1
|
Ching MEA, Hoyeck MP, Basu L, Merhi R, Poleo-Giordani E, van Zyl E, Crawley AM, Bruin JE. CYP1A1/1A2 enzymes mediate glucose homeostasis and insulin secretion in mice in a sex-specific manner. Am J Physiol Endocrinol Metab 2025; 328:E885-E898. [PMID: 40293922 DOI: 10.1152/ajpendo.00284.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/06/2024] [Accepted: 04/07/2025] [Indexed: 04/30/2025]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that controls the expression of several downstream targets including xenobiotic metabolism enzymes, cytochrome P450 1A1 and 1A2 (Cyp1a1/1a2). Besides xenobiotic metabolism, AhR also mediates responses to other stressors including high-fat diets (HFDs). Although global deletion or downregulation of AhR protects against metabolic dysfunction in HFD-fed mice, the role of Cyp1a1/1a2 in glucose homeostasis remains unclear. We demonstrated that Cyp1a1 expression is induced in mouse pancreatic islets not only by xenobiotic exposure but also by HFD feeding. Since CYP1A1/1A2 enzymes can produce reactive oxygen intermediates, we hypothesized that chronic CYP1A1/1A2 activation may contribute to HFD-induced metabolic dysfunction in mice, and thus, deleting these enzymes may be protective. We fed 29- to 31-wk-old male and female global Cyp1a1/1a2 knockout (CypKO) and wild-type (CypWT) mice a 45% HFD or standard chow for 14 wk. CypKO females were partially protected from HFD-induced glucose intolerance, and chow-fed CypKO females had lower plasma insulin and suppressed insulin secretion in isolated islets compared with CypWT females. Meanwhile, CypKO males exhibited HFD-induced hyperinsulinemia later than CypWT males. HFD feeding elevated Cyp1a1 and other stress genes in CypWT male islets but not in CypKO islets, indicating that CYP1A1 mediates islet stress responses. Liver pathology, adiposity, and adipose inflammation were primarily affected by diet, not genotype, in both sexes. Our study highlights a novel sex-dependent role for Cyp1a1/1a2 in shaping the systemic metabolic response to HFD feeding, suggesting that CYP1A1/1A2 enzymes are involved in glucose homeostasis, insulin secretion, and islet stress responses.NEW & NOTEWORTHY Cytochrome P450 (CYP)1A1/1A2 enzymes have sex-specific roles in glucose homeostasis in mice. In females, global Cyp1a1/1a2 deletion partially protects from glucose intolerance in high-fat diet (HFD)-fed mice and lowers plasma insulin in chow-fed mice. In males, Cyp1a1/1a2 deletion delays HFD-induced hyperinsulinemia in vivo and inhibits HFD-induced islet stress responses. Genotype-driven differences were only seen in islets, suggesting a novel role for islet CYP1A1/1A2 enzymes in responding to metabolic stress.
Collapse
Affiliation(s)
- Ma Enrica Angela Ching
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Institute of Biochemistry,Carleton University, Ottawa, Ontario, Canada
| | - Myriam P Hoyeck
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Institute of Biochemistry,Carleton University, Ottawa, Ontario, Canada
| | - Lahari Basu
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Institute of Biochemistry,Carleton University, Ottawa, Ontario, Canada
| | - Rayanna Merhi
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Institute of Biochemistry,Carleton University, Ottawa, Ontario, Canada
| | - Emilia Poleo-Giordani
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Institute of Biochemistry,Carleton University, Ottawa, Ontario, Canada
| | - Erin van Zyl
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Institute of Biochemistry,Carleton University, Ottawa, Ontario, Canada
| | - Angela M Crawley
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
- Institute of Biochemistry,Carleton University, Ottawa, Ontario, Canada
| | - Jennifer E Bruin
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Institute of Biochemistry,Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Luna Ceron E, Reddy SD, Kattamuri L, Muvva DM, Chozet L, Bright T. Current Insights, Advantages and Challenges of Small Molecule Glucagon-like Peptide 1 Receptor Agonists: A Scoping Review. JOURNAL OF BROWN HOSPITAL MEDICINE 2025; 4:19-32. [PMID: 40191699 PMCID: PMC11966775 DOI: 10.56305/001c.132255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 03/11/2025] [Indexed: 04/09/2025]
Abstract
Type 2 diabetes mellitus (T2DM) is a prevalent chronic condition with significant morbidity and mortality, largely due to its vascular complications. The emergence of novel pharmacological agents, particularly glucagon-like peptide-1 receptor agonists (GLP-1RAs), has revolutionized T2DM management by addressing glycemic control and comorbidities such as cardiovascular and renal diseases. Traditionally, GLP-1RAs require subcutaneous injection, presenting challenges in patient adherence and limiting combination therapy options. Recent advancements have introduced orally available small-molecule GLP-1RAs, which retain the physiological benefits of peptide-based GLP-1RAs, such as promoting insulin secretion, reducing appetite, and improving weight loss. These small molecules offer enhanced tissue permeability, extended half-lives, and the potential for fixed-dose combinations, addressing limitations of injectable formulations. This review explores the preclinical and clinical progress of small-molecule GLP-1RAs, highlighting their potential to redefine diabetes care by improving convenience, adherence, and accessibility for patients.
Collapse
Affiliation(s)
- Eder Luna Ceron
- Department of Internal Medicine Texas Tech University Health Sciences Center
| | | | - Lakshmi Kattamuri
- Department of Internal Medicine Texas Tech University Health Sciences Center
| | - Durga Mounika Muvva
- Department of Internal Medicine Texas Tech University Health Sciences Center
| | - Luis Chozet
- Division of Endocrinology Texas Tech University Health Sciences Center
| | - Tamis Bright
- Division of Endocrinology Texas Tech University Health Sciences Center
| |
Collapse
|
3
|
Zhu W, Pan L, Cui X, Russo AC, Ray R, Pederson B, Wei X, Lin LL, Hafner H, Gregg B, Shrestha N, Liu C, Naji A, Arvan P, Sandoval DA, Lindberg I, Qi L, Reinert RB. SEL1L-HRD1 ER-Associated Degradation Facilitates Prohormone Convertase 2 Maturation and Glucagon Production in Islet α Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644437. [PMID: 40166183 PMCID: PMC11957139 DOI: 10.1101/2025.03.20.644437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Proteolytic cleavage of proglucagon by prohormone convertase 2 (PC2) is required for islet α cells to generate glucagon. However, the regulatory mechanisms underlying this process remain largely unclear. Here, we report that SEL1L-HRD1 endoplasmic reticulum (ER)-associated degradation (ERAD), a highly conserved protein quality control system responsible for clearing misfolded proteins from the ER, plays a key role in glucagon production by regulating turnover of the nascent proform of the PC2 enzyme (proPC2). Using a mouse model with SEL1L deletion in proglucagon-expressing cells, we observed a progressive decline in stimulated glucagon secretion and a reduction in pancreatic glucagon content. Mechanistically, we found that endogenous proPC2 is a substrate of SEL1L-HRD1 ERAD, and that degradation of misfolded proPC2 ensures the maturation of activation-competent proPC2 protein. These findings identify ERAD as a novel regulator of PC2 biology and an essential mechanism for maintaining α cell function.
