1
|
Garrido-Hermosilla AM, Díaz-Ruiz MC, Ravé-García R, Torres-García FJ, Lledó-de-Villar ML, Martín-Hernández T, Moreira-Navarrete V, Toyos-Sáenz-de-Miera FJ, Martínez-Alberquilla I, Méndez-Muros M. Evaluation of the clinical management of Graves' Orbitopathy according to severity: a real-life Analysis. Int Ophthalmol 2025; 45:116. [PMID: 40119963 DOI: 10.1007/s10792-025-03499-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/06/2025] [Indexed: 03/25/2025]
Abstract
PURPOSE Due to the clinical and prognostic implications of Graves' Orbitopathy (GO), clinical care needs to be tailored to current recommendations, but real-life information is scarce. We aim to describe GO management in a real-life setting for health care improvement. METHODS This is a retrospective cohort study evaluating the clinical performance of clinicians attending patients diagnosed with GO. All cases with GO from 2018 to 2021 were included in the analysis, with no exclusion criteria. We performed an evaluation of the healthcare provided to these patients, with clinical performance evaluated from diagnostic and therapeutic viewpoints. A backwards stepwise multivariate binomial logistic regression analysis was run to assess the variables associated with severity. RESULTS This was a cohort of 151 cases, predominantly of women in the fifth decade of life, most of whom had hyperthyroidism. There were 50 (33.1%) cases with moderate-severe GO, but none of them with sight-threatening disease. Total annualized visits were more frequent to endocrinologists than ophthalmologists, except for moderate-severe cases. Active smoking (57 cases; 37.7%), unstable hyperthyroidism (59 cases; 39.1%), and elevated maximum TSI levels (136; 90.1%) conditioned clinical care. Altogether, the performance of an imaging technique, the use of systemic corticosteroid therapy and eyelid surgery were significantly different in those with more severe GO. CONCLUSION Clinical care provided to patients with GO is variable and influenced by several variables. Both endocrinologists and ophthalmologists must coordinate to ensure a unified patient-tailored protocol that covers all these patients' needs.
Collapse
Affiliation(s)
- Antonio Manuel Garrido-Hermosilla
- Department of Ophthalmology, Virgen Macarena University Hospital, Av. Dr. Fedriani, 3, 41009, Seville, Spain.
- RETICS OftaRed, Instituto de Salud Carlos III, Madrid, Spain.
| | - María Concepción Díaz-Ruiz
- Department of Ophthalmology, Virgen Macarena University Hospital, Av. Dr. Fedriani, 3, 41009, Seville, Spain
| | - Reyes Ravé-García
- Department of Endocrinology and Nutrition, Virgen Macarena University Hospital, Seville, Spain
| | | | | | - Tomás Martín-Hernández
- Department of Endocrinology and Nutrition, Virgen Macarena University Hospital, Seville, Spain
| | | | | | - Irene Martínez-Alberquilla
- Clinical and Experimental Eye Research (CEER) Group, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Mariola Méndez-Muros
- Department of Endocrinology and Nutrition, Virgen Macarena University Hospital, Seville, Spain
| |
Collapse
|
2
|
Ouyang P, Qi J, Tong B, Li Y, Cao J, Wang L, Niu T, Qi X. Butyrate Ameliorates Graves' Orbitopathy Through Regulating Orbital Fibroblast Phenotypes and Gut Microbiota. Invest Ophthalmol Vis Sci 2025; 66:5. [PMID: 40035727 PMCID: PMC11892527 DOI: 10.1167/iovs.66.3.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/04/2025] [Indexed: 03/06/2025] Open
Abstract
Purpose Graves' orbitopathy (GO), the common extrathyroidal complication of Graves' disease (GD), is characterized by orbital fibroblast stimulation, adipogenesis, and hyaluronan production. Recently, gut microbiota and its metabolites have garnered attention for their possible involvement in GO. Methods This study utilized an animal model of GO and examined the effects of butyrate treatment on orbital fibroblast cells and gut microbiota. Ex vivo experiments were performed using orbital fibroblasts derived from healthy patients' and patients' with GO orbital tissue to evaluate vitality, activation, and adipogenesis in response to butyrate treatment. Gut microbiota diversity was also analyzed in butyrate-treated and untreated GO mice. Results In human orbital fibroblasts, butyrate treatment dramatically decreased the vitality of GO-derived fibroblasts without harming normal fibroblasts. Butyrate prevented activation and fibrotic processes induced by transforming growth factor beta 1 (TGF-β1) in GO and normal fibroblasts. Additionally, butyrate reduced lipid droplet formation and downregulated lipogenic markers in GO and normal orbital fibroblasts, inhibiting adipogenesis. In the GO mouse model, butyrate therapy improved orbital histological abnormalities and normalized serum thyroid hormone and antibody levels. The intestinal microbiome of butyrate-treated GO mice also changed significantly, with a reduction in certain bacteria (Bifidobacterium, GCA-900066575, and Parabacteroides) and an increase in others (Bacteroides and Rikenellaceae_RC9). Conclusions Butyrate ameliorates several of the symptoms of GO, lowering GO orbital fibroblast viability, adipogenesis, and TGF-β1-induced fibrosis without damaging normal fibroblasts. Butyrate normalizes thyroid function in a GO mouse model, improves histopathological alterations, and transforms gut microbiota populations, proving its potential in treating GO through the gut-thyroid axis.
