1
|
Gong S, Tian A, Lang S, Wang Y, Ma J, Ma X. Paeonol regulates autophagy through the PI3K-AKT-mTOR signaling pathway to inhibit apoptosis of osteocytes. Eur J Pharmacol 2025; 995:177427. [PMID: 39988091 DOI: 10.1016/j.ejphar.2025.177427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 02/25/2025]
Abstract
Osteoporosis is the most common complication of glucocorticoids and predisposes to fractures. Excessive apoptosis of osteocytes is the pathological feature of glucocorticoid-induced osteoporosis. Paeonol, an effective component of Traditional Chinese Medicine Cortex Moutan, known for its anti-inflammatory and analgesic properties, has a long clinical application history. However, the regulatory effect of paeonol on the fate of osteocytes under excessive glucocorticoid remains unclear. The present study aimed to investigate the effect of paeonol against osteocyte death and osteoporosis induced by glucocorticoid and to explore the underlying mechanisms. We found that paeonol not only improved the low proliferation rate of osteocytes induced by dexamethasone but also weakened the dexamethasone-induced apoptosis of osteocytes by stimulating cytoprotective autophagy. Subsequently, proteomic sequencing identified the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) - protein kinase B (AKT) signaling pathway as the potential target of paeonol in attenuating dexamethasone-induced osteocyte injury, and the PI3K activator and inhibitor confirmed this hypothesis. In vivo, paeonol alleviated glucocorticoid-induced osteoporosis, promoted autophagy and inhibited apoptosis of osteocytes by regulating PI3K phosphorylation. In brief, paeonol protects osteocytes from dexamethasone-derived apoptosis by increasing protective autophagy, further inhibiting osteoporosis. Its autophagy-promoting effect was associated with inhibition of PI3K-AKT-mechanistic target of rapamycin (mTOR) of osteocytes.
Collapse
Affiliation(s)
- Shuwei Gong
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Orthopedic Research Institute, Tianjin Hospital, Tianjin, 300050, China; Department of Orthopedics, Tianjin Hospital, Tianjin, 300211, China
| | - Aixian Tian
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Orthopedic Research Institute, Tianjin Hospital, Tianjin, 300050, China
| | - Shuang Lang
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Orthopedic Research Institute, Tianjin Hospital, Tianjin, 300050, China
| | - Yan Wang
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Orthopedic Research Institute, Tianjin Hospital, Tianjin, 300050, China
| | - Jianxiong Ma
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Orthopedic Research Institute, Tianjin Hospital, Tianjin, 300050, China; Department of Orthopedics, Tianjin Hospital, Tianjin, 300211, China.
| | - Xinlong Ma
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Orthopedic Research Institute, Tianjin Hospital, Tianjin, 300050, China; Department of Orthopedics, Tianjin Hospital, Tianjin, 300211, China.
