1
|
Jha A, Patel M, Ling A, Shah R, Chen CC, Millo C, Nazari MA, Sinaii N, Charles K, Kuo MJM, Prodanov T, Saboury B, Talvacchio S, Derkyi A, Del Rivero J, O'Sullivan Coyne G, Chen AP, Nilubol N, Herscovitch P, Lin FI, Taieb D, Civelek AC, Carrasquillo JA, Pacak K. Diagnostic performance of [ 68Ga]DOTATATE PET/CT, [ 18F]FDG PET/CT, MRI of the spine, and whole-body diagnostic CT and MRI in the detection of spinal bone metastases associated with pheochromocytoma and paraganglioma. Eur Radiol 2024; 34:6488-6498. [PMID: 38625612 PMCID: PMC11399174 DOI: 10.1007/s00330-024-10652-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/07/2024] [Accepted: 01/19/2024] [Indexed: 04/17/2024]
Abstract
OBJECTIVE To compare the diagnostic performance of [68Ga]DOTATATE PET/CT, [18F]FDG PET/CT, MRI of the spine, and whole-body CT and MRI for the detection of pheochromocytoma/paraganglioma (PPGL)-related spinal bone metastases. MATERIALS AND METHODS Between 2014 and 2020, PPGL participants with spinal bone metastases prospectively underwent [68Ga]DOTATATE PET/CT, [18F]FDG PET/CT, MRI of the cervical-thoracolumbar spine (MRIspine), contrast-enhanced MRI of the neck and thoraco-abdominopelvic regions (MRIWB), and contrast-enhanced CT of the neck and thoraco-abdominopelvic regions (CTWB). Per-patient and per-lesion detection rates were calculated. Counting of spinal bone metastases was limited to a maximum of one lesion per vertebrae. A composite of all functional and anatomic imaging served as an imaging comparator. The McNemar test compared detection rates between the scans. Two-sided p values were reported. RESULTS Forty-three consecutive participants (mean age, 41.7 ± 15.7 years; females, 22) with MRIspine were included who also underwent [68Ga]DOTATATE PET/CT (n = 43), [18F]FDG PET/CT (n = 43), MRIWB (n = 24), and CTWB (n = 33). Forty-one of 43 participants were positive for spinal bone metastases, with 382 lesions on the imaging comparator. [68Ga]DOTATATE PET/CT demonstrated a per-lesion detection rate of 377/382 (98.7%) which was superior compared to [18F]FDG (72.0%, 275/382, p < 0.001), MRIspine (80.6%, 308/382, p < 0.001), MRIWB (55.3%, 136/246, p < 0.001), and CTWB (44.8%, 132/295, p < 0.001). The per-patient detection rate of [68Ga]DOTATATE PET/CT was 41/41 (100%) which was higher compared to [18F]FDG PET/CT (90.2%, 37/41, p = 0.13), MRIspine (97.6%, 40/41, p = 1.00), MRIWB (95.7%, 22/23, p = 1.00), and CTWB (81.8%, 27/33, p = 0.03). CONCLUSIONS [68Ga]DOTATATE PET/CT should be the modality of choice in PPGL-related spinal bone metastases due to its superior detection rate. CLINICAL RELEVANCE STATEMENT In a prospective study of 43 pheochromocytoma/paraganglioma participants with spinal bone metastases, [68Ga]DOTATATE PET/CT had a superior per-lesion detection rate of 98.7% (377/382), compared to [18F]FDG PET/CT (p < 0.001), MRI of the spine (p < 0.001), whole-body CT (p < 0.001), and whole-body MRI (p < 0.001). KEY POINTS • Data regarding head-to-head comparison between functional and anatomic imaging modalities to detect spinal bone metastases in pheochromocytoma/paraganglioma are limited. • [68Ga]DOTATATE PET/CT had a superior per-lesion detection rate of 98.7% in the detection of spinal bone metastases associated with pheochromocytoma/paraganglioma compared to other imaging modalities: [18]F-FDG PET/CT, MRI of the spine, whole-body CT, and whole-body MRI. • [68Ga]DOTATATE PET/CT should be the modality of choice in the evaluation of spinal bone metastases associated with pheochromocytoma/paraganglioma.
Collapse
Affiliation(s)
- Abhishek Jha
- Section On Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Room 1E-3140, CRC, Bldg. 10, 10 Center Dr. MSC-1109, Bethesda, MD, 20892-1109, USA
| | - Mayank Patel
- Section On Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Room 1E-3140, CRC, Bldg. 10, 10 Center Dr. MSC-1109, Bethesda, MD, 20892-1109, USA
| | - Alexander Ling
- Radiology and Imaging Sciences, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bldg. 10, 10 Center Dr., Bethesda, MD, 20892, USA
| | - Ritu Shah
- Radiology and Imaging Sciences, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bldg. 10, 10 Center Dr., Bethesda, MD, 20892, USA
| | - Clara C Chen
- Nuclear Medicine Division, Radiology and Imaging Sciences, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bldg. 10, 10 Center Dr., Bethesda, MD, 20892, USA
| | - Corina Millo
- Positron Emission Tomography Department, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bldg. 10, 10 Center Dr., Bethesda, MD, 20892, USA
| | - Matthew A Nazari
- Section On Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Room 1E-3140, CRC, Bldg. 10, 10 Center Dr. MSC-1109, Bethesda, MD, 20892-1109, USA
| | - Ninet Sinaii
- Biostatistics and Clinical Epidemiology Service, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bldg. 10, 10 Center Dr., Bethesda, MD, 20892, USA
| | - Kailah Charles
- Section On Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Room 1E-3140, CRC, Bldg. 10, 10 Center Dr. MSC-1109, Bethesda, MD, 20892-1109, USA
| | - Mickey J M Kuo
- Section On Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Room 1E-3140, CRC, Bldg. 10, 10 Center Dr. MSC-1109, Bethesda, MD, 20892-1109, USA
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tamara Prodanov
- Section On Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Room 1E-3140, CRC, Bldg. 10, 10 Center Dr. MSC-1109, Bethesda, MD, 20892-1109, USA
| | - Babak Saboury
- Nuclear Medicine Division, Radiology and Imaging Sciences, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bldg. 10, 10 Center Dr., Bethesda, MD, 20892, USA
| | - Sara Talvacchio
- Section On Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Room 1E-3140, CRC, Bldg. 10, 10 Center Dr. MSC-1109, Bethesda, MD, 20892-1109, USA
| | - Alberta Derkyi
- Section On Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Room 1E-3140, CRC, Bldg. 10, 10 Center Dr. MSC-1109, Bethesda, MD, 20892-1109, USA
| | - Jaydira Del Rivero
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Room 13C434, Bldg. 10, 10 Center Dr., Bethesda, MD, 20892, USA
| | - Geraldine O'Sullivan Coyne
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Room 8D53, Bldg. 10, 10 Center Dr., Bethesda, MD, 20892, USA
| | - Alice P Chen
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Room 8D53, Bldg. 10, 10 Center Dr., Bethesda, MD, 20892, USA
| | - Naris Nilubol
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Room 4-5952, Bldg. 10, 10 Center Dr., Bethesda, MD, 20892, USA
| | - Peter Herscovitch
- Positron Emission Tomography Department, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bldg. 10, 10 Center Dr., Bethesda, MD, 20892, USA
| | - Frank I Lin
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Room 13C442, Bldg. 10, 10 Center Dr., Bethesda, MD, 20892, USA
| | - David Taieb
- Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Aix-Marseille University, Marseille, France
| | - A Cahid Civelek
- Nuclear Medicine, Radiology and Radiological Science, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Jorge A Carrasquillo
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Room 13C442, Bldg. 10, 10 Center Dr., Bethesda, MD, 20892, USA
| | - Karel Pacak
- Section On Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Room 1E-3140, CRC, Bldg. 10, 10 Center Dr. MSC-1109, Bethesda, MD, 20892-1109, USA.