Collapse
Affiliation(s)
- Pingbo Ouyang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia Qi
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Boding Tong
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yunping Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiamin Cao
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lujue Wang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tongxin Niu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Qi
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Sun A, Wang X, Qu J, Wu Y. The Efficacy and Safety of Intravenous Tocilizumab to Treat Graves' Ophthalmopathy: A Systematic Review and Single-arm Meta-analysis. J Clin Endocrinol Metab 2025; 110:e886-e896. [PMID: 39401327 DOI: 10.1210/clinem/dgae711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Indexed: 02/19/2025]
Abstract
PURPOSE This study aims to evaluate the efficacy and safety of intravenous (IV) tocilizumab (TCZ) in the treatment of Graves' ophthalmopathy (GO). METHODS A comprehensive search was conducted across the Web of Science, PubMed, Embase, Cochrane Library, World Health Organization International Clinical Trials Registry Platform, and ClinicalTrials.gov databases from inception to April 2024. Randomized controlled trials and cohort studies that used IV TCZ for treating GO were included. RESULTS Twelve studies encompassing 219 patients with active, steroid-resistant GO were analyzed. The meta-analysis demonstrated significant improvements in Clinical Activity Score (CAS) response (effect size [ES] = 0.98; 95% confidence interval [CI], 0.93-1.00), proptosis response (ES = 0.50; 95% CI, 0.27-0.73), and diplopia response (ES = 0.48; 95% CI, 0.24-0.74). The ES for adverse events was 0.27 (95% CI, 0.22-0.33), with only 3 severe cases necessitating treatment discontinuation, and a low reactivation rate (ES = 0.01; 95% CI, 0.00-0.04). TCZ treatment led to a mean CAS reduction of 4.60 points (95% CI, 3.88-5.32) across 10 studies, a mean proptosis reduction of 2.04 mm (95% CI, 1.42-2.65) across 7 studies, and a mean decrease in TSH receptor antibodies levels of 10.62 IU (95% CI, 4.67-10.62) across 5 studies. CONCLUSION This meta-analysis provides robust evidence supporting the efficacy and safety of IV TCZ in patients with GO who are resistant to glucocorticoid therapy. The results highlight TCZ's comparable efficacy to glucocorticoids and suggest that TCZ could significantly expand clinical management options for GO. In the future, more high-quality, large-scale randomized controlled trials are still needed to confirm these findings.
