1
|
Tran NNQ, Choi H, Sactivel B, Oh YJ, Maeng HJ, Kim MK, Lee J, Kim YB, Lee DH, Oh BC, Jun HS, Chun KH. The dual targeting effects of KD025 on casein kinase 2 and ROCK2 in a mouse model of diet-induced obesity. Biochem Pharmacol 2025; 237:116933. [PMID: 40210126 DOI: 10.1016/j.bcp.2025.116933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/16/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
KD025(belumosudil), a selective ROCK2 inhibitor, exhibits unique anti-adipogenic activity through inhibition of casein kinase 2 (CK2). This study investigated the dual inhibitory effects of KD025 on metabolism in a diet-induced obese model. C57BL/6 mice on a high fat diet (HFD) were treated with KD025 for 4 weeks, while fasudil (a pan-ROCK inhibitor) and CX-4945 (a CK2-specific inhibitor) served as comparison treatments. KD025 significantly reduced body weight gain without affecting food intake, serum insulin, or fasting blood glucose levels. In contrast, while both CX-4945 and fasudil treatments showed a trend toward weight reduction, these results were not statistically significant. KD025 improved lipid metabolism by significantly lowering LDL cholesterol and triglyceride, although it slightly impaired glucose metabolism, as observed in insulin and glucose tolerance tests. Weight reduction in the KD025- and CX-4945-treated groups was attributed to decreased adipose tissue mass, particularly in inguinal (ingWAT) and epididymal (epiWAT) fat depots. Hematoxylin and eosin (H&E) staining confirmed smaller adipocyte size in these groups. KD025 had no significant effect on serum levels of tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), or monocyte chemoattractant protein-1 (MCP-1) with varied inflammatory responses. Furthermore, KD025 and CX-4945 upregulated adipogenic and browning markers, such as Cebpa, Cidea, and Pparg in the epiWAT, though without significant UCP1 expression. Overall, KD025 effectively reduced weight gain in HFD-fed mice through dual inhibition of CK2 and ROCK2, highlighting its potential as a therapeutic agent for obesity-related conditions.
Collapse
Affiliation(s)
- Nhu Nguyen Quynh Tran
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Hojung Choi
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Bathiga Sactivel
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Yu Jin Oh
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Han-Joo Maeng
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Min Kyung Kim
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Jeongmi Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, United States
| | - Dae Ho Lee
- Department of Internal Medicine, Gachon University College of Medicine, Incheon 21565, Republic of Korea
| | - Byung-Chul Oh
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea
| | - Hee-Sook Jun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea
| | - Kwang-Hoon Chun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea.
| |
Collapse
|
2
|
Agoncillo ML, Gao Z, De Kraker HC, McHardy SF, Messing RO, Small L, Schmitz-Peiffer C. Effects of a protein kinase C epsilon inhibitor on insulin signalling in lipid-treated HepG2 hepatocytes and glucose tolerance in fat-fed mice. Eur J Pharmacol 2025; 997:177465. [PMID: 40054721 DOI: 10.1016/j.ejphar.2025.177465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/23/2025] [Accepted: 03/04/2025] [Indexed: 05/02/2025]
Abstract
AIMS Protein kinase C epsilon (PKCε) plays a causative role in the development of glucose intolerance, and is a potential target for the treatment of type 2 diabetes. Here, we examined the effects of the PKCε inhibitor CIDD-0150612 (CP612) on insulin action in palmitate-treated HepG2 hepatocytes in vitro and on glucose homeostasis in fat-fed mice in vivo. METHODS HepG2 cells were treated with palmitate and CP612 and stimulated with insulin. Insulin signalling was examined by immunoblotting and glucose incorporation into glycogen was measured using glucose tracer. Mice were fed a high-fat diet and treated with CP612 prior to glucose tolerance tests and tissue harvest. Proteomic analysis of liver was carried out by mass spectrometry. RESULTS CP612 promoted Akt phosphorylation in a highly insulin-dependent manner and reversed the inhibition of insulin-stimulated Akt phosphorylation and glucose incorporation into glycogen by palmitate. Fat-fed mice treated with CP612 had reduced fat mass, but not lean mass, compared with vehicle-treated littermates. Mice treated acutely with CP612 exhibited elevated fasting blood glucose. However, mice studied 24h after the last dose had lower fasting glucose and improved glucose tolerance with a lower insulin excursion. Proteomic analysis of liver from CP612-treated fat-fed mice indicated a reduction in gluconeogenic gene expression and decreased phosphorylation of the transcription factor Foxk1. CONCLUSIONS The PKCε inhibitor CP612 had beneficial effects on insulin action in hepatocytes and on fat mass and glucose homeostasis in mice. Because certain effects were not previously observed in genetically PKCε-deficient mice, off-target effects may be partly responsible.
