1
|
Abe H, Indo HP, Ito H, Majima HJ, Tanaka T. Synephrine Inhibits Oxidative Stress and H 2O 2-Induced Premature Senescence. Cell Biochem Biophys 2025; 83:2607-2622. [PMID: 39832117 DOI: 10.1007/s12013-025-01669-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2025] [Indexed: 01/22/2025]
Abstract
Synephrine, a protoalkaloid found in Citrus aurantium (CA) peels, exerts lipolytic, anti-inflammatory, and vasoconstrictive effects; however, its antioxidant activity remains unclear. In this study, electron spin resonance spectroscopy revealed that synephrine scavenged both hydroxyl and superoxide anion radicals. Several external stimuli, such as H2O2, X-rays, and ultraviolet (UV) radiation, cause stress-induced premature senescence (SIPS). As oxidative stress induces SIPS, we hypothesized that synephrine, an antioxidant, would suppress H2O2-induced premature senescence in WI-38 cells. Synephrine significantly decreased the reactive oxygen species levels induced by H2O2, thereby reducing lipid peroxidation, and oxidative DNA damage and preventing SIPS. Additionally, synephrine inhibited mitochondrial dysfunction in H2O2-treated WI-38 cells. The expression levels of p53, p21, and p16-INK4A, which are involved in the induction of cell cycle arrest in SIPS, were significantly lower in synephrine-treated cells than in untreated cells. Our results indicate that synephrine inhibits H2O2-induced oxidative stress and mitochondrial dysfunction, suppressing premature senescence by inhibiting activation of the p53-p21 and p16-INK4A-pRB pathways.
Collapse
Affiliation(s)
- Hiroshi Abe
- Department of Maxillofacial Radiology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan
| | - Hiroko P Indo
- Department of Maxillofacial Radiology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan.
| | - Hiromu Ito
- Department of Maxillofacial Radiology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan
- Quantum RedOx Chemistry Team, Quantum Life Spin Group, Institute for Quantum Life Science (iQLS), National Institutes for Quantum Science and Technology (QST), Chiba, 263-8555, Japan
| | - Hideyuki J Majima
- Department of Maxillofacial Radiology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Tatsuro Tanaka
- Department of Maxillofacial Radiology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan
| |
Collapse
|
2
|
Ruan C, Sun J, Liang X, Huang H, Zhang M, Zhang S. Associations of Palmito-leic Acid and Nervonic Acid Hexosylceramides with Type 2 Diabetes Mellitus in a Prospective Nested Case-control Study Among Chinese Population. Endocr Res 2025; 50:109-117. [PMID: 40088080 DOI: 10.1080/07435800.2025.2479256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/05/2025] [Accepted: 02/21/2025] [Indexed: 03/17/2025]
Abstract
OBJECTIVES We aimed to evaluate the associations of hexosylceramides (HexCers) and their ratio with incident type 2 diabetes mellitus (T2DM) and explore underlying mechanisms. METHODS We conducted a nested case-control study using the Suzhou chronic disease cohort including 234 T2DM cases and 468 controls, 1:2 matched on age (±2 y) and sex. HexCer(d18:1/16:1) and HexCer(d18:1/24:1) were measured by targeted UPLC-MS/MS. Multivariable conditional logistic regression was used to estimate the associations of these HexCer species and their ratio with T2DM risk. RESULTS After adjustment for potential confounders, compared with the lowest quartile, the highest quartile of HexCer(d18:1/24:1) was positively associated with T2DM risk (OR: 1.91; 95%CI, 1.12, 3.26; P-trend <0.05). The ratio of HexCer(d18:1/24:1) to HexCer(d18:1/16:1) showed a positive association with T2DM risk (OR: 1.89; 95%CI, 1.13, 3.18; P-trend <0.05). On the natural log scale, each SD increases in HexCer(d18:1/24:1) and its ratio to HexCer(d18:1/16:1) increased by 29% and 30%, respectively. No significant association for HexCer(d18:1/16:1) was found. Additive value of HexCer(d18:1/24:1) or HexCer(d18:1/24:1)/HexCer(d18:1/16:1) ratio for prediction of T2DM above traditional risk factors. CONCLUSIONS HexCer(d18:1/24:1) and its ratio to HexCer(d18:1/16:1) are positively associated with incident T2DM in a community-based Chinese population. Future studies are warranted to confirm our findings.
Collapse
Affiliation(s)
- Chuyi Ruan
- Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jun Sun
- Department of Medical Service, Kunshan First People's Hospital, Kunshan, Jiangsu, China
| | - Xiaoqing Liang
- Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Hong Huang
- Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Mingzhi Zhang
- Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Shaoyan Zhang
- Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| |
Collapse
|
3
|
Lavarti R, Alvarez-Diaz T, Marti K, Kar P, Raju RP. The context-dependent effect of cellular senescence: From embryogenesis and wound healing to aging. Ageing Res Rev 2025; 109:102760. [PMID: 40318767 DOI: 10.1016/j.arr.2025.102760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/20/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
Aging is characterized by a steady loss of physiological integrity, leading to impaired function and increased vulnerability to death. Cell senescence is a biological process that progresses with aging and is believed to be a key driver of age-related diseases. Senescence, a hallmark of aging, also demonstrates its beneficial physiological aspects as an anti-cancer, pro-regenerative, homeostatic, and developmental mechanism. A transitory response in which the senescent cells are quickly formed and cleared may promote tissue regeneration and organismal fitness. At the same time, senescence-related secretory phenotypes associated with extended senescence can have devastating effects. The fact that the interaction between senescent cells and their surroundings is very context-dependent may also help to explain this seemingly opposing pleiotropic function. Further, mitochondrial dysfunction is an often-unappreciated hallmark of cellular senescence and figures prominently in multiple feedback loops that induce and maintain the senescent phenotype. This review summarizes the mechanism of cellular senescence and the significance of acute senescence. We concisely introduced the context-dependent role of senescent cells and SASP, aspects of mitochondrial biology altered in the senescent cells, and their impact on the senescent phenotype. Finally, we conclude with recent therapeutic advancements targeting cellular senescence, focusing on acute injuries and age-associated diseases. Collectively, these insights provide a future roadmap for the role of senescence in organismal fitness and life span extension.
Collapse
Affiliation(s)
- Rupa Lavarti
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Tatiana Alvarez-Diaz
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Kyarangelie Marti
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Parmita Kar
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Raghavan Pillai Raju
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States; Charlie Norwood VA Medical Center, Augusta, GA, United States.
| |
Collapse
|
4
|
Ruan H, Li W, Chang H, Wen M, Luo S, Song F, Ye L, Mei J, Zhu X, Liu X, Jiang N. Antioxidant, Hypoglycemic, and Hypolipidemic Effects of Puerarin In Vivo. Food Sci Nutr 2025; 13:e70257. [PMID: 40336535 PMCID: PMC12056237 DOI: 10.1002/fsn3.70257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/12/2025] [Accepted: 04/25/2025] [Indexed: 05/09/2025] Open
Abstract
Puerarin (PUE) exhibits various pharmacological effects. This study evaluated its antioxidant, hypoglycemic, and hypolipidemic effects in vivo using models of aging, diabetes, and hyperlipidemia. D-galactose-induced aging, streptozotocin (STZ)-induced diabetic, and high-fat diet-induced hyperlipidemic mouse models were established. To evaluate the therapeutic effects, mice were administered various doses of PUE (50, 100, and 200 mg/kg). Results showed that PUE treatment improved antioxidant enzyme activities and reduced serum and liver malondialdehyde (MDA) levels in aging mice, thereby mitigating cellular oxidative stress. In diabetic mice, fasting blood glucose (FBG) levels were observed to decrease, while hepatic hexokinase (HK) activity, pyruvate kinase (PK) activity, and insulin levels increased after 7 weeks of PUE treatment. Furthermore, PUE significantly enhanced blood lipid profiles and antioxidant enzyme properties in diabetic mice. In hyperlipidemic mice, PUE administration led to decreased levels of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C), while increasing high-density lipoprotein cholesterol (HDL-C). These findings indicate that PUE possesses antioxidant, hypoglycemic, and hypolipidemic properties and shows potential for treating aging and related diseases like type 2 diabetes and hyperlipidemia.
Collapse
Affiliation(s)
- Hong Ruan
- Hubei Key Laboratory of Biologic Resources Protection and UtilizationHubei Minzu UniversityEnshiPeople's Republic of China
- School of Biological Science and TechnologyHubei Minzu UniversityEnshiPeople's Republic of China
| | - Wanqing Li
- School of Biological Science and TechnologyHubei Minzu UniversityEnshiPeople's Republic of China
| | - Huien Chang
- School of Biological Science and TechnologyHubei Minzu UniversityEnshiPeople's Republic of China
| | - Manlin Wen
- School of Biological Science and TechnologyHubei Minzu UniversityEnshiPeople's Republic of China
| | - Shouchun Luo
- School of Biological Science and TechnologyHubei Minzu UniversityEnshiPeople's Republic of China
| | - Fangshuai Song
- Hubei Key Laboratory of Biologic Resources Protection and UtilizationHubei Minzu UniversityEnshiPeople's Republic of China
| | - Li Ye
- School of Biological Science and TechnologyHubei Minzu UniversityEnshiPeople's Republic of China
| | - Jie Mei
- School of Biological Science and TechnologyHubei Minzu UniversityEnshiPeople's Republic of China
| | - Xiqiang Zhu
- Hubei Key Laboratory of Biologic Resources Protection and UtilizationHubei Minzu UniversityEnshiPeople's Republic of China
- School of Biological Science and TechnologyHubei Minzu UniversityEnshiPeople's Republic of China
| | - Xiaopeng Liu
- Hubei Key Laboratory of Biologic Resources Protection and UtilizationHubei Minzu UniversityEnshiPeople's Republic of China
- School of Biological Science and TechnologyHubei Minzu UniversityEnshiPeople's Republic of China
| | - Ning Jiang
- Hubei Key Laboratory of Biologic Resources Protection and UtilizationHubei Minzu UniversityEnshiPeople's Republic of China
- School of Biological Science and TechnologyHubei Minzu UniversityEnshiPeople's Republic of China
| |
Collapse
|
5
|
Basu R, Boguszewski CL, Kopchick JJ. Growth Hormone Action as a Target in Cancer: Significance, Mechanisms, and Possible Therapies. Endocr Rev 2025; 46:224-280. [PMID: 39657053 DOI: 10.1210/endrev/bnae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/29/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024]
Abstract
Growth hormone (GH) is a pituitary-derived endocrine hormone required for normal postnatal growth and development. Hypo- or hypersecretion of endocrine GH results in 2 pathologic conditions, namely GH deficiency (GHD) and acromegaly. Additionally, GH is also produced in nonpituitary and tumoral tissues, where it acts rather as a cellular growth factor with an autocrine/paracrine mode of action. An increasingly persuasive and large body of evidence over the last 70 years concurs that GH action is implicit in escalating several cancer-associated events, locally and systemically. This pleiotropy of GH's effects is puzzling, but the association with cancer risk automatically raises a concern for patients with acromegaly and for individuals treated with GH. By careful assessment of the available knowledge on the fundamental concepts of cancer, suggestions from epidemiological and clinical studies, and the evidence from specific reports, in this review we aimed to help clarify the distinction of endocrine vs autocrine/paracrine GH in promoting cancer and to reconcile the discrepancies between experimental and clinical data. Along this discourse, we critically weigh the targetability of GH action in cancer-first by detailing the molecular mechanisms which posit GH as a critical node in tumor circuitry; and second, by enumerating the currently available therapeutic options targeting GH action. On the basis of our discussion, we infer that a targeted intervention on GH action in the appropriate patient population can benefit a sizable subset of current cancer prognoses.
Collapse
Affiliation(s)
- Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Athens, OH 45701, USA
- Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Athens, OH 45701, USA
| | - Cesar L Boguszewski
- SEMPR, Endocrine Division, Department of Internal Medicine, Federal University of Parana, Curitiba 80060-900, Brazil
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Athens, OH 45701, USA
- Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Athens, OH 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
6
|
Qin Y, Liu H, Wu H. Cellular Senescence in Health, Disease, and Lens Aging. Pharmaceuticals (Basel) 2025; 18:244. [PMID: 40006057 PMCID: PMC11859104 DOI: 10.3390/ph18020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/04/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Cellular senescence is a state of irreversible cell cycle arrest that serves as a critical regulator of tissue homeostasis, aging, and disease. While transient senescence contributes to development, wound healing, and tumor suppression, chronic senescence drives inflammation, tissue dysfunction, and age-related pathologies, including cataracts. Lens epithelial cells (LECs), essential for maintaining lens transparency, are particularly vulnerable to oxidative stress-induced senescence, which accelerates lens aging and cataract formation. This review examines the dual role of senescence in LEC function and its implications for age-related cataractogenesis, alongside emerging senotherapeutic interventions. Methods: This review synthesizes findings on the molecular mechanisms of senescence, focusing on oxidative stress, mitochondrial dysfunction, and the senescence-associated secretory phenotype (SASP). It explores evidence linking LEC senescence to cataract formation, highlighting key studies on stress responses, DNA damage, and antioxidant defense. Recent advances in senotherapeutics, including senolytics and senomorphics, are analyzed for their potential to mitigate LEC senescence and delay cataract progression. Conclusions: LEC senescence is driven by oxidative damage, mitochondrial dysfunction, and impaired redox homeostasis. These factors activate senescence path-ways, including p53/p21 and p16/Rb, resulting in cell cycle arrest and SASP-mediated inflammation. The accumulation of senescent LECs reduces regenerative capacity, disrupts lens homeostasis, and contributes to cataractogenesis. Emerging senotherapeutics, such as dasatinib, quercetin, and metformin, show promise in reducing the senescent cell burden and modulating the SASP to preserve lens transparency.