| |
Collapse
|
2
|
Darrat M, Lau L, Leonard C, Cooke S, Shahzad MA, McHenry C, McCance DR, Hunter SJ, Mullan K, Lindsay JR, Graham U, Bailie N, Hampton S, Rajendran S, Houghton F, Conkey D, Morrison PJ, Johnston PC. Clinical management and outcome of head and neck paragangliomas (HNPGLs): A single centre retrospective study. Clin Endocrinol (Oxf) 2024; 101:243-248. [PMID: 38696538 DOI: 10.1111/cen.15070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 05/04/2024]
Abstract
CONTEXT Head and neck paragangliomas (HNPGLs) are rare, usually benign, slow-growing tumours arising from neural crest-derived tissue. Definitive management pathways for HNPGLs have yet to be clearly defined. OBJECTIVE To review our experience of the clinical features and management of these tumours and to analyse outcomes of different treatment modalities. METHODS Demographic and clinical data were obtained from The Northern Ireland Electronic Care Record (NIECR) as well from a prospectively maintained HNPGL database between January 2011 through December 2023. RESULTS There were 87 patients; 50 females: 37 males with a mean age of 52.3 ± 14.2 years old (range 17-91 years old). 58.6% (n = 51) of patients had carotid body tumours, 25.2% (n = 22) glomus vagal tumours, 6.8% (n = 6) tumours in the middle ear, 2.2% (n = 2) in the parapharyngeal space and 1.1% (n = 1) in the sphenoid sinus. 5.7% (n = 5) of patients had multifocal disease. The mean tumour size at presentation was 3.2 ± 1.4 cm (range 0.5-6.9 cm). Pathogenic SDHD mutations were identified in 41.3% (n = 36), SDHB in 12.6% (n = 11), SDHC in 2.2% (n = 2) and SDHA in 1.1% (n = 1) of the patients. Overall treatment modalities included surgery alone in 51.7% (n = 45) of patients, radiotherapy in 14.9% (n = 13), observation in 28.7% (n = 25), and somatostatin analogue therapy with octreotide in 4.5% (n = 4) of patients. Factors associated with a significantly higher risk of recurrence included age over 60 years (p = .04), tumour size exceeding 2 cm (p = .03), positive SDHx variants (p = .01), and vagal and jugular tumours (p = .04). CONCLUSION The majority of our patients underwent initial surgical intervention and achieved disease stability. Our results suggest that carefully selected asymptomatic or medically unfit patients can be safely observed provided lifelong surveillance is maintained. We advocate for the establishment of a UK and Ireland national HNPGL registry, to delineate optimal management strategies for these rare tumours and improve long term outcomes.
Collapse
Affiliation(s)
- Milad Darrat
- Regional Centre for Endocrinology and Diabetes, Royal Victoria Hospital, Belfast, UK
| | - Louis Lau
- Department of Vascular Surgery, Royal Victoria Hospital, Belfast, UK
| | - Colin Leonard
- Department of Otolaryngology, Royal Victoria Hospital, Belfast, UK
| | - Stephen Cooke
- Department of Neurosurgery, Royal Victoria Hospital, Belfast, UK
| | - Muhammad A Shahzad
- Regional Centre for Endocrinology and Diabetes, Royal Victoria Hospital, Belfast, UK
| | - Claire McHenry
- Regional Centre for Endocrinology and Diabetes, Royal Victoria Hospital, Belfast, UK
| | - David R McCance
- Regional Centre for Endocrinology and Diabetes, Royal Victoria Hospital, Belfast, UK
| | - Steven J Hunter
- Regional Centre for Endocrinology and Diabetes, Royal Victoria Hospital, Belfast, UK
| | - Karen Mullan
- Regional Centre for Endocrinology and Diabetes, Royal Victoria Hospital, Belfast, UK
| | - John R Lindsay
- Regional Centre for Endocrinology and Diabetes, Royal Victoria Hospital, Belfast, UK
| | - Una Graham
- Regional Centre for Endocrinology and Diabetes, Royal Victoria Hospital, Belfast, UK
| | - Neil Bailie
- Department of Otolaryngology, Royal Victoria Hospital, Belfast, UK
| | - Susie Hampton
- Department of Otolaryngology, Royal Victoria Hospital, Belfast, UK
| | - Simon Rajendran
- Department of Pathology, Royal Victoria Hospital, Belfast, UK
| | | | - David Conkey
- Department of Oncology, Belfast City Hospital, Belfast, UK
| | | | - Philip C Johnston
- Regional Centre for Endocrinology and Diabetes, Royal Victoria Hospital, Belfast, UK
| |
Collapse
|
3
|
Pacak K, Taieb D, Lin FI, Jha A. Approach to the Patient: Concept and Application of Targeted Radiotherapy in the Paraganglioma Patient. J Clin Endocrinol Metab 2024; 109:2366-2388. [PMID: 38652045 PMCID: PMC11319006 DOI: 10.1210/clinem/dgae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/30/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
Paragangliomas can metastasize, posing potential challenges both in symptomatic management and disease control. Systemic targeted radiotherapies using 131I-MIBG and 177Lu-DOTATATE are a mainstay in the treatment of metastatic paragangliomas. This clinical scenario and discussion aim to enhance physicians' knowledge of the stepwise approach to treat these patients with paraganglioma-targeted radiotherapies. It comprehensively discusses current approaches to selecting paraganglioma patients for targeted radiotherapies and how to choose between the two radiotherapies based on specific patient and tumor characteristics, when either therapy is feasible, or one is superior to another. The safety, efficacy, toxicity profiles, and optimization of these radiotherapies are also discussed, along with other therapeutic options including radiotherapies, available for patients besides these two therapies. Perspectives in radiotherapies of paraganglioma patients are outlined since they hold promising approaches in the near future that can improve patient outcomes.