Collapse
Affiliation(s)
- Miguel L Agoncillo
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia.
| | - Zhongmin Gao
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia.
| | - Harmannus C De Kraker
- Department of Chemistry, Center for Innovative Drug Discovery, University of Texas San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA.
| | - Stanton F McHardy
- Department of Chemistry, Center for Innovative Drug Discovery, University of Texas San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA.
| | - Robert O Messing
- Department of Neuroscience, University of Texas at Austin, E 24th Street, Austin, TX, 78712, USA.
| | - Lewin Small
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia.
| | - Carsten Schmitz-Peiffer
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia; Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia; St Vincent's Clinical School, University of New South Wales, 390 Victoria St, Darlinghurst, NSW, NSW 2010, Australia.
| |
Collapse
|
3
|
Khaliq SA, Park SY, Maham S, Cho Y, Lee M, Nam S, Seong JK, Chen J, Choi CS, Yoon MS. ARHGEF3 coordinates adipocyte hypertrophy and differentiation through dual YAP-RhoA and PPARγ activation. J Adv Res 2025:S2090-1232(25)00229-2. [PMID: 40216078 DOI: 10.1016/j.jare.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/19/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025] Open
Abstract
INTRODUCTION Obesity presents a significant global health burden, necessitating insights into the molecular drivers of adipogenesis and adipose tissue regulation. OBJECTIVES This study investigates the role of Rho guanine nucleotide exchange factor 3 (ARHGEF3) in adipocyte differentiation and hypertrophy, focusing on its influence on adipogenesis and body weight regulation under high-fat diet conditions. METHODS ARHGEF3-/- mice and littermate controls were subjected to a high-fat diet (HFD) and underwent comprehensive metabolic phenotyping. In vitro studies in C3H10T1/2 cells were conducted to assess ARHGEF3's role in adipogenesis, utilizing quantitative PCR, western blotting, chromatin immunoprecipitation (ChIP), immunoprecipitation (IP), immunostaining, and luciferase reporter assays. RESULTS ARHGEF3 expression increased in white adipose tissue (WAT) of HFD-fed mice and during adipogenic differentiation in C3H10T1/2 cells. ARHGEF3-deficient mice exhibited reduced weight gain and adipocyte size, correlating with decreased RhoA expression and altered cytoskeletal dynamics. Additionally, ARHGEF3 facilitated yes-associated protein (YAP) nuclear translocation and its direct binding to the RhoA promoter, an effect reliant on ARHGEF3. ARHGEF3 also enhanced the transcriptional activity of peroxisome proliferator-activated receptor gamma (PPARγ), establishing a reciprocal activation loop to drive adipocyte differentiation and hypertrophy. CONCLUSION ARHGEF3 emerges as a pivotal regulator of adipocyte dynamics by coordinating YAP-RhoA signaling and enhancing PPARγ activity. These findings offer novel therapeutic insights for addressing obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Sana Abdul Khaliq
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea; Department of Molecular Medicine, Gachon University College of Medicine, Incheon 21999, Republic of Korea
| | - Shi-Young Park
- Gachon Biomedical Convergence Institute, Gachon University Gil Medical Center, Incheon 21565, Republic of Korea; Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Syeda Maham
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| | - Yoonil Cho
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea; Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Miseon Lee
- Department of Genome Medicine and Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Republic of Korea
| | - Seungyoon Nam
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea; Department of Genome Medicine and Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Model Animal Priority Center (KMPC), Seoul National University, Seoul 08826, Republic of Korea
| | - Jie Chen
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Cheol Soo Choi
- Department of Molecular Medicine, Gachon University College of Medicine, Incheon 21999, Republic of Korea; Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea; Department of Internal Medicine, Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea.