Collapse
Affiliation(s)
- Wenzhen Zhu
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Linxiu Pan
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
- Present address: Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Xianwei Cui
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Anna Chiara Russo
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Rohit Ray
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Brent Pederson
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Xiaoqiong Wei
- Present address: Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Liangguang Leo Lin
- Present address: Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Hannah Hafner
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Brigid Gregg
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48105, USA
| | - Neha Shrestha
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Chengyang Liu
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ali Naji
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Darleen A. Sandoval
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pediatrics, Nutrition Section, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland-Baltimore, Baltimore, MD 21201, USA
| | - Ling Qi
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
- Present address: Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Rachel B. Reinert
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| |
Collapse
|
4
|
Abbood MS, Al-Adsani AM, Al-Bustan SA. Ginger extract promotes pancreatic islets regeneration in streptozotocin-induced diabetic rats. Biosci Rep 2025; 45:BSR20241510. [PMID: 40014427 PMCID: PMC12096951 DOI: 10.1042/bsr20241510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/29/2025] [Accepted: 02/26/2025] [Indexed: 03/01/2025] Open
Abstract
Ginger (Zingiber officinale) exerts an antidiabetic effect by restoring pancreatic β-cells. The present study aimed to investigate the mechanism by which ginger extract induces the regeneration of functional β-cells in diabetic rats. Sprague-Dawley rats (n=27) were divided into three groups: normal rats given double distilled water (ddH2O) (NC, n=11), diabetic rats (injected with 60 mg/kg streptozotocin) given ddH2O (DC, n=8), and diabetic rats treated with aqueous ginger extract (DG, n=8). The effect of ginger extract intake on the differential expression of neurogenin-3 (Neurog3), V-maf musculoaponeurotic fibrosarcoma oncogene homolog B (Mafb), insulin 2 (Ins2), and glucagon (Gcg) was assessed using quantitative real-time PCR after one and eight weeks of treatment. The pancreatic insulin source was determined using immunohistochemical analysis. After one week, ginger treatment significantly up-regulated the expression of both Neurog3 and Mafb in the DG rats compared with the DC rats. However, after eight weeks, the mRNA levels of these genes dropped significantly in parallel with the up-regulation of Ins2 and Gcg expression, resulting in increased serum insulin levels, weight, and lowered fasting blood glucose levels. Immunohistochemical analysis revealed a restored β-cell mass and islet architecture in the DG group. Ginger extract exerts an antidiabetic effect by acting on pancreatic progenitors and α-cells to restore β-cell mass in streptozotocininduced diabetic rats. These findings suggest that ginger extract could be a potential stimulator of β-cell neogenesis, which provides an alternative to meet the increasing demand for exogenous insulin in patients with diabetes.
Collapse
Affiliation(s)
- Manal S. Abbood
- Department of Biological Sciences, Faculty of Science, Kuwait University, Shadadiyah, Kuwait P.O. Box 5969, Safat 13060, Kuwait
| | - Amani M. Al-Adsani
- Department of Biological Sciences, Faculty of Science, Kuwait University, Shadadiyah, Kuwait P.O. Box 5969, Safat 13060, Kuwait
| | - Suzanne A. Al-Bustan
- Department of Biological Sciences, Faculty of Science, Kuwait University, Shadadiyah, Kuwait P.O. Box 5969, Safat 13060, Kuwait
| |
Collapse
|
5
|
Khan S, Gaivin RJ, Liu Z, Li V, Samuels I, Son J, Osei-Owusu P, Garvin JL, Accili D, Schelling JR. Fatty Acid Transport Protein-2 (FATP2) Inhibition Enhances Glucose Tolerance through α-Cell-mediated GLP-1 Secretion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.635976. [PMID: 39975070 PMCID: PMC11838418 DOI: 10.1101/2025.01.31.635976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Type 2 diabetes affects more than 30 million people in the US, and a major complication is kidney disease. During the analysis of lipotoxicity in diabetic kidney disease, global fatty acid transport protein-2 (FATP2) gene deletion was noted to markedly reduce plasma glucose in db/db mice due to sustained insulin secretion. To identify the mechanism, we observed that islet FATP2 expression was restricted to α-cells, and α-cell FATP2 was functional. Direct evidence of FATP2KO-induced α-cell-mediated GLP-1 secretion included increased GLP-1-positive α-cell mass in FATP2KO db/db mice, small molecule FATP2 inhibitor enhancement of GLP-1 secretion in αTC1-6 cells and human islets, and exendin[9-39]-inhibitable insulin secretion in FATP2 inhibitor-treated human islets. FATP2-dependent enteroendocrine GLP-1 secretion was excluded by demonstration of similar glucose tolerance and plasma GLP-1 concentrations in db/db FATP2KO mice following oral versus intraperitoneal glucose loading, non-overlapping FATP2 and preproglucagon mRNA expression, and lack of FATP2/GLP-1 co-immunolocalization in intestine. We conclude that FATP2 deletion or inhibition exerts glucose-lowering effects through α-cell-mediated GLP-1 secretion and paracrine β-cell insulin release. Graphical abstract
Collapse
|
6
|
Cedars MA, Root KM, Akhaphong B, Beetch M, Miles AE, Regal RR, Alejandro EU, Regal JF. Improved glucose handling in female rat offspring of a hypertensive pregnancy with intrauterine growth restriction. Physiol Rep 2025; 13:e70222. [PMID: 39903552 PMCID: PMC11792987 DOI: 10.14814/phy2.70222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 02/06/2025] Open
Abstract
Hypertensive disorders of pregnancy, intrauterine growth restriction (IUGR), and reduced pancreatic β-cell area increases risk of offspring developing type 2 diabetes (T2D). Our previous studies using rat reduced uteroplacental perfusion pressure (RUPP) model of gestational hypertension and IUGR demonstrated reduced pancreatic β-cell area in offspring at embryonic day 19 and postnatal day 13 (PD13). We hypothesized reduced β-cell area early in life would manifest as hyperglycemia and glucose intolerance as animals aged. However, glucose intolerance did not differ in RUPP versus control offspring to 1 year of life, whether intraperitoneal or oral glucose challenge. At PD28, female RUPP offspring show normalized β-cell area compared to controls and improved ability to clear glucose following oral challenge. Oral glucose challenge results in significant increase in incretin GLP-1 in RUPP female offspring compared to control. Insulin tolerance did not differ amongst control and RUPP offspring, except at PD28 where insulin reduced blood glucose more effectively in RUPP female offspring versus control. Insulin-induced vasodilation in isolated aorta and insulin signaling in fat are more pronounced in RUPP PD28 female offspring versus control. Thus, our studies demonstrate compensatory mechanisms protect IUGR offspring of a hypertensive pregnancy from long-term metabolic effects and development of T2D.
