregulation. In contrast to the pro-inflammatory and adipose tissue disrupting effects of the western diet, specific food items, including capsaicin and n-3 polyunsaturated fatty acids, and dietary interventions such as calorie restriction and intermittent fasting, favor white adipose tissue browning and metabolic efficiency. The intestinal microbiome has also been pictured as a key factor in regulating white tissue browning, as it modulates bile acid levels, important molecules for the thermogenic program activation. During embryogenesis, in which adipose tissue formation is affected by Bone morphogenetic proteins that regulate gene expression, the stimuli herein discussed influence an orchestra of gene expression regulators, including a plethora of transcription factors, and chromatin remodeling enzymes, and non-coding RNAs. Considering the detrimental effects of adipose tissue browning and the disparities between adipose tissue characteristics in mice and humans, further efforts will benefit a better understanding of adipose tissue plasticity biology and its applicability to managing the overwhelming burden of several chronic diseases.
Collapse
Affiliation(s)
- Sabrina Azevedo Machado
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | | | - Debora Santos da Silva
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Gabriel Ribeiro Farias
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Igor de Oliveira Santos
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Luana Borges Baptista
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil.
| |
Collapse
|
13
|
Alizadeh H. Meteorin-like protein (Metrnl): A metabolic syndrome biomarker and an exercise mediator. Cytokine 2022; 157:155952. [PMID: 35780711 DOI: 10.1016/j.cyto.2022.155952] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/04/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022]
Abstract
Metrnl is a secreted protein able to activate different intracellular signaling pathways in adipocytes, macrophages, myocytes and cardiomyocytes with physiological effects of the browning of white adipose tissue (BWT), insulin sensitivity, inflammation inhibition, skeletal muscle regeneration and heart protection. Shown to be regulated by obesity, diabetes, caloric restriction, weight loss and heart diseases, Metrnl is definitely involved in metabolic turbulences, and may play roles in metabolic syndrome (MetS). However, due to the conflicting data yielded, Metrnl is still far from clinical application as a diagnostic and/or a therapeutic agent or even a therapeutic target in MetS-related diseases such as type 2 diabetes (T2D) and obesity. Nevertheless, blood Metrnl levels as well as Metrnl as a cardiokine have been reported to play cardioprotective roles against heart diseases. Considering the established metabolic and anti-inflammatory hallmarks, exercise-induced Metrnl (as a myokine) is regarded as an exercise mediator in improving obesity-induced complications such as insulin resistance, T2D and inflammation. Besides, due to its healing role in muscle damage, Metrnl is also a potential therapeutic candidate to enhance regeneration with ageing or other inflammatory myopathies like Duchenne muscular dystrophy (DMD). Therefore, there are still many exercise-related questions unanswered on Metrnl, such as Metrnl-mediated fat browning in humans, exercise effects on heart Metrnl production and secretion and the effects of other exercise-induced skeletal muscle stressors like hypoxia and oxidative in Metrnl production other than exercise-induced muscle damage.
Collapse
Affiliation(s)
- Hamid Alizadeh
- Exercise Physiology, University of Mazandaran, Babolsar, Mazandaran, Iran.