| | - Mee-Sup Yoon
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea; Department of Molecular Medicine, Gachon University College of Medicine, Incheon 21999, Republic of Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea.
| |
Collapse
|
4
|
Chen Z, Zhou Z, Wang L, Zhang Y, Huang C, Wang C, Huang Y, Wang S, Yan D, Feng K. Polyethylene glycol loxenatide modulates lipid metabolism and insulin resistance through lncRNA steroid receptor RNA activator/cellular nucleic acid binding protein/Rho-associated coiled-coil kinase 2 axis in type 2 diabetes mellitus. J Diabetes Investig 2025; 16:715-727. [PMID: 39651712 PMCID: PMC11970291 DOI: 10.1111/jdi.14373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/01/2024] [Accepted: 11/19/2024] [Indexed: 12/11/2024] Open
Abstract
BACKGROUND Polyethylene glycol loxenatide (PEG-Loxe) is applied in treating type 2 diabetes mellitus. Nevertheless, the effect and mechanism of PEG-Loxe on lipid metabolism disorder and insulin resistance in type 2 diabetes mellitus are not fully understood. METHODS Type 2 diabetes mellitus rats developed by high-fat diet/streptozotocin injection were treated with PEG-Loxe (0.3 or 1 mg/kg). Insulin resistance was evaluated by fasting blood glucose (FBG), oral glucose tolerance test, fasting insulin, homeostasis model of assessment for insulin resistance and for insulin sensitivity. Immunohistochemistry, hematoxylin and eosin staining, and biochemistry measurements were performed to assess lipid metabolism. Inflammatory response and oxidative stress were assessed by inflammatory cytokines and reactive oxygen species. Genes' expressions were tested using RT-qPCR, western blot, and in situ hybridization. Relationships of molecules were validated by pull-down assay and RNA immunoprecipitation. mRNA stability was examined by actinomycin D assay. RESULTS High-PEG-Loxe decreased FBG and ameliorated glucose tolerance, hyperinsulinemia, and insulin resistance. Low-PEG-Loxe partly while high-PEG-Loxe apparently relieved hepatocyte injury, reduced lipase I, triglyceride, total cholesterol and leptin, and increased adiponectin in type 2 diabetes mellitus rats. PEG-Loxe mitigated inflammatory response and oxidative stress. High-PEG-Loxe reduced RhoA and Rho-associated coiled-coil kinase 2 (ROCK2) in liver tissues of type 2 diabetes mellitus rats, while both doses of PEG-Loxe decreased steroid receptor RNA activator (SRA). SRA overexpression reversed the protective functions of high-PEG-Loxe. SRA cooperated with cellular nucleic acid binding protein (CNBP) to enhance ROCK2 mRNA stability. CONCLUSION High-PEG-Loxe relieves insulin resistance and lipid metabolism disorder in type 2 diabetes mellitus through SRA/CNBP/ROCK2 axis. This research provides a molecular mechanism of PEG-Loxe for treating type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Zhuangsen Chen
- Department of EndocrinologyPingshan District People's Hospital of ShenzhenShenzhenGuangdong ProvinceChina
- Department of EndocrinologyPingshan Hospital of Southern Medical UniversityShenzhenGuangdong ProvinceChina
| | - Zhongyu Zhou
- Department of EndocrinologyPingshan District People's Hospital of ShenzhenShenzhenGuangdong ProvinceChina
- Department of EndocrinologyPingshan Hospital of Southern Medical UniversityShenzhenGuangdong ProvinceChina
| | - Lin Wang
- Department of EndocrinologyPingshan District People's Hospital of ShenzhenShenzhenGuangdong ProvinceChina