Collapse
Affiliation(s)
- Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892-1109, USA
| | - David Taieb
- Department of Nuclear Medicine, Aix-Marseille University, La Timone University Hospital, 13385 Marseille, France
| | - Frank I Lin
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Abhishek Jha
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892-1109, USA
| |
Collapse
|
4
|
Uher O, Hadrava Vanova K, Taïeb D, Calsina B, Robledo M, Clifton-Bligh R, Pacak K. The Immune Landscape of Pheochromocytoma and Paraganglioma: Current Advances and Perspectives. Endocr Rev 2024; 45:521-552. [PMID: 38377172 PMCID: PMC11244254 DOI: 10.1210/endrev/bnae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Accepted: 02/02/2024] [Indexed: 02/22/2024]
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors derived from neural crest cells from adrenal medullary chromaffin tissues and extra-adrenal paraganglia, respectively. Although the current treatment for PPGLs is surgery, optimal treatment options for advanced and metastatic cases have been limited. Hence, understanding the role of the immune system in PPGL tumorigenesis can provide essential knowledge for the development of better therapeutic and tumor management strategies, especially for those with advanced and metastatic PPGLs. The first part of this review outlines the fundamental principles of the immune system and tumor microenvironment, and their role in cancer immunoediting, particularly emphasizing PPGLs. We focus on how the unique pathophysiology of PPGLs, such as their high molecular, biochemical, and imaging heterogeneity and production of several oncometabolites, creates a tumor-specific microenvironment and immunologically "cold" tumors. Thereafter, we discuss recently published studies related to the reclustering of PPGLs based on their immune signature. The second part of this review discusses future perspectives in PPGL management, including immunodiagnostic and promising immunotherapeutic approaches for converting "cold" tumors into immunologically active or "hot" tumors known for their better immunotherapy response and patient outcomes. Special emphasis is placed on potent immune-related imaging strategies and immune signatures that could be used for the reclassification, prognostication, and management of these tumors to improve patient care and prognosis. Furthermore, we introduce currently available immunotherapies and their possible combinations with other available therapies as an emerging treatment for PPGLs that targets hostile tumor environments.
Collapse
Affiliation(s)
- Ondrej Uher
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| | - Katerina Hadrava Vanova
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| | - David Taïeb
- Department of Nuclear Medicine, CHU de La Timone, Marseille 13005, France
| | - Bruna Calsina
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
- Familiar Cancer Clinical Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institute of Health Carlos III (ISCIII), Madrid 28029, Spain
| | - Roderick Clifton-Bligh
- Department of Endocrinology, Royal North Shore Hospital, Sydney 2065, NSW, Australia
- Cancer Genetics Laboratory, Kolling Institute, University of Sydney, Sydney 2065, NSW, Australia
| | - Karel Pacak
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| |
Collapse
|
5
|
Shen Y, Luo Y, Li M, Luo R, Chen L, Gao X, Jiang J, Liu Y, Lu Z, Zhang J. Somatostatin receptor subtype 2A expression and genetics in 184 paragangliomas: a single center retrospective observational study. Endocrine 2024; 85:398-406. [PMID: 38306009 DOI: 10.1007/s12020-023-03595-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/01/2023] [Indexed: 02/03/2024]
Abstract
PURPOSE Adrenal and extra-adrenal paragangliomas (PGLs) are a group of neuroendocrine tumors (NETs) with strong heterogeneity, which often express somatostatin receptor subtype 2 A (SSTR2A). However, the association between SSTR2A expression and genetic status of PGLs remains unclear. The purpose of the study was to identify whether various pathogenic variants (PVs) had an impact on SSTR2A expression in PGLs. METHODS This retrospective study included 184 patients with pathologically confirmed PGLs. The immunohistochemical expression of SSTR2A were studied in 184 tumors and PVs were tested in 159 tumor samples. Clinical and genetic data were compared in SSTR2A positive and negative PGLs. RESULTS SSTR2A was positive in 63.6% (117/184) of all tumors. PGLs with negative SSTR2A were more likely to be extra-adrenal (37.0% vs 18.0%; P = 0.005) and exhibited a considerably greater proportion of PVs (75.4% vs. 49.0%; P = 0.001) than those with positive SSTR2A. Compared to those without PVs, a higher proportion of PGLs with PVs in cluster 1B (P = 0.004) and cluster 2 (P = 0.004) genes, especially VHL (P = 0.009), FGFR1 (P = 0.010) and HRAS (P = 0.007), were SSTR2A negative. SSTR2A was positive in all tumors (4/4) with SDHx PVs and in 87.5% (7/8) of metastatic PGLs. CONCLUSIONS SSTR2A negativity was correlated with extra-adrenal tumor location and PVs in cluster 1B and cluster 2 genes such as VHL, FGFR1 and HRAS. Immunohistochemistry of SSTR2A should be taken into consideration in the personalized management of PGLs.
Collapse
Affiliation(s)
- Yanting Shen
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Yu Luo
- Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Minghao Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Rongkui Luo
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lingli Chen
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Jingjing Jiang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Yujun Liu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Zhiqiang Lu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.
- Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China.
| | - Jing Zhang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.
- Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Mallak N, O'Brien SR, Pryma DA, Mittra E. Theranostics in Neuroendocrine Tumors. Cancer J 2024; 30:185-193. [PMID: 38753753 DOI: 10.1097/ppo.0000000000000723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
ABSTRACT Neuroendocrine tumors (NETs) are rare tumors that develop from cells of the neuroendocrine system and can originate in multiple organs and tissues such as the bowels, pancreas, adrenal glands, ganglia, thyroid, and lungs. This review will focus on gastroenteropancreatic NETs (more commonly called NETs) characterized by frequent somatostatin receptor (SSTR) overexpression and pheochromocytomas/paragangliomas (PPGLs), which typically overexpress norepinephrine transporter. Advancements in SSTR-targeted imaging and treatment have revolutionized the management of patients with NETs. This comprehensive review delves into the current practice, discussing the use of the various Food and Drug Administration-approved SSTR-agonist positron emission tomography tracers and the predictive imaging biomarkers, and elaborating on 177Lu-DOTATATE peptide receptor radionuclide therapy including the evolving areas of posttherapy imaging practices and peptide receptor radionuclide therapy retreatment. SSTR-targeted imaging and therapy can also be used in patients with PPGL; however, this patient population has demonstrated the best outcomes from norepinephrine transporter-targeted therapy with 131I-metaiodobenzylguanidine. Metaiodobenzylguanidine theranostics for PPGL will be discussed, noting that in 2024 it became commercially unavailable in the United States. Therefore, the use and reported success of SSTR theranostics for PPGL will also be explored.
Collapse
Affiliation(s)
- Nadine Mallak
- From the Department of Diagnostic Radiology, Oregon Health & Sciences University, Portland, OR
| | - Sophia R O'Brien
- Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | - Daniel A Pryma
- Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | - Erik Mittra
- From the Department of Diagnostic Radiology, Oregon Health & Sciences University, Portland, OR
| |
Collapse
|
7
|
de Bresser CJM, Petri BJ, Braat AJAT, de Keizer B, van Treijen MJC, Dankbaar JW, Pameijer FA, Kok MGJ, de Ridder M, van Nesselrooij BPM, de Bree R, de Borst GJ, Rijken JA. The Additional Value of Somatostatin Receptor Positron Emission Computed Tomography ([ 68Ga]Ga-DOTATOC PET/CT) Compared with Magnetic Resonance Imaging of the Head and Neck Region in Paraganglioma Patients: A Pilot Study. Cancers (Basel) 2024; 16:986. [PMID: 38473347 DOI: 10.3390/cancers16050986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/20/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
The Dutch guideline for patients suspected of head and neck paragangliomas (HNPGLs) recommends magnetic resonance imaging (MRI) and/or computed tomography (CT) of the head and neck area. Additionally, it suggests considering additional nuclear imaging. The aim of this study was to evaluate the outcomes of [68Ga]Ga-DOTATOC PET/CT compared to MRI in patients with suspected HNPGLs and carriers of genetic variations. METHODS In this single-center pilot study, retrospective data were obtained from consecutive patients between 2016 and 2023. Both MRI and [68Ga]Ga-DOTATOC PET/CT were performed within 12 months. The primary outcome was the location of HNPGLs. RESULTS A total of 25 consecutive patients were included, and 7 patients (28.0%, p = 0.5) showed differences between the imaging modalities, of whom 5 patients had unexpected localizations with additional uptake by somatostatin receptors (SSTR) on the [68Ga]Ga-DOTATOC PET/CT. CONCLUSIONS The authors recommend performing baseline imaging with [68Ga]Ga-DOTATOC PET/CT (if available) in variant carriers and using MRI/CT for follow-up according to the regional protocol, thereby shifting the gold standard for baseline imaging from MRI/CT to [68Ga]Ga-DOTATOC PET/CT.