| |
Collapse
|
2
|
Sun S, Liu Y, Liu X, Li P. Antiosteoporosis and Bone Protective Effect of Phyllanthin Against Glucocorticoid-induced Osteoporosis in Rats via Alteration of HO-1/Nrf2 and RANK/RANKL/OPG Pathway. DOKL BIOCHEM BIOPHYS 2025; 520:109-122. [PMID: 39849266 DOI: 10.1134/s1607672924600866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 01/25/2025]
Abstract
BACKGROUND Osteoporosis is a condition where bones weaken due to a loss in density and quality, making them fragile and more susceptible to fractures, even from minor stress or injury. In this experimental study, we scrutinized the antiosteoporosis effect of phyllanthin against glycocorticoid (GIOP) induced osteoporosis in rats. METHODS SD rats were used in this study and subcutaneous administration of DEX (3 mg/kg) was used for the induction of osteoporosis and rats were treated with phyllanthin and alendronate for 12 weeks. The body weight, femur mass, length, hormones, nutrients, antioxidant, cytokines and bone parameters were estimated. The mRNA expression of HO-1, Nrf2, RANK, RANKL and OPG were estimated. RESULTS Phyllanthin treatment significantly (p < 0.001) improved the body weight, femur mass and femur length. Phyllanthin significantly (p < 0.001) altered the level of hormones estrodiol, PTH; nutrients such as calcium, phosphorus, magnesium; Bone mineral content (BMC) and bone mineral density (BMD); Bone formation marker like ALP, TRAP, osteocalcin, β-CTX, BGP, cathepsin K, DPD; Bone parameters viz., Tb.N, BV/TV, Tb.sp, BS/BV, Tb.Th; Bone structure analysis includes maximum load, energy, stiffness, maximum stress, young's modules; oxidative stress parameters such as TBARS, CAT, GPx, GSH, GR; cytokines such as TNF-α, IL-1β, IL-6, IL-10 and antioxidant marker such as HO-1 and Nrf2. Phyllanthin significantly (P < 0.001) altered the mRNA expression of HO-1, Nrf2, RANK, RANKL and OPG. CONCLUSION On the basis of result, we can say that phyllanthin exhibited the antiosteoporosis effect against glucocorticoid-induced osteoporosis in rats via alteration of HO-1/Nrf2 and RANK/RANKL/OPG pathway.
Collapse
Affiliation(s)
- Shaosong Sun
- Department of Orthopaedics, Affiliated Hospital of Hebei University, 071000, Baoding, China
| | - Yilei Liu
- Department of Orthopaedics, Affiliated Hospital of Hebei University, 071000, Baoding, China
| | - Xiaofeng Liu
- Department of Orthopaedics, Affiliated Hospital of Hebei University, 071000, Baoding, China
| | - Panxiang Li
- Department of Orthopaedics, Affiliated Hospital of Hebei University, 071000, Baoding, China.
| |
Collapse
|
3
|
Tian Z, Liu Q, Wang Y, Yang D. Two case studies of persistent white hair regrowth after alopecia areata turning pigmented following treatment. J Cosmet Dermatol 2024; 23:2490-2495. [PMID: 38500297 DOI: 10.1111/jocd.16288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/02/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND There is a strong correlation between alopecia areata (AA) and the development of white hair. The AA presents itself in many clinical manifestations of depigmented hair as the condition advances. It is uncommon for unpigmented hair to extensively regrow for more than one hair growth cycle in AA and successful conversion to pigmented hair after treatment has not yet been reported. AIM We report two case studies involving the persistent regrowth of white hair after AA that became pigmented through treatment. PATIENTS In the first case study, a 47-year-old woman with AA exhibited a fully regrown head of hair, which remained unpigmented. However, after 2 years of treatment with oral methylprednisolone and compound glycopyrrolate, her hair eventually regained its normal pigmentation. In the second case study, a 7-year-old boy with diffuse AA received compound glycyrrhizin (50 mg once daily) and methylprednisolone (4 mg orally once daily) for 3 years. RESULTS The both patients experienced regrowth of black hair on his entire head, with occasional white hairs. It is hypothesized that the aforementioned medications may regulate immunity by influencing melanocytes or melanin-associated antigens; however, the precise mechanism must be validated through additional histopathological and molecular analysis. CONCLUSION A larger patient group, possibly in randomized controlled trials, is needed to determine how the indicated treatment affects hair repigmentation after AA. Therefore, more patients must be included for more substantial outcomes from this study.