- Department of EndocrinologyPingshan Hospital of Southern Medical UniversityShenzhenGuangdong ProvinceChina
| | - Yanrong Zhang
- Department of EndocrinologyPingshan District People's Hospital of ShenzhenShenzhenGuangdong ProvinceChina
- Department of EndocrinologyPingshan Hospital of Southern Medical UniversityShenzhenGuangdong ProvinceChina
| | - Caiyan Huang
- Department of EndocrinologyPingshan District People's Hospital of ShenzhenShenzhenGuangdong ProvinceChina
- Department of EndocrinologyPingshan Hospital of Southern Medical UniversityShenzhenGuangdong ProvinceChina
| | - Cong Wang
- Department of EndocrinologyPingshan District People's Hospital of ShenzhenShenzhenGuangdong ProvinceChina
- Department of EndocrinologyPingshan Hospital of Southern Medical UniversityShenzhenGuangdong ProvinceChina
| | - Ying Huang
- Department of EndocrinologyPingshan District People's Hospital of ShenzhenShenzhenGuangdong ProvinceChina
- Department of EndocrinologyPingshan Hospital of Southern Medical UniversityShenzhenGuangdong ProvinceChina
| | - Shanshan Wang
- Department of EndocrinologyPingshan District People's Hospital of ShenzhenShenzhenGuangdong ProvinceChina
- Department of EndocrinologyPingshan Hospital of Southern Medical UniversityShenzhenGuangdong ProvinceChina
| | - Dewen Yan
- Department of Endocrinology, Shenzhen Clinical Research Center for Metabolic Diseases, Shenzhen Center for Diabetes Control and Prevention, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen UniversityHealth Science Center of Shenzhen UniversityShenzhenGuangdong ProvinceChina
| | - Kun Feng
- Department of EndocrinologyPingshan District People's Hospital of ShenzhenShenzhenGuangdong ProvinceChina
- Department of EndocrinologyPingshan Hospital of Southern Medical UniversityShenzhenGuangdong ProvinceChina
| |
Collapse
|
5
|
Guo H, Ma L, Duolikun D, Yao Q. Comprehensive microarray analysis for the identification of therapeutic targets within HIF-1α signalling networks in diet-induced obesity via hypothalamic inflammation. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2025; 69:e240098. [PMID: 40062973 PMCID: PMC11895521 DOI: 10.20945/2359-4292-2024-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/04/2024] [Indexed: 03/14/2025]
Abstract
OBJECTIVE A high-fat diet (HFD) significantly contributes to obesity and alters the neurological function of the brain. This study explored the influence of hypoxia-inducible factor (HIF-1) and its downstream molecules on obesity progression in the context of HFD-induced hypothalamic inflammation. MATERIALS AND METHODS Utilizing a bioinformatics approach alongside animal models, targets and pathways related to hypothalamic obesity were identified via network analysis, gene target identification, gene ontology analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, and subsequent validation in animal models. RESULTS HIF-1α has the potential to regulate the immune response by promoting immune infiltration and increasing the population of immune cells, particularly memory CD4 T cells, in the hypothalamus, primarily through its influence on ksr2 expression. Additionally, the analysis predicted five drugs capable of enhancing HIF-1-Ksr2 signalling. CONCLUSION In conclusion, targeting Ksr2 with specific drugs represents a potential approach for addressing HFD-induced obesity. These novel findings lay the groundwork for developing dietary supplements and therapeutic interventions.