Collapse
Affiliation(s)
- Aimin Sun
- Department of Ophthalmology, Peking University First Hospital, Peking University, Beijing, 100000, China
| | - Xing Wang
- Department of Ophthalmology, Peking University First Hospital, Peking University, Beijing, 100000, China
| | - Jinfeng Qu
- Department of Ophthalmology, Peking University Peoples' Hospital, Peking University, Beijing, 100000, China
| | - Yuan Wu
- Department of Ophthalmology, Peking University First Hospital, Peking University, Beijing, 100000, China
| |
Collapse
|
4
|
Conover CA, Bale LK, Stan MN. PAPP-A as a Potential Target in Thyroid Eye Disease. J Clin Endocrinol Metab 2024; 109:3119-3125. [PMID: 38752390 PMCID: PMC11570381 DOI: 10.1210/clinem/dgae339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Indexed: 11/19/2024]
Abstract
CONTEXT Proptosis in thyroid eye disease (TED) can result in facial disfigurement and visual dysfunction. Treatment with insulin-like growth factor I receptor (IGF-IR) inhibitors has been shown to be effective in reducing proptosis but with side effects. OBJECTIVE To test the hypothesis that inhibition of IGF-IR indirectly and more selectively with PAPP-A inhibitors attenuates IGF-IR signaling in TED. Informed consent was obtained from patients with TED undergoing surgery, and retro-orbital tissue was collected for fibroblast isolation and culture. Operations were performed in Mayo Clinic operating suites. Cell culture was performed in a sterile tissue culture facility. Retro-orbital tissue was collected from 19 patients with TED. METHODS Treatment of TED fibroblasts with proinflammatory cytokines. Flow separation of CD34- and CD34+ orbital fibroblasts, the latter representing infiltrating fibrocytes into the orbit in TED. PAPP-A expression and proteolytic activity, IGF-I stimulation of phosphatidylinositol 3 kinase/Akt pathway, and inhibition by immuno-neutralizing antibodies against PAPP-A, CD34+ status, and associated PAPP-A and IGF-IR expression were measured. RESULTS Proinflammatory cytokines markedly increased PAPP-A expression in TED fibroblasts. IGF-IR expression was not affected by cytokine treatment. Inhibition of PAPP-A's proteolytic activity suppressed IGF-IR activation in orbital fibroblasts from patients with TED. TED fibroblasts that were CD34+ represented ∼80% of the cells in culture and accounted for ∼70% of PAPP-A and IGF-IR-expressing cells. CONCLUSION These results support a role for PAPP-A in TED pathogenesis and indicate the potential for novel therapeutic targeting of the IGF axis.
Collapse
Affiliation(s)
- Cheryl A Conover
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
| | - Laurie K Bale
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
| | - Marius N Stan
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
5
|
Park SH, Choi SH, Park HY, Ko J, Yoon JS. Role of Lysyl Oxidase-Like Protein 3 in the Pathogenesis of Graves' Orbitopathy in Orbital Fibroblasts. Invest Ophthalmol Vis Sci 2024; 65:33. [PMID: 39546293 DOI: 10.1167/iovs.65.13.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
Purpose The lysyl oxidase (LOX) family has been implicated in the pathogenesis of diseases caused by inflammation and fibrosis. Therefore, we aimed to examine the role of lysyl oxidase-like protein 3 (LOXL3) in Graves' orbitopathy (GO) pathogenesis and its potential as a treatment target. Methods Quantitative real-time polymerase chain reaction compared the transcript levels of the five LOX family subtypes in orbital tissue explants obtained from patients with GO (n = 18) and healthy controls (n = 15). The effects of LOXL3 inhibition on interleukin (IL)-1β-induced proinflammatory cytokines, transforming growth factor (TGF)-β-induced profibrotic proteins, intracellular signaling molecules, and adipogenic markers were evaluated using Western blotting. Adipogenic differentiation was identified using Oil Red O staining. Results LOX and LOXL3 transcript levels were high in GO tissues. Stimulation with IL-1β, TGF-β, and insulin-like growth factor-1 significantly increased LOXL3 messenger RNA expression in GO fibroblasts. Furthermore, silencing LOXL3 attenuated the IL-1β-induced production of proinflammatory cytokines (IL-6, IL-8, and intercellular adhesion molecule-1) and TGF-β-induced production of profibrotic proteins (fibronectin, collagen 1α, and alpha-smooth muscle actin). It also reduced the IL-1β or TGF-β-induced expression of phosphorylated nuclear factor kappa-light-chain-enhancer of activated B cells, protein kinase B, extracellular signal-regulated kinase, and c-Jun N-terminal kinase. Additionally, LOXL3 silencing suppressed adipocyte differentiation and the expression of adipogenic transcription factors (leptin, AP-2, peroxisome proliferator-activated receptor gamma, and CCAAT/enhancer-binding protein). Conclusions LOXL3 is crucial in GO pathogenesis. LOXL3 inhibition reduced inflammatory cytokine production, fibrotic protein expression, and fibroblast differentiation into adipocytes. This study highlights LOXL3 as a potential therapeutic target for GO.