Collapse
Affiliation(s)
- Ying Qin
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (Y.Q.); (H.L.)
| | - Haoxin Liu
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (Y.Q.); (H.L.)
| | - Hongli Wu
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (Y.Q.); (H.L.)
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
7
|
Lavarti R, Cai L, Alvarez‐Diaz T, Medina‐Rodriguez T, Bombin S, Raju RP. Senescence landscape in the liver following sepsis and senolytics as potential therapeutics. Aging Cell 2025; 24:e14354. [PMID: 39444093 PMCID: PMC11709100 DOI: 10.1111/acel.14354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/15/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024] Open
Abstract
Senescence, caused by cell-cycle arrest, is a hallmark of aging. Senescence has also been described in embryogenesis, wound healing, and acute injuries. Sepsis is characterized by a dysregulated host response to infection, leading to organ dysfunction and mortality. Most of the pathophysiology of human sepsis is recapitulated in the mouse model of polymicrobial sepsis, developed by cecal ligation and puncture (CLP). In this report, we demonstrate a rapid onset of cellular senescence in the liver of mice subjected to CLP-induced sepsis, characterized by the upregulation of p21, p53, and other senescence markers, including SA-βgal. Using RNAscope, confocal microscopy, and flow cytometry, we further confirm the emergence of p21-expressing senescence phenotype in the liver 24 h after sepsis induction. Senescence was observed in several cell types in the liver, including hepatocytes, endothelial cells, and macrophages. We determined the landscape of senescence phenotype in murine sepsis by single-cell sequencing, which further ascertained that this cell fate is not confined to any particular cell type but displays a heterogeneous distribution. Furthermore, we observed a significant reduction in mortality following sepsis when mice were treated with senolytics, a combination of dasatinib and quercetin, before the CLP surgery. Our experiments unequivocally demonstrated a rapid development of cellular senescence with sepsis and, for the first time, described the senescence landscape in the sepsis liver and the possible role of senescent cells in the worsening outcome following sepsis.
Collapse
Affiliation(s)
- Rupa Lavarti
- Department of Pharmacology and Toxicology, Medical College of GeorgiaAugusta UniversityAugustaGeorgiaUSA
| | - Lun Cai
- Department of Pharmacology and Toxicology, Medical College of GeorgiaAugusta UniversityAugustaGeorgiaUSA
| | - Tatiana Alvarez‐Diaz
- Department of Pharmacology and Toxicology, Medical College of GeorgiaAugusta UniversityAugustaGeorgiaUSA
| | - Thalia Medina‐Rodriguez
- Department of Pharmacology and Toxicology, Medical College of GeorgiaAugusta UniversityAugustaGeorgiaUSA
| | - Sergei Bombin
- Georgia Cancer Center, Medical College of GeorgiaAugusta UniversityAugustaGeorgiaUSA
| | - Raghavan Pillai Raju
- Department of Pharmacology and Toxicology, Medical College of GeorgiaAugusta UniversityAugustaGeorgiaUSA
| |
Collapse
|
8
|
Wolosowicz M, Prokopiuk S, Kaminski TW. The Complex Role of Matrix Metalloproteinase-2 (MMP-2) in Health and Disease. Int J Mol Sci 2024; 25:13691. [PMID: 39769454 PMCID: PMC11728377 DOI: 10.3390/ijms252413691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
Matrix metalloproteinase-2 (MMP-2), a zinc-dependent enzyme, plays a critical role in the degradation and remodeling of the extracellular matrix (ECM). As a member of the gelatinase subgroup of matrix metalloproteinases, MMP-2 is involved in a variety of physiological processes, including tissue repair, wound healing, angiogenesis, and embryogenesis. It is primarily responsible for the degradation of type IV and V collagen, fibronectin, laminin, and elastin, which are essential components of the ECM. MMP-2 is secreted as an inactive pro-enzyme (proMMP-2) and activated through proteolytic cleavage, with its activity being precisely regulated by tissue inhibitors of metalloproteinases (TIMPs). Dysregulation of MMP-2 has been linked to a variety of pathological conditions, including cardiovascular diseases, diabetic complications, kidney diseases, and cancer. In cardiovascular diseases, it contributes to vascular remodeling, atherosclerosis, and aneurysms, while in fibrotic diseases, it mediates excessive ECM degradation leading to tissue scarring. In diabetes, elevated MMP-2 activity exacerbates complications such as nephropathy, retinopathy, and cardiovascular disease. In cancer, MMP-2 facilitates tumor invasion and metastasis by degrading ECM components and promoting angiogenesis. Despite its essential roles in both physiological and pathological processes, targeting MMP-2 for therapeutic purposes presents challenges due to its dual functions in tissue remodeling and repair, raising concerns about unplanned consequences such as impaired tissue healing or excessive tissue damage. These challenges underscore the need for future research to focus on developing selective modulators that can precisely balance their activity under specific disease environments. Clinical trials targeting MMP-2 modulation highlight the potential of gelatinase inhibitors, including those targeting MMP-2, to reduce tumor progression in fibrosarcoma, breast, and lung cancers. This paper reviews the structure, function, and regulation of MMP-2, its involvement in disease pathogenesis, and the potential challenges in the therapeutic implications of modulating its activity.
Collapse
Affiliation(s)
- Marta Wolosowicz
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Slawomir Prokopiuk
- Faculty of Health Sciences, University of Lomza, 14 Akademicka St., 18-400 Łomża, Poland;
| | - Tomasz W. Kaminski
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute (VMI), University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
- Thrombosis and Hemostasis Program, VERSITI Blood Research Institute, Milwaukee, WI 53226, USA
| |
Collapse
|
9
|
Elmitwalli O, Darwish R, Al-Jabery L, Algahiny A, Roy S, Butler AE, Hasan AS. The Emerging Role of p21 in Diabetes and Related Metabolic Disorders. Int J Mol Sci 2024; 25:13209. [PMID: 39684919 DOI: 10.3390/ijms252313209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
In the context of cell cycle inhibition, anti-proliferation, and the dysregulation observed in certain cancer pathologies, the protein p21 assumes a pivotal role. p21 links DNA damage responses to cellular processes such as apoptosis, senescence, and cell cycle arrest, primarily functioning as a regulator of the cell cycle. However, accumulating empirical evidence suggests that p21 is both directly and indirectly linked to a number of different metabolic processes. Intriguingly, recent investigations indicate that p21 significantly contributes to the pathogenesis of diabetes. In this review, we present a comprehensive evaluation of the scientific literature regarding the involvement of p21 in metabolic processes, diabetes etiology, pancreatic function, glucose homeostasis, and insulin resistance. Furthermore, we provide an encapsulated overview of therapies that target p21 to alleviate metabolic disorders. A deeper understanding of the complex interrelationship between p21 and diabetes holds promise for informing current and future therapeutic strategies to address this rapidly escalating health crisis.
Collapse
Affiliation(s)
- Omar Elmitwalli
- Department of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| | - Radwan Darwish
- Department of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| | - Lana Al-Jabery
- Department of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| | - Ahmed Algahiny
- Department of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| | - Sornali Roy
- Department of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| | - Alexandra E Butler
- Department of Postgraduate Studies and Research, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| | - Ammar S Hasan
- Department of Postgraduate Studies and Research, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| |
Collapse
|
10
|
Yuan J, Wang Y, Wang D, Yan H, Wang N. Loxenatide Alleviates High Glucose-Induced Pancreatic β-Cell Senescence via Regulating the PERK/eIF2α Pathway. Horm Metab Res 2024; 56:890-899. [PMID: 39333044 DOI: 10.1055/a-2407-9360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists are effective hypoglycemic agents for type 2 diabetes mellitus (T2DM). It was reported that T2DM was implicated in pancreatic β-cell senescence. Whether loxenatide regulates cellular senescence of pancreatic β-cells is to be investigated. Our results revealed that high glucose (HG)-induced cellular senescence and elevated expression of SASP factors inhibited cell proliferation and stimulated DNA damage, which were reversed by loxenatide treatment. In addition, HG induction resulted in promoted insulin secretion and insulin synthesis of pancreatic β-cells and loxenatide treatment further strengthened these influences. In addition, loxenatide could inactivate the PERK/eIF2α signaling pathway via decreasing the levels of p-PERK and p-eIF2α in HG-induced pancreatic β-cells. Furthermore, CCT020312, an activator of the PERK/eIF2α signaling pathway, abolished loxenatide-mediated inhibiting cellular senescence, elevating cell proliferation and improving DNA damage and enhancing insulin secretion of HG-induced pancreatic β-cells. In conclusion, our results indicated that loxenatide impeded cellular senescence, promoted cell proliferation, improved DNA damage, enhanced insulin secretion and insulin synthesis of HG-induced pancreatic β-cells through modulating the PERK/eIF2α signaling pathway.
Collapse
Affiliation(s)
- Junfang Yuan
- Department of Endocrinology, Affiliated Hospital of Hebei University of Engineering, Handan City, Hebei Province, China
| | - Yuzhong Wang
- Department of Urology, Affiliated Hospital of Hebei University of Engineering, Handan City, Hebei Province, China
| | - Defeng Wang
- Department of Endocrinology, Affiliated Hospital of Hebei University of Engineering, Handan City, Hebei Province, China
| | - Han Yan
- Department of Endocrinology, Affiliated Hospital of Hebei University of Engineering, Handan City, Hebei Province, China
| | - Ning Wang
- Department of Endocrinology, Affiliated Hospital of Hebei University of Engineering, Handan City, Hebei Province, China
| |
Collapse
|
11
|
Noh SG, Kim HW, Kim S, Chung KW, Jung YS, Yoon JH, Yu BP, Lee J, Chung HY. Senoinflammation as the underlying mechanism of aging and its modulation by calorie restriction. Ageing Res Rev 2024; 101:102503. [PMID: 39284417 DOI: 10.1016/j.arr.2024.102503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Senoinflammation is characterized by an unresolved low-grade inflammatory process that affects multiple organs and systemic functions. This review begins with a brief overview of the fundamental concepts and frameworks of senoinflammation. It is widely involved in the aging of various organs and ultimately leads to progressive systemic degeneration. Senoinflammation underlying age-related inflammation, is causally related to metabolic dysregulation and the formation of senescence-associated secretory phenotype (SASP) during aging and age-related diseases. This review discusses the biochemical evidence and molecular biology data supporting the concept of senoinflammation and its regulatory processes, highlighting the anti-aging and anti-inflammatory effects of calorie restriction (CR). Experimental data from CR studies demonstrated effective suppression of various pro-inflammatory cytokines and chemokines, lipid accumulation, and SASP during aging. In conclusion, senoinflammation represents the basic mechanism that creates a microenvironment conducive to aging and age-related diseases. Furthermore, it serves as a potential therapeutic target for mitigating aging and age-related diseases.
Collapse
Affiliation(s)
- Sang Gyun Noh
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Hyun Woo Kim
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Seungwoo Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Ki Wung Chung
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Young-Suk Jung
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Jeong-Hyun Yoon
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jaewon Lee
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
| | - Hae Young Chung
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
| |
Collapse
|
12
|
dos Santos TW, Pereira QC, Fortunato IM, Oliveira FDS, Alvarez MC, Ribeiro ML. Body Composition and Senescence: Impact of Polyphenols on Aging-Associated Events. Nutrients 2024; 16:3621. [PMID: 39519454 PMCID: PMC11547493 DOI: 10.3390/nu16213621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Aging is a dynamic and progressive process characterized by the gradual accumulation of cellular damage. The continuous functional decline in the intrinsic capacity of living organisms to precisely regulate homeostasis leads to an increased susceptibility and vulnerability to diseases. Among the factors contributing to these changes, body composition-comprised of fat mass and lean mass deposits-plays a crucial role in the trajectory of a disability. Particularly, visceral and intermuscular fat deposits increase with aging and are associated with adverse health outcomes, having been linked to the pathogenesis of sarcopenia. Adipose tissue is involved in the secretion of bioactive factors that can ultimately mediate inter-organ pathology, including skeletal muscle pathology, through the induction of a pro-inflammatory profile such as a SASP, cellular senescence, and immunosenescence, among other events. Extensive research has shown that natural compounds have the ability to modulate the mechanisms associated with cellular senescence, in addition to exhibiting anti-inflammatory, antioxidant, and immunomodulatory potential, making them interesting strategies for promoting healthy aging. In this review, we will discuss how factors such as cellular senescence and the presence of a pro-inflammatory phenotype can negatively impact body composition and lead to the development of age-related diseases, as well as how the use of polyphenols can be a functional measure for restoring balance, maintaining tissue quality and composition, and promoting health.
Collapse
Affiliation(s)
- Tanila Wood dos Santos
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (T.W.d.S.); (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.)
| | - Quélita Cristina Pereira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (T.W.d.S.); (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.)
| | - Isabela Monique Fortunato
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (T.W.d.S.); (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.)
| | - Fabrício de Sousa Oliveira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (T.W.d.S.); (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.)
| | - Marisa Claudia Alvarez
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (T.W.d.S.); (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.)