Collapse
Affiliation(s)
- Ziyuan Tian
- School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, China
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
| | - Qingwu Liu
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
| | - Ying Wang
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
| | - Dingquan Yang
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
4
|
Li Z, Li Y, Liu C, Gu Y, Han G. Research progress of the mechanisms and applications of ginsenosides in promoting bone formation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155604. [PMID: 38614042 DOI: 10.1016/j.phymed.2024.155604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Bone deficiency-related diseases caused by various factors have disrupted the normal function of the skeleton and imposed a heavy burden globally, urgently requiring potential new treatments. The multi-faceted role of compounds like ginsenosides and their interaction with the bone microenvironment, particularly osteoblasts can promote bone formation and exhibit anti-inflammatory, vascular remodeling, and antibacterial properties, holding potential value in the treatment of bone deficiency-related diseases and bone tissue engineering. PURPOSE This review summarizes the interaction between ginsenosides and osteoblasts and the bone microenvironment in bone formation, including vascular remodeling and immune regulation, as well as their therapeutic potential and toxicity in the broad treatment applications of bone deficiency-related diseases and bone tissue engineering, to provide novel insights and treatment strategies. METHODS The literature focusing on the mechanisms and applications of ginsenosides in promoting bone formation before March 2024 was searched in PubMed, Web of Science, Google Scholar, Scopus, and Science Direct databases. Keywords such as "phytochemicals", "ginsenosides", "biomaterials", "bone", "diseases", "bone formation", "microenvironment", "bone tissue engineering", "rheumatoid arthritis", "periodontitis", "osteoarthritis", "osteoporosis", "fracture", "toxicology", "pharmacology", and combinations of these keywords were used. RESULTS Ginsenoside monomers regulate signaling pathways such as WNT/β-catenin, FGF, and BMP/TGF-β, stimulating osteoblast generation and differentiation. It exerts angiogenic and anti-inflammatory effects by regulating the bone surrounding microenvironment through signaling such as WNT/β-catenin, NF-κB, MAPK, PI3K/Akt, and Notch. It shows therapeutic effects and biological safety in the treatment of bone deficiency-related diseases, including rheumatoid arthritis, osteoarthritis, periodontitis, osteoporosis, and fractures, and bone tissue engineering by promoting osteogenesis and improving the microenvironment of bone formation. CONCLUSION The functions of ginsenosides are diverse and promising in treating bone deficiency-related diseases and bone tissue engineering. Moreover, potential exists in regulating the bone microenvironment, modifying biomaterials, and treating inflammatory-related bone diseases and dental material applications. However, the mechanisms and effects of some ginsenoside monomers are still unclear, and the lack of clinical research limits their clinical application. Further exploration and evaluation of the potential of ginsenosides in these areas are expected to provide more effective methods for treating bone defects.
Collapse
Affiliation(s)
- Ze Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Yanan Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Chaoran Liu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Yuqing Gu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China.
| |
Collapse
|
5
|
Li T, Hu X, Fan L, Yang Y, He K. Myricanol improves metabolic profiles in dexamethasone induced lipid and protein metabolism disorders in mice. Biomed Pharmacother 2024; 174:116557. [PMID: 38583337 DOI: 10.1016/j.biopha.2024.116557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024] Open
Abstract
Myricanol (MY) is one of the main active components from bark of Myrica Rubra. It is demonstrated that MY rescues dexamethasone (DEX)-induced muscle dysfunction via activating silent information regulator 1 (SIRT1) and increasing adenosine 5'-monophosphate-activated protein kinase (AMPK) phosphorylation. Since SIRT1 and AMPK are widely involved in the metabolism of nutrients, we speculated that MY may exert beneficial effects on DEX-induced metabolic disorders. This study for the first time applied widely targeted metabolomics to investigate the beneficial effects of MY on glucose, lipids, and protein metabolism in DEX-induced metabolic abnormality in mice. The results showed that MY significantly reversed DEX-induced soleus and gastrocnemius muscle weight loss, muscle fiber damage, and muscle strength loss. MY alleviated DEX-induced metabolic disorders by increasing SIRT1 and glucose transporter type 4 (GLUT4) expressions. Additionally, myricanol prevented muscle cell apoptosis and atrophy by inhibiting caspase 3 cleavages and muscle ring-finger protein-1 (MuRF1) expression. Metabolomics showed that MY treatment reversed the serum content of carnitine ph-C1, palmitoleic acid, PS (16:0_17:0), PC (14:0_20:5), PE (P-18:1_16:1), Cer (t18:2/38:1(2OH)), four amino acids and their metabolites, and 16 glycerolipids in DEX mice. Kyoto encyclopedia of genes and genomes (KEGG) and metabolic set enrichment analysis (MSEA) analysis revealed that MY mainly affected metabolic pathways, glycerolipid metabolism, lipolysis, fat digestion and absorption, lipid and atherosclerosis, and cholesterol metabolism pathways through regulation of metabolites involved in glutathione, butanoate, vitamin B6, glycine, serine and threonine, arachidonic acid, and riboflavin metabolism. Collectively, MY can be used as an attractive therapeutic agent for DEX-induced metabolic abnormalities.