Collapse
Affiliation(s)
- Melissa A. Cedars
- Department of Biomedical SciencesUniversity of Minnesota Medical SchoolDuluthMinnesotaUSA
| | - Kate M. Root
- Department of Biomedical SciencesUniversity of Minnesota Medical SchoolDuluthMinnesotaUSA
| | - Brian Akhaphong
- Department of Integrative Biology and PhysiologyUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
| | - Megan Beetch
- Department of Integrative Biology and PhysiologyUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
| | - Abigail E. Miles
- Department of Biomedical SciencesUniversity of Minnesota Medical SchoolDuluthMinnesotaUSA
| | - Ronald R. Regal
- Department of Mathematics and StatisticsUniversity of MinnesotaDuluthMinnesotaUSA
| | - Emilyn U. Alejandro
- Department of Integrative Biology and PhysiologyUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
| | - Jean F. Regal
- Department of Biomedical SciencesUniversity of Minnesota Medical SchoolDuluthMinnesotaUSA
| |
Collapse
|
7
|
Tan WX, Lim LY, Afsha N, Chan GME, Ching C, Oguz G, Neo SP, Mohamed Ali S, Ramasamy A, Gunaratne J, Hunziker W, Khoo CM, Teo AKK. ZHX3 interacts with CEBPB to repress hepatic gluconeogenic gene expression and uric acid secretion. PNAS NEXUS 2025; 4:pgae568. [PMID: 39990763 PMCID: PMC11843648 DOI: 10.1093/pnasnexus/pgae568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 12/11/2024] [Indexed: 02/25/2025]
Abstract
ZHX3, which encodes for a transcriptional repressor, is associated with fasting blood glucose (FBG) levels and increased type 2 diabetes (T2D) risk but its role in cell types involved in glucose metabolism is not well understood. Here, we show that the deletion of ZHX3 in the human pancreatic β-cell line EndoC-βH1 did not impair glucose-stimulated insulin secretion (GSIS) nor perturb its transcriptome. On the other hand, we found that ZHX3 represses the expression of gluconeogenic genes PCK1 and G6PC1 in the human hepatoma line HepG2. Transcriptomic analysis of ZHX3-deficient HepG2 cells revealed that the uric acid transporter gene SLC17A1 was up-regulated, which consequentially led to increased uric acid secretion. High levels of uric acid could then impair GSIS in EndoC-βH1 cells. Subsequently, in-depth co-immunoprecipitation followed by mass spectrometry analysis of ZHX3 in HepG2 cells identified transcription factor CEBPB as its binding partner, required to repress the transcription of PCK1, G6PC1, and partially SLC17A1 in HepG2 cells. Overall, our study uncovered the role of ZHX3 in regulating glucose metabolism in hepatocytes, thereby influencing FBG levels and their association with T2D risk.
Collapse
Affiliation(s)
- Wei Xuan Tan
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Lillian Yuxian Lim
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Nesha Afsha
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Gloria Mei En Chan
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Carmen Ching
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Gokce Oguz
- Bioinformatics Consulting and Training Platform, Genome Institute of Singapore, A*STAR, Singapore 138672, Singapore
| | - Suat Peng Neo
- Translational Biomedical Proteomics Laboratory, IMCB, A*STAR, Singapore 138673, Singapore
| | - Safiah Mohamed Ali
- Epithelial Polarity in Disease and Tissue Regeneration Laboratory; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Adaikalavan Ramasamy
- Bioinformatics Consulting and Training Platform, Genome Institute of Singapore, A*STAR, Singapore 138672, Singapore
| | - Jayantha Gunaratne
- Translational Biomedical Proteomics Laboratory, IMCB, A*STAR, Singapore 138673, Singapore
| | - Walter Hunziker
- Epithelial Polarity in Disease and Tissue Regeneration Laboratory; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Chin Meng Khoo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| |
Collapse
|
8
|
El Eid L, Deane-Alder K, Rujan RM, Mariam Z, Oqua AI, Manchanda Y, Belousoff MJ, Bernardino de la Serna J, Sloop KW, Rutter GA, Montoya A, Withers DJ, Millership S, Bouzakri K, Jones B, Reynolds CA, Sexton PM, Wootten D, Deganutti G, Tomas A. In vivo functional profiling and structural characterisation of the human Glp1r A316T variant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.19.619191. [PMID: 39484598 PMCID: PMC11527029 DOI: 10.1101/2024.10.19.619191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are effective therapies for type 2 diabetes (T2D) and obesity, yet patient responses are variable. Variation in the human Glp1r gene might be directly linked to therapeutic responses. A naturally occurring missense variant, A316T, protects against T2D and cardiovascular disease. Here, we have generated and characterised a human Glp1r A316T mouse model. Human Glp1r A316T/A316T mice displayed lower fasting blood glucose versus wildtype littermates, even under metabolic stress, and exhibited alterations in islet cytoarchitecture and α/β identity under a high-fat, high-sucrose diet. This was however associated with blunted responses to GLP-1RAs in vivo. Further investigations in rodent and human β-cell models demonstrated that human Glp1r A316T exhibits characteristics of constitutive activation but dampened GLP-1RA responses. Results are further supported by cryo-EM analyses and molecular dynamics simulations of GLP-1R A316T structure, collectively demonstrating that the A316T variant governs basal GLP-1R activity and pharmacological responses to GLP-1R-targeting therapies.
Collapse
|
9
|
Wang D, Wei T, Cui X, Xia L, Jiang Y, Yin D, Liao X, Li F, Li J, Wu Q, Lin X, Lang S, Le Y, Yang J, Yang J, Wei R, Hong T. Fam3a-mediated prohormone convertase switch in α-cells regulates pancreatic GLP-1 production in an Nr4a2-Foxa2-dependent manner. Metabolism 2025; 162:156042. [PMID: 39362520 DOI: 10.1016/j.metabol.2024.156042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 09/09/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Fam3a has been demonstrated to regulate pancreatic β-cell function and glucose homeostasis. However, the role and mechanism of Fam3a in regulating α-cell function remain unexplored. METHODS Glucagon and glucagon-like peptide-1 (GLP-1) levels in pancreas and plasma were measured in global Fam3a knockout (Fam3a-/-) mice. Human islet single-cell RNA sequencing (scRNA-seq) datasets were utilized to analyze gene expression correlations between FAM3A and PCSK1 (encoding PC1/3, which processes proglucagon into GLP-1). Mouse pancreatic α-cell line αTC1.9 cells were transfected with Fam3a siRNA or plasmid for Fam3a knockdown or overexpression to explore the effects of Fam3a on PC1/3 expression and GLP-1 production. The downstream mediator (including Nr4a2) was identified by transcriptomic analysis, and its role was confirmed by Fam3a knockdown or overexpression in αTC1.9 cells. Based on the interacted protein of Nr4a2 and the direct binding to Pcsk1 promoter, the transcription factor Foxa2 was selected for further verification. Nuclear translocation assay and dual-luciferase reporter assay were used to clarify the involvement of Fam3a-Nr4a2-Foxa2 pathway in PC1/3 expression and GLP-1 production. Moreover, α-cell-specific Fam3a knockout (Fam3aα-/-) mice were constructed to evaluate the metabolic variables and hormone levels under normoglycemic, high-fat diet (HFD)-fed and streptozotocin (STZ)-induced diabetic conditions. Exendin 9-39 (Ex9), a GLP-1 receptor antagonist, was used to investigate GLP-1 paracrine effects in Fam3aα-/- mice and in their primary islets. RESULTS Compared with wild-type mice, pancreatic and plasma active GLP-1 levels were increased in Fam3a-/- mice. Analysis of human islet scRNA-seq datasets showed a significant negative correction between FAM3A and PCSK1 in α-cells. Fam3a knockdown upregulated PC1/3 expression and GLP-1 production in αTC1.9 cells, while Fam3a overexpression displayed inverse effects. Transcriptomic analysis identified Nr4a2 as a key downstream mediator of Fam3a, and Nr4a2 expression in αTC1.9 cells was downregulated and upregulated by Fam3a knockdown and overexpression, respectively. Nr4a2 silencing increased PC1/3 expression, albeit Nr4a2 did not directly bind to Pcsk1 promoter. Instead, Nr4a2 formed a complex with Foxa2 to facilitate Fam3a-mediated Foxa2 nuclear translocation. Foxa2 negatively regulated PC1/3 expression and GLP-1 production. Besides, Foxa2 inhibited the transcriptional activity of Pcsk1 promoter at specific binding sites 10 and 6, and this inhibition was intensified by Nr4a2 in αTC1.9 cells. Compared with Flox/cre littermates, improved glucose tolerance, increased active GLP-1 level in pancreas and plasma, upregulated plasma insulin level in response to glucose, and decreased plasma glucagon level were observed in Fam3aα-/- mice. Primary islets isolated from Fam3aα-/- mice also showed an increase in active GLP-1 and insulin release. In addition, the insulinotropic effect of intra-islet GLP-1 was blocked by Ex9 in Fam3aα-/- mice and in their primary islets. Similarly, HFD-fed Fam3aα-/- mice also exhibited an improved glucose tolerance. Both HFD-fed and STZ-induced diabetic Fam3aα-/- mice showed an increased pancreatic active GLP-1 level, an elevated plasma insulin level and a reduced plasma glucagon level. CONCLUSIONS Fam3a deficiency in α-cells enhances pancreatic GLP-1 production to improve β-cell function via paracrine signaling in an Nr4a2-Foxa2-PC1/3-dependent manner. Our study unveils a novel strategy for reprogramming α-cell proglucagon processing output from glucagon to GLP-1 and deepen the understanding of crosstalk between α-cells and β-cells.