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro, UNICAMP, Rua Carlos Chagas 480, Campinas 13083-878, SP, Brazil
| | - Marcelo Lima Ribeiro
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (T.W.d.S.); (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.)
| |
Collapse
|
13
|
Pellegrini V, La Grotta R, Carreras F, Giuliani A, Sabbatinelli J, Olivieri F, Berra CC, Ceriello A, Prattichizzo F. Inflammatory Trajectory of Type 2 Diabetes: Novel Opportunities for Early and Late Treatment. Cells 2024; 13:1662. [PMID: 39404426 PMCID: PMC11476093 DOI: 10.3390/cells13191662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Low-grade inflammation (LGI) represents a key driver of type 2 diabetes (T2D) and its associated cardiovascular diseases (CVDs). Indeed, inflammatory markers such as hs-CRP and IL-6 predict the development of T2D and its complications, suggesting that LGI already increases before T2D diagnosis and remains elevated even after treatment. Overnutrition, unhealthy diets, physical inactivity, obesity, and aging are all recognized triggers of LGI, promoting insulin resistance and sustaining the pathogenesis of T2D. Once developed, and even before frank appearance, people with T2D undergo a pathological metabolic remodeling, with an alteration of multiple CVD risk factors, i.e., glycemia, lipids, blood pressure, and renal function. In turn, such variables foster a range of inflammatory pathways and mechanisms, e.g., immune cell stimulation, the accrual of senescent cells, long-lasting epigenetic changes, and trained immunity, which are held to chronically fuel LGI at the systemic and tissue levels. Targeting of CVD risk factors partially ameliorates LGI. However, some long-lasting inflammatory pathways are unaffected by common therapies, and LGI burden is still increased in many T2D patients, a phenomenon possibly underlying the residual inflammatory risk (i.e., having hs-CRP > 2 mg/dL despite optimal LDL cholesterol control). On the other hand, selected disease-modifying drugs, e.g., GLP-1RA, seem to also act on the pathogenesis of T2D, curbing the inflammatory trajectory of the disease and possibly preventing it if introduced early. In addition, selected trials demonstrated the potential of canonical anti-inflammatory therapies in reducing the rate of CVDs in patients with this condition or at high risk for it, many of whom had T2D. Since colchicine, an inhibitor of immune cell activation, is now approved for the prevention of CVDs, it might be worth exploring a possible therapeutic paradigm to identify subjects with T2D and an increased LGI burden to treat them with this drug. Upcoming studies will reveal whether disease-modifying drugs reverse early T2D by suppressing sources of LGI and whether colchicine has a broad benefit in people with this condition.
Collapse
Affiliation(s)
- Valeria Pellegrini
- IRCCS MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy; (V.P.); (R.L.G.)
| | - Rosalba La Grotta
- IRCCS MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy; (V.P.); (R.L.G.)
| | - Francesca Carreras
- IRCCS MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy; (V.P.); (R.L.G.)
| | - Angelica Giuliani
- Cardiac Rehabilitation Unit of Bari Institute, Istituti Clinici Scientifici Maugeri IRCCS, 70124 Bari, Italy
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, 60127 Ancona, Italy; (J.S.); (F.O.)
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60127 Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, 60127 Ancona, Italy; (J.S.); (F.O.)
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60127 Ancona, Italy
| | | | - Antonio Ceriello
- IRCCS MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy; (V.P.); (R.L.G.)
| | | |
Collapse
|
14
|
Kaur G, Sohanur Rahman M, Shaikh S, Panda K, Chinnapaiyan S, Santiago Estevez M, Xia L, Unwalla H, Rahman I. Emerging roles of senolytics/senomorphics in HIV-related co-morbidities. Biochem Pharmacol 2024; 228:116179. [PMID: 38556028 PMCID: PMC11410549 DOI: 10.1016/j.bcp.2024.116179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
Human immunodeficiency virus (HIV) is known to cause cellular senescence and inflammation among infected individuals. While the traditional antiretroviral therapies (ART) have allowed the once fatal infection to be managed effectively, the quality of life of HIV patients on prolonged ART use is still inferior. Most of these individuals suffer from life-threatening comorbidities like chronic obstructive pulmonary disease (COPD), pulmonary arterial hypertension (PAH), and diabetes, to name a few. Interestingly, cellular senescence is known to play a critical role in the pathophysiology of these comorbidities as well. It is therefore important to understand the role of cellular senescence in the disease progression and co-morbidity development in HIV-infected individuals. In this respect, use of senolytic/senomorphic drugs as combination therapy with ART would be beneficial for HIV patients. This review provides a critical analysis of the current literature to determine the potential and efficacy of using senolytics/senotherapeutics in managing HIV infection, latency, and associated co-morbidities in humans. The various classes of senolytics have been studied in detail to focus on their potential to combat against HIV infections and associated pathologies with advancing age.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Md Sohanur Rahman
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Sadiya Shaikh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Kingshuk Panda
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Srinivasan Chinnapaiyan
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Maria Santiago Estevez
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Li Xia
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Hoshang Unwalla
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
15
|
Szymańczyk S, Kras K, Osiak-Wicha C, Kapica M, Puzio I, Antushevich H, Kuwahara A, Kato I, Arciszewski MB. Immunodetection of selected pancreatic hormones under intragastric administration of apelin-13, a novel endogenous ligand for an angiotensin-like orphan G-protein coupled receptor, in unweaned rats. J Vet Res 2024; 68:461-468. [PMID: 39318524 PMCID: PMC11418381 DOI: 10.2478/jvetres-2024-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/30/2024] [Indexed: 09/26/2024] Open
Abstract
Introduction This study investigated the effects of intragastric administration of apelin-13 on the secretion of critical pancreatic hormones in a cohort of three-week-old Wistar rats. The research aimed to uncover apelin's modulatory roles in endocrine interactions dictating metabolic homeostasis during early life. Material and Methods Rats were randomly assigned to control or experimental groups, receiving apelin-13 or saline for 14 days. The study population consisted of three-week-old Wistar rats of both sexes, weighing between 20 and 25 grams. Histological examination, analysis of variance and t-tests were employed to assess significant differences. Results Distinctive alterations in large islet morphology were observed, indicating a notable reduction in size. Additionally, an increase in alpha- and beta-cell density within specific islet sizes was noted, suggesting significant changes in cell populations. The study found a substantial increase in mitotic activity and a decrease in apoptosis in small and medium-sized islets post apelin-13 administration, indicating its potential role in regulating cell survival and proliferation. Conclusion The notable reduction in large islet size coupled with increased alpha and beta cell density implies a targeted impact of apelin-13 on pancreatic cell dynamics. Also, the observed increase in mitotic activity and decrease in apoptosis in small and medium-sized islets suggest its potential regulatory role in cell survival and proliferation within the pancreatic microenvironment.
Collapse
Affiliation(s)
| | - Katarzyna Kras
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950Lublin, Poland
| | - Cezary Osiak-Wicha
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950Lublin, Poland
| | | | - Iwona Puzio
- Department of Animal Physiology, Lublin, Poland
| | - Hanna Antushevich
- Kielanowski Institute of Animal Physiology and Nutrition Polish Academy of Sciences, Department of Genetic Engineering, 05-110Jabłonna, Poland
| | - Atsukazu Kuwahara
- Laboratory of Physiology, Institute for Environmental Sciences, University of Shizuoka, 422-8526Shizuoka, Japan
| | - Ikuo Kato
- Department of Bioorganic Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University, 920-1154Kanazawa, Japan
| | - Marcin B. Arciszewski
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950Lublin, Poland
| |
Collapse
|
16
|
Mantadaki AE, Baliou S, Linardakis M, Vakonaki E, Tzatzarakis MN, Tsatsakis A, Symvoulakis EK. Quercetin Intake and Absolute Telomere Length in Patients with Type 2 Diabetes Mellitus: Novel Findings from a Randomized Controlled Before-and-After Study. Pharmaceuticals (Basel) 2024; 17:1136. [PMID: 39338301 PMCID: PMC11434860 DOI: 10.3390/ph17091136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Telomeres, the protective chromosomal ends, progressively shorten and potentially are implicated in the pathogenesis of age-related diseases. In type 2 diabetes (T2DM), telomere shortening may play an important role, but the whole 'picture' remains limited. From a therapeutic perspective, the phytonutrient quercetin appears to be clinically effective and safe for patients with T2DM. Considering the above, we aimed to examine whether quercetin could interfere with telomere length (TL) dynamics. One hundred patients with T2DM on non-insulin medications registered within a primary healthcare facility were stratified by age and sex and randomly assigned to either standard care or standard care plus quercetin (500 mg/day) for 12 weeks, succeeded by an 8-week washout period and another 12 weeks of supplementation. Of the 88 patients completing the trial, 82 consented to blood sampling for TL measurements. Health assessments and whole blood absolute TL measurements using quantitative polymerase chain reaction (qPCR) were conducted at baseline and study end, and the findings of this subcohort are presented. Quercetin supplementation was associated with a significant increase in mean TL (odds ratio ≥ 2.44; p < 0.05) with a strengthened association after full adjustment for potential confounders through multiple logistic regression analysis (odds ratio = 3.48; p = 0.026), suggesting it as a potentially promising supplementation option. Further studies are needed to confirm this finding, elucidating the underlying molecular mechanisms of quercetin.
Collapse
Affiliation(s)
- Aikaterini E Mantadaki
- Clinic of Social and Family Medicine, Department of Social Medicine, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Stella Baliou
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Manolis Linardakis
- Clinic of Social and Family Medicine, Department of Social Medicine, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Elena Vakonaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Manolis N Tzatzarakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Aristides Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Emmanouil K Symvoulakis
- Clinic of Social and Family Medicine, Department of Social Medicine, School of Medicine, University of Crete, 70013 Heraklion, Greece
| |
Collapse
|
17
|
Arias C, Álvarez-Indo J, Cifuentes M, Morselli E, Kerr B, Burgos PV. Enhancing adipose tissue functionality in obesity: senotherapeutics, autophagy and cellular senescence as a target. Biol Res 2024; 57:51. [PMID: 39118171 PMCID: PMC11312694 DOI: 10.1186/s40659-024-00531-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Obesity, a global health crisis, disrupts multiple systemic processes, contributing to a cascade of metabolic dysfunctions by promoting the pathological expansion of visceral adipose tissue (VAT). This expansion is characterized by impaired differentiation of pre-adipocytes and an increase in senescent cells, leading to a pro-inflammatory state and exacerbated oxidative stress. Particularly, the senescence-associated secretory phenotype (SASP) and adipose tissue hypoxia further impair cellular function, promoting chronic disease development. This review delves into the potential of autophagy modulation and the therapeutic application of senolytics and senomorphics as novel strategies to mitigate adipose tissue senescence. By exploring the intricate mechanisms underlying adipocyte dysfunction and the emerging role of natural compounds in senescence modulation, we underscore the promising horizon of senotherapeutics in restoring adipose health. This approach not only offers a pathway to combat the metabolic complications of obesity, but also opens new avenues for enhancing life quality and managing the global burden of obesity-related conditions. Our analysis aims to bridge the gap between current scientific progress and clinical application, offering new perspectives on preventing and treating obesity-induced adipose dysfunction.
Collapse
Affiliation(s)
- Consuelo Arias
- Escuela de Kinesiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, 7500922, Chile.
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
| | - Javiera Álvarez-Indo
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Mariana Cifuentes
- Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Eugenia Morselli
- Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile
| | - Bredford Kerr
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Patricia V Burgos
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
- Centro Basal Ciencia & Vida, Universidad San Sebastián, Santiago, Chile.
| |
Collapse
|
18
|
Luo Y, Qin Y, Kong L, Long J, Lukacs-Kornek V, Li J, Wei H, Qin J. Clinical and pathological characteristics of gestational diabetes mellitus with different insulin resistance. J Diabetes Complications 2024; 38:108796. [PMID: 38991491 DOI: 10.1016/j.jdiacomp.2024.108796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/09/2024] [Accepted: 06/09/2024] [Indexed: 07/13/2024]
Abstract
AIMS To elucidate the clinical and pathological characteristics of gestational diabetes mellitus (GDM) with high and low insulin resistance. METHODS In total, 1393 GDM and 1001 non-GDM singleton deliveries were included in this study. Insulin resistance subtypes were classified according to the HOMA2-IR value. Clinical data were analyzed using SPSS 26.0. Placenta samples were collected for pathological analysis. RESULTS Maternal age and fasting glucose were identified as independent risk factors for GDM with high insulin resistance (p < 0.01), while fasting glucose was the sole risk factor for GDM with low insulin resistance (p < 0.001). Fetal distress was associated with both of GDM subtypes (both p < 0.01), while anemia, fetal growth restriction, large for gestational age and intrahepatic cholestasis in pregnancy were related to specific GDM insulin resistance subtype. In addition, GDM with high insulin resistance showed an increase of syncytial knots with down-regulation of PI3K/AKT signaling, while GDM with low insulin resistance showed normal syncytial knot counts and up-regulation of PI3K/AKT signaling. CONCLUSIONS Our findings provide novel perspectives to the clinical and pathological comprehensions of GDM with high and low insulin resistance, which might facilitate the mechanism study of GDM and its precision pregnancy management.