Collapse
Affiliation(s)
- Hai Guo
- Department of Anesthesiology, the First Affiliated Hospital of
Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Physiology, School of Basic Medical Sciences,
Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Perioperative Organ Protection Laboratory (XJDX1411),
Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases,
Urumqi, Xinjiang, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of
High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
| | - Lijuan Ma
- Department of Physiology, School of Basic Medical Sciences,
Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases,
Urumqi, Xinjiang, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of
High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
| | - Dilihumaier Duolikun
- Department of Physiology, School of Basic Medical Sciences,
Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases,
Urumqi, Xinjiang, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of
High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
| | - Qiaoling Yao
- Department of Physiology, School of Basic Medical Sciences,
Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases,
Urumqi, Xinjiang, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of
High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
| |
Collapse
|
6
|
Barbalho SM, de Alvares Goulart R, Minniti G, Bechara MD, de Castro MVM, Dias JA, Laurindo LF. Unraveling the rationale and conducting a comprehensive assessment of KD025 (Belumosudil) as a candidate drug for inhibiting adipogenic differentiation-a systematic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2681-2699. [PMID: 37966572 DOI: 10.1007/s00210-023-02834-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023]
Abstract
Rho-associated kinases (ROCKs) are crucial during the adipocyte differentiation process. KD025 (Belumosudil) is a newly developed inhibitor that selectively targets ROCK2. It has exhibited consistent efficacy in impeding adipogenesis across a spectrum of in vitro models of adipogenic differentiation. Given the novelty of this treatment, a comprehensive systematic review has not been conducted yet. This systematic review aims to fill this knowledge void by providing readers with an extensive examination of the rationale behind KD025 and its impacts on adipogenesis. Preclinical evidence was gathered owing to the absence of clinical trials. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed, and the study's quality was assessed using the Joanna Briggs Institute (JBI) Checklist Critical Appraisal Tool for Systematic Reviews. In various in vitro models, such as 3T3-L1 cells, human orbital fibroblasts, and human adipose-derived stem cells, KD025 demonstrated potent anti-adipogenic actions. At a molecular level, KD025 had significant effects, including decreasing fibronectin (Fn) expression, inhibiting ROCK2 and CK2 activity, suppressing lipid droplet formation, and reducing the expression of proadipogenic genes peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα). Additionally, KD025 resulted in the suppression of fatty acid-binding protein 4 (FABP4 or AP2) expression, a decrease in sterol regulatory element binding protein 1c (SREBP-1c) and Glut-4 expression. Emphasis must be placed on the fact that while KD025 shows potential in preclinical studies and experimental models, extensive research is crucial to assess its efficacy, safety, and potential therapeutic applications thoroughly and directly in human subjects.
Collapse
Affiliation(s)
- Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo, 17500-000, Brazil
| | - Ricardo de Alvares Goulart
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Giulia Minniti
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Jefferson Aparecido Dias
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil.
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, 17519-030, Brazil.
| |
Collapse
|
7
|
Shi J, Wei L. ROCK1 deficiency preserves caveolar compartmentalization of signaling molecules and cell membrane integrity. FASEB Bioadv 2024; 6:85-102. [PMID: 38463696 PMCID: PMC10918988 DOI: 10.1096/fba.2024-00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 03/12/2024] Open
Abstract
In this study, we investigated the roles of ROCK1 in regulating structural and functional features of caveolae located at the cell membrane of cardiomyocytes, adipocytes, and mouse embryonic fibroblasts (MEFs) as well as related physiopathological effects. Caveolae are small bulb-shaped cell membrane invaginations, and their roles have been associated with disease conditions. One of the unique features of caveolae is that they are physically linked to the actin cytoskeleton that is well known to be regulated by RhoA/ROCKs pathway. In cardiomyocytes, we observed that ROCK1 deficiency is coincident with an increased caveolar density, clusters, and caveolar proteins including caveolin-1 and -3. In the mouse cardiomyopathy model with transgenic overexpressing Gαq in myocardium, we demonstrated the reduced caveolar density at cell membrane and reduced caveolar protein contents. Interestingly, coexisting ROCK1 deficiency in cardiomyocytes can rescue these defects and preserve caveolar compartmentalization of β-adrenergic signaling molecules including β1-adrenergic receptor and type V/VI adenylyl cyclase. In cardiomyocytes and adipocytes, we detected that ROCK1 deficiency increased insulin signaling with increased insulin receptor activation in caveolae. In MEFs, we identified that ROCK1 deficiency increased caveolar and total levels of caveolin-1 and cell membrane repair ability after mechanical or chemical disruptions. Together, these results demonstrate that ROCK1 can regulate caveolae plasticity and multiple functions including compartmentalization of signaling molecules and cell membrane repair following membrane disruption by mechanical force and oxidative damage. These findings provide possible molecular insights into the beneficial effects of ROCK1 deletion/inhibition in cardiomyocytes, adipocytes, and MEFs under certain diseased conditions.