Collapse
Affiliation(s)
- Dandan Wang
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China
| | - Tianjiao Wei
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China
| | - Xiaona Cui
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China
| | - Li Xia
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China
| | - Yafei Jiang
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China
| | - Deshan Yin
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China
| | - Xinyue Liao
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China
| | - Fei Li
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China
| | - Jian Li
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China
| | - Qi Wu
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China
| | - Xiafang Lin
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China
| | - Shan Lang
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China
| | - Yunyi Le
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jin Yang
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China
| | - Rui Wei
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China.
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
10
|
Apaolaza PS, Chen YC, Grewal K, Lurz Y, Boulassel S, Verchere CB, Rodriguez-Calvo T. Quantitative analysis of islet prohormone convertase 1/3 expression in human pancreas donors with diabetes. Diabetologia 2024; 67:2771-2785. [PMID: 39404844 PMCID: PMC11604696 DOI: 10.1007/s00125-024-06275-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/12/2024] [Indexed: 11/29/2024]
Abstract
AIMS/HYPOTHESIS Islet prohormone-processing enzymes convert peptide hormone precursors to mature hormones. Defective beta cell prohormone processing and the release of incompletely processed peptide hormones are observed prior to the onset of diabetes, yet molecular mechanisms underlying impaired prohormone processing during the development of diabetes remains largely unknown. Previous studies have shown that prohormone convertase 1/3 (PC1/3) protein and mRNA expression levels are reduced in whole islets from donors with type 1 diabetes, although whether PC1/3-mediated prohormone processing in alpha and beta cells is disrupted in type 1 diabetes remained to be explored. Herein, we aimed to analyse the expression of PC1/3 in islets from non-diabetic donors, autoantibody-positive donors and donors diagnosed with type 1 diabetes or type 2 diabetes. METHODS Immunostaining and high-dimensional image analysis were performed on pancreatic sections from a cross-sectional cohort of 54 donors obtained from the Network for Pancreatic Organ Donors with Diabetes (nPOD) repository, to evaluate PC1/3 expression patterns in islet alpha, beta and delta cells at different stages of diabetes. RESULTS Alpha and beta cell morphology were altered in donors with type 1 diabetes, including decreased alpha and beta cell size. As expected, the insulin-positive and PC1/3-positive areas in the islets were both reduced, and this was accompanied by a reduced percentage of PC1/3-positive and insulin-positive/PC1/3-positive cells in islets. PC1/3 and insulin co-localisation was also reduced. The glucagon-positive area, as well as the percentage of glucagon-positive and glucagon-positive/PC1/3-positive cells in islets, was increased. PC1/3 and glucagon co-localisation was also increased in donors with type 1 diabetes. The somatostatin-positive cell area and somatostatin staining intensity were elevated in islets from donors with recent-onset type 1 diabetes. CONCLUSIONS/INTERPRETATION Our high-resolution histomorphological analysis of human pancreatic islets from donors with and without diabetes has uncovered details of the cellular origin of islet prohormone peptide processing defects. Reduced beta cell PC1/3 and increased alpha cell PC1/3 in islets from donors with type 1 diabetes pinpointed the functional deterioration of beta cells and the concomitant potential increase in PC1/3 usage for prohormone processing in alpha cells during the pathogenesis of type 1 diabetes. Our finding of PC1/3 loss in beta cells may inform the discovery of new prohormone biomarkers as indicators of beta cell dysfunction, and the finding of elevated PC1/3 expression in alpha cells may encourage the design of therapeutic targets via leveraging alpha cell adaptation in diabetes.
Collapse
Affiliation(s)
- Paola S Apaolaza
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Yi-Chun Chen
- Department of Surgery, University of British Columbia & BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Kavi Grewal
- Department of Surgery, University of British Columbia & BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Yannik Lurz
- Technical University of Munich, Munich, Germany
| | - Severin Boulassel
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - C Bruce Verchere
- Department of Surgery, University of British Columbia & BC Children's Hospital Research Institute, Vancouver, BC, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia & BC Children's Hospital Research Institute, Vancouver, BC, Canada.
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada.
| | - Teresa Rodriguez-Calvo
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany.
| |
Collapse
|
11
|
Carroll J, Chen J, Mittal R, Lemos JRN, Mittal M, Juneja S, Assayed A, Hirani K. Decoding the Significance of Alpha Cell Function in the Pathophysiology of Type 1 Diabetes. Cells 2024; 13:1914. [PMID: 39594662 PMCID: PMC11593172 DOI: 10.3390/cells13221914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Alpha cells in the pancreas, traditionally known for their role in secreting glucagon to regulate blood glucose levels, are gaining recognition for their involvement in the pathophysiology of type 1 diabetes (T1D). In T1D, autoimmune destruction of beta cells results in insulin deficiency, which in turn may dysregulate alpha cell function, leading to elevated glucagon levels and impaired glucose homeostasis. This dysfunction is characterized by inappropriate glucagon secretion, augmenting the risk of life-threatening hypoglycemia. Moreover, insulin deficiency and autoimmunity alter alpha cell physiological responses, further exacerbating T1D pathophysiology. Recent studies suggest that alpha cells undergo transdifferentiation and interact with beta cells through mechanisms involving gamma-aminobutyric acid (GABA) signaling. Despite these advances, the exact pathways and interactions remain poorly understood and are often debated. Understanding the precise role of alpha cells in T1D is crucial, as it opens up avenues for developing new therapeutic strategies for T1D. Potential strategies include targeting alpha cells to normalize glucagon secretion, utilizing glucagon receptor antagonists, enhancing GABA signaling, and employing glucagon-like peptide-1 (GLP-1) receptor agonists. These approaches aim to improve glycemic control and reduce the risk of hypoglycemic events in individuals with T1D. This review provides an overview of alpha cell function in T1D, highlighting the emerging focus on alpha cell dysfunction in the context of historically well-developed beta cell research.