Collapse
Affiliation(s)
- Yidan Luo
- Ruikang Clinical Medical College, Guangxi University of Chinese Medicine, Nanning, PR China(2); Department of Obstetrics, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, PR China(2)
| | - Yuqin Qin
- Department of Obstetrics, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, PR China(2)
| | - Lin Kong
- Department of Obstetrics, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, PR China(2)
| | - Junqing Long
- Department of Obstetrics, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, PR China(2)
| | - Veronika Lukacs-Kornek
- Institute of Molecular Medicine and Experimental Immunology, University Clinic of Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Jian Li
- Institute of Molecular Medicine and Experimental Immunology, University Clinic of Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Hongwei Wei
- Ruikang Clinical Medical College, Guangxi University of Chinese Medicine, Nanning, PR China(2); Department of Obstetrics, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, PR China(2); Birth Defects Prevention and Control Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, PR China.
| | - Jie Qin
- Department of Obstetrics, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, PR China(2); Birth Defects Prevention and Control Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, PR China; Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Nanning, PR China.
| |
Collapse
|
19
|
Wang W, Zhang Y, Yao W, Tang W, Li Y, Sun H, Ding W. Association between preoperative persistent hyperglycemia and postoperative delirium in geriatric hip fracture patients. BMC Geriatr 2024; 24:585. [PMID: 38977983 PMCID: PMC11232206 DOI: 10.1186/s12877-024-05192-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND The management of preoperative blood glucose levels in reducing the incidence of postoperative delirium (POD) remains controversial. This study aims to investigate the impact of preoperative persistent hyperglycemia on POD in geriatric patients with hip fractures. METHODS This retrospective cohort study analyzed medical records of patients who underwent hip fracture surgery at a tertiary medical institution between January 2013 and November 2023. Patients were categorized based on preoperative hyperglycemia (hyperglycemia defined as ≥ 6.1mmol/L), clinical classification of hyperglycemia, and percentile thresholds. Multivariate logistic regression and propensity score matching analysis (PSM) were employed to assess the association between different levels of preoperative glucose and POD. Subgroup analysis was conducted to explore potential interactions. RESULTS A total of 1440 patients were included in this study, with an incidence rate of POD at 19.1% (275/1440). Utilizing multiple logistic analysis, we found that patients with hyperglycemia had a 1.65-fold increased risk of experiencing POD compared to those with normal preoperative glucose levels (95% CI: 1.17-2.32). Moreover, a significant upward trend was discerned in both the strength of association and the predicted probability of POD with higher preoperative glucose levels. PSM did not alter this trend, even after meticulous adjustments for potential confounding factors. Additionally, when treating preoperative glucose levels as a continuous variable, we observed a 6% increase in the risk of POD (95% CI: 1-12%) with each 1mmol/L elevation in preoperative glucose levels. CONCLUSIONS There exists a clear linear dose-response relationship between preoperative blood glucose levels and the risk of POD. Higher preoperative hyperglycemia was associated with a greater risk of POD. CLINICAL TRIAL NUMBER NCT06473324.
Collapse
Affiliation(s)
- Wei Wang
- Department of Orthopedics, Dandong Central Hospital, China Medical University, Dandong, China
| | - Yingqi Zhang
- School of Clinical Medicine, Dalian Medical University, Dalian, China
| | - Wei Yao
- Department of Orthopedics, Dandong Central Hospital, China Medical University, Dandong, China
| | - Wanyun Tang
- Department of Orthopedics, Dandong Central Hospital, China Medical University, Dandong, China
| | - Yuhao Li
- Department of Orthopedics, Dandong Central Hospital, China Medical University, Dandong, China
| | - Hongbo Sun
- Department of Orthopedics, Dandong Central Hospital, China Medical University, Dandong, China.
- Dandong Central Hospital, China Medical University, No. 338 Jinshan Street, Zhenxing District, Dandong, Liaoning Province, 118002, P.R. China.
| | - Wenbo Ding
- Department of Orthopedics, Dandong Central Hospital, China Medical University, Dandong, China.
- Dandong Central Hospital, China Medical University, No. 338 Jinshan Street, Zhenxing District, Dandong, Liaoning Province, 118002, P.R. China.
| |
Collapse
|
20
|
Xiao R, Hu S, Du X, Wang Y, Fang K, Zhu Y, Lou N, Yuan C, Yang J. Revolutionizing Senescence Detection: Advancements from Traditional Methods to Cutting-Edge Techniques. Aging Dis 2024; 16:1285-1301. [PMID: 39012669 DOI: 10.14336/ad.202.0565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024] Open
Abstract
The accumulation of senescent cells is an important factor in the complex progression of aging, with significant implications for the development of numerous diseases. Thus, understanding the fundamental mechanisms of senescence is paramount for advancing preventive and therapeutic approaches to age-related conditions. Important to this pursuit is the precise identification and examination of senescent cells, contingent upon the recognition of specific biomarkers. Historically, detection methods relied on assessing molecular protein and mRNA levels and various staining techniques. While these conventional approaches have contributed substantially to the field, they possess limitations in capturing the dynamic evolution of cellular aging in real time. The emergence of novel technologies has led to a paradigm shift in senescence research. Gene-edited mouse models and the application of advanced probes have revolutionized our ability to detect senescent cells. These cutting-edge methodologies provide a more detailed and accurate means of dynamically monitoring, characterizing and potentially eliminating senescent cells, thus enhancing our understanding of the complex mechanisms of aging. This review comprehensively explores both traditional and innovative senescent cell detection methods, elucidating their advantages, limitations and implications for future investigations and could serve as a comprehensive guide and catalyst for further advancements in the understanding of aging and associated pathologies.
Collapse
Affiliation(s)
- Ruopeng Xiao
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Sinan Hu
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Xiaohui Du
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Yiwen Wang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Ke Fang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Yibin Zhu
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Nanbin Lou
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Chunhui Yuan
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Jing Yang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| |
Collapse
|
21
|
Chen Y, Wu J, Wong C, Gao W, Qi X, Zhou H. Disturbed glycolipid metabolism activates CXCL13-CXCR5 axis in senescent TSCs to promote heterotopic ossification. Cell Mol Life Sci 2024; 81:265. [PMID: 38880863 PMCID: PMC11335191 DOI: 10.1007/s00018-024-05302-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024]
Abstract
Heterotopic ossification (HO) occurs as a common complication after injury, while its risk factor and mechanism remain unclear, which restricts the development of pharmacological treatment. Clinical research suggests that diabetes mellitus (DM) patients are prone to developing HO in the tendon, but solid evidence and mechanical research are still needed. Here, we combined the clinical samples and the DM mice model to identify that disordered glycolipid metabolism aggravates the senescence of tendon-derived stem cells (TSCs) and promotes osteogenic differentiation. Then, combining the RNA-seq results of the aging tendon, we detected the abnormally activated autocrine CXCL13-CXCR5 axis in TSCs cultured in a high fat, high glucose (HFHG) environment and also in the aged tendon. Genetic inhibition of CXCL13 successfully alleviated HO formation in DM mice, providing a potential therapeutic target for suppressing HO formation in DM patients after trauma or surgery.
Collapse
Affiliation(s)
- Yuyu Chen
- Department of Plastic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jinna Wu
- Department of Breast Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Chipiu Wong
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Wenjie Gao
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China.
| | - Xiangdong Qi
- Department of Plastic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Hang Zhou
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
22
|
Mantadaki AE, Linardakis M, Tsakiri M, Baliou S, Fragkiadaki P, Vakonaki E, Tzatzarakis MN, Tsatsakis A, Symvoulakis EK. Benefits of Quercetin on Glycated Hemoglobin, Blood Pressure, PiKo-6 Readings, Night-Time Sleep, Anxiety, and Quality of Life in Patients with Type 2 Diabetes Mellitus: A Randomized Controlled Trial. J Clin Med 2024; 13:3504. [PMID: 38930033 PMCID: PMC11205103 DOI: 10.3390/jcm13123504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Background: Diabetes is a rapidly growing global morbidity issue with high prevalence, and the associated dysglycemia leads to complications. Patients with type 2 diabetes mellitus (T2DM) often experience elevated anxiety levels, affecting their quality of life and diabetes management. This study investigated quercetin, a nutraceutical and potential senolytic with antioxidant activity, to detect its possible positive effect on the bio-clinical measurements and routine health of patients with T2DM. Methods: This prospective randomized controlled trial (RCT) investigated the clinical usefulness of quercetin in patients with T2DM receiving non-insulin medications. One hundred participants were stratified by age and sex (1:1) and randomized to control (n = 50) or intervention (n = 50) groups. The control received standard care only, while the intervention received 500 mg quercetin daily for 12 weeks, followed by an 8-week washout and a final consecutive 12-week supplementation period (total: 32 weeks), as adjunct to their usual care. Comprehensive health assessments, including blood analyses, were conducted at baseline and study termination. Quality of life and anxiety were assessed using the 36-item Short Form Health Survey (SF-36) and Short Anxiety Screening Test (SAST-10). Results: Eighty-eight patients with T2DM concluded the trial. Compared with the control, glycated hemoglobin (HbA1c) levels showed a significant decrease (Δ%-change: -4.0% vs. 0.1%, p = 0.011). Quercetin also significantly improved PiKo-6 readings (FEV1: 5.6% vs. -1.5%, p = 0.002), systolic blood pressure (-5.0% vs. -0.2%, p = 0.029), night-time sleep (11.6% vs. -7.3%, p < 0.001), anxiety levels (SAST-10) (-26.2% vs. 3.3%, p < 0.001), and quality of life (SF-36) (both physical and mental components, p < 0.001). Conclusions: Based on the current open-label study, quercetin appears to be a promising supplement for T2DM, providing lifestyle and care support. Further research is warranted to shift this potential from clinical usefulness and feasibility to multidisciplinary evidence.
Collapse
Affiliation(s)
- Aikaterini E. Mantadaki
- Clinic of Social and Family Medicine, Department of Social Medicine, School of Medicine, University of Crete, 70013 Heraklion, Greece; (M.L.); (E.K.S.)
| | - Manolis Linardakis
- Clinic of Social and Family Medicine, Department of Social Medicine, School of Medicine, University of Crete, 70013 Heraklion, Greece; (M.L.); (E.K.S.)
| | - Maria Tsakiri
- Iatrica, Local Unit of Lab Analysis and Diagnostics Network, 71303 Heraklion, Greece;
| | - Stella Baliou
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece or (S.B.); (P.F.); (E.V.); (M.N.T.); (A.T.)
| | - Persefoni Fragkiadaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece or (S.B.); (P.F.); (E.V.); (M.N.T.); (A.T.)
| | - Elena Vakonaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece or (S.B.); (P.F.); (E.V.); (M.N.T.); (A.T.)
| | - Manolis N. Tzatzarakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece or (S.B.); (P.F.); (E.V.); (M.N.T.); (A.T.)
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece or (S.B.); (P.F.); (E.V.); (M.N.T.); (A.T.)
| | - Emmanouil K. Symvoulakis
- Clinic of Social and Family Medicine, Department of Social Medicine, School of Medicine, University of Crete, 70013 Heraklion, Greece; (M.L.); (E.K.S.)
| |
Collapse
|
23
|
Chatzianagnostou K, Gaggini M, Suman Florentin A, Simonini L, Vassalle C. New Molecules in Type 2 Diabetes: Advancements, Challenges and Future Directions. Int J Mol Sci 2024; 25:6218. [PMID: 38892417 PMCID: PMC11173177 DOI: 10.3390/ijms25116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
Although good glycemic control in patients with type 2 diabetes (T2D) can prevent cardiovascular complications, many diabetic patients still have poor optimal control. A new class of antidiabetic drugs (e.g., glucagon-like peptide-1-GLP-1 receptor agonists, sodium-glucose co-transporters-SGLT2 inhibitors), in addition to the low hypoglycemic effect, exert multiple beneficial effects at a metabolic and cardiovascular level, through mechanisms other than antihyperglycemic agents. This review aims to discuss the effects of these new antidiabetic drugs, highlighting cardiovascular and metabolic benefits, through the description of their action mechanisms as well as available data by preclinical and clinical studies. Moreover, new innovative tools in the T2D field will be described which may help to advance towards a better targeted T2D personalized care in future.
Collapse
Affiliation(s)
| | - Melania Gaggini
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (A.S.F.)
| | - Adrian Suman Florentin
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (A.S.F.)
| | - Ludovica Simonini
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy;
| | - Cristina Vassalle
- Fondazione CNR-Regione Toscana G Monasterio, Via G. Moruzzi 1, 56124 Pisa, Italy;
| |
Collapse
|
24
|
Luo C, Nakagawa M, Sumi Y, Matsushima Y, Uemura M, Honda Y, Matsumoto N. Detection of senescent cells in the mucosal healing process on type 2 diabetic rats after tooth extraction for biomaterial development. Dent Mater J 2024; 43:430-436. [PMID: 38644214 DOI: 10.4012/dmj.2023-262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The delayed mucosal healing of tooth extraction sockets in diabetes has few known effective treatment strategies, and its underlying mechanism remains unknown. Senescent cells may play a pivotal role in this delay, given the well-established association between diabetes, senescent cells, and wound healing. Here, we demonstrated an increase in p21- or p16-positive senescent cells in the epithelial and connective tissues of extraction sockets in type 2 diabetic rats compared to those in control rats. Between 7 and 14 days after tooth extraction, a decrease in senescent cells and improvement in re-epithelialization failure were observed in the epithelium, while an increase in senescent cells and persistence of inflammation were observed in the connective tissue. These results suggest that cellular senescence may have been induced by diabetes and contributed to delayed mucosal healing by suppressing re-epithelization and persistent inflammation. These findings provide new targets for treatment using biomaterials, cells, and drugs.