Collapse
Affiliation(s)
- Carolijn J M de Bresser
- Department of Vascular Surgery, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Bart-Jeroen Petri
- Department of Vascular Surgery, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Arthur J A T Braat
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Nuclear Medicine, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Bart de Keizer
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Mark J C van Treijen
- Department of Endocrine Oncology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jan Willem Dankbaar
- Department of Radiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Frank A Pameijer
- Department of Radiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Marius G J Kok
- Department of Radiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Radiology, Medical Spectrum Twente, 7512 KZ Enschede, The Netherlands
| | - Mischa de Ridder
- Department of Radiotherapy, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | | | - Remco de Bree
- Department of Head and Neck Surgical Oncology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Gert J de Borst
- Department of Vascular Surgery, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Johannes A Rijken
- Department of Head and Neck Surgical Oncology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
8
|
de Jong MC, Pinto D, Parameswaran R. Reduced uptake pattern on 68 Ga-DOTATATE-scan may indicate necrosis predicting aggressive behavior in pheochromocytoma and paragangliomas (PPGLs). J Surg Oncol 2023; 128:764-768. [PMID: 37403579 DOI: 10.1002/jso.27388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 06/25/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND Predicting malignancy among pheochromocytoma paragangliomas (PPGLs) remains a challenge, with only limited understanding of the clinical and molecular characteristics. It has been suggested that reduced avidity of a PPGL on 68 Ga-DOTATATE PET/CT could be a sign of not only altered metabolic activity, but also of increased biologic aggressiveness, possibly due to loss of SSTR-expression. DESIGN Retrospective cohort review. PATIENTS AND MEASUREMENTS Thirty-seven patients who underwent treatment for PPGL at a tertiary institution over the period 2010-2022, had their biochemical, radiological, and clinicopathological variables collected. RESULTS Five of 37 (13%) patients (5 males) with a mean age of 42 years were found to have malignant PPGLs. The mean size of the tumors were 5.4 cm, with 4 located in the paraaortic area and 1 in right adrenal. Functional imaging with 68 Ga-DOTATATE PET/CT showed a mean SUVmax of 4.5. Four of 5 patients underwent open resection of the tumors under general anesthesia following preoperative alpha blockade with oral phenoxybenzamine. The mean PASS score of the excised tumors was 5.5 in keeping with biologically aggressive tumors, with evidence of necrosis. All but 1 patient had germline SDHB-mutation (Deletion Exon 1). Postintervention after a mean follow-up of 31 months, 2 of 5 (40%) patient developed spinal metastasis and 1 patients (25%) died of cardiac complications. CONCLUSION A non-highly avid PPGL on DOTATE scan should be considered as possibly having necrosis of tumors indicating a more aggressive tumor-biology. There might be a subgroup of patients in whom FDG-PET scan should be considered to gain additional information.
Collapse
Affiliation(s)
| | - Diluka Pinto
- Division of Endocrine Surgery, University Surgical Cluster, National University Health System, Singapore, Singapore
| | - Rajeev Parameswaran
- Division of Endocrine Surgery, University Surgical Cluster, National University Health System, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
9
|
Fischer A, Kloos S, Maccio U, Friemel J, Remde H, Fassnacht M, Pamporaki C, Eisenhofer G, Timmers HJLM, Robledo M, Fliedner SMJ, Wang K, Maurer J, Reul A, Zitzmann K, Bechmann N, Žygienė G, Richter S, Hantel C, Vetter D, Lehmann K, Mohr H, Pellegata NS, Ullrich M, Pietzsch J, Ziegler CG, Bornstein SR, Kroiss M, Reincke M, Pacak K, Grossman AB, Beuschlein F, Nölting S. Metastatic Pheochromocytoma and Paraganglioma: Somatostatin Receptor 2 Expression, Genetics, and Therapeutic Responses. J Clin Endocrinol Metab 2023; 108:2676-2685. [PMID: 36946182 PMCID: PMC10505550 DOI: 10.1210/clinem/dgad166] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/01/2023] [Accepted: 03/17/2023] [Indexed: 03/23/2023]
Abstract
CONTEXT Pheochromocytomas and paragangliomas (PPGLs) with pathogenic mutations in the succinate dehydrogenase subunit B (SDHB) are associated with a high metastatic risk. Somatostatin receptor 2 (SSTR2)-dependent imaging is the most sensitive imaging modality for SDHB-related PPGLs, suggesting that SSTR2 expression is a significant cell surface therapeutic biomarker of such tumors. OBJECTIVE Exploration of the relationship between SSTR2 immunoreactivity and SDHB immunoreactivity, mutational status, and clinical behavior of PPGLs. Evaluation of SSTR-based therapies in metastatic PPGLs. METHODS Retrospective analysis of a multicenter cohort of PPGLs at 6 specialized Endocrine Tumor Centers in Germany, The Netherlands, and Switzerland. Patients with PPGLs participating in the ENSAT registry were included. Clinical data were extracted from medical records, and immunohistochemistry (IHC) for SDHB and SSTR2 was performed in patients with available tumor tissue. Immunoreactivity of SSTR2 was investigated using Volante scores. The main outcome measure was the association of SSTR2 IHC positivity with genetic and clinical-pathological features of PPGLs. RESULTS Of 202 patients with PPGLs, 50% were SSTR2 positive. SSTR2 positivity was significantly associated with SDHB- and SDHx-related PPGLs, with the strongest SSTR2 staining intensity in SDHB-related PPGLs (P = .01). Moreover, SSTR2 expression was significantly associated with metastatic disease independent of SDHB/SDHx mutation status (P < .001). In metastatic PPGLs, the disease control rate with first-line SSTR-based radionuclide therapy was 67% (n = 22, n = 11 SDHx), and with first-line "cold" somatostatin analogs 100% (n = 6, n = 3 SDHx). CONCLUSION SSTR2 expression was independently associated with SDHB/SDHx mutations and metastatic disease. We confirm a high disease control rate of somatostatin receptor-based therapies in metastatic PPGLs.