Collapse
Affiliation(s)
| | - Soo Hyun Choi
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Young Park
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - JaeSang Ko
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Sook Yoon
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Patrick CC, Roztocil E, Husain F, Feldon SE, Woeller CF. Tapinarof, an Aryl Hydrocarbon Receptor Ligand, Mitigates Fibroblast Activation in Thyroid Eye Disease: Implications for Novel Therapy. Invest Ophthalmol Vis Sci 2024; 65:40. [PMID: 39560627 DOI: 10.1167/iovs.65.13.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
Abstract
Purpose In thyroid eye disease (TED), activation and proliferation of orbital fibroblasts (OFs) promotes remodeling and causes an increase in the volume of orbital tissue. Platelet-derived growth factors (PDGFs) are elevated in TED and promote OF activation. The aryl hydrocarbon receptor (AHR), a ligand activated nuclear receptor, is important in regulating OF activation. AHR ligands have been evaluated as therapeutic agents for inflammatory diseases. Here, we hypothesize that AHR ligands will block PDGF-induced signaling in TED OFs. Methods OFs from both non-TED and TED patients were treated with PDGFβ, with or without the AHR ligands 6-Formylindolo[3,2-b]carbazole (FICZ) or tapinarof. Cell viability was measured by the Alamar Blue assay. Cell proliferation was quantified using the BrdU assay. Cell lysates were collected and analyzed by Western blotting and real-time quantitative PCR (RT-qPCR) to measure PDGF and AHR signaling. Scratch assays were used to measure OF migration. Results PDGFβ induced proliferation in TED OFs significantly more than in non-TED OFs. Additionally, PDGFβ increased phosphorylation of AKT and expression of thymidylate synthase (TYMS). PDGFβ dependent proliferation and downstream signaling were attenuated by FICZ or tapinarof. TYMS and other PDGF target genes were upregulated by PDGFβ and reduced by AHR activation. PDGFβ induced TED OF migration while both FICZ and tapinarof diminished this effect. Conclusions PDGF signaling led to increased proliferation and activation of TED OFs. Treatment of TED OFs with the AHR ligands, FICZ and tapinarof, mitigated PDGF induced effects. These studies support the concept that AHR and PDGF signaling could form the basis for new TED therapeutics.
Collapse
Affiliation(s)
- Charkira C Patrick
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, New York, United States
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States
| | - Elisa Roztocil
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, New York, United States
| | - Farha Husain
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, New York, United States
| | - Steven E Feldon
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, New York, United States
- Center for Visual Sciences, University of Rochester, Rochester, New York, United States
| | - Collynn F Woeller
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, New York, United States
- Center for Visual Sciences, University of Rochester, Rochester, New York, United States
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States
| |
Collapse
|
7
|
Li H, Min J, Yang Y, Suo W, Wang W, Tian J, Qin Y. TMEM2 inhibits the development of Graves' orbitopathy through the JAK-STAT signaling pathway. J Biol Chem 2024; 300:105607. [PMID: 38159864 PMCID: PMC10839445 DOI: 10.1016/j.jbc.2023.105607] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/13/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
A mouse model was used to investigate the role of the hyaluronidase, transmembrane protein 2 (TMEM2), on the progression of Graves' orbital (GO) disease. We established a GO mouse model through immunization with a plasmid expressing the thyroid stimulating hormone receptor. Orbital fibroblasts (OFs) were subsequently isolated from both GO and non-GO mice for comprehensive in vitro analyses. The expression of TMEM2 was assessed using qRT-PCR, Western blot and immunohistochemistry in vivo. Disease pathology was evaluated by H&E staining and Masson's trichrome staining in GO mouse tissues. Our investigation revealed a notable reduction in TMEM2 expression in GO mouse orbital tissues. Through overexpression and knockdown assays, we demonstrated that TMEM2 suppresses inflammatory cytokines and reactive oxygen species production. TMEM2 also inhibits the formation of lipid droplets in OFs and the expression of adipogenic factors. Further incorporating Gene Set Enrichment Analysis of relevant GEO datasets and subsequent in vitro cell experiments, robustly confirmed that TMEM2 overexpression was associated with a pronounced upregulation of the JAK/STAT signaling pathway. In vivo, TMEM2 overexpression reduced inflammatory cell infiltration, adipogenesis, and fibrosis in orbital tissues. These findings highlight the varied regulatory role of TMEM2 in GO pathogenesis. Our study reveals that TMEM2 plays a crucial role in mitigating inflammation, suppressing adipogenesis, and reducing fibrosis in GO. TMEM2 has potential as a therapeutic target and biomarker for treating or alleviating GO. These findings advance our understanding of GO pathophysiology and provide opportunities for targeted interventions to modulate TMEM2 for therapeutic purposes.