Collapse
Affiliation(s)
| | | | - Rahul Mittal
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.C.); (J.C.); (J.R.N.L.); (M.M.); (S.J.); (A.A.)
| | | | | | | | | | - Khemraj Hirani
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.C.); (J.C.); (J.R.N.L.); (M.M.); (S.J.); (A.A.)
| |
Collapse
|
12
|
Gharib SA, Vemireddy R, Castillo JJ, Fountaine BS, Bammler TK, MacDonald JW, Hull-Meichle RL, Zraika S. Cystic fibrosis-related diabetes is associated with reduced islet protein expression of GLP-1 receptor and perturbation of cell-specific transcriptional programs. Sci Rep 2024; 14:25689. [PMID: 39463434 PMCID: PMC11514218 DOI: 10.1038/s41598-024-76722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024] Open
Abstract
Insulin secretion is impaired in individuals with cystic fibrosis (CF), contributing to high rates of CF-related diabetes (CFRD) and substantially increasing disease burden. To develop improved therapies for CFRD, better knowledge of pancreatic pathology in CF is needed. Glucagon like peptide-1 (GLP-1) from islet α cells potentiates insulin secretion by binding GLP-1 receptors (GLP-1Rs) on β cells. We determined whether expression of GLP-1 and/or its signaling components are reduced in CFRD, thereby contributing to impaired insulin secretion. Immunohistochemistry of pancreas from humans with CFRD versus no-CF/no-diabetes revealed no difference in GLP-1 immunoreactivity per islet area, whereas GLP-1R immunoreactivity per islet area or per insulin-positive islet area was reduced in CFRD. Using spatial transcriptomics, we observed several differentially expressed α- and/or β-cell genes between CFRD and control pancreas. In CFRD, we found upregulation of α-cell PCSK1 which encodes the enzyme (PC1/3) that generates GLP-1, and downregulation of α-cell PCSK1N which inhibits PC1/3. Gene set enrichment analysis also revealed α and β cell-specific pathway dysregulation in CFRD. Together, our data suggest intra-islet GLP-1 is not limiting in CFRD, but its action may be restricted due to reduced GLP-1R protein levels. Thus, restoring β-cell GLP-1R protein expression may improve β-cell function in CFRD.
Collapse
Affiliation(s)
- Sina A Gharib
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
- Computational Medicine Core at Center for Lung Biology, University of Washington, Seattle, Washington, USA
| | - Rachna Vemireddy
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Joseph J Castillo
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
- Research and Development Service, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
| | - Brendy S Fountaine
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - James W MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Rebecca L Hull-Meichle
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
- Research and Development Service, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Alberta Diabetes Institute, Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
| | - Sakeneh Zraika
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA.
- Research and Development Service, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.
- Veterans Affairs Puget Sound Health Care System, 1660 South Columbian Way (151), Seattle, WA, 98108, USA.
| |
Collapse
|
13
|
Aleman J, K R, Wiegand C, Schurdak ME, Vernetti L, Gavlock D, Reese C, DeBiasio R, LaRocca G, Angarita YD, Gough A, Soto-Gutierrez A, Behari J, Yechoor VK, Miedel MT, Stern AM, Banerjee I, Taylor DL. A metabolic dysfunction-associated steatotic liver acinus biomimetic induces pancreatic islet dysfunction in a coupled microphysiology system. Commun Biol 2024; 7:1317. [PMID: 39397070 PMCID: PMC11471816 DOI: 10.1038/s42003-024-07006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024] Open
Abstract
Preclinical and clinical studies suggest that lipid-induced hepatic insulin resistance is a primary defect that predisposes to dysfunction in islets, implicating a perturbed liver-pancreas axis underlying the comorbidity of T2DM and MASLD. To investigate this hypothesis, we developed a human biomimetic microphysiological system (MPS) coupling our vascularized liver acinus MPS (vLAMPS) with pancreatic islet MPS (PANIS) enabling MASLD progression and islet dysfunction to be assessed. The modular design of this system (vLAMPS-PANIS) allows intra-organ and inter-organ dysregulation to be deconvoluted. When compared to normal fasting (NF) conditions, under early metabolic syndrome (EMS) conditions, the standalone vLAMPS exhibited characteristics of early stage MASLD, while no significant differences were observed in the standalone PANIS. In contrast, with EMS, the coupled vLAMPS-PANIS exhibited a perturbed islet-specific secretome and a significantly dysregulated glucose stimulated insulin secretion response implicating direct signaling from the dysregulated liver acinus to the islets. Correlations between several pairs of a vLAMPS-derived and a PANIS-derived factors were significantly altered under EMS, as compared to NF conditions, mechanistically connecting MASLD and T2DM associated hepatic-factors with islet-derived GLP-1 synthesis and regulation. Since vLAMPS-PANIS is compatible with patient-specific iPSCs, this platform represents an important step towards addressing patient heterogeneity, identifying disease mechanisms, and advancing precision medicine.
Collapse
Affiliation(s)
- Julio Aleman
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
- University of Pittsburgh Department of Bioengineering, Pittsburgh, USA
| | - Ravikumar K
- University of Pittsburgh Department of Chemical and Petroleum Engineering, Pittsburgh, USA
| | - Connor Wiegand
- University of Pittsburgh Department of Chemical and Petroleum Engineering, Pittsburgh, USA
| | - Mark E Schurdak
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
- University of Pittsburgh Department of Computational and Systems Biology, Pittsburgh, USA
- University of Pittsburgh Liver Research Center, Pittsburgh, USA
| | - Lawrence Vernetti
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
- University of Pittsburgh Department of Computational and Systems Biology, Pittsburgh, USA
- University of Pittsburgh Liver Research Center, Pittsburgh, USA
| | - Dillon Gavlock
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
| | - Celeste Reese
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
| | - Richard DeBiasio
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
| | - Greg LaRocca
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
| | | | - Albert Gough
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
- University of Pittsburgh Department of Computational and Systems Biology, Pittsburgh, USA
| | - Alejandro Soto-Gutierrez
- University of Pittsburgh Liver Research Center, Pittsburgh, USA
- University of Pittsburgh Department of Pathology, Pittsburgh, USA
| | - Jaideep Behari
- Division of Gastroenterology, Hepatology and Nutrition, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Vijay K Yechoor
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, USA
| | - Mark T Miedel
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
- University of Pittsburgh Liver Research Center, Pittsburgh, USA
- University of Pittsburgh Department of Pathology, Pittsburgh, USA
| | - Andrew M Stern
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA.
- University of Pittsburgh Department of Computational and Systems Biology, Pittsburgh, USA.
| | - Ipsita Banerjee
- University of Pittsburgh Department of Bioengineering, Pittsburgh, USA.
- University of Pittsburgh Department of Chemical and Petroleum Engineering, Pittsburgh, USA.
| | - D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA.
- University of Pittsburgh Department of Bioengineering, Pittsburgh, USA.
- University of Pittsburgh Department of Computational and Systems Biology, Pittsburgh, USA.
- University of Pittsburgh Liver Research Center, Pittsburgh, USA.
| |
Collapse
|
14
|
Cobo-Vuilleumier N, Lorenzo PI, Martin Vazquez E, López Noriega L, Nano R, Piemonti L, Martín F, Gauthier BR. Enhancing human islet xenotransplant survival and function in diabetic immunocompetent mice through LRH-1/NR5A2 pharmacological activation. Front Immunol 2024; 15:1470881. [PMID: 39399499 PMCID: PMC11466778 DOI: 10.3389/fimmu.2024.1470881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
The intricate etiology of type 1 diabetes mellitus (T1D), characterized by harmful interactions between the immune system and insulin-producing beta cells, has hindered the development of effective therapies including human islet transplantation, which requires strong immunosuppressants that impair beta cell survival and function. As such alternative immunomodulating therapies are required for successful transplantation. The discovery that pharmacological activation of the nuclear receptor LRH-1/NR5A2 can reverse hyperglycemia in mouse models of T1D by altering, and not suppressing the autoimmune attack, prompted us to investigate whether LRH-1/NR5A2 activation could improve human islet function/survival after xenotransplantation in immunocompetent mice. Human islets were transplanted under the kidney capsule of streptozotocin (STZ)-induced diabetic mice, and treatment with BL001 (LRH-1/NR5A2 agonist) or vehicle was administered one week post-transplant. Our study, encompassing 3 independent experiments with 3 different islet donors, revealed that mice treated for 8 weeks with BL001 exhibited lower blood glucose levels correlating with improved mouse survival rates as compared to vehicle-treated controls. Human C-peptide was detectable in BL001-treated mice at both 4 and 8 weeks indicating functional islet beta cells. Accordingly, in mice treated with BL001 for 8 weeks, the beta cell mass was preserved, while a significant decrease in alpha cells was observed compared to mice treated with BL001 for only 4 weeks. In contrast, vehicle-treated mice exhibited a reduction in insulin-expressing cells at 8 weeks compared to those at 4 weeks. These results suggest that BL001 significantly enhances the survival, engraftment, and functionality of human islets in a STZ-induced diabetic mouse model.