Collapse
Affiliation(s)
- Alessa Fischer
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), and University of Zurich (UZH), CH-8091 Zurich, Switzerland
| | - Simon Kloos
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), and University of Zurich (UZH), CH-8091 Zurich, Switzerland
| | - Umberto Maccio
- Department of Pathology and Molecular Pathology, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Juliane Friemel
- Department of Pathology and Molecular Pathology, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Hanna Remde
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, 97080 Würzburg, Germany
| | - Martin Fassnacht
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, 97080 Würzburg, Germany
| | - Christina Pamporaki
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Graeme Eisenhofer
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Henri J L M Timmers
- Division of Endocrinology, Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| | - Stephanie M J Fliedner
- First Department of Medicine, University Medical Center Schleswig-Holstein, 23538 Lübeck, Germany
| | - Katharina Wang
- Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Julian Maurer
- Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Astrid Reul
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), and University of Zurich (UZH), CH-8091 Zurich, Switzerland
| | - Kathrin Zitzmann
- Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse, 01307 Dresden, Germany
| | - Gintarė Žygienė
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse, 01307 Dresden, Germany
| | - Susan Richter
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse, 01307 Dresden, Germany
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), and University of Zurich (UZH), CH-8091 Zurich, Switzerland
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Diana Vetter
- Department of Visceral and Transplantation Surgery, University Hospital, 8091 Zürich, Switzerland
| | - Kuno Lehmann
- Department of Visceral and Transplantation Surgery, University Hospital, 8091 Zürich, Switzerland
| | - Hermine Mohr
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Natalia S Pellegata
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Martin Ullrich
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Dresden, Germany
| | - Christian G Ziegler
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, 97080 Würzburg, Germany
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Stefan R Bornstein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), and University of Zurich (UZH), CH-8091 Zurich, Switzerland
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Matthias Kroiss
- Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Martin Reincke
- Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20847, USA
| | - Ashley B Grossman
- Green Templeton College, University of Oxford, Oxford, UK
- NET Unit, ENETS Centre of Excellence, Royal Free Hospital, London, UK
| | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), and University of Zurich (UZH), CH-8091 Zurich, Switzerland
- Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Svenja Nölting
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), and University of Zurich (UZH), CH-8091 Zurich, Switzerland
- Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| |
Collapse
|
10
|
Elshafie OT, Bou Khalil AC, Alshaibi MA, Itkin BL, Ismail BM, Woodhouse NJ. Hypertensive Crisis in a Patient With a Functioning Mesenteric Paraganglioma: Dramatic Response to Octreotide Treatment. AACE Clin Case Rep 2023; 9:149-152. [PMID: 37736317 PMCID: PMC10509379 DOI: 10.1016/j.aace.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 09/23/2023] Open
Abstract
Background/Objective To report a dramatic and immediate clinical and biochemical response during treatment with octreotide in a patient with a functioning mesenteric paraganglioma (PGL). Case Report A 44-year-old woman was admitted with a severe hypertensive crisis and a blood pressure reaching 260/150 mm Hg. She was 2 months postpartum and had been previously diagnosed with pre-eclampsia. Secondary hypertension was suspected. This was confirmed by finding a 6 × 5-cm2 retroperitoneal mass located using 68-Gallium DOTA-octreotate positron emission tomography/computed tomography and a grossly elevated plasma catecholamine level of 93 000 pmol/L (normal reference range: 650-2433 pmol/L). Treatment was immediately started with high doses of long- and short-acting octreotide. After 6 weeks and before surgery, the patient was normotensive, with a blood pressure of 120/70 mm Hg and a norepinephrine level of 6000 pmol/L. The tumor resection was uneventful, and histology confirmed the diagnosis. Following the surgery, the patient remained normotensive without any medications. Discussion PGLs and pheochromocytomas are neuroendocrine tumors, and most have receptors for octreotide. This case and another patient previously reported responded dramatically to treatment with a high dose of octreotide. Earlier reports of patients failing to respond are likely to have been the result of using a smaller octreotide dose. Conclusion We conclude that high doses of short- and long-acting octreotide are valuable in severely hypertensive patients. Our experience suggests that octreotide is of value in other patients with PGLs and pheochromocytomas. The response is rapid, sustained, effective, and with minimal reported side effects. To the best of our knowledge, this is the first report of a hypertensive crisis in a functional mesenteric PGL.
Collapse
Affiliation(s)
- Omayma T. Elshafie
- Department of Endocrinology, Sultan Qaboos Comprehensive Cancer Care and Research Centre (SQCCCRC), Muscat, Sultanate of Oman
| | - Abir C. Bou Khalil
- Department of Endocrinology, Sultan Qaboos Comprehensive Cancer Care and Research Centre (SQCCCRC), Muscat, Sultanate of Oman
| | - Maha A. Alshaibi
- Department of Surgery, Sultan Qaboos Comprehensive Cancer Care and Research Centre (SQCCCRC), Muscat, Sultanate of Oman
| | - Boris L. Itkin
- Department of Medical Oncology, Sultan Qaboos Comprehensive Cancer Care and Research Centre (SQCCCRC), Muscat, Sultanate of Oman
| | - Babikir M. Ismail
- Department of Pathology, Sultan Qaboos Comprehensive Cancer Care and Research Centre (SQCCCRC), Muscat, Sultanate of Oman
| | - Nicholas J. Woodhouse
- Department of Endocrinology, Sultan Qaboos Comprehensive Cancer Care and Research Centre (SQCCCRC), Muscat, Sultanate of Oman
| |
Collapse
|
11
|
Zhang X, Wakabayashi H, Hiromasa T, Kayano D, Kinuya S. Recent Advances in Radiopharmaceutical Theranostics of Pheochromocytoma and Paraganglioma. Semin Nucl Med 2023; 53:503-516. [PMID: 36641337 DOI: 10.1053/j.semnuclmed.2022.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023]
Abstract
As a rare kind of non-epithelial neuroendocrine neoplasms, paragangliomas (PGLs) exhibit various clinical characteristics with excessive catecholamine secretion and have been a research focus in recent years. Although several modalities are available nowadays, radiopharmaceuticals play an integral role in the management of PGLs. Theranostics utilises radiopharmaceuticals for diagnostic and therapeutic intentions by aiming at a specific target in tumour and has been considered a possible means in diagnosis, staging, monitoring and treatment planning. Numerous radiopharmaceuticals have been developed over the past decades. 123/131-Metaiodobenzylguanidine (123/131I-MIBG), the theranostics pair target on norepinephrine transporter system, has remained a fantastic protocol for patients with PGLs because of disease control with limited toxicity. The high-specific-activity 131I-MIBG was authorised by the Food and Drug Administration as a systemic treatment method for metastatic PGLs in 2018. Afterward, peptide receptor radionuclide therapy, which uses radiolabelled somatostatin (SST) analogues, has been exploited as a superior substitute. 68Ga-somatostatin analogue (SSA) PET showed significant performance in diagnosing PGLs than MIBG scintigraphy, especially in patients with head and neck PGLs or SDHx mutation. 90Y/177Lu-DOTA-SSA is highly successful and has preserved favourable safety with mounting evidence regarding objective response, disease stabilisation, symptomatic and hormonal management and quality of life preservation. Besides the ordinary beta emitters, alpha-emitters such as 211At-MABG and 225Ac-DOTATATE have been investigated intensively in recent years. However, many studies are still in the pre-clinical stage, and more research is necessary. This review summarises the developments and recent advances in radiopharmaceutical theranostics of PGLs.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan
| | - Hiroshi Wakabayashi
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan.
| | - Tomo Hiromasa
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan
| | - Daiki Kayano
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan
| |
Collapse
|
12
|
Alexander ES, Ziv E. Neuroendocrine Tumors: Genomics and Molecular Biomarkers with a Focus on Metastatic Disease. Cancers (Basel) 2023; 15:cancers15082249. [PMID: 37190177 DOI: 10.3390/cancers15082249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/08/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023] Open
Abstract
Neuroendocrine tumors (NETs) are considered rare tumors that originate from specialized endocrine cells. Patients often present with metastatic disease at the time of diagnosis, which negatively impacts their quality of life and overall survival. An understanding of the genetic mutations that drive these tumors and the biomarkers used to detect new NET cases is important to identify patients at an earlier disease stage. Elevations in CgA, synaptophysin, and 5-HIAA are most commonly used to identify NETs and assess prognosis; however, new advances in whole genome sequencing and multigenomic blood assays have allowed for a greater understanding of the drivers of NETs and more sensitive and specific tests to diagnose tumors and assess disease response. Treating NET liver metastases is important in managing hormonal or carcinoid symptoms and is imperative to improve patient survival. Treatment for liver-dominant disease is varied; delineating biomarkers that may predict response will allow for better patient stratification.