Collapse
Affiliation(s)
- Chuyi Luo
- Department of Orthodontics, Osaka Dental University
| | | | - Yoichi Sumi
- Department of Anatomy, Osaka Dental University
| | | | | | | | | |
Collapse
|
25
|
Zygmunciak P, Stróżna K, Błażowska O, Mrozikiewicz-Rakowska B. Extracellular Vesicles in Diabetic Cardiomyopathy-State of the Art and Future Perspectives. Int J Mol Sci 2024; 25:6117. [PMID: 38892303 PMCID: PMC11172920 DOI: 10.3390/ijms25116117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Cardiovascular complications are the most deadly and cost-driving effects of diabetes mellitus (DM). One of them, which is steadily attracting attention among scientists, is diabetes-induced heart failure, also known as diabetic cardiomyopathy (DCM). Despite significant progress in the research concerning the disease, a universally accepted definition is still lacking. The pathophysiology of the processes accelerating heart insufficiency in diabetic patients on molecular and cellular levels also remains elusive. However, the recent interest concerning extracellular vesicles (EVs) has brought promise to further clarifying the pathological events that lead to DCM. In this review, we sum up recent investigations on the involvement of EVs in DCM and show their therapeutic and indicatory potential.
Collapse
Affiliation(s)
| | - Katarzyna Stróżna
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.Z.)
| | - Olga Błażowska
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.Z.)
| | - Beata Mrozikiewicz-Rakowska
- Department of Endocrinology, Centre of Postgraduate Medical Education, Marymoncka St. 99/103, 01-813 Warsaw, Poland
| |
Collapse
|
26
|
Nguyen TT, Corvera S. Adipose tissue as a linchpin of organismal ageing. Nat Metab 2024; 6:793-807. [PMID: 38783156 PMCID: PMC11238912 DOI: 10.1038/s42255-024-01046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/10/2024] [Indexed: 05/25/2024]
Abstract
Ageing is a conserved biological process, modulated by intrinsic and extrinsic factors, that leads to changes in life expectancy. In humans, ageing is characterized by greatly increased prevalence of cardiometabolic disease, type 2 diabetes and disorders associated with impaired immune surveillance. Adipose tissue displays species-conserved, temporal changes with ageing, including redistribution from peripheral to central depots, loss of thermogenic capacity and expansion within the bone marrow. Adipose tissue is localized to discrete depots, and also diffusely distributed within multiple organs and tissues in direct proximity to specialized cells. Thus, through their potent endocrine properties, adipocytes are capable of modulating tissue and organ function throughout the body. In addition to adipocytes, multipotent progenitor/stem cells in adipose tissue play a crucial role in maintenance and repair of tissues throughout the lifetime. Adipose tissue may therefore be a central driver for organismal ageing and age-associated diseases. Here we review the features of adipose tissue during ageing, and discuss potential mechanisms by which these changes affect whole-body metabolism, immunity and longevity. We also explore the potential of adipose tissue-targeted therapies to ameliorate age-associated disease burdens.
Collapse
Affiliation(s)
- Tammy T Nguyen
- Department of Surgery, Division of Vascular Surgery, UMass Memorial Medical Center, Worcester, MA, USA
- Diabetes Center of Excellence, UMass Chan Medical School, Worcester, MA, USA
| | - Silvia Corvera
- Diabetes Center of Excellence, UMass Chan Medical School, Worcester, MA, USA.
- Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, USA.
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
27
|
Pukhalskaia TV, Yurakova TR, Bogdanova DA, Demidov ON. Tumor-Associated Senescent Macrophages, Their Markers, and Their Role in Tumor Microenvironment. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:839-852. [PMID: 38880645 DOI: 10.1134/s0006297924050055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 06/18/2024]
Abstract
Tumor-associated macrophages (TAMs) are an important component of the tumor microenvironment (TME) and the most abundant population of immune cells infiltrating a tumor. TAMs can largely determine direction of anti-tumor immune response by promoting it or, conversely, contribute to formation of an immunosuppressive TME that allows tumors to evade immune control. Through interactions with tumor cells or other cells in the microenvironment and, as a result of action of anti-cancer therapy, macrophages can enter senescence. In this review, we have attempted to summarize information available in the literature on the role of senescent macrophages in tumors. With the recent development of senolytic therapeutic strategies aimed at removing senescent cells from an organism, it seems important to discuss functions of the senescent macrophages and potential role of the senolytic drugs in reprogramming TAMs to enhance anti-tumor immune response and improve efficacy of cancer treatment.
Collapse
Affiliation(s)
- Tamara V Pukhalskaia
- Sirius University of Science and Technology, Federal Territory Sirius, 354340, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - Taisiya R Yurakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Daria A Bogdanova
- Sirius University of Science and Technology, Federal Territory Sirius, 354340, Russia
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - Oleg N Demidov
- Sirius University of Science and Technology, Federal Territory Sirius, 354340, Russia.
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
- INSERM UMR1231, Université de Bourgogne, Dijon, 21000, France
| |
Collapse
|
28
|
Dotou M, L'honoré A, Moumné R, El Amri C. Amide Alkaloids as Privileged Sources of Senomodulators for Therapeutic Purposes in Age-Related Diseases. JOURNAL OF NATURAL PRODUCTS 2024; 87:617-628. [PMID: 38436272 DOI: 10.1021/acs.jnatprod.3c01195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Nature is an important source of bioactive compounds and has continuously made a large contribution to the discovery of new drug leads. Particularly, plant-derived compounds have long been identified as highly interesting in the field of aging research and senescence. Many plants contain bioactive compounds that have the potential to influence cellular processes and provide health benefits. Among them, Piper alkaloids have emerged as interesting candidates in the context of age-related diseases and particularly senescence. These compounds have been shown to display a variety of features, including antioxidant, anti-inflammatory, neuroprotective, and other bioactive properties that may help counteracting the effects of cellular aging processes. In the review, we will put the emphasis on piperlongumine and other related derivatives, which belong to the Piper alkaloids, and whose senomodulating potential has emerged during the last several years. We will also provide a survey on their potential in therapeutic perspectives of age-related diseases.
Collapse
Affiliation(s)
- Mazzarine Dotou
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256 CNRS-SU, ERL INSERM U1164, Biological Adaptation and Ageing, F-75252 Paris, France
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des biomolécules, LBM, 75005 Paris, France
| | - Aurore L'honoré
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256 CNRS-SU, ERL INSERM U1164, Biological Adaptation and Ageing, F-75252 Paris, France
| | - Roba Moumné
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des biomolécules, LBM, 75005 Paris, France
| | - Chahrazade El Amri
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256 CNRS-SU, ERL INSERM U1164, Biological Adaptation and Ageing, F-75252 Paris, France
| |
Collapse
|
29
|
Vercalsteren E, Karampatsi D, Buizza C, Nyström T, Klein T, Paul G, Patrone C, Darsalia V. The SGLT2 inhibitor Empagliflozin promotes post-stroke functional recovery in diabetic mice. Cardiovasc Diabetol 2024; 23:88. [PMID: 38424560 PMCID: PMC10905950 DOI: 10.1186/s12933-024-02174-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Type-2 diabetes (T2D) worsens stroke recovery, amplifying post-stroke disabilities. Currently, there are no therapies targeting this important clinical problem. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are potent anti-diabetic drugs that also efficiently reduce cardiovascular death and heart failure. In addition, SGLT2i facilitate several processes implicated in stroke recovery. However, the potential efficacy of SGLT2i to improve stroke recovery in T2D has not been investigated. Therefore, we determined whether a post-stroke intervention with the SGLT2i Empagliflozin could improve stroke recovery in T2D mice. T2D was induced in C57BL6J mice by 8 months of high-fat diet feeding. Hereafter, animals were subjected to transient middle cerebral artery occlusion and treated with vehicle or the SGLTi Empagliflozin (10 mg/kg/day) starting from 3 days after stroke. A similar study in non diabetic mice was also conducted. Stroke recovery was assessed using the forepaw grip strength test. To identify potential mechanisms involved in the Empagliflozin-mediated effects, several metabolic parameters were assessed. Additionally, neuronal survival, neuroinflammation, neurogenesis and cerebral vascularization were analyzed using immunohistochemistry/quantitative microscopy. Empagliflozin significantly improved stroke recovery in T2D but not in non-diabetic mice. Improvement of functional recovery was associated with lowered glycemia, increased serum levels of fibroblast growth factor-21 (FGF-21), and the normalization of T2D-induced aberration of parenchymal pericyte density. The global T2D-epidemic and the fact that T2D is a major risk factor for stroke are drastically increasing the number of people in need of efficacious therapies to improve stroke recovery. Our data provide a strong incentive for the potential use of SGLT2i for the treatment of post-stroke sequelae in T2D.
Collapse
Affiliation(s)
- Ellen Vercalsteren
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, 118 83, Stockholm, Sweden.
| | - Dimitra Karampatsi
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, 118 83, Stockholm, Sweden
| | - Carolina Buizza
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center and Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Thomas Nyström
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, 118 83, Stockholm, Sweden
| | - Thomas Klein
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Gesine Paul
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center and Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Cesare Patrone
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, 118 83, Stockholm, Sweden.
| | - Vladimer Darsalia
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, 118 83, Stockholm, Sweden.
| |
Collapse
|
30
|
Sarandy MM, Gonçalves RV, Valacchi G. Cutaneous Redox Senescence. Biomedicines 2024; 12:348. [PMID: 38397950 PMCID: PMC10886899 DOI: 10.3390/biomedicines12020348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Our current understanding of skin cell senescence involves the role of environmental stressors (UV, O3, cigarette smoke, particulate matter, etc.), lifestyle (diet, exercise, etc.) as well as genetic factors (metabolic changes, hormonal, etc.). The common mechanism of action of these stressors is the disturbance of cellular redox balance characterized by increased free radicals and reactive oxygen species (ROS), and when these overload the intrinsic antioxidant defense system, it can lead to an oxidative stress cellular condition. The main redox mechanisms that activate cellular senescence in the skin involve (1) the oxidative damage of telomeres causing their shortening; (2) the oxidation of proteomes and DNA damage; (3) an a in lysosomal mass through the increased activity of resident enzymes such as senescence-associated β-galactosidase (SA-β-gal) as well as other proteins that are products of lysosomal activity; (4) and the increased expression of SASP, in particular pro-inflammatory cytokines transcriptionally regulated by NF-κB. However, the main targets of ROS on the skin are the proteome (oxi-proteome), followed by telomeres, nucleic acids (DNAs), lipids, proteins, and cytoplasmic organelles. As a result, cell cycle arrest pathways, lipid peroxidation, increased lysosomal content and dysfunctional mitochondria, and SASP synthesis occur. Furthermore, oxidative stress in skin cells increases the activity of p16INK4A and p53 as inhibitors of Rb and CDks, which are important for maintaining the cell cycle. p53 also promotes the inactivation of mTOR-mediated autophagic and apoptotic pathways, leading to senescence. However, these markers alone cannot establish the state of cellular senescence, and multiple analyses are encouraged for confirmation. An updated and more comprehensive approach to investigating skin senescence should include further assays of ox-inflammatory molecular pathways that can consolidate the understanding of cutaneous redox senescence.
Collapse
Affiliation(s)
- Mariáurea Matias Sarandy
- Department of Animal Science, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, NC 28081, USA
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| | - Reggiani Vilela Gonçalves
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
- Department of Animal Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| | - Giuseppe Valacchi
- Department of Animal Science, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, NC 28081, USA
- Department of Environment and Prevention, University of Ferrara, 44121 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
31
|
Kitaeva KV, Solovyeva VV, Blatt NL, Rizvanov AA. Eternal Youth: A Comprehensive Exploration of Gene, Cellular, and Pharmacological Anti-Aging Strategies. Int J Mol Sci 2024; 25:643. [PMID: 38203812 PMCID: PMC10778954 DOI: 10.3390/ijms25010643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
The improvement of human living conditions has led to an increase in average life expectancy, creating a new social and medical problem-aging, which diminishes the overall quality of human life. The aging process of the body begins with the activation of effector signaling pathways of aging in cells, resulting in the loss of their normal functions and deleterious effects on the microenvironment. This, in turn, leads to chronic inflammation and similar transformations in neighboring cells. The cumulative retention of these senescent cells over a prolonged period results in the deterioration of tissues and organs, ultimately leading to a reduced quality of life and an elevated risk of mortality. Among the most promising methods for addressing aging and age-related illnesses are pharmacological, genetic, and cellular therapies. Elevating the activity of aging-suppressing genes, employing specific groups of native and genetically modified cells, and utilizing senolytic medications may offer the potential to delay aging and age-related ailments over the long term. This review explores strategies and advancements in the field of anti-aging therapies currently under investigation, with a particular emphasis on gene therapy involving adeno-associated vectors and cell-based therapeutic approaches.
Collapse
Affiliation(s)
- Kristina V. Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.V.K.); (V.V.S.); (N.L.B.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.V.K.); (V.V.S.); (N.L.B.)
| | - Nataliya L. Blatt
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.V.K.); (V.V.S.); (N.L.B.)
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.V.K.); (V.V.S.); (N.L.B.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| |
Collapse
|
32
|
Huang Y, Wang D, Zhang W, Yuan X, Li K, Zhang Y, Zeng M. Identification of hub genes and pathways associated with cellular senescence in diabetic foot ulcers via comprehensive transcriptome analysis. J Cell Mol Med 2024; 28:e18043. [PMID: 37985432 PMCID: PMC10805497 DOI: 10.1111/jcmm.18043] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023] Open
Abstract
This research aimed to find important genes and pathways related to cellular senescence (CS) in diabetic foot ulcers (DFU) and to estimate the possible pathways through which CS affects diabetic foot healing. The GSE80178 dataset was acquired from the Gene Expression Omnibus (GEO) database, containing six DFU and three diabetic foot skin (DFS) samples. The limma package was used to identify differentially expressed genes (DEGs). At the same time, DEGs associated with CS (CS-DEGs) were found using the CellAge database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted on the CS-DEGs. A protein-protein interaction (PPI) network was built using the String database, and the cytoHubba plug-in within Cytoscape helped identify hub genes. Lastly, the miRNA-TF-mRNA regulatory network for these hub genes was established. In total, 66 CS-DEGs were obtained. These genes mainly focus on CS, Kaposi sarcoma-associated herpesvirus infection and Toll-like receptor signalling pathway. Eight hub genes were identified to regulate cell senescence in DFU, including TP53, SRC, SIRT1, CCND1, EZH2, CXCL8, AR and CDK4. According to miRNA-TF-mRNA regulatory network, hsa-mir-132-3p/SIRT1/EZH2 axis is involved in senescence cell accumulation in DFU.