Collapse
Affiliation(s)
- N. Cobo-Vuilleumier
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Junta de Andalucía-University of Pablo de Olavide-University of Seville-Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - P. I. Lorenzo
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Junta de Andalucía-University of Pablo de Olavide-University of Seville-Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - E. Martin Vazquez
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Junta de Andalucía-University of Pablo de Olavide-University of Seville-Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - L. López Noriega
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Junta de Andalucía-University of Pablo de Olavide-University of Seville-Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - R. Nano
- Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - L. Piemonti
- Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - F. Martín
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Junta de Andalucía-University of Pablo de Olavide-University of Seville-Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - B. R. Gauthier
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Junta de Andalucía-University of Pablo de Olavide-University of Seville-Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
15
|
Zheng Z, Zong Y, Ma Y, Tian Y, Pang Y, Zhang C, Gao J. Glucagon-like peptide-1 receptor: mechanisms and advances in therapy. Signal Transduct Target Ther 2024; 9:234. [PMID: 39289339 PMCID: PMC11408715 DOI: 10.1038/s41392-024-01931-z] [Citation(s) in RCA: 109] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/17/2024] [Accepted: 07/16/2024] [Indexed: 09/19/2024] Open
Abstract
The glucagon-like peptide-1 (GLP-1) receptor, known as GLP-1R, is a vital component of the G protein-coupled receptor (GPCR) family and is found primarily on the surfaces of various cell types within the human body. This receptor specifically interacts with GLP-1, a key hormone that plays an integral role in regulating blood glucose levels, lipid metabolism, and several other crucial biological functions. In recent years, GLP-1 medications have become a focal point in the medical community due to their innovative treatment mechanisms, significant therapeutic efficacy, and broad development prospects. This article thoroughly traces the developmental milestones of GLP-1 drugs, from their initial discovery to their clinical application, detailing the evolution of diverse GLP-1 medications along with their distinct pharmacological properties. Additionally, this paper explores the potential applications of GLP-1 receptor agonists (GLP-1RAs) in fields such as neuroprotection, anti-infection measures, the reduction of various types of inflammation, and the enhancement of cardiovascular function. It provides an in-depth assessment of the effectiveness of GLP-1RAs across multiple body systems-including the nervous, cardiovascular, musculoskeletal, and digestive systems. This includes integrating the latest clinical trial data and delving into potential signaling pathways and pharmacological mechanisms. The primary goal of this article is to emphasize the extensive benefits of using GLP-1RAs in treating a broad spectrum of diseases, such as obesity, cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), neurodegenerative diseases, musculoskeletal inflammation, and various forms of cancer. The ongoing development of new indications for GLP-1 drugs offers promising prospects for further expanding therapeutic interventions, showcasing their significant potential in the medical field.
Collapse
Affiliation(s)
- Zhikai Zheng
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Yiyang Ma
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yucheng Tian
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yidan Pang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
16
|
Perez-Frances M, Bru-Tari E, Cohrs C, Abate MV, van Gurp L, Furuyama K, Speier S, Thorel F, Herrera PL. Regulated and adaptive in vivo insulin secretion from islets only containing β-cells. Nat Metab 2024; 6:1791-1806. [PMID: 39169271 PMCID: PMC11422169 DOI: 10.1038/s42255-024-01114-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
Insulin-producing β-cells in pancreatic islets are regulated by systemic cues and, locally, by adjacent islet hormone-producing 'non-β-cells' (namely α-cells, δ-cells and γ-cells). Yet whether the non-β-cells are required for accurate insulin secretion is unclear. Here, we studied mice in which adult islets are exclusively composed of β-cells and human pseudoislets containing only primary β-cells. Mice lacking non-β-cells had optimal blood glucose regulation, enhanced glucose tolerance, insulin sensitivity and restricted body weight gain under a high-fat diet. The insulin secretion dynamics in islets composed of only β-cells was comparable to that in intact islets. Similarly, human β-cell pseudoislets retained the glucose-regulated mitochondrial respiration, insulin secretion and exendin-4 responses of entire islets. The findings indicate that non-β-cells are dispensable for blood glucose homeostasis and β-cell function. These results support efforts aimed at developing diabetes treatments by generating β-like clusters devoid of non-β-cells, such as from pluripotent stem cells differentiated in vitro or by reprograming non-β-cells into insulin producers in situ.
Collapse
Affiliation(s)
- Marta Perez-Frances
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Eva Bru-Tari
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christian Cohrs
- Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany
| | - Maria Valentina Abate
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Léon van Gurp
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Kenichiro Furuyama
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Stephan Speier
- Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany
| | - Fabrizio Thorel
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pedro L Herrera
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
17
|
Yun Y, Guo S, Xie X. V1bR enhances glucose-stimulated insulin secretion by paracrine production of glucagon which activates GLP-1 receptor. Cell Biosci 2024; 14:110. [PMID: 39217353 PMCID: PMC11365140 DOI: 10.1186/s13578-024-01288-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Arginine vasopressin (AVP) has been reported to regulate insulin secretion and glucose homeostasis in the body. Previous study has shown that AVP and its receptor V1bR modulate insulin secretion via the hypothalamic-pituitary-adrenal axis. AVP has also been shown to enhance insulin secretion in islets, but the exact mechanism remains unclear. RESULTS In our study, we unexpectedly discovered that AVP could only stimulates insulin secretion from islets, but not β cells, and AVP-induced insulin secretion could be blocked by V1bR selective antagonist. Single-cell transcriptome analysis identified that V1bR is only expressed by the α cells. Further studies indicated that activation of the V1bR stimulates the α cells to secrete glucagon, which then promotes glucose-dependent insulin secretion from β cells in a paracrine way by activating GLP-1R but not GCGR on these cells. CONCLUSIONS Our study revealed a crosstalk between α and β cells initiated by AVP/V1bR and mediated by glucagon/GLP-1R, providing a mechanism to develop new glucose-controlling therapies targeting V1bR.
Collapse
Affiliation(s)
- Ying Yun
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Shimeng Guo
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai, 201203, China
| | - Xin Xie
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China.