Collapse
Affiliation(s)
- Erica S Alexander
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Etay Ziv
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
13
|
Wang Z, Liu F, Li C, Yuan H, Xiang Y, Wei C, Zhu D, Wang M. Case Report: Octreotide plus CVD chemotherapy for the treatment of multiple metastatic paragangliomas after double resection for functional bladder paraganglioma and urothelial papilloma. Front Oncol 2023; 12:1072361. [PMID: 36741690 PMCID: PMC9895770 DOI: 10.3389/fonc.2022.1072361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/28/2022] [Indexed: 01/22/2023] Open
Abstract
Background Metastatic pheochromocytomas and paragangliomas are rare neuroendocrine tumors with a poor prognosis. Bladder paraganglioma concomitant with urothelial papilloma is even rarer. However, the rate of tumor response to cyclophosphamide-vincristine-dacarbazine (CVD) chemotherapy and 5-year overall survival for patients with metastatic PPGLs remained lower. We described, for the first time, a case of a patient with multiple metastatic bladder PGL who received octreotide LAR combined with CVD chemotherapy after urological surgery and then octreotide therapy was continued during follow-up. Case presentation A 43-year-old male patient was admitted to the urology department for frequent micturition syncope concomitant with malignant hypertension. Preoperative findings were elevated levels of normetanephrine in 24-h urine or plasma. CT and MRI indicated diagnosis of suspicious bladder paraganglioma. Transurethral resection of bladder tumor combined with laparoscopic partial cystectomy was performed successfully after preoperative phenoxybenzamine with aggressive volume repletion for 7 days. The result of postoperative pathology was immediate-risk functional bladder paraganglioma (T2N0M0, Stage II) concomitant with urothelial papilloma, and the immunohistochemistry results of PPGL were positive for Ki-67 (15%), SDHB, CgA, and SSTR2. The patient achieved enhanced recovery with normal urination and no syncope after surgery. However, the results of 18F-FDG and 18F-DOTATATE PET/CT found that the metastatic localizations of bladder PGLs were in the liver, lung, and bones at the 8th month after surgery. The patient received octreotide long-acting repeatable plus six courses of CVD chemotherapy for 6 months, and then octreotide therapy was continued every 3 months until now. Metastatic localizations were stable in CT scans, and vanillylmandelic acid in 24-h urine was maintained at lower levels during follow-up. Conclusion Octreotide long-acting repeatable plus CVD chemotherapy after surgery could achieve stable disease in the case with multiple metastatic bladder PGLs, and the following octreotide therapy could maintain a state of stable disease during the period of 6-month follow-up.
Collapse
Affiliation(s)
- Zilong Wang
- Department of Andrology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China,Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Feifan Liu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chao Li
- Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Huisheng Yuan
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuzhu Xiang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chunxiao Wei
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Dongyuan Zhu
- Rare Tumors Department, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China,*Correspondence: Muwen Wang, ; Dongyuan Zhu,
| | - Muwen Wang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,*Correspondence: Muwen Wang, ; Dongyuan Zhu,
| |
Collapse
|
14
|
|
15
|
Pacak K. New Biology of Pheochromocytoma and Paraganglioma. Endocr Pract 2022; 28:1253-1269. [PMID: 36150627 PMCID: PMC9982632 DOI: 10.1016/j.eprac.2022.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 12/13/2022]
Abstract
Pheochromocytomas and paragangliomas continue to be defined by significant morbidity and mortality despite their several recent advances in diagnosis, localization, and management. These adverse outcomes are largely related to mass effect as well as catecholamine-induced hypertension, tachyarrhythmias and consequent target organ damage, acute coronary syndromes, and strokes (ischemic and hemorrhagic stroke). Thus, a proper understanding of the physiology and pathophysiology of these tumors and recent advances are essential to affording optimal care. These major developments largely include a redefinition of metastatic behavior, a novel clinical categorization of these tumors into 3 genetic clusters, and an enhanced understanding of catecholamine metabolism and consequent specific biochemical phenotypes. Current advances in imaging of these tumors are shifting the paradigm from poorly specific anatomical modalities to more precise characterization of these tumors using the advent and development of functional imaging modalities. Furthermore, recent advances have revealed new molecular events in these tumors that are linked to their genetic landscape and, therefore, provide new therapeutic platforms. A few of these prospective therapies translated into new clinical trials, especially for patients with metastatic or inoperable tumors. Finally, outcomes are ever-improving as patients are cared for at centers with cumulative experience and well-established multidisciplinary tumor boards. In parallel, these centers have supported national and international collaborative efforts and worldwide clinical trials. These concerted efforts have led to improved guidelines collaboratively developed by healthcare professionals with a growing expertise in these tumors and consequently improving detection, prevention, and identification of genetic susceptibility genes in these patients.
Collapse
Affiliation(s)
- Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
16
|
Araujo-Castro M, Pascual-Corrales E, Alonso-Gordoa T, Molina-Cerrillo J, Martínez Lorca A. Papel de las pruebas de imagen con radionúclidos en el diagnóstico y tratamiento de los feocromocitomas y paragangliomas. ENDOCRINOL DIAB NUTR 2022. [DOI: 10.1016/j.endinu.2021.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Araujo-Castro M, Pascual-Corrales E, Alonso-Gordoa T, Molina-Cerrillo J, Martínez Lorca A. Role of imaging test with radionuclides in the diagnosis and treatment of pheochromocytomas and paragangliomas. ENDOCRINOL DIAB NUTR 2022; 69:614-628. [PMID: 36402734 DOI: 10.1016/j.endien.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/29/2021] [Indexed: 06/16/2023]
Abstract
Radionuclide imaging tests with [123I] Metaiodobenzylguanidine (MIBG), [18F] -fluorodeoxyglucose, [18F]-fluorodopa, or 68Ga-DOTA(0)-Tyr(3)-octreotate are useful for the diagnosis, staging and follow-up of pheochromocytomas (PHEOs) and paragangliomas (PGLs) (PPGLs). In addition to their ability to detect and localize the disease, they allow a better molecular characterization of the tumours, which is useful for planning targeted therapy with iodine-131 (131I) -labelled MIBG or with peptide receptor radionuclide therapy (PRRT) with [177Lu]-labelled DOTATATE or other related agents in patients with metastatic disease. In this review we detail the main characteristics of the radiopharmaceuticals used in the functional study of PPGLs and the role of nuclear medicine tests for initial evaluation, staging, selection of patients for targeted molecular therapy, and radiation therapy planning. It also offers a series of practical recommendations regarding the functional imaging according to the different clinical and genetic scenarios in which PPGLs occur, and on the indications and efficacy of therapy with [131I]-MIBG and 177Lu-DOTATATE.