Collapse
Affiliation(s)
- Yike Huang
- Department of EmergencyThe First Affiliated Hospital of Chengdu Medical CollegeChengduChina
| | - Dongqing Wang
- Department of EmergencyThe First Affiliated Hospital of Chengdu Medical CollegeChengduChina
| | - Wen Zhang
- School of Clinical Medicine, Chengdu Medical CollegeChengduChina
- Department of Medical LaboratoryXindu District People’ s Hospital of ChengduChengduChina
| | - Xue Yuan
- Department of PediatricsChongqing Bishan Area Women and Children HospitalChongqingChina
| | - Ke Li
- Department of EmergencyThe First Affiliated Hospital of Chengdu Medical CollegeChengduChina
| | - Yuanyuan Zhang
- Department of Medical LaboratoryXindu District People’ s Hospital of ChengduChengduChina
| | - Mingqiang Zeng
- Department of EmergencyThe First Affiliated Hospital of Chengdu Medical CollegeChengduChina
| |
Collapse
|
33
|
Kruczkowska W, Gałęziewska J, Kciuk M, Gielecińska A, Płuciennik E, Pasieka Z, Zhao LY, Yu YJ, Kołat D, Kałuzińska-Kołat Ż. Senescent adipocytes and type 2 diabetes - current knowledge and perspective concepts. Biomol Concepts 2024; 15:bmc-2022-0046. [PMID: 38530804 DOI: 10.1515/bmc-2022-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Among civilization diseases, the number of individuals suffering from type 2 diabetes (T2DM) is expected to increase to more than a billion in less than 20 years, which is associated with, e.g., populational aging, poor diet, sedentary lifestyle, genetic predispositions, and immunological factors. T2DM affects many organs and is characterized by insulin resistance, high glucose levels, and adipocyte dysfunction, which are related to senescence. Although this type of cellular aging has beneficial biological functions, it can also act unfavorable since senescent adipocytes resist apoptosis, enhance cytokine secretion, downregulate cell identity genes, and acquire the senescence-associated secretory phenotype that renders a more oxidative environment. Opposing T2DM is possible via a wide variety of senotherapies, including senolytics and senomorphics; nevertheless, further research is advised to expand therapeutic possibilities and benefits. Consequences that ought to be deeply researched include secretory phenotype, chronic inflammation, increasing insulin resistance, as well as impairment of adipogenesis and functioning of adipocyte cells. Herein, despite reviewing T2DM and fat tissue senescence, we summarized the latest adipocyte-related anti-diabetes solutions and suggested further research directions.
Collapse
Affiliation(s)
- Weronika Kruczkowska
- Faculty of Biomedical Sciences, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
| | - Julia Gałęziewska
- Faculty of Biomedical Sciences, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Elżbieta Płuciennik
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
| | - Zbigniew Pasieka
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Lin-Yong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yi-Jin Yu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Damian Kołat
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Żaneta Kałuzińska-Kołat
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| |
Collapse
|
34
|
Govender S, Kruger MJ, van de Vyver M. Counteracting diabetes-induced adipose tissue derived-stromal cell senescence. Biochimie 2023; 220:11-21. [PMID: 38104715 DOI: 10.1016/j.biochi.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/20/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Adipose tissue stromal cells (ADSCs) are prone to functional decline and senescence during metabolic disturbances. In diabetes mellitus (DM), the pathogenic microenvironment induces oxidative stress causing ADSCs to senesce. The senescence associated secretory phenotype (SASP) in turn drives disease progression. The pathogenesis of DM is thus both a cause and consequence of senescence. Therapeutically preventing the onset of senescence in ADSCs may play a significant role in preventing disease progression and directly impact the onset of comorbidities. The purpose of this study was to establish an in vitro model that mimic the DM micro-environment to use as a screening tool to assess the therapeutic efficacy of preventative and restorative agents. Exposing ADSCs (
Collapse
Affiliation(s)
- Saiuree Govender
- Experimental Medicine Research Group, Department of Medicine, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Maria Jacoba Kruger
- Experimental Medicine Research Group, Department of Medicine, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Mari van de Vyver
- Experimental Medicine Research Group, Department of Medicine, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
35
|
Li T, Yang J, Tan A, Chen H. Irisin suppresses pancreatic β cell pyroptosis in T2DM by inhibiting the NLRP3-GSDMD pathway and activating the Nrf2-TrX/TXNIP signaling axis. Diabetol Metab Syndr 2023; 15:239. [PMID: 37993958 PMCID: PMC10664367 DOI: 10.1186/s13098-023-01216-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/11/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Irisin plays a key role in metabolic diseases, including type 2 diabetes mellitus (T2DM). However, the mechanism underlying the link between irisin and the development of T2DM, particularly in pancreatic islet β-cells, remains unknown. METHODS In vitro, Min6 cells were treated with high glucose (HG) to generate T2DM cell models. GSDMD-N staining, Western blotting assays, and ELISA were performed to measure the expression levels of GSDMD, caspase 1, IL-1β, and IL-18. Next, the NLRP3 stimulator, ATP, was used to assess the effect of irisin on NLRP3 inflammasome. To evaluate the function of the Nrf2-TrX/TXNIP signaling axis, the Nrf2 inhibitor ML385 was used. For in vivo assessment, we first established T2DM model mice. Then, hematoxylin and eosin (H&E) staining was performed to observe the islet morphology, and the immunofluorescence technique was used to examine the mass of α and β cells. To confirm the role of the Nrf2-TrX/TXNIP signaling axis, ML385 was injected into the mice. Immunofluorescence of Nrf2, caspase 1, and GSDMD was detected in the islet cells of the model mice to verify the results. RESULTS We found that irisin treatment significantly decreased the expression of GSDMD-N (P31) and cleaved caspase-1 (p20), decreased caspase1 activity, and inhibited the secretion of IL-1β and IL-18 in HG-treated Min6 cells. We also found that irisin inhibited oxidative stress and NLRP3 expression by activating the Nrf2-TrX/TXNIP signaling axis. Additionally, in the T2DM model mice, irisin enhanced the function of islet cells, decreased insulin resistance, and preserved the morphology of pancreatic islets. CONCLUSION We showed in this study that irisin can be used for treating pyroptosis in HG-induced islet β-cells and T2DM model mice. We also found that irisin inhibits pyroptosis and oxidative stress by inhibiting the NLRP3-GSDMD pathway and activating the Nrf2-TrX/TXNIP signaling axis.
Collapse
Affiliation(s)
- Tianrong Li
- Department of Geriatric Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157 Jinbi Road, Kunming, Yunnan, 650032, China
| | - Jingjing Yang
- Department of Geriatric Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157 Jinbi Road, Kunming, Yunnan, 650032, China
| | - Anjun Tan
- Department of Geriatric Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157 Jinbi Road, Kunming, Yunnan, 650032, China.
| | - Hewen Chen
- Department of Geriatric Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157 Jinbi Road, Kunming, Yunnan, 650032, China
| |
Collapse
|
36
|
Escalona R, Larqué C, Cortes D, Vilchis R, Granados-Delgado E, Sánchez A, Sánchez-Bringas G, Lugo-Martínez H. High-fat diet impairs glucose homeostasis by increased p16 beta-cell expression and alters glucose homeostasis of the progeny in a parental-sex dependent manner. Front Endocrinol (Lausanne) 2023; 14:1246194. [PMID: 37876538 PMCID: PMC10591070 DOI: 10.3389/fendo.2023.1246194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023] Open
Abstract
Introduction Obesity consists in the accumulation of adipose tissue accompanied by low grade chronic inflammation and is considered a pandemic disease. Recent studies have observed that obesity affects females and males in a sex-dependent manner. In addition, several works have demonstrated that parental obesity increases the risk to develop obesity, insulin resistance, diabetes, and reproductive disorders. Considering that intergenerational effects of obesity may occur in a sex-dependent manner, we studied male Wistar rat progeny (F1) obtained from mothers or fathers (F0) fed on a high-fat diet (HFD). Methods Five-week-old female and male Wistar rats were fed on a HFD (with 60% of calories provided by fat) for 18 weeks (F0). At the end of the treatment, animals were mated with young rats to obtain their progeny (F1). After weaning, F1 animals were fed on standard chow until 18 weeks of age. Body weight gain, fasting plasma glucose, insulin and leptin levels, glucose tolerance, insulin sensitivity, and adiposity were evaluated. In addition, beta-cell expression of nuclear p16 was assessed by immunofluorescence. Results and conclusions HFD altered plasma fasting glucose, insulin and leptin levels, glucose tolerance, adiposity, and beta-cell expression of p16 in F0 rats. Particularly, HFD showed sexual dimorphic effects on body weight gain and insulin sensitivity. Moreover, we observed that parental HFD feeding exerts parental-sex-specific metabolic impairment in the male progeny. Finally, parental metabolic dysfunction could be in part attributed to the increased beta-cell expression of p16; other mechanisms could be involved in the offspring glucose homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Haydée Lugo-Martínez
- Laboratory of Embryology and Genetics, Departamento de Embriología y Genética, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
37
|
Zhang H, Zhou H, Shen X, Lin X, Zhang Y, Sun Y, Zhou Y, Zhang L, Zhang D. The role of cellular senescence in metabolic diseases and the potential for senotherapeutic interventions. Front Cell Dev Biol 2023; 11:1276707. [PMID: 37868908 PMCID: PMC10587568 DOI: 10.3389/fcell.2023.1276707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Cellular senescence represents an irreversible state of cell cycle arrest induced by various stimuli strongly associated with aging and several chronic ailments. In recent years, studies have increasingly suggested that the accumulation of senescent cells is an important contributor to the decline of organ metabolism, ultimately resulting in metabolic diseases. Conversely, the elimination of senescent cells can alleviate or postpone the onset and progression of metabolic diseases. Thus, a close relationship between senescent cells and metabolic diseases is found, and targeting senescent cells has emerged as an alternative therapy for the treatment of metabolic diseases. In this review, we summarize the role of cellular senescence in metabolic diseases, explore relevant therapeutic strategies for metabolic diseases by removing senescent cells, and provide new insights into the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Huantong Zhang
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Han Zhou
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Xin Shen
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Xingchen Lin
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Yuke Zhang
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Yiyi Sun
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Yi Zhou
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Lei Zhang
- School of Economy and Management, Zhejiang Sci-Tech University, Hangzhou, China
- Taizhou Hospital of Zhejiang Province, Zhejiang University, Taizhou, China
| | - Dayong Zhang
- School of Medicine, Hangzhou City University, Hangzhou, China
| |
Collapse
|
38
|
Power H, Valtchev P, Dehghani F, Schindeler A. Strategies for senolytic drug discovery. Aging Cell 2023; 22:e13948. [PMID: 37548098 PMCID: PMC10577556 DOI: 10.1111/acel.13948] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 08/08/2023] Open
Abstract
Senolytics are a category of drugs that reduce the impact of cellular senescence, an effect associated with a range of chronic and age-related diseases. Since the discovery of the first senolytics in 2015, the number of known senolytic agents has grown dramatically. This review discusses the broad categories of known senolytics-kinase inhibitors, Bcl-2 family protein inhibitors, naturally occurring polyphenols, heat shock protein inhibitors, BET family protein inhibitors, P53 stabilizers, repurposed anti-cancer drugs, cardiac steroids, PPAR-alpha agonists, and antibiotics. The approaches used to screen for new senolytics are articulated including a range of methods to induce senescence, different target cell types, various senolytic assays, and markers. The choice of methods can greatly influence the outcomes of a screen, with high-quality screens featuring robust systems, adequate controls, and extensive validation in alternate assays. Recent advances in single-cell analysis and computational methods for senolytic identification are also discussed. There is significant potential for further drug discovery, but this will require additional research into drug targets and mechanisms of actions and their subsequent rigorous evaluation in pre-clinical models and human trials.