Collapse
Affiliation(s)
- Hong Li
- Department of Endocrinology, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jie Min
- Department of Endocrinology, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yucheng Yang
- Department of Endocrinology, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wendong Suo
- Department of Endocrinology, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Wang
- Department of Endocrinology, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiahe Tian
- Department of Endocrinology, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yujie Qin
- Department of Endocrinology, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Roh TH, Chae MK, Ko JS, Kikkawa DO, Jang SY, Yoon JS. Phospholipase C-γ as a Potential Therapeutic Target for Graves' Orbitopathy. Endocrinol Metab (Seoul) 2023; 38:739-749. [PMID: 37989267 PMCID: PMC10765002 DOI: 10.3803/enm.2023.1780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/25/2023] [Accepted: 10/19/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGRUOUND Phospholipase C-γ (PLC-γ) plays a crucial role in immune responses and is related to the pathogenesis of various inflammatory disorders. In this study, we investigated the role of PLC-γ and the therapeutic effect of the PLC-specific inhibitor U73122 using orbital fibroblasts from patients with Graves' orbitopathy (GO). METHODS The expression of phospholipase C gamma 1 (PLCG1) and phospholipase C gamma 2 (PLCG2) was evaluated using polymerase chain reaction in GO and normal orbital tissues/fibroblasts. The primary cultures of orbital fibroblasts were treated with non-toxic concentrations of U73122 with or without interleukin (IL)-1β to determine its therapeutic efficacy. The proinflammatory cytokine levels and activation of downstream signaling molecules were determined using Western blotting. RESULTS PLCG1 and PLCG2 mRNA expression was significantly higher in GO orbital tissues than in controls (P<0.05). PLCG1 and PLCG2 mRNA expression was significantly increased (P<0.05) in IL-1β, tumor necrosis factor-α, and a cluster of differentiation 40 ligand-stimulated GO fibroblasts. U73122 significantly inhibited the IL-1β-induced expression of proinflammatory molecules, including IL-6, IL-8, monocyte chemoattractant protein-1, cyclooxygenase-2, and intercellular adhesion molecule-1 (ICAM-1), and phosphorylated protein kinase B (p-Akt) and p38 (p-p38) kinase in GO fibroblasts, whereas it inhibited IL-6, IL-8, and ICAM-1, and p-Akt and c-Jun N-terminal kinase (p-JNK) in normal fibroblasts (P<0.05). CONCLUSION PLC-γ-inhibiting U73122 suppressed the production of proinflammatory cytokines and the phosphorylation of Akt and p38 kinase in GO fibroblasts. This study indicates the implications of PLC-γ in GO pathogenesis and its potential as a therapeutic target for GO.