Collapse
Affiliation(s)
- Marta Araujo-Castro
- Unidad de Neuroendocrinología, Servicio de Endocrinología y Nutrición, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain; Universidad de Alcalá, Departamento de Ciencias de la Salud, Madrid, Spain.
| | - Eider Pascual-Corrales
- Unidad de Neuroendocrinología, Servicio de Endocrinología y Nutrición, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Teresa Alonso-Gordoa
- Servicio de Oncología Médica, IRYCIS, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Javier Molina-Cerrillo
- Servicio de Oncología Médica, IRYCIS, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Alberto Martínez Lorca
- Servicio de Medicina Nuclear, IRYCIS, Hospital Universitario Ramón y Cajal, Madrid, Spain.
| |
Collapse
|
18
|
Patel M, Jha A, Antic T, Nielsen SM, Churpek JE, Ling A, Pacak K. 68Ga-DOTATATE Avid Metastatic Vertebral Renal Cell Carcinoma in the Setting of von Hippel-Lindau Syndrome. Nucl Med Mol Imaging 2022; 56:259-262. [PMID: 36310832 PMCID: PMC9508296 DOI: 10.1007/s13139-022-00761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
Although rare, a metastatic renal cell carcinoma could present with 68Ga-DOTATATE avidity. A 66-year-old man with von Hippel-Lindau syndrome (VHL) presented with 68Ga-DOTATATE uptake in the pancreatic head, splenic hilar region, and multiple osseous sites, including the right lateral portion of the T9 vertebrae. Biopsy of the T9 lesion confirmed metastatic renal cell carcinoma. Various VHL-associated cancers may display 68Ga-DOTATATE avidity, which can change and guide clinical decisions for the patient.
Collapse
Affiliation(s)
- Mayank Patel
- Section on Medical Neuroendocrinology, Developmental Endocrine Oncology and Genetics Affinity Group, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Dr., MSC-1109, Bldg. 10, CRC, Room 1E-3140, Bethesda, MD 20892-1109 USA
| | - Abhishek Jha
- Section on Medical Neuroendocrinology, Developmental Endocrine Oncology and Genetics Affinity Group, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Dr., MSC-1109, Bldg. 10, CRC, Room 1E-3140, Bethesda, MD 20892-1109 USA
| | - Tatjana Antic
- Department of Pathology, University of Chicago Medical Center, Chicago, IL USA
| | - Sarah M. Nielsen
- Invitae, Medical Affairs, San Francisco, CA USA
- Department of Medicine, Section of Hematology/Oncology and Center for Clinical Cancer Genetics, The University of Chicago, Chicago, IL USA
| | - Jane E. Churpek
- Department of Medicine, Section of Hematology/Oncology and Center for Clinical Cancer Genetics, The University of Chicago, Chicago, IL USA
- Department of Medicine, Division of Hematology, Oncology, and Palliative Care & Carbone Cancer Center, The University of Wisconsin-Madison, Madison, WI USA
| | - Alexander Ling
- Department of Radiology, Clinical Center, NIH, Bethesda, MD USA
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Developmental Endocrine Oncology and Genetics Affinity Group, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Dr., MSC-1109, Bldg. 10, CRC, Room 1E-3140, Bethesda, MD 20892-1109 USA
| |
Collapse
|
19
|
Anderson PM, Trucco MM, Tarapore RS, Zahler S, Thomas S, Gortz J, Mian O, Stoignew M, Prabhu V, Morrow S, Allen JE. Phase II Study of ONC201 in Neuroendocrine Tumors including Pheochromocytoma-Paraganglioma and Desmoplastic Small Round Cell Tumor. Clin Cancer Res 2022; 28:1773-1782. [PMID: 35022321 PMCID: PMC9306280 DOI: 10.1158/1078-0432.ccr-21-4030] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/15/2021] [Accepted: 01/10/2022] [Indexed: 01/29/2023]
Abstract
PURPOSE Tumor dopamine-like DRD2 receptor expression is higher in pheochromocytoma-paraganglioma (PC-PG) compared with other cancers. ONC201 is a bitopic DRD2 antagonist with preclinical ONC201 activity in desmoplastic small round cell tumor (DSRCT). PATIENTS AND METHODS Patients (N = 30) with neuroendocrine tumors were treated on this investigator-initiated trial (NCT03034200). ONC201 dose and schedule were 625 mg orally weekly in cohorts A (PC-PG) + B (other neuroendocrine tumors) and 625 mg orally on 2 consecutive days each week in cohort C, which included 5 responding patients. The primary endpoint was radiographic response measured using RECIST. Secondary endpoints included progression-free survival, overall survival, and safety. RESULTS In arm A (n = 10; all PC-PG), 50% (5/10) exhibited a partial response (PR) and 2 additional patients had stable disease (SD) >3 months. Median duration of therapy for arm A patients was 9 months (range: 1.5-33 months) with 5 patients treated >1 year. In arm B (n = 12), there were 1 PR (DSRCT) and 2 SD (DSRCT; neuroblastoma) >3 months. Median duration of therapy in arm A was 18 months (range: 1-33 months) and arm B was 3 months (range: 1.5-33 months). Arm C PC-PG (N = 8) showed 1 PR and 7 SD at 3 months, with median duration of therapy >10 months. There was no decline in Karnofsky performance status at week 12 for 28 of 30 patients and no dose modification due to treatment-related adverse events. CONCLUSIONS Oral ONC201 was well tolerated in patients with metastatic neuroendocrine tumors and associated with clinical benefit, including tumor responses, particularly in some patients with DSRCT and the majority of patients with PC-PG. See related commentary by Owen and Trikalinos, p. 1748.
Collapse
Affiliation(s)
- Peter M. Anderson
- Department of Hematology/Oncology/BMT, Cleveland Clinic Children's, Cleveland, Ohio.,Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio.,Corresponding Author: Peter M. Anderson, Oncology, Cleveland Clinic, R3 Pediatric Hematology/Oncology/BMT, Cleveland, OH 44195. Phone: 216-308-2706; Fax: 216-444-3577; E-mail:
| | - Matteo M. Trucco
- Department of Hematology/Oncology/BMT, Cleveland Clinic Children's, Cleveland, Ohio
| | - Rohinton S. Tarapore
- Oncoceutics Inc., Philadelphia, Pennsylvania.,Chimerix Inc., Durham, North Carolina
| | - Stacey Zahler
- Department of Hematology/Oncology/BMT, Cleveland Clinic Children's, Cleveland, Ohio
| | - Stefanie Thomas
- Department of Hematology/Oncology/BMT, Cleveland Clinic Children's, Cleveland, Ohio
| | - Janette Gortz
- Department of Hematology/Oncology/BMT, Cleveland Clinic Children's, Cleveland, Ohio
| | - Omar Mian
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | | | - Varun Prabhu
- Oncoceutics Inc., Philadelphia, Pennsylvania.,Chimerix Inc., Durham, North Carolina
| | | | - Joshua E. Allen
- Oncoceutics Inc., Philadelphia, Pennsylvania.,Chimerix Inc., Durham, North Carolina
| |
Collapse
|
20
|
Auerbach MS, Livhits MJ, Yu R. Pheochromocytomatosis Treated With Peptide Receptor Radionuclide Therapy. Clin Nucl Med 2022; 47:e276-e278. [PMID: 35020659 DOI: 10.1097/rlu.0000000000003973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Pheochromocytomatosis refers to pheochromocytoma tumorlets developed as a result of seeding of tumor cells around the surgical bed due to intraoperative tumor capsule rupture and tumor cell spillage. As pheochromocytomatosis is relatively rare, optimal management is not clear. We describe a 42-year-old man with progressive pheochromocytomatosis despite surgical debulking. He did not have a family history of pheochromocytoma or harbor mutations in pheochromocytoma-predisposing genes. The pheochromocytomatosis tumorlets exhibited uptake on DOTATATE PET. He underwent PRRT (peptide receptor radionuclide therapy), which stabilized the pheochromocytomatosis progression. This case highlights the rare phenomenon of pheochromocytomatosis and the utility of PRRT in treating it.