| |
Collapse
|
14
|
Zhang S, Sun S, Wei X, Zhang M, Chen Y, Mao X, Chen G, Liu C. Short-term moderate caloric restriction in a high-fat diet alleviates obesity via AMPK/SIRT1 signaling in white adipocytes and liver. Food Nutr Res 2022; 66:7909. [PMID: 35721807 PMCID: PMC9180121 DOI: 10.29219/fnr.v66.7909] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/17/2022] Open
Abstract
Background Obesity is a growing problem for public health worldwide. Calorie restriction (CR) is a safety and effective life intervention to defend against obesity. Short-term moderate CR may be a more favorable strategy against this pathology. However, the mechanisms behind the effects of CR remain to be clarified. Increased energy expenditure in the liver and brown adipose tissue could potentially be manipulated to modulate and improve metabolism in obesity. Moreover, nicotinamide adenine dinucleotide (NAD)-dependent deacetylase sirtuin-1 (SIRT1) and AMP-activated protein kinase (AMPK) are well-characterized metabolic modulators. We aim to explore the anti-obesity effects of short-term moderate CR by improving energy metabolism via the SIRT1/AMPK pathway in white adipocytes and liver in a mouse model of obesity. Methods Male C57BL/6 mice were randomized into two groups receiving either a standard or a high-fat diet (HFD) for 8 weeks to induce obesity. The HFD-induced obese mice were further randomized into two groups: HFD group or CR group (received 75% of the food eaten by HFD group). Their energy metabolism, white adipose tissue (WAT) contents, hepatic fat deposition, the expression of AMPK, SIRT1, peroxisome proliferators γ-activated receptor coactivator-1α (PGC-1α), nuclear factor kappa B (NF-κB), endothelial nitric oxide synthase (eNOS) in WAT, and hepatic tissues were determined. Results After 4 weeks, body weight, total serum cholesterol, fasting blood glucose, and insulin levels were significantly lower in the CR group. Moreover, CR ameliorated hepatocyte steatosis, attenuated white adipogenesis, and increased energy expenditure and expressions of SIRT1, PGC-1α, and phosphorylated AMPK in subcutaneous WAT and the hepatic tissues. In addition, CR reduced the protein levels of NF-κB and increased the eNOS expression. Conclusion Short-term moderate CR decreases obesity, increases the thermogenesis, and inhibits inflammation in a mouse model of obesity, probably via the activation of the AMPK/SIRT1 pathway in WAT and liver.
Collapse
Affiliation(s)
- Shaohong Zhang
- Endocrinology Department, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Geriatrics, The Affiliated Huaian No. 1 People's Hospital, Nanjing Medical University, Nanjing, China
| | - Shuoshuo Sun
- Endocrinology Department, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiao Wei
- Endocrinology Department, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengxiao Zhang
- Endocrinology Department, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Geriatrics, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, China
| | - Yu Chen
- Endocrinology Department, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaodong Mao
- Endocrinology Department, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guofang Chen
- Endocrinology Department, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chao Liu
- Endocrinology Department, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
15
|
Impact of Bariatric Surgery on Adipose Tissue Biology. J Clin Med 2021; 10:jcm10235516. [PMID: 34884217 PMCID: PMC8658722 DOI: 10.3390/jcm10235516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023] Open
Abstract
Bariatric surgery (BS) procedures are actually the most effective intervention to help subjects with severe obesity achieve significant and sustained weight loss. White adipose tissue (WAT) is increasingly recognized as the largest endocrine organ. Unhealthy WAT expansion through adipocyte hypertrophy has pleiotropic effects on adipocyte function and promotes obesity-associated metabolic complications. WAT dysfunction in obesity encompasses an altered adipokine secretome, unresolved inflammation, dysregulated autophagy, inappropriate extracellular matrix remodeling and insufficient angiogenic potential. In the last 10 years, accumulating evidence suggests that BS can improve the WAT function beyond reducing the fat depot sizes. The causal relationships between improved WAT function and the health benefits of BS merits further investigation. This review summarizes the current knowledge on the short-, medium- and long-term outcomes of BS on the WAT composition and function.
Collapse
|
16
|
Schnabl K, Li Y, U-Din M, Klingenspor M. Secretin as a Satiation Whisperer With the Potential to Turn into an Obesity-curbing Knight. Endocrinology 2021; 162:6294014. [PMID: 34089599 DOI: 10.1210/endocr/bqab113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Indexed: 01/01/2023]
Abstract
The obesity pandemic requires effective preventative and therapeutic intervention strategies. Successful and sustained obesity treatment is currently limited to bariatric surgery. Modulating the release of gut hormones is considered promising to mimic bariatric surgery with its beneficial effects on food intake, body weight, and blood glucose levels. The gut peptide secretin was the first molecule to be termed a hormone; nevertheless, only recently has it been established as a legitimate anorexigenic peptide. In contrast to gut hormones that crosstalk with the brain either directly or by afferent neuronal projections, secretin mediates meal-associated brown fat thermogenesis to induce meal termination, thereby qualifying this physiological mechanism as an attractive, peripheral target for the treatment of obesity. In this perspective, it is of pivotal interest to deepen our as yet superficial knowledge on the physiological roles of secretin as well as meal-associated thermogenesis in energy balance and body weight regulation. Of note, the emerging differences between meal-associated thermogenesis and cold-induced thermogenesis must be taken into account. In fact, there is no correlation between these 2 entities. In addition, the investigation of potential effects of secretin in hedonic-driven food intake, bariatric surgery and chronic treatment using suitable application strategies to overcome pharmacokinetic limitations will provide further insight into its potential to influence energy balance. The aim of this article is to review the facts on secretin's metabolic effects, address prevailing gaps in our knowledge, and provide an overview on the opportunities and challenges of the therapeutic potential of secretin in body weight control.