Collapse
Affiliation(s)
- Tiandan Li
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Xiaochao Hu
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Lingyang Fan
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Yong Yang
- chool of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China.
| | - Kai He
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, Hunan 418000, China.
| |
Collapse
|
6
|
Xu L, Xu G, Sun N, Yao J, Wang C, Zhang W, Tian K, Liu M, Sun H. Catalpol ameliorates dexamethasone-induced osteoporosis by promoting osteogenic differentiation of bone marrow mesenchymal stem cells via the activation of PKD1 promoter. J Pharmacol Sci 2023; 153:221-231. [PMID: 37973220 DOI: 10.1016/j.jphs.2023.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 11/19/2023] Open
Abstract
OBJECTIVE To investigate the effects of CA on glucocorticoid-induced osteoporosis (GIOP) and lucubrate the underlying mechanism of CA via the activation of polycystic kidney disease-1(PKD1) in bone marrow mesenchymal stem cells (BMSCs). METHODS In vivo, a GIOP model in mice treated with dexamethasone (Dex) was established. Biomechanical, micro-CT, immunofluorescence staining of OCN, ALP and PKD1 and others were severally determined. qRT-PCR and Western blot methods were adopted to elucidate the particular mechanisms of CA on GIOP. In addition, BMSCs cultured in vitro were also induced by Dex to verify the effects of CA. Finally, siRNA and luciferase activity assays were performed to confirm the mechanisms. RESULTS We found that CA could restore the destroyed bone microarchitecture and increase the bone mass in GIOP mice. CA could also upregulate PKD1 protein expression, reduce oxidative stress, and promote mRNA expression of bone formation-associated markers in GIOP mice. Furthermore, it was also observed that CA reduced oxidative stress and promoted osteogenic differentiation in Dex-induced BMSCs. Mechanically, CA could promote protein expression via increasing the activity of PKD1 promoter. CONCLUSION This study provides important evidences for CA in the further clinical treatment of GIOP, reveals the activation of PKD1 promoter as the underlying mechanism.
Collapse
Affiliation(s)
- Lei Xu
- Academy of Integrative Medicine, Dalian Medical University, Dalian, China; Office of Ethics Committee, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Gang Xu
- Department of Orthopaedics, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Na Sun
- Department of Pharmacy, The Third People's Hospital of Dalian, Dalian, China
| | - Jialin Yao
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Wanhao Zhang
- Department of Orthopaedics, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Kang Tian
- Department of Orthopaedics, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Mozhen Liu
- Department of Orthopaedics, The First Affiliated Hospital, Dalian Medical University, Dalian, China.
| | - Huijun Sun
- Academy of Integrative Medicine, Dalian Medical University, Dalian, China; Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.