Collapse
Affiliation(s)
- Helen Power
- Faculty of Engineering, School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNew South WalesAustralia
- Centre for Advanced Food EngineeringThe University of SydneySydneyNew South WalesAustralia
- Bioengineering and Molecular Medicine LaboratoryThe Children's Hospital at Westmead and The Westmead Institute for Medical ResearchWestmeadNew South WalesAustralia
| | - Peter Valtchev
- Faculty of Engineering, School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNew South WalesAustralia
- Centre for Advanced Food EngineeringThe University of SydneySydneyNew South WalesAustralia
| | - Fariba Dehghani
- Faculty of Engineering, School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNew South WalesAustralia
- Centre for Advanced Food EngineeringThe University of SydneySydneyNew South WalesAustralia
| | - Aaron Schindeler
- Faculty of Engineering, School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNew South WalesAustralia
- Centre for Advanced Food EngineeringThe University of SydneySydneyNew South WalesAustralia
- Bioengineering and Molecular Medicine LaboratoryThe Children's Hospital at Westmead and The Westmead Institute for Medical ResearchWestmeadNew South WalesAustralia
| |
Collapse
|
39
|
Fang X, Gao C, Wu W, Hu X, Shao M, Zhou C, Cai R, Fang J, Li Y, Xu Y, Zhang X. The role of the gut microbiome in weight-gain in schizophrenia patients treated with atypical antipsychotics: Evidence based on altered composition and function in a cross-sectional study. Psychiatry Res 2023; 328:115463. [PMID: 37717547 DOI: 10.1016/j.psychres.2023.115463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/19/2023]
Abstract
OBJECTIVES We aimed to explore the interconnection between the weight-gain in schizophrenia patients with atypical antipsychotic treatment and gut microbiome. METHODS This study employed a cross-sectional design, encompassing a total of 88 schizophrenia patients with long-term atypical antipsychotic treatment. The 16S rRNA gene sequencing was used to identify gut microbiome contents. RESULTS No significant differences in alpha diversity between normal-weight and overweight schizophrenia treated with atypical antipsychotics. The beta diversity analysis showed that overweight patients clustered tightly while normal-weight patients clustered widely. For taxonomic composition, overweight patients had a lower relative abundance in Porphyromonadaceae at family level and Butyrivibrio at genus level, but higher relative abundance in Ruminococcus2 and Clostridium_XIVa at genus level than normal-weight patients. Function prediction revelated that four pathways (including Cell cycle, Non-homologous end-joining, Vibrio cholerae infection and Meiosis-yeast) were significantly different between groups. Correlation analysis indicated that Klebsiella, Butyrivibrio, Unassigned, Methanosphaera, Holdemania, Anaerotruncus were negatively, while Veillonella was positively correlated with BMI in patients. CONCLUSION Our findings offer evidence that perturbations in the gut microbiome composition, encompassing taxa such as Porphyromonadaceae, Butyrivibrio, Ruminococcus2, and Clostridium_XIVa, in conjunction with distinct functional pathways including Cell cycle, Non-homologous end-joining, Vibrio cholerae infection, and Meiosis-yeast, might contribute to the weight-gain in schizophrenia treated with atypical antipsychotics.
Collapse
Affiliation(s)
- Xinyu Fang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chunying Gao
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China; Department of Psychiatry, Changzhou De'an Hospital, Changzhou, China
| | - Weifeng Wu
- Department of Hepatology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China; Nanjing Public Health and Medical Center, Nanjing, China
| | - Xiuxiu Hu
- Department of Psychiatry, Jiangning District Second People' s Hospital, Nanjing, China
| | - Miaomiao Shao
- Department of Psychiatry, Jiangning District Second People' s Hospital, Nanjing, China
| | - Chou Zhou
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Renliang Cai
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jin Fang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Li
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| | - Yue Xu
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China; The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
40
|
Hammad R, Abdel Wahab MA, Farouk N, Zakaria MY, Eldosoky MA, Elmadbouly AA, Tahoun SA, Mahmoud E, Khirala SK, Mohammed AR, Emam WA, Abo Elqasem AA, Kotb FM, Abd Elghany RAE. Non-classical monocytes frequency and serum vitamin D 3 levels are linked to diabetic foot ulcer associated with peripheral artery disease. J Diabetes Investig 2023; 14:1192-1201. [PMID: 37394883 PMCID: PMC10512914 DOI: 10.1111/jdi.14048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/26/2023] [Accepted: 06/15/2023] [Indexed: 07/04/2023] Open
Abstract
AIMS/INTRODUCTION Peripheral artery disease (PAD) serves as a risk factor for diabetic foot ulcers (DFUs). PAD pathology involves atherosclerosis and impaired immunity. Non-classical monocytes are believed to have an anti-inflammatory role. 1,25-Dihydroxy vitamin D (vitamin D3 ) is claimed to have immune-modulating and lipid-regulating roles. Vitamin D receptor is expressed on monocytes. We aimed to investigate if circulating non-classical monocytes and vitamin D3 were implicated in DFUs associated with PAD. MATERIALS AND METHODS There were two groups of DFU patients: group 1 (n = 40) included patients with first-degree DFUs not associated with PAD, and group 2 (n = 50) included patients with DFU with PAD. The monocyte phenotypes were detected using flow cytometry. Vitamin D3 was assessed by enzyme-linked immunosorbent assay. RESULTS DFU patients with PAD showed a significant reduction in the frequency of non-classical monocytes and vitamin D3 levels, when compared with DFU patients without PAD. The percentage of non-classical monocytes positively correlated with vitamin D3 level (r = 0.4, P < 0.01) and high-density lipoprotein (r = 0.5, P < 0.001), whereas it was negatively correlated with cholesterol (r = -0.5, P < 0.001). Vitamin D3 was negatively correlated with triglyceride/high-density lipoprotein (r = -0.4, P < 0.01). Regression analysis showed that a high vitamin D3 serum level was a protective factor against PAD occurrence. CONCLUSIONS Non-classical monocytes frequency and vitamin D3 levels were significantly reduced in DFU patients with PAD. Non-classical monocytes frequency was associated with vitamin D3 in DFUs patients, and both parameters were linked to lipid profile. Vitamin D3 upregulation was a risk-reducing factor for PAD occurrence.
Collapse
Affiliation(s)
- Reham Hammad
- Clinical Pathology Department, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Maisa A Abdel Wahab
- Vascular Surgery, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Nehal Farouk
- Vascular Surgery, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | | | - Mona A Eldosoky
- Clinical Pathology Department, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Asmaa A Elmadbouly
- Clinical Pathology Department, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Sara A Tahoun
- Clinical Pathology Department, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Eman Mahmoud
- Endocrinology and Metabolism Department, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Seham K Khirala
- Medical Microbiology and Immunology, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Amena Rezk Mohammed
- Biochemistry Department, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Wafaa Abdelaziz Emam
- Biochemistry Department, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Asmaa A Abo Elqasem
- Immunology, Zoology and Entomology Department, Faculty of Science (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Fatma M Kotb
- Internal Medicine Department, Faculty of Medicine (Girls)Al‐Azhar UniversityCairoEgypt
| | | |
Collapse
|
41
|
Rubin de Celis MF, Bonner-Weir S. Reversing and modulating cellular senescence in beta cells, a new field of opportunities to treat diabetes. Front Endocrinol (Lausanne) 2023; 14:1217729. [PMID: 37822597 PMCID: PMC10562723 DOI: 10.3389/fendo.2023.1217729] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023] Open
Abstract
Diabetes constitutes a world-wide pandemic that requires searching for new treatments to halt its progression. Cellular senescence of pancreatic beta cells has been described as a major contributor to development and worsening of diabetes. The concept of reversibility of cellular senescence is critical as is the timing to take actions against this "dormant" senescent state. The reversal of cellular senescence can be considered as rejuvenation of the specific cell if it returns to the original "healthy state" and doesn't behave aberrantly as seen in some cancer cells. In rodents, treatment with senolytics and senomorphics blunted or prevented disease progression, however their use carry drawbacks. Modulators of cellular senescence is a new area of research that seeks to reverse the senescence. More research in each of these modalities should lead to new treatments to stop diabetes development and progression.
Collapse
Affiliation(s)
- Maria F. Rubin de Celis
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Susan Bonner-Weir
- Joslin Diabetes Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
42
|
Sorrenti V, Buriani A, Fortinguerra S, Davinelli S, Scapagnini G, Cassidy A, De Vivo I. Cell Survival, Death, and Proliferation in Senescent and Cancer Cells: the Role of (Poly)phenols. Adv Nutr 2023; 14:1111-1130. [PMID: 37271484 PMCID: PMC10509428 DOI: 10.1016/j.advnut.2023.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/06/2023] Open
Abstract
Cellular senescence has long been considered a permanent state of cell cycle arrest occurring in proliferating cells subject to different stressors, used as a cellular defense mechanism from acquiring potentially harmful genetic faults. However, recent studies highlight that senescent cells might also alter the local tissue environment and concur to chronic inflammation and cancer risk by secreting inflammatory and matrix remodeling factors, acquiring a senescence-associated secretory phenotype (SASP). Indeed, during aging and age-related diseases, senescent cells amass in mammalian tissues, likely contributing to the inevitable loss of tissue function as we age. Cellular senescence has thus become one potential target to tackle age-associated diseases as well as cancer development. One important aspect characterizing senescent cells is their telomere length. Telomeres shorten as a consequence of multiple cellular replications, gradually leading to permanent cell cycle arrest, known as replicative senescence. Interestingly, in the large majority of cancer cells, a senescence escape strategy is used and telomere length is maintained by telomerase, thus favoring cancer initiation and tumor survival. There is growing evidence showing how (poly)phenols can impact telomere maintenance through different molecular mechanisms depending on dose and cell phenotypes. Although normally, (poly)phenols maintain telomere length and support telomerase activity, in cancer cells this activity is negatively modulated, thus accelerating telomere attrition and promoting cancer cell death. Some (poly)phenols have also been shown to exert senolytic activity, thus suggesting both antiaging (directly eliminating senescent cells) and anticancer (indirectly, via SASP inhibition) potentials. In this review, we analyze selective (poly)phenol mechanisms in senescent and cancer cells to discriminate between in vitro and in vivo evidence and human applications considering (poly)phenol bioavailability, the influence of the gut microbiota, and their dose-response effects.
Collapse
Affiliation(s)
- Vincenzo Sorrenti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy; Maria Paola Belloni Center for Personalized Medicine, Padova, Italy.
| | | | | | - Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy
| | - Aedin Cassidy
- Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
43
|
Gu Y, Avolio E, Alvino VV, Thomas AC, Herman A, Miller PJ, Sullivan N, Faulkner A, Madeddu P. The tyrosine kinase inhibitor Dasatinib reduces cardiac steatosis and fibrosis in obese, type 2 diabetic mice. Cardiovasc Diabetol 2023; 22:214. [PMID: 37592236 PMCID: PMC10436421 DOI: 10.1186/s12933-023-01955-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Cardiac steatosis is an early yet overlooked feature of diabetic cardiomyopathy. There is no available therapy to treat this condition. Tyrosine kinase inhibitors (TKIs) are used as first or second-line therapy in different types of cancer. In cancer patients with diabetes mellitus, TKIs reportedly improved glycemic control, allowing insulin discontinuation. They also reduced liver steatosis in a murine model of non-alcoholic fatty liver disease. The present study aimed to determine the therapeutic effect of the second-generation TKI Dasatinib on lipid accumulation and cardiac function in obese, type 2 diabetic mice. We also assessed if the drug impacts extra-cardiac fat tissue depots. METHODS Two studies on 21-week-old male obese leptin receptor mutant BKS.Cg-+Leprdb/+Leprdb/OlaHsd (db/db) mice compared the effect of Dasatinib (5 mg/kg) and vehicle (10% DMSO + 90% PEG-300) given via gavage once every three days for a week or once every week for four weeks. Functional and volumetric indices were studied using echocardiography. Post-mortem analyses included the assessment of fat deposits and fibrosis using histology, and senescence using immunohistochemistry and flow cytometry. The anti-adipogenic action of Dasatinib was investigated on human bone marrow (BM)-derived mesenchymal stem cells (MSCs). Unpaired parametric or non-parametric tests were used to compare two and multiple groups as appropriate. RESULTS Dasatinib reduced steatosis and fibrosis in the heart of diabetic mice. The drug also reduced BM adiposity but did not affect other fat depots. These structural changes were associated with improved diastolic indexes, specifically the E/A ratio and non-flow time. Moreover, Dasatinib-treated mice had lower levels of p16 in the heart compared with vehicle-treated controls, suggesting an inhibitory impact of the drug on the senescence signalling pathway. In vitro, Dasatinib inhibited human BM-MSC viability and adipogenesis commitment. CONCLUSIONS Our findings suggest that Dasatinib opposes heart and BM adiposity and cardiac fibrosis. In the heart, this was associated with favourable functional consequences, namely improvement in an index of diastolic function. Repurposing TKI for cardiac benefit could address the unmet need of diabetic cardiac steatosis.
Collapse
Affiliation(s)
- Yue Gu
- Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - Elisa Avolio
- Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - Valeria V Alvino
- Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - Anita C Thomas
- Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK
- School of Cellular and Molecular Medicine, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - Andrew Herman
- School of Cellular and Molecular Medicine, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - Poppy J Miller
- School of Cellular and Molecular Medicine, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | | | - Ashton Faulkner
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Paolo Madeddu
- Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK.
| |
Collapse
|
44
|
Gao H, Nepovimova E, Heger Z, Valko M, Wu Q, Kuca K, Adam V. Role of hypoxia in cellular senescence. Pharmacol Res 2023; 194:106841. [PMID: 37385572 DOI: 10.1016/j.phrs.2023.106841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/25/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Senescent cells persist and continuously secrete proinflammatory and tissue-remodeling molecules that poison surrounding cells, leading to various age-related diseases, including diabetes, atherosclerosis, and Alzheimer's disease. The underlying mechanism of cellular senescence has not yet been fully explored. Emerging evidence indicates that hypoxia is involved in the regulation of cellular senescence. Hypoxia-inducible factor (HIF)- 1α accumulates under hypoxic conditions and regulates cellular senescence by modulating the levels of the senescence markers p16, p53, lamin B1, and cyclin D1. Hypoxia is a critical condition for maintaining tumor immune evasion, which is promoted by driving the expression of genetic factors (such as p53 and CD47) while triggering immunosenescence. Under hypoxic conditions, autophagy is activated by targeting BCL-2/adenovirus E1B 19-kDa interacting protein 3, which subsequently induces p21WAF1/CIP1 as well as p16Ink4a and increases β-galactosidase (β-gal) activity, thereby inducing cellular senescence. Deletion of the p21 gene increases the activity of the hypoxia response regulator poly (ADP-ribose) polymerase-1 (PARP-1) and the level of nonhomologous end joining (NHEJ) proteins, repairs DNA double-strand breaks, and alleviates cellular senescence. Moreover, cellular senescence is associated with intestinal dysbiosis and an accumulation of D-galactose derived from the gut microbiota. Chronic hypoxia leads to a striking reduction in the amount of Lactobacillus and D-galactose-degrading enzymes in the gut, producing excess reactive oxygen species (ROS) and inducing senescence in bone marrow mesenchymal stem cells. Exosomal microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) play important roles in cellular senescence. miR-424-5p levels are decreased under hypoxia, whereas lncRNA-MALAT1 levels are increased, both of which induce cellular senescence. The present review focuses on recent advances in understanding the role of hypoxia in cellular senescence. The effects of HIFs, immune evasion, PARP-1, gut microbiota, and exosomal mRNA in hypoxia-mediated cell senescence are specifically discussed. This review increases our understanding of the mechanism of hypoxia-mediated cellular senescence and provides new clues for anti-aging processes and the treatment of aging-related diseases.