Collapse
Affiliation(s)
- Jianjian Shi
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, School of MedicineIndiana UniversityIndianapolisIndianaUSA
| | - Lei Wei
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, School of MedicineIndiana UniversityIndianapolisIndianaUSA
| |
Collapse
|
8
|
Apaza CJ, Días M, García Tejedor A, Boscá L, Laparra Llopis JM. Contribution of Nucleotide-Binding Oligomerization Domain-like (NOD) Receptors to the Immune and Metabolic Health. Biomedicines 2024; 12:341. [PMID: 38397943 PMCID: PMC10886542 DOI: 10.3390/biomedicines12020341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Nucleotide-binding oligomerization domain-like (NOD) receptors rely on the interface between immunity and metabolism. Dietary factors constitute critical players in the activation of innate immunity and modulation of the gut microbiota. The latter have been involved in worsening or improving the control and promotion of diseases such as obesity, type 2 diabetes, metabolic syndrome, diseases known as non-communicable metabolic diseases (NCDs), and the risk of developing cancer. Intracellular NODs play key coordinated actions with innate immune 'Toll-like' receptors leading to a diverse array of gene expressions that initiate inflammatory and immune responses. There has been an improvement in the understanding of the molecular and genetic implications of these receptors in, among others, such aspects as resting energy expenditure, insulin resistance, and cell proliferation. Genetic factors and polymorphisms of the receptors are determinants of the risk and severity of NCDs and cancer, and it is conceivable that dietary factors may have significant differential consequences depending on them. Host factors are difficult to influence, while environmental factors are predominant and approachable with a preventive and/or therapeutic intention in obesity, T2D, and cancer. However, beyond the recognition of the activation of NODs by peptidoglycan as its prototypical agonist, the underlying molecular response(s) and its consequences on these diseases remain ill-defined. Metabolic (re)programming is a hallmark of NCDs and cancer in which nutritional strategies might play a key role in preventing the unprecedented expansion of these diseases. A better understanding of the participation and effects of immunonutritional dietary ingredients can boost integrative knowledge fostering interdisciplinary science between nutritional precision and personalized medicine against cancer. This review summarizes the current evidence concerning the relationship(s) and consequences of NODs on immune and metabolic health.