| |
Collapse
|
7
|
Xu Y, Chen S, Huang L, Han W, Shao Y, Chen M, Zhang Y, He R, Xie B. Epimedin C Alleviates Glucocorticoid-Induced Suppression of Osteogenic Differentiation by Modulating PI3K/AKT/RUNX2 Signaling Pathway. Front Pharmacol 2022; 13:894832. [PMID: 35860032 PMCID: PMC9291512 DOI: 10.3389/fphar.2022.894832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/16/2022] [Indexed: 12/03/2022] Open
Abstract
Secondary osteoporosis is triggered mostly by glucocorticoid (GC) therapy. Dexamethasone (DEX) was reported to inhibit osteogenic differentiation in zebrafish larvae and MC3T3-E1 cells in prior research. In this research, we primarily examined the protective impacts of epimedin C on the osteogenic inhibition impact of MC3T3-E1 cells and zebrafish larvae mediated by DEX. The findings illustrated no apparent toxicity for MC3T3-E1 cells after administering epimedin C at increasing dosages from 1 to 60 μM and no remarkable proliferation in MC3T3-E1 cells treated using DEX. In MC3T3-E1 cells that had been treated using DEX, we discovered that epimedin C enhanced alkaline phosphatase activities and mineralization. Epimedin C could substantially enhance the protein expression of osterix (OSX), Runt-related transcription factor 2 (RUNX2), and alkaline phosphatase (ALPL) in MC3T3-E1 cells subjected to DEX treatment. Additionally, epimedin C stimulated PI3K and AKT signaling pathways in MC3T3-E1 cells that had been treated using DEX. Furthermore, in a zebrafish larvae model, epimedin C was shown to enhance bone mineralization in DEX-mediated bone impairment. We also found that epimedin C enhanced ALPL activity and mineralization in MC3T3-E1 cells treated using DEX, which may be reversed by PI3K inhibitor (LY294002). LY294002 can also reverse the protective impact of epimedin C on DEX-mediated bone impairment in zebrafish larval. These findings suggested that epimedin C alleviated the suppressive impact of DEX on the osteogenesis of zebrafish larval and MC3T3-E1 cells via triggering the PI3K and AKT signaling pathways. Epimedin C has significant potential in the development of innovative drugs for the treatment of glucocorticoid-mediated osteoporosis.
Collapse
Affiliation(s)
- Yongxiang Xu
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Shichun Chen
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Linxuan Huang
- Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Weichao Han
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Yingying Shao
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Minyi Chen
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Yusheng Zhang
- Department of Pharmacy, The First People’s Hospital of Foshan (The Affiliated Foshan Hospital of Sun Yat-Sen University), Foshan, China
| | - Ruirong He
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
- *Correspondence: Ruirong He, ; Baocheng Xie,
| | - Baocheng Xie
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
- *Correspondence: Ruirong He, ; Baocheng Xie,
| |
Collapse
|
8
|
Zhuo Y, Li M, Jiang Q, Ke H, Liang Q, Zeng LF, Fang J. Evolving Roles of Natural Terpenoids From Traditional Chinese Medicine in the Treatment of Osteoporosis. Front Endocrinol (Lausanne) 2022; 13:901545. [PMID: 35651977 PMCID: PMC9150774 DOI: 10.3389/fendo.2022.901545] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis (OP) is a systemic metabolic skeletal disease which can lead to reduction in bone mass and increased risk of bone fracture due to the microstructural degradation. Traditional Chinese medicine (TCM) has been applied in the prevention and treatment of osteoporosis for a long time. Terpenoids, a class of natural products that are rich in TCM, have been widely studied for their therapeutic efficacy on bone resorption, osteogenesis, and concomitant inflammation. Terpenoids can be classified in four categories by structures, monoterpenoids, sesquiterpenoids, diterpenoids, and triterpenoids. In this review, we comprehensively summarize all the currently known TCM-derived terpenoids in the treatment of OP. In addition, we discuss the possible mechanistic-of-actions of all four category terpenoids in anti-OP and assess their therapeutic potential for OP treatment.