Collapse
Affiliation(s)
- Haoyu Gao
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové 500 03, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno 613 00, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava 812 37, Slovakia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové 500 03, Czech Republic.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové 500 03, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove 500 05, Czech Republic; Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno 613 00, Czech Republic.
| |
Collapse
|
45
|
Yi Z, Ren L, Wei Y, Chen S, Zhao J, Zhu J, Wu J. Generation of a p21 Reporter Mouse and Its Use to Identify and Eliminate p21 high Cells In Vivo. Int J Mol Sci 2023; 24:5565. [PMID: 36982640 PMCID: PMC10051249 DOI: 10.3390/ijms24065565] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
P21 and p16 have been identified as inducers of senescence. Many transgenic mouse models have been developed to target cells expressing high levels of p16Ink4a (p16high) and investigate their potential contribution to tissue dysfunction in aging, obesity, and other pathological conditions. However, the specific roles of p21 in various senescence-driven processes remain unclear. To gain a deeper understanding of p21, we built a p21-3MR mouse model containing a p21 promoter-driven module that allowed us to target cells with high p21Chip expression (p21high). Using this transgenic mouse, we monitored, imaged, and eliminated p21high cells in vivo. We also applied this system to chemically induced weakness and found that the clearance of p21high cells improved doxorubicin (DOXO)-induced multi-organ toxicity in mice. By recognizing p21 transcriptional activation spatially and temporally, the p21-3MR mouse model can be a valuable and powerful tool for studying p21high cells to further understand senescence biology.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Junhua Wu
- Department of Prosthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| |
Collapse
|
46
|
De la Cruz-Concepción B, Flores-Cortez YA, Barragán-Bonilla MI, Mendoza-Bello JM, Espinoza-Rojo M. Insulin: A connection between pancreatic β cells and the hypothalamus. World J Diabetes 2023; 14:76-91. [PMID: 36926659 PMCID: PMC10011898 DOI: 10.4239/wjd.v14.i2.76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/13/2022] [Accepted: 01/17/2023] [Indexed: 02/14/2023] Open
Abstract
Insulin is a hormone secreted by pancreatic β cells. The concentration of glucose in circulation is proportional to the secretion of insulin by these cells. In target cells, insulin binds to its receptors and activates phosphatidylinositol-3-kinase/protein kinase B, inducing different mechanisms depending on the cell type. In the liver it activates the synthesis of glycogen, in adipose tissue and muscle it allows the capture of glucose, and in the hypothalamus, it regulates thermogenesis and appetite. Defects in insulin function [insulin resistance (IR)] are related to the development of neurodegenerative diseases in obese people. Furthermore, in obesity and diabetes, its role as an anorexigenic hormone in the hypothalamus is diminished during IR. Therefore, hyperphagia prevails, which aggravates hyper-glycemia and IR further, becoming a vicious circle in which the patient cannot regulate their need to eat. Uncontrolled calorie intake induces an increase in reactive oxygen species, overcoming cellular antioxidant defenses (oxidative stress). Reactive oxygen species activate stress-sensitive kinases, such as c-Jun N-terminal kinase and p38 mitogen-activated protein kinase, that induce phos-phorylation in serine residues in the insulin receptor, which blocks the insulin signaling pathway, continuing the mechanism of IR. The brain and pancreas are organs mainly affected by oxidative stress. The use of drugs that regulate food intake and improve glucose metabolism is the conventional therapy to improve the quality of life of these patients. Currently, the use of antioxidants that regulate oxidative stress has given good results because they reduce oxidative stress and inflammatory processes, and they also have fewer side effects than synthetic drugs.
Collapse
Affiliation(s)
- Brenda De la Cruz-Concepción
- Molecular and Genomic Biology Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39070, Guerrero, Mexico
| | - Yaccil Adilene Flores-Cortez
- Molecular and Genomic Biology Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39070, Guerrero, Mexico
| | - Martha Isela Barragán-Bonilla
- Molecular and Genomic Biology Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39070, Guerrero, Mexico
| | - Juan Miguel Mendoza-Bello
- Molecular and Genomic Biology Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39070, Guerrero, Mexico
| | - Monica Espinoza-Rojo
- Molecular and Genomic Biology Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39070, Guerrero, Mexico
| |
Collapse
|
47
|
Marino F, Salerno N, Scalise M, Salerno L, Torella A, Molinaro C, Chiefalo A, Filardo A, Siracusa C, Panuccio G, Ferravante C, Giurato G, Rizzo F, Torella M, Donniacuo M, De Angelis A, Viglietto G, Urbanek K, Weisz A, Torella D, Cianflone E. Streptozotocin-Induced Type 1 and 2 Diabetes Mellitus Mouse Models Show Different Functional, Cellular and Molecular Patterns of Diabetic Cardiomyopathy. Int J Mol Sci 2023; 24:ijms24021132. [PMID: 36674648 PMCID: PMC9860590 DOI: 10.3390/ijms24021132] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
The main cause of morbidity and mortality in diabetes mellitus (DM) is cardiovascular complications. Diabetic cardiomyopathy (DCM) remains incompletely understood. Animal models have been crucial in exploring DCM pathophysiology while identifying potential therapeutic targets. Streptozotocin (STZ) has been widely used to produce experimental models of both type 1 and type 2 DM (T1DM and T2DM). Here, we compared these two models for their effects on cardiac structure, function and transcriptome. Different doses of STZ and diet chows were used to generate T1DM and T2DM in C57BL/6J mice. Normal euglycemic and nonobese sex- and age-matched mice served as controls (CTRL). Immunohistochemistry, RT-PCR and RNA-seq were employed to compare hearts from the three animal groups. STZ-induced T1DM and T2DM affected left ventricular function and myocardial performance differently. T1DM displayed exaggerated apoptotic cardiomyocyte (CM) death and reactive hypertrophy and fibrosis, along with increased cardiac oxidative stress, CM DNA damage and senescence, when compared to T2DM in mice. T1DM and T2DM affected the whole cardiac transcriptome differently. In conclusion, the STZ-induced T1DM and T2DM mouse models showed significant differences in cardiac remodeling, function and the whole transcriptome. These differences could be of key relevance when choosing an animal model to study specific features of DCM.
Collapse
Affiliation(s)
- Fabiola Marino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Nadia Salerno
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Mariangela Scalise
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Luca Salerno
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Annalaura Torella
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Claudia Molinaro
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Antonio Chiefalo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Andrea Filardo
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Chiara Siracusa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Giuseppe Panuccio
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Carlo Ferravante
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana′, University of Salerno, 84081 Salerno, Italy
| | - Giorgio Giurato
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana′, University of Salerno, 84081 Salerno, Italy
| | - Francesca Rizzo
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana′, University of Salerno, 84081 Salerno, Italy
| | - Michele Torella
- Department of Translational Medical Science, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Maria Donniacuo
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Konrad Urbanek
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, 88121 Naples, Italy
| | - Alessandro Weisz
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana′, University of Salerno, 84081 Salerno, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
- Correspondence: (D.T.); (E.C.); Tel.: +39-0961369-7564 (D.T.); +39-0961369-4185 (E.C.)
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
- Correspondence: (D.T.); (E.C.); Tel.: +39-0961369-7564 (D.T.); +39-0961369-4185 (E.C.)
| |
Collapse
|
48
|
Guo J, Huang X, Dou L, Yan M, Shen T, Tang W, Li J. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduct Target Ther 2022; 7:391. [PMID: 36522308 PMCID: PMC9755275 DOI: 10.1038/s41392-022-01251-0] [Citation(s) in RCA: 550] [Impact Index Per Article: 183.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
Aging is a gradual and irreversible pathophysiological process. It presents with declines in tissue and cell functions and significant increases in the risks of various aging-related diseases, including neurodegenerative diseases, cardiovascular diseases, metabolic diseases, musculoskeletal diseases, and immune system diseases. Although the development of modern medicine has promoted human health and greatly extended life expectancy, with the aging of society, a variety of chronic diseases have gradually become the most important causes of disability and death in elderly individuals. Current research on aging focuses on elucidating how various endogenous and exogenous stresses (such as genomic instability, telomere dysfunction, epigenetic alterations, loss of proteostasis, compromise of autophagy, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, deregulated nutrient sensing) participate in the regulation of aging. Furthermore, thorough research on the pathogenesis of aging to identify interventions that promote health and longevity (such as caloric restriction, microbiota transplantation, and nutritional intervention) and clinical treatment methods for aging-related diseases (depletion of senescent cells, stem cell therapy, antioxidative and anti-inflammatory treatments, and hormone replacement therapy) could decrease the incidence and development of aging-related diseases and in turn promote healthy aging and longevity.
Collapse
Affiliation(s)
- Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Lin Dou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mingjing Yan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Weiqing Tang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| |
Collapse
|
49
|
Fossel M, Bean J, Khera N, Kolonin MG. A Unified Model of Age-Related Cardiovascular Disease. BIOLOGY 2022; 11:1768. [PMID: 36552277 PMCID: PMC9775230 DOI: 10.3390/biology11121768] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/18/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022]
Abstract
Despite progress in biomedical technologies, cardiovascular disease remains the main cause of mortality. This is at least in part because current clinical interventions do not adequately take into account aging as a driver and are hence aimed at suboptimal targets. To achieve progress, consideration needs to be given to the role of cell aging in disease pathogenesis. We propose a model unifying the fundamental processes underlying most age-associated cardiovascular pathologies. According to this model, cell aging, leading to cell senescence, is responsible for tissue changes leading to age-related cardiovascular disease. This process, occurring due to telomerase inactivation and telomere attrition, affects all components of the cardiovascular system, including cardiomyocytes, vascular endothelial cells, smooth muscle cells, cardiac fibroblasts, and immune cells. The unified model offers insights into the relationship between upstream risk factors and downstream clinical outcomes and explains why interventions aimed at either of these components have limited success. Potential therapeutic approaches are considered based on this model. Because telomerase activity can prevent and reverse cell senescence, telomerase gene therapy is discussed as a promising intervention. Telomerase gene therapy and similar systems interventions based on the unified model are expected to be transformational in cardiovascular medicine.
Collapse
Affiliation(s)
| | - Joe Bean
- University of Missouri School of Medicine, Kansas City, MO 65211, USA
| | - Nina Khera
- Buckingham Browne and Nichols School, Wellesley, MA 02138, USA
| | - Mikhail G. Kolonin
- University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
50
|
Pan S, Chen Y, Yan J, Li F, Chen X, Xu X, Xing H. The emerging roles and mechanisms of exosomal non-coding RNAs in the mutual regulation between adipose tissue and other related tissues in obesity and metabolic diseases. Front Endocrinol (Lausanne) 2022; 13:975334. [PMID: 36060952 PMCID: PMC9433671 DOI: 10.3389/fendo.2022.975334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022] Open
Abstract
Exosomes (EXs) are the major types of extracellular vesicles (EVs) of 30-100 nm diameter that can be secreted by most cells to the extracellular environment. EXs transport endogenous cargoes (proteins, lipids, RNAs, etc.) to target cells and thereby triggers the release of these bioactive components, which then play important roles in regulating numerous biological processes under both physiological and pathological conditions. Throughout the studies in recent years, growing evidences have shown that EXs-derived non-coding RNAs (EXs-ncRNAs) are emerging as key players in cell-to-cell communication between adipose tissue and other related tissues in obesity and metabolic diseases. In this review, we will summarize the recent findings about EXs-ncRNAs, especially focus on the following aspects: 1) the biogenesis of EXs and emerging roles of EXs-ncRNAs, 2) the role of EXs-ncRNAs (EXs-miRNAs, EXs-lncRNAs, EXs-circRNAs, etc.) that were secreted by adipose-related tissues in promoting the differentiation of preadipocytes into mature and fully functional adipocytes, and 3) the crosstalk between the adipose tissue derived EXs-ncRNAs and the development of insulin resistance, obesity and various cancers. This review aims to reveal the emerging roles and mechanisms of EXs-ncRNAs in the mutual regulation of adipose tissue and its related tissues in obesity and metabolic diseases, so as to provide references for elucidating the etiology of obesity and related metabolic diseases and screening novel therapeutic targets.
Collapse
Affiliation(s)
- Shifeng Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Department of Animal Science, Washington State University, Pullman, WA, United States
- *Correspondence: Shifeng Pan,
| | - Yongfang Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jie Yan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Fei Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xinyu Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xingyu Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Hua Xing
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|