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai, 201203, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
18
|
Zhou JX, Jie-Zhou, Jin WR, Li JY, Zhang XC, Zhao CY, Lin YY, Wang XY, Yan LF, Kai-Yan, Liu QW. Human amniotic mesenchymal stem cell-islet organoids enhance the efficiency of islet engraftment in a mouse diabetes model. Life Sci 2024; 351:122812. [PMID: 38862063 DOI: 10.1016/j.lfs.2024.122812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/10/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
AIMS Despite islet transplantation has proved a great potential to become the standard therapy for type 1 diabetes mellitus (T1DM), this approach remains limited by ischemia, hypoxia, and poor revascularization in early post-transplant period as well as inflammation and life-long host immune rejection. Here, we investigate the potential and mechanism of human amniotic mesenchymal stem cells (hAMSCs)-islet organoid to improve the efficiency of islet engraftment in immunocompetent T1DM mice. MAIN METHODS We generated the hAMSC-islet organoid structure through culturing the mixture of hAMSCs and islets on 3-dimensional-agarose microwells. Flow cytometry, whole-body fluorescent imaging, immunofluorescence, Calcein-AM/PI staining, ELISA, and qPCR were used to assess the potential and mechanism of shielding hAMSCs to improve the efficiency of islet transplantation. KEY FINDINGS Transplant of hAMSC-islet organoids results in remarkably better glycemic control, an enhanced glucose tolerance, and a higher β cell mass in vivo compared with control islets. Our results show that hAMSCs shielding provides an immune privileged microenvironment for islets and promotes graft revascularization in vivo. In addition, hAMSC-islet organoids show higher viability and reduced dysfunction after exposure to hypoxia and inflammatory cytokines in vitro. Finally, our results show that shielding with hAMSCs leads to the activation of PKA-CREB-IRS2-PI3K and PKA-PDX1 signaling pathways, up-regulation of SIL1 mRNA levels, and down-regulation of MT1 mRNA levels in β cells, which ultimately promotes the synthesis, folding and secretion of insulin, respectively. SIGNIFICANCE hAMSC-islet organoids can evidently increase the efficiency of islet engraftment and might develop into a promising alternative for the clinical treatment of T1DM.
Collapse
Affiliation(s)
- Jia-Xin Zhou
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China; Institute of Organoid Technology, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China; The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China
| | - Jie-Zhou
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China
| | - Wei-Ran Jin
- Huankui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China
| | - Jing-Yuan Li
- Normal College, East China University of Technology, Nanchang 330013, PR China
| | - Xiang-Cheng Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Chu-Yu Zhao
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China
| | - Ya-Yi Lin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China; Institute of Organoid Technology, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China
| | - Xi-Yan Wang
- Institute of Organoid Technology, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China; School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Ling-Fei Yan
- Department of Pathology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Kai-Yan
- Department of Pediatrics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Quan-Wen Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China; Institute of Organoid Technology, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China; The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China.
| |
Collapse
|
19
|
Pixner T, Chaikouskaya T, Lauth W, Zimmermann G, Mörwald K, Lischka J, Furthner D, Awender E, Geiersberger S, Maruszczak K, Forslund A, Anderwald CH, Cadamuro J, Weghuber D, Bergsten P. Rise in fasting and dynamic glucagon levels in children and adolescents with obesity is moderate in subjects with impaired fasting glucose but accentuated in subjects with impaired glucose tolerance or type 2 diabetes. Front Endocrinol (Lausanne) 2024; 15:1368570. [PMID: 39027470 PMCID: PMC11254805 DOI: 10.3389/fendo.2024.1368570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Background Fasting levels of glucagon are known to be elevated in youth and adults with type 2 diabetes mellitus (T2D). Children and adolescents with obesity were previously reported to show increasing fasting and post-glucose-challenge hyperglucagonemia across the spectrum of glucose tolerance, while no data are available in those with impaired fasting glucose (IFG). Materials and methods Individuals from the Beta-JUDO study population (Uppsala and Salzburg 2010-2016) (n=101, age 13.3 ± 2.8, m/f =50/51) were included (90 with overweight or obesity, 11 with normal weight). Standardized OGTT were performed and plasma glucose, glucagon and insulin concentrations assessed at baseline, 5, 10, 15, 30, 60, 90 and 120 minutes. Patients were grouped according to their glycemic state in six groups with normal glucose metabolism (NGM) and normal weight (NG-NW), NGM with obesity or overweight (NG-O), impaired glucose tolerance (IGT), impaired fasting glucose (IFG), IGT+IFG and T2D, and in two groups with NGM and impaired glucose metabolism (IGM), for statistical analysis. Results and conclusion Glucagon concentrations were elevated in young normoglycemic individuals with overweight or obesity (NG-O) compared to normoglycemic individuals with normal weight. Glucagon levels, fasting and dynamic, increased with progressing glycemic deterioration, except in IFG, where levels were comparable to those in NG-O. All glycemic groups showed an overall suppression of glucagon during OGTT. An initial increase of glucagon could be observed in T2D. In T2D, glucagon showed a strong direct linear correlation with plasma glucose levels during OGTT. Glucagon in adolescents, as in adults, may play a role in the disease progression of T2D.
Collapse
Affiliation(s)
- Thomas Pixner
- Department of Pediatric and Adolescent Medicine, Salzkammergutklinikum Voecklabruck, Voecklabruck, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Tatsiana Chaikouskaya
- Institut national supérieur des sciences agronomiques de l'alimentation et de l'environnement, Dijon, France
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Wanda Lauth
- Biostatistics and Big Medical Data, Lab for Intelligent Data Analytics (IDA) Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Georg Zimmermann
- Biostatistics and Big Medical Data, Lab for Intelligent Data Analytics (IDA) Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Katharina Mörwald
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Julia Lischka
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Dieter Furthner
- Department of Pediatric and Adolescent Medicine, Salzkammergutklinikum Voecklabruck, Voecklabruck, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Elisabeth Awender
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Sabine Geiersberger
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Clinical Research Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Katharina Maruszczak
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Anders Forslund
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Christian-Heinz Anderwald
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Direction, Arnoldstein Healthcare Centre, Arnoldstein, Austria
| | - Janne Cadamuro
- Department of Laboratory Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Daniel Weghuber
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Peter Bergsten
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
Ciarelli J, Thangaraj SV, Sun H, Domke S, Alkhatib B, Vyas AK, Gregg B, Sargis RM, Padmanabhan V. Developmental programming: An exploratory analysis of pancreatic islet compromise in female sheep resulting from gestational BPA exposure. Mol Cell Endocrinol 2024; 588:112202. [PMID: 38552943 PMCID: PMC11427076 DOI: 10.1016/j.mce.2024.112202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Developmental exposure to endocrine disruptors like bisphenol A (BPA) are implicated in later-life metabolic dysfunction. Leveraging a unique sheep model of developmental programming, we conducted an exploratory analysis of the programming effects of BPA on the endocrine pancreas. Pregnant ewes were administered environmentally relevant doses of BPA during gestational days (GD) 30-90, and pancreata from female fetuses and adult offspring were analyzed. Prenatal BPA exposure induced a trend toward decreased islet insulin staining and β-cell count, increased glucagon staining and α-cell count, and increased α-cell/β-cell ratio. Findings were most consistent in fetal pancreata assessed at GD90 and in adult offspring exposed to the lowest BPA dose. While not assessed in fetuses, adult islet fibrosis was increased. Collectively, these data provide further evidence that early-life BPA exposure is a likely threat to human metabolic health. Future studies should corroborate these findings and decipher the molecular mechanisms of BPA's developmental endocrine toxicity.