Collapse
Affiliation(s)
- Yue Zhuo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meng Li
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Women and Children’s Medical Center, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Guangzhou Medical University, Guangzhou, China
| | - Qiyao Jiang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hanzhong Ke
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Qingchun Liang
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Ling-Feng Zeng
- The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
9
|
Zhang J, Liu Z, Luo Y, Li X, Huang G, Chen H, Li A, Qin S. The Role of Flavonoids in the Osteogenic Differentiation of Mesenchymal Stem Cells. Front Pharmacol 2022; 13:849513. [PMID: 35462886 PMCID: PMC9019748 DOI: 10.3389/fphar.2022.849513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/16/2022] [Indexed: 01/02/2023] Open
Abstract
Mesenchymal stem cells (MSCs) play an important role in developing bone tissue engineered constructs due to their osteogenic and chondrogenic differentiation potential. MSC-based tissue engineered constructs are generally considered a safe procedure, however, the long-term results obtained up to now are far from satisfactory. The main causes of these therapeutic limitations are inefficient homing, engraftment, and directional differentiation. Flavonoids are a secondary metabolite, widely existed in nature and have many biological activities. For a long time, researchers have confirmed the anti-osteoporosis effect of flavonoids through in vitro cell experiments, animal studies. In recent years the regulatory effects of flavonoids on mesenchymal stem cells (MSCs) differentiation have been received increasingly attention. Recent studies revealed flavonoids possess the ability to modulate self-renewal and differentiation potential of MSCs. In order to facilitate further research on MSCs osteogenic differentiation of flavonoids, we surveyed the literature published on the use of flavonoids in osteogenic differentiation of MSCs, and summarized their pharmacological activities as well as the underlying mechanisms, aimed to explore their promising therapeutic application in bone disorders and bone tissue engineered constructs.
Collapse
Affiliation(s)
- Jinli Zhang
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Zhihe Liu
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Yang Luo
- School of Physical Education, Southwest University, Guangzhou, China
| | - Xiaojian Li
- Department of Burn and Plastic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Guowei Huang
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Huan Chen
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Aiguo Li
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Shengnan Qin
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| |
Collapse
|
10
|
Wang H, Yang L, Chao J. Antiosteoporosis and bone protective effect of dieckol against glucocorticoid-induced osteoporosis in rats. Front Endocrinol (Lausanne) 2022; 13:932488. [PMID: 36060953 PMCID: PMC9437630 DOI: 10.3389/fendo.2022.932488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Glucocorticoids (GCs) induce osteoporosis, which results in fractures in the bond, causing significant morbidity. In the conducted study, we examined the antiosteoporosis effect of dieckol against GC-induced osteoporosis in rats. METHODS Sprague-Dawley (SD) rats were used for the current study and dexamethasone (2.5 mg/kg) induced osteoporosis in the rats that received the dieckol (test) and alendronate (standard) for 20 weeks. Bone turnover parameters, microCT, antioxidant, inflammatory cytokines, nutrient, and hormones parameters. RESULTS Dieckol noticeably suppressed the body weight and boosted the uterine and vagina weight. Dieckol considerably altered the level of trabecular number (Tb. N), the bone volume to total volume (BV/TV), trabecular separation (Tb.Sp), bone surface to bone volume (BS/BV), and trabecular thickness (Tb.Th). Dieckol noticeably (P < 0.001) elevated the level of osteocalcin (OC) and alleviated the level of bone Gla protein (BGP), acid phosphatase (ACP), alkaline phosphatase (ALP), and β-CTx. Dieckol markedly boosted the level of malondialdehyde (MDA) and suppressed the level of glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD) along with the suppression of inflammatory cytokines like TNF-α, IL-1β, and IL-6. Dieckol remarkably increased the level of calcium, potassium, magnesium, and 25 (OH) vitamin D. Dieckol substantially (P < 0.001) boosted the level of estradiol and alleviated the level of parathyroid hormone and tartrate-resistant acid phosphatase (TRAP). Dieckol also suppressed the level of receptor activator of nuclear factor κB ligand (RANKL) and boosted the level of osteoprotegerin (OPG). CONCLUSION Taken together, our data suggest that dieckol demonstrated the anti-osteoporosis effect against GC-induced osteoporosis in rats.
Collapse
|