Collapse
Affiliation(s)
- Katharina Schnabl
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- EKFZ-Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
- ZIEL-Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Yongguo Li
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- EKFZ-Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
| | - Mueez U-Din
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Martin Klingenspor
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- EKFZ-Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
- ZIEL-Institute for Food & Health, Technical University of Munich, Freising, Germany
| |
Collapse
|
17
|
Central Noradrenergic Neurotransmission and Weight Loss 6 Months After Gastric Bypass Surgery in Patients with Severe Obesity. Obes Surg 2021; 31:4868-4876. [PMID: 34414548 PMCID: PMC8490257 DOI: 10.1007/s11695-021-05657-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/18/2022]
Abstract
Purpose Roux-en-Y gastric bypass (RYGB) surgery is currently the most efficient treatment to achieve long-term weight loss in individuals with severe obesity. This is largely attributed to marked reductions in food intake mediated in part by changes in gut-brain communication. Here, we investigated for the first time whether weight loss after RYGB is associated with alterations in central noradrenaline (NA) neurotransmission. Materials and Methods We longitudinally studied 10 individuals with severe obesity (8 females; age 43.9 ± 13.1 years; body mass index (BMI) 46.5 ± 4.8 kg/m2) using (S,S)-[11C]O-methylreboxetine and positron emission tomography to estimate NA transporter (NAT) availability before and 6 months after surgery. NAT distribution volume ratios (DVR) were calculated by volume-of-interest analysis and the two-parameter multilinear reference tissue model (reference region: occipital cortex). Results The participants responded to RYGB surgery with a reduction in BMI of 12.0 ± 3.5 kg/m2 (p < 0.001) from baseline. This was paralleled by a significant reduction in DVR in the dorsolateral prefrontal cortex (pre-surgery 1.12 ± 0.04 vs. post-surgery 1.07 ± 0.04; p = 0.019) and a general tendency towards reduced DVR throughout the brain. Furthermore, we found a strong positive correlation between pre-surgery DVR in hypothalamus and the change in BMI (r = 0.78; p = 0.01). Conclusion Reductions in BMI after RYGB surgery are associated with NAT availability in brain regions responsible for decision-making and homeostasis. However, these results need further validation in larger cohorts, to assess whether brain NAT availability could prognosticate the outcome of RYGB on BMI. Graphical abstract ![]()
Collapse
|
18
|
RYGB Is More Effective than VSG at Protecting Mice from Prolonged High-Fat Diet Exposure: An Occasion to Roll Up Our Sleeves? Obes Surg 2021; 31:3227-3241. [PMID: 33856636 DOI: 10.1007/s11695-021-05389-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE Understanding the effects of Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG) on adipose tissue physiology is important for the treatment of obesity-related metabolic disorders. By using robust mouse models of bariatric surgery that closely resemble those performed in humans, we can compare the effects of RYGB and VSG on adipose physiology in the absence of post-operative confounds such as diet and lifestyle changes. MATERIALS AND METHODS RYGB and VSG were compared using a diet-induced mouse model of obesity. High-fat diet (HFD) was administered post-operatively and changes to white and brown adipose tissue were evaluated, along with alterations to weight, glucose homeostasis, dyslipidemia, and insulin sensitivity. RESULTS After prolonged exposure to high-fat diet post-operatively, RYGB was effective in achieving sustained weight loss, while VSG unexpectedly accelerated weight gain rates. The resolution of obesity-related comorbidities such as glucose and insulin intolerance, dyslipidemia, and insulin sensitivity was improved after RYGB, but not for VSG. In RYGB, there were improvements to the function and health of white adipose tissue, enhanced brown adipose metabolism, and the browning of subcutaneous white adipose tissue, with no comparable changes seen for these factors after VSG. Some markers of systemic inflammation improved after both RYGB and VSG. CONCLUSION There are significantly different effects between RYGB and VSG when HFD is administered post-operatively and robust mouse models of bariatric surgery are used. RYGB resulted in lasting physiological and metabolic changes but VSG showed little difference from that of its sham-operated, DIO counterpart.