Collapse
Affiliation(s)
- Joseph Ciarelli
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | - Haijing Sun
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Stephanie Domke
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Bashar Alkhatib
- Department of Pediatrics, Washington University, St. Louis, USA
| | | | - Brigid Gregg
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Robert M Sargis
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA; Department of Medicine, Jesse Brown VA Medical Center, Chicago, IL, USA
| | | |
Collapse
|
21
|
Šterk M, Zhang Y, Pohorec V, Leitgeb EP, Dolenšek J, Benninger RKP, Stožer A, Kravets V, Gosak M. Network representation of multicellular activity in pancreatic islets: Technical considerations for functional connectivity analysis. PLoS Comput Biol 2024; 20:e1012130. [PMID: 38739680 PMCID: PMC11115366 DOI: 10.1371/journal.pcbi.1012130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/23/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
Within the islets of Langerhans, beta cells orchestrate synchronized insulin secretion, a pivotal aspect of metabolic homeostasis. Despite the inherent heterogeneity and multimodal activity of individual cells, intercellular coupling acts as a homogenizing force, enabling coordinated responses through the propagation of intercellular waves. Disruptions in this coordination are implicated in irregular insulin secretion, a hallmark of diabetes. Recently, innovative approaches, such as integrating multicellular calcium imaging with network analysis, have emerged for a quantitative assessment of the cellular activity in islets. However, different groups use distinct experimental preparations, microscopic techniques, apply different methods to process the measured signals and use various methods to derive functional connectivity patterns. This makes comparisons between findings and their integration into a bigger picture difficult and has led to disputes in functional connectivity interpretations. To address these issues, we present here a systematic analysis of how different approaches influence the network representation of islet activity. Our findings show that the choice of methods used to construct networks is not crucial, although care is needed when combining data from different islets. Conversely, the conclusions drawn from network analysis can be heavily affected by the pre-processing of the time series, the type of the oscillatory component in the signals, and by the experimental preparation. Our tutorial-like investigation aims to resolve interpretational issues, reconcile conflicting views, advance functional implications, and encourage researchers to adopt connectivity analysis. As we conclude, we outline challenges for future research, emphasizing the broader applicability of our conclusions to other tissues exhibiting complex multicellular dynamics.
Collapse
Affiliation(s)
- Marko Šterk
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Yaowen Zhang
- Department of Pediatrics, Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Viljem Pohorec
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | | | - Jurij Dolenšek
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Richard K. P. Benninger
- Department of Bioengineering, Barbara Davis Center for Diabetes, Aurora, Colorado, United States of America
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Andraž Stožer
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Vira Kravets
- Department of Pediatrics, Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
- Department of Bioengineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, California, United States of America
| | - Marko Gosak
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Alma Mater Europaea, Maribor
| |
Collapse
|
22
|
Shilleh AH, Viloria K, Broichhagen J, Campbell JE, Hodson DJ. GLP1R and GIPR expression and signaling in pancreatic alpha cells, beta cells and delta cells. Peptides 2024; 175:171179. [PMID: 38360354 DOI: 10.1016/j.peptides.2024.171179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
Glucagon-like peptide-1 receptor (GLP1R) and glucose-dependent insulinotropic polypeptide receptor (GIPR) are transmembrane receptors involved in insulin, glucagon and somatostatin secretion from the pancreatic islet. Therapeutic targeting of GLP1R and GIPR restores blood glucose levels in part by influencing beta cell, alpha cell and delta cell function. Despite the importance of the incretin-mimetics for diabetes therapy, our understanding of GLP1R and GIPR expression patterns and signaling within the islet remain incomplete. Here, we present the evidence for GLP1R and GIPR expression in the major islet cell types, before addressing signaling pathway(s) engaged, as well as their influence on cell survival and function. While GLP1R is largely a beta cell-specific marker within the islet, GIPR is expressed in alpha cells, beta cells, and (possibly) delta cells. GLP1R and GIPR engage Gs-coupled pathways in most settings, although the exact outcome on hormone release depends on paracrine communication and promiscuous signaling. Biased agonism away from beta-arrestin is an emerging concept for improving therapeutic efficacy, and is also relevant for GLP1R/GIPR dual agonism. Lastly, dual agonists exert multiple effects on islet function through GIPR > GLP1R imbalance, increased GLP1R surface expression and cAMP signaling, as well as beneficial alpha cell-beta cell-delta cell crosstalk.
Collapse
Affiliation(s)
- Ali H Shilleh
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Katrina Viloria
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - Jonathan E Campbell
- Duke Molecular Physiology Institute, USA; Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| | - David J Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
23
|
Neuman JC, Reuter A, Carbajal KA, Schaid MD, Kelly G, Connors K, Kaiser C, Krause J, Hurley LD, Olvera A, Davis DB, Wisinski JA, Gannon M, Kimple ME. The prostaglandin E 2 EP3 receptor has disparate effects on islet insulin secretion and content in β-cells in a high-fat diet-induced mouse model of obesity. Am J Physiol Endocrinol Metab 2024; 326:E567-E576. [PMID: 38477664 PMCID: PMC11376488 DOI: 10.1152/ajpendo.00061.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 02/07/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
Signaling through prostaglandin E2 EP3 receptor (EP3) actively contributes to the β-cell dysfunction of type 2 diabetes (T2D). In T2D models, full-body EP3 knockout mice have a significantly worse metabolic phenotype than wild-type controls due to hyperphagia and severe insulin resistance resulting from loss of EP3 in extra-pancreatic tissues, masking any potential beneficial effects of EP3 loss in the β cell. We hypothesized β-cell-specific EP3 knockout (EP3 βKO) mice would be protected from high-fat diet (HFD)-induced glucose intolerance, phenocopying mice lacking the EP3 effector, Gαz, which is much more limited in its tissue distribution. When fed a HFD for 16 wk, though, EP3 βKO mice were partially, but not fully, protected from glucose intolerance. In addition, exendin-4, an analog of the incretin hormone, glucagon-like peptide 1, more strongly potentiated glucose-stimulated insulin secretion in islets from both control diet- and HFD-fed EP3 βKO mice as compared with wild-type controls, with no effect of β-cell-specific EP3 loss on islet insulin content or markers of replication and survival. However, after 26 wk of diet feeding, islets from both control diet- and HFD-fed EP3 βKO mice secreted significantly less insulin as a percent of content in response to stimulatory glucose, with or without exendin-4, with elevated total insulin content unrelated to markers of β-cell replication and survival, revealing severe β-cell dysfunction. Our results suggest that EP3 serves a critical role in temporally regulating β-cell function along the progression to T2D and that there exist Gαz-independent mechanisms behind its effects.NEW & NOTEWORTHY The EP3 receptor is a strong inhibitor of β-cell function and replication, suggesting it as a potential therapeutic target for the disease. Yet, EP3 has protective roles in extrapancreatic tissues. To address this, we designed β-cell-specific EP3 knockout mice and subjected them to high-fat diet feeding to induce glucose intolerance. The negative metabolic phenotype of full-body knockout mice was ablated, and EP3 loss improved glucose tolerance, with converse effects on islet insulin secretion and content.
Collapse
Affiliation(s)
- Joshua C Neuman
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, United States
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Austin Reuter
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, United States
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Kathryn A Carbajal
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, United States
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Michael D Schaid
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, United States
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Grant Kelly
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, United States
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Kelsey Connors
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, United States
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Cecilia Kaiser
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, United States
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Joshua Krause
- Department of Biology, University of Wisconsin-Lacrosse, La Crosse, Wisconsin, United States
| | - Liam D Hurley
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, United States
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Angela Olvera
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, United States
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Dawn Belt Davis
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, United States
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Jaclyn A Wisinski
- Department of Biology, University of Wisconsin-Lacrosse, La Crosse, Wisconsin, United States
| | - Maureen Gannon
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Wisconsin, United States
| | - Michelle E Kimple
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, United States
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States
| |
Collapse
|
24
|
Yang H, Luo J, Liu X, Luo Y, Lai X, Zou F. Unveiling cell subpopulations in T1D mouse islets using single-cell RNA sequencing. Am J Physiol Endocrinol Metab 2024; 326:E723-E734. [PMID: 38506753 PMCID: PMC11376805 DOI: 10.1152/ajpendo.00323.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of beta cells by immune cells. The interactions among cells within the islets may be closely linked to the pathogenesis of T1D. In this study, we used single-cell RNA sequencing (scRNA-Seq) to analyze the cellular heterogeneity within the islets of a T1D mouse model. We established a T1D mouse model induced by streptozotocin and identified cell subpopulations using scRNA-Seq technology. Our results revealed 