Collapse
Affiliation(s)
- Martin S Auerbach
- From the Department of Nuclear Medicine and Department of Molecular and Medical Pharmacology
| | | | - Run Yu
- Division of Endocrinology, UCLA David Geffen School of Medicine, Los Angeles, CA
| |
Collapse
|
21
|
Kennedy J, Chicheportiche A, Keidar Z. Quantitative SPECT/CT for dosimetry of peptide receptor radionuclide therapy. Semin Nucl Med 2021; 52:229-242. [PMID: 34911637 DOI: 10.1053/j.semnuclmed.2021.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neuroendocrine tumors (NETs) are uncommon malignancies of increasing incidence and prevalence. As these slow growing tumors usually overexpress somatostatin receptors (SSTRs), the use of 68Ga-DOTA-peptides (gallium-68 chelated with dodecane tetra-acetic acid to somatostatin), which bind to the SSTRs, allows for PET based imaging and selection of patients for peptide receptor radionuclide therapy (PRRT). PRRT with radiolabeled somatostatin analogues such as 177Lu-DOTATATE (lutetium-177-[DOTA,Tyr3]-octreotate), is mainly used for the treatment of metastatic or inoperable NETs. However, PRRT is generally administered at a fixed injected activity in order not to exceed dose limits in critical organs, which is suboptimal given the variability in radiopharmaceutical uptake among patients. Advances in SPECT (single photon emission computed tomography) imaging enable the absolute quantitative measure of the true radiopharmaceutical distribution providing for PRRT dosimetry in each patient. Personalized PRRT based on patient-specific dosimetry could improve therapeutic efficacy by optimizing effective tumor absorbed dose while limiting treatment related radiotoxicity.
Collapse
Affiliation(s)
- John Kennedy
- Department of Nuclear Medicine, Rambam Health Care Campus, Haifa, Israel; B. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Alexandre Chicheportiche
- Department of Nuclear Medicine and Biophysics, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Zohar Keidar
- Department of Nuclear Medicine, Rambam Health Care Campus, Haifa, Israel; B. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
22
|
Mohr H, Foscarini A, Steiger K, Ballke S, Rischpler C, Schilling F, Pellegata NS. Imaging pheochromocytoma in small animals: preclinical models to improve diagnosis and treatment. EJNMMI Res 2021; 11:121. [PMID: 34894301 PMCID: PMC8665914 DOI: 10.1186/s13550-021-00855-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/19/2021] [Indexed: 11/10/2022] Open
Abstract
Pheochromocytomas (PCCs) and paragangliomas (PGLs), together referred to as PPGLs, are rare chromaffin cell-derived tumors. They require timely diagnosis as this is the only way to achieve a cure through surgery and because of the potentially serious cardiovascular complications and sometimes life-threatening comorbidities that can occur if left untreated. The biochemical diagnosis of PPGLs has improved over the last decades, and the knowledge of the underlying genetics has dramatically increased. In addition to conventional anatomical imaging by CT and MRI for PPGL detection, new functional imaging modalities have emerged as very useful for patient surveillance and stratification for therapy. The availability of validated and predictive animal models of cancer is essential for translating molecular, imaging and therapy response findings from the bench to the bedside. This is especially true for rare tumors, such as PPGLs, for which access to large cohorts of patients is limited. There are few animal models of PPGLs that have been instrumental in refining imaging modalities for early tumor detection, as well as in identifying and evaluating novel imaging tracers holding promise for the detection and/or treatment of human PPGLs. The in vivo PPGL models mainly include xenografts/allografts generated by engrafting rat or mouse cell lines, as no representative human cell line is available. In addition, there is a model of endogenous PCCs (i.e., MENX rats) that was characterized in our laboratory. In this review, we will summarize the contribution that various representative models of PPGL have given to the visualization of these tumors in vivo and we present an example of a tracer first evaluated in MENX rats, and then translated to the detection of these tumors in human patients. In addition, we will illustrate briefly the potential of ex vivo biological imaging of intact adrenal glands in MENX rats.
Collapse
Affiliation(s)
- Hermine Mohr
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
| | - Alessia Foscarini
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Simone Ballke
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christoph Rischpler
- Department of Nuclear Medicine, School of Medicine, Technical University of Munich, Munich, Germany
| | - Franz Schilling
- Department of Nuclear Medicine, School of Medicine, Technical University of Munich, Munich, Germany
| | - Natalia S Pellegata
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany. .,Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany. .,Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy.
| |
Collapse
|
23
|
Pandey S, Malviya G, Chottova Dvorakova M. Role of Peptides in Diagnostics. Int J Mol Sci 2021; 22:ijms22168828. [PMID: 34445532 PMCID: PMC8396325 DOI: 10.3390/ijms22168828] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
The specificity of a diagnostic assay depends upon the purity of the biomolecules used as a probe. To get specific and accurate information of a disease, the use of synthetic peptides in diagnostics have increased in the last few decades, because of their high purity profile and ability to get modified chemically. The discovered peptide probes are used either in imaging diagnostics or in non-imaging diagnostics. In non-imaging diagnostics, techniques such as Enzyme-Linked Immunosorbent Assay (ELISA), lateral flow devices (i.e., point-of-care testing), or microarray or LC-MS/MS are used for direct analysis of biofluids. Among all, peptide-based ELISA is considered to be the most preferred technology platform. Similarly, peptides can also be used as probes for imaging techniques, such as single-photon emission computed tomography (SPECT) and positron emission tomography (PET). The role of radiolabeled peptides, such as somatostatin receptors, interleukin 2 receptor, prostate specific membrane antigen, αβ3 integrin receptor, gastrin-releasing peptide, chemokine receptor 4, and urokinase-type plasminogen receptor, are well established tools for targeted molecular imaging ortumor receptor imaging. Low molecular weight peptides allow a rapid clearance from the blood and result in favorable target-to-non-target ratios. It also displays a good tissue penetration and non-immunogenicity. The only drawback of using peptides is their potential low metabolic stability. In this review article, we have discussed and evaluated the role of peptides in imaging and non-imaging diagnostics. The most popular non-imaging and imaging diagnostic platforms are discussed, categorized, and ranked, as per their scientific contribution on PUBMED. Moreover, the applicability of peptide-based diagnostics in deadly diseases, mainly COVID-19 and cancer, is also discussed in detail.
Collapse
Affiliation(s)
- Shashank Pandey
- Department of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic
- Correspondence:
| | - Gaurav Malviya
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G611BD, UK;
| | - Magdalena Chottova Dvorakova
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic;
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic
| |
Collapse
|