Collapse
Affiliation(s)
- Tae Hoon Roh
- Department of Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Min Kyung Chae
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Sang Ko
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Don O. Kikkawa
- Division of Oculofacial Plastic and Reconstructive Surgery, Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| | - Sun Young Jang
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Jin Sook Yoon
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Armeni AK, Markantes GΚ, Stathopoulou A, Saltiki K, Zampakis P, Assimakopoulos SF, Michalaki MA. Thyroid Eye Disease as Initial Manifestation of Graves' Disease Following Viral Vector SARS-CoV-2 Vaccine: Report of a Case and Review of the Literature. Vaccines (Basel) 2023; 11:1574. [PMID: 37896977 PMCID: PMC10611184 DOI: 10.3390/vaccines11101574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/30/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
COVID-19, a contagious disease caused by the novel coronavirus SARS-CoV-2, emerged in 2019 and quickly became a pandemic, infecting more than 700 million people worldwide. The disease incidence, morbidity and mortality rates have started to decline since the development of effective vaccines against the virus and the widespread immunization of the population. SARS-CoV-2 vaccines are associated with minor local or systemic adverse reactions, while serious adverse effects are rare. Thyroid-related disorders have been reported after vaccination for COVID-19, and Graves' disease (GD) is the second most common amongst them. Thyroid eye disease (TED), an extrathyroidal manifestation of GD, is rarely observed post-COVID-19 vaccination. All TED cases followed mRNA-based vaccinations, but two new onset mild TED cases post-viral vector vaccine (ChAdox1nCoV-19) have also been reported. We report the case of a 63-year-old woman who presented with new onset hyperthyroidism and moderate-to-severe and active TED 10 days after she received the first dose of a viral vector vaccine against SARS-CoV-2. This is the first case of moderate-to-severe TED after such a vaccine. Our patient was initially treated with intravenous glucocorticoids, and subsequently with intravenous rituximab, due to no response. The disease was rendered inactive after rituximab, but constant diplopia persisted, and the patient was referred for rehabilitative surgery.
Collapse
Affiliation(s)
- Anastasia K. Armeni
- Division of Endocrinology—Department of Internal Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece; (A.K.A.); (G.K.M.); (A.S.)
| | - Georgios Κ. Markantes
- Division of Endocrinology—Department of Internal Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece; (A.K.A.); (G.K.M.); (A.S.)
| | - Alexandra Stathopoulou
- Division of Endocrinology—Department of Internal Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece; (A.K.A.); (G.K.M.); (A.S.)
| | - Katerina Saltiki
- Endocrine Unit, Department of Clinical Therapeutics, National and Kapodistrian University, 11528 Athens, Greece;
| | - Petros Zampakis
- Department of Radiology, University Hospital of Patras, 26504 Patras, Greece;
| | - Stelios F. Assimakopoulos
- Division of Infectious Diseases—Department of Internal Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece;
| | - Marina A. Michalaki
- Division of Endocrinology—Department of Internal Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece; (A.K.A.); (G.K.M.); (A.S.)
| |
Collapse
|
10
|
Gulbins A, Horstmann M, Daser A, Flögel U, Oeverhaus M, Bechrakis NE, Banga JP, Keitsch S, Wilker B, Krause G, Hammer GD, Spencer AG, Zeidan R, Eckstein A, Philipp S, Görtz GE. Linsitinib, an IGF-1R inhibitor, attenuates disease development and progression in a model of thyroid eye disease. Front Endocrinol (Lausanne) 2023; 14:1211473. [PMID: 37435490 PMCID: PMC10331459 DOI: 10.3389/fendo.2023.1211473] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/06/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction Graves' disease (GD) is an autoimmune disorder caused by autoantibodies against the thyroid stimulating hormone receptor (TSHR) leading to overstimulation of the thyroid gland. Thyroid eye disease (TED) is the most common extra thyroidal manifestation of GD. Therapeutic options to treat TED are very limited and novel treatments need to be developed. In the present study we investigated the effect of linsitinib, a dual small-molecule kinase inhibitor of the insulin-like growth factor 1 receptor (IGF-1R) and the Insulin receptor (IR) on the disease outcome of GD and TED. Methods Linsitinib was administered orally for four weeks with therapy initiating in either the early ("active") or the late ("chronic") phases of the disease. In the thyroid and the orbit, autoimmune hyperthyroidism and orbitopathy were analyzed serologically (total anti-TSHR binding antibodies, stimulating anti TSHR antibodies, total T4 levels), immunohistochemically (H&E-, CD3-, TNFa- and Sirius red staining) and with immunofluorescence (F4/80 staining). An MRI was performed to quantify in vivo tissue remodeling inside the orbit. Results Linsitinib prevented autoimmune hyperthyroidism in the early state of the disease, by reducing morphological changes indicative for hyperthyroidism and blocking T-cell infiltration, visualized by CD3 staining. In the late state of the disease linsitinib had its main effect in the orbit. Linsitinib reduced immune infiltration of T-cells (CD3 staining) and macrophages (F4/80 and TNFa staining) in the orbita in experimental GD suggesting an additional, direct effect of linsitinib on the autoimmune response. In addition, treatment with linsitinib normalized the amount of brown adipose tissue in both the early and late group. An in vivo MRI of the late group was performed and revealed a marked decrease of inflammation, visualized by 19F MR imaging, significant reduction of existing muscle edema and formation of brown adipose tissue. Conclusion Here, we demonstrate that linsitinib effectively prevents development and progression of thyroid eye disease in an experimental murine model for Graves' disease. Linsitinib improved the total disease outcome, indicating the clinical significance of the findings and providing a path to therapeutic intervention of Graves' Disease. Our data support the use of linsitinib as a novel treatment for thyroid eye disease.