Collapse
|
19
|
Abstract
Surgery is regarded by many as the go-to treatment option for severe obesity; yet how physically altering the gastrointestinal tract produces such striking results on body weight and overall metabolic health is poorly understood. In a recent issue of Cell Reports Ye et al. (2020) compare mouse models of Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG), the two most commonly performed weight loss surgeries in the clinic today, to show that the former reconfiguring procedure selectively increases resting metabolic rate through splanchnic nerve-mediated browning of mesenteric white fat. More significantly, they demonstrate that this effect for RYGB is required for the maintained negative energy balance and improved glycemic control that it confers.
Collapse
Affiliation(s)
- Mohammed K Hankir
- Department of Experimental Surgery, University Hospital Wuerzburg, Wuerzburg, 97080, Germany
| |
Collapse
|
20
|
Kuryłowicz A, Puzianowska-Kuźnicka M. Induction of Adipose Tissue Browning as a Strategy to Combat Obesity. Int J Mol Sci 2020; 21:ijms21176241. [PMID: 32872317 PMCID: PMC7504355 DOI: 10.3390/ijms21176241] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/25/2022] Open
Abstract
The ongoing obesity pandemic generates a constant need to develop new therapeutic strategies to restore the energy balance. Therefore, the concept of activating brown adipose tissue (BAT) in order to increase energy expenditure has been revived. In mammals, two developmentally distinct types of brown adipocytes exist; the classical or constitutive BAT that arises during embryogenesis, and the beige adipose tissue that is recruited postnatally within white adipose tissue (WAT) in the process called browning. Research of recent years has significantly increased our understanding of the mechanisms involved in BAT activation and WAT browning. They also allowed for the identification of critical molecules and critical steps of both processes and, therefore, many new therapeutic targets. Several non-pharmacological approaches, as well as chemical compounds aiming at the induction of WAT browning and BAT activation, have been tested in vitro as well as in animal models of genetically determined and/or diet-induced obesity. The therapeutic potential of some of these strategies has also been tested in humans. In this review, we summarize present concepts regarding potential therapeutic targets in the process of BAT activation and WAT browning and available strategies aiming at them.
Collapse
Affiliation(s)
- Alina Kuryłowicz
- Department of Human Epigenetics, Mossakowski Medical Research Centre PAS, 02-106 Warsaw, Poland;
- Correspondence: ; Tel.: +48-226086591; Fax: +48-226086410
| | - Monika Puzianowska-Kuźnicka
- Department of Human Epigenetics, Mossakowski Medical Research Centre PAS, 02-106 Warsaw, Poland;
- Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, 01-826 Warsaw, Poland
| |
Collapse
|
21
|
Abstract
Understanding the mammalian energy balance can pave the way for future therapeutics that enhance energy expenditure as an anti-obesity and anti-diabetic strategy. Several studies showed that brown adipose tissue activity increases daily energy expenditure. However, the size and activity of brown adipose tissue is reduced in individuals with obesity and type two diabetes. Humans have an abundance of functionally similar beige adipocytes that have the potential to contribute to increased energy expenditure. This makes beige adipocytes a promising target for metabolic disease therapies. While brown adipocytes tend to be stable, beige adipocytes have a high level of plasticity that allows for the rapid and dynamic induction of thermogenesis by external stimuli such as low environmental temperatures. This means that after browning stimuli have been withdrawn beige adipocytes quickly transition back to their white adipose state. The detailed molecular mechanisms regulating beige adipocytes development, function, and reversibility are not fully understood. The goal of this review is to give a comprehensive overview of beige fat development and origins, along with the transcriptional and epigenetic programs that lead to beige fat formation, and subsequent thermogenesis in humans. An improved understanding of the molecular pathways of beige adipocyte plasticity will enable us to selectively manipulate beige cells to induce and maintain their thermogenic output thus improving the whole-body energy homeostasis.
Collapse
|