Collapse
Affiliation(s)
- César Jeri Apaza
- Molecular Immunonutrition Group, Madrid Institute for Advanced Studies in Food (IMDEA Food), Ctra Cantoblanco, 8, 28049 Madrid, Spain;
| | - Marisol Días
- Center of Biological Enginneering (CEB), Iberian Nantotechnology Laboratory (INL), University of Minho, 4715-330 Braga, Portugal;
| | - Aurora García Tejedor
- Bioactivity and Nutritional Immunology Group (BIOINUT), Faculty of Health Sciences, Universidad Internacional de Valencia (VIU), Pintor Sorolla 21, 46002 Valencia, Spain;
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols-Morreale (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029 Madrid, Spain
| | - José Moisés Laparra Llopis
- Molecular Immunonutrition Group, Madrid Institute for Advanced Studies in Food (IMDEA Food), Ctra Cantoblanco, 8, 28049 Madrid, Spain;
| |
Collapse
|
9
|
Zanin-Zhorov A, Chen W, Moretti J, Nyuydzefe MS, Zhorov I, Munshi R, Ghosh M, Serdjebi C, MacDonald K, Blazar BR, Palmer M, Waksal SD. Selectivity matters: selective ROCK2 inhibitor ameliorates established liver fibrosis via targeting inflammation, fibrosis, and metabolism. Commun Biol 2023; 6:1176. [PMID: 37980369 PMCID: PMC10657369 DOI: 10.1038/s42003-023-05552-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023] Open
Abstract
The pathogenesis of hepatic fibrosis is driven by dysregulated metabolism precipitated by chronic inflammation. Rho-associated coiled-coil-containing protein kinases (ROCKs) have been implicated in these processes, however the ability of selective ROCK2 inhibition to target simultaneously profibrotic, pro-inflammatory and metabolic pathways remains undocumented. Here we show that therapeutic administration of GV101, a selective ROCK2 inhibitor with more than 1000-fold selectivity over ROCK1, attenuates established liver fibrosis induced by thioacetamide (TAA) in combination with high-fat diet in mice. GV101 treatment significantly reduces collagen levels in liver, associated with downregulation of pCofilin, pSTAT3, pAkt, while pSTAT5 and pAMPK levels are increased in tissues of treated mice. In vitro, GV101 inhibits profibrogenic markers expression in fibroblasts, adipogenesis in primary adipocytes and TLR-induced cytokine secretion in innate immune cells via targeting of Akt-mTOR-S6K signaling axis, further uncovering the ROCK2-specific complex mechanism of action and therapeutic potential of highly selective ROCK2 inhibitors in liver fibrosis.
Collapse
Affiliation(s)
| | - Wei Chen
- Graviton Bioscience B.V, Amsterdam, 1017 CG, Netherlands
| | - Julien Moretti
- Graviton Bioscience B.V, Amsterdam, 1017 CG, Netherlands
| | | | - Iris Zhorov
- Graviton Bioscience B.V, Amsterdam, 1017 CG, Netherlands
| | | | | | | | - Kelli MacDonald
- QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
| | - Bruce R Blazar
- Division of Blood & Marrow Transplant & Cellular Therapies, University of MN, Masonic Cancer Center and Department of Pediatrics, Minneapolis, MN, 55455, USA
| | | | | |
Collapse
|
10
|
Addition of ROCK Inhibitors Alleviates Prostaglandin-Induced Inhibition of Adipogenesis in 3T3L-1 Spheroids. Bioengineering (Basel) 2022; 9:bioengineering9110702. [DOI: 10.3390/bioengineering9110702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
To elucidate the additive effects of the ROCK inhibitors (ROCK-i), ripasudil (Rip) and Y27632 on bimatoprost acid (BIM-A), a prostaglandin analog (PG), on adipose tissue, two- and three-dimensional (2D or 3D) cultures of 3T3-L1 cells, the most well characterized cells in the field of lipid research, were used. The cells were subjected to a variety of analyses including lipid staining, real-time cellular metabolic analysis, the mRNA expressions of genes related to adipogenesis and extracellular matrices (ECMs) as well as the sizes and physical properties of the 3D spheroids by a micro-squeezer. BIM-A induced strong inhibitory effects on most of the adipogenesis-related changes in the 2D and 3D cultured 3T3-L1 cells, including (1) the enlargement and softening of the 3D spheroids, (2) a dramatic enhancement in lipid staining and the expression of adipogenesis-related genes, and (3) a decrease in mitochondrial and glycolytic metabolic function. By adding ROCK-i to the BIM-A, most of these BIM-A-induced effects were cancelled. The collective findings reported herein suggest that ROCK-i eliminated the PG-induced suppression of adipogenesis in the 3T3-L1 cells, accompanied by the formation of enlarged 3D spheroids. Such effects of adding ROCK-i to a PG in preadipocytes on cellular properties appear to be associated with the suppression of PG-induced adverse effects, and provide additional insight into our understanding of lipid-related research.
Collapse
|