Collapse
Affiliation(s)
- Anne Gulbins
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Mareike Horstmann
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Anke Daser
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Department of Molecular Cardiology, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Michael Oeverhaus
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Nikolaos E. Bechrakis
- Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - J. Paul Banga
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Simone Keitsch
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Barbara Wilker
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Gerd Krause
- Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Gary D. Hammer
- Endocrine Oncology Program, University of Michigan, Ann Arbor, MI, United States
| | | | - Ryan Zeidan
- Sling Therapeutics Inc., Ann Arbor, MI, United States
| | - Anja Eckstein
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Svenja Philipp
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Gina-Eva Görtz
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
11
|
Zhu R, Wang XH, Wang BW, Ouyang X, You YY, Xie HT, Zhang MC, Jiang FG. Prostaglandin F2α Regulates Adipogenesis by Modulating Extracellular Signal-Regulated Kinase Signaling in Graves' Ophthalmopathy. Int J Mol Sci 2023; 24:ijms24087012. [PMID: 37108173 PMCID: PMC10138945 DOI: 10.3390/ijms24087012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Prostaglandin F2α (PGF2α), the first-line anti-glaucoma medication, can cause the deepening of the upper eyelid sulcus due to orbital lipoatrophy. However, the pathogenesis of Graves' ophthalmopathy (GO) involves the excessive adipogenesis of the orbital tissues. The present study aimed to determine the therapeutic effects and underlying mechanisms of PGF2α on adipocyte differentiation. In this study primary cultures of orbital fibroblasts (OFs) from six patients with GO were established. Immunohistochemistry, immunofluorescence, and Western blotting (WB) were used to evaluated the expression of the F-prostanoid receptor (FPR) in the orbital adipose tissues and the OFs of GO patients. The OFs were induced to differentiate into adipocytes and treated with different incubation times and concentrations of PGF2α. The results of Oil red O staining showed that the number and size of the lipid droplets decreased with increasing concentrations of PGF2α and the reverse transcription-polymerase chain reaction (RT-PCR) and WB of the peroxisome proliferator-activated receptor γ (PPARγ) and fatty-acid-binding protein 4 (FABP4), both adipogenic markers, were significantly downregulated via PGF2α treatment. Additionally, we found the adipogenesis induction of OFs promoted ERK phosphorylation, whereas PGF2α further induced ERK phosphorylation. We used Ebopiprant (FPR antagonist) to interfere with PGF2α binding to the FPR and U0126, an Extracellular Signal-Regulated Kinase (ERK) inhibitor, to inhibit ERK phosphorylation. The results of Oil red O staining and expression of adipogenic markers showed that blocking the receptor binding or decreasing the phosphorylation state of the ERK both alleviate the inhibitory effect of PGF2a on the OFs adipogenesis. Overall, PGF2α mediated the inhibitory effect of the OFs adipogenesis through the hyperactivation of ERK phosphorylation via coupling with the FPR. Our study provides a further theoretical reference for the potential application of PGF2α in patients with GO.
Collapse
Affiliation(s)
- Ru Zhu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xing-Hua Wang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bo-Wen Wang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuan Ouyang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ya-Yan You
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hua-Tao Xie
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ming-Chang Zhang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fa-Gang Jiang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
12
|
Spadaro JZ, Kohli AA. Pathogenesis of Thyroid Eye Disease. Int Ophthalmol Clin 2023; 63:65-80. [PMID: 36963828 DOI: 10.1097/iio.0000000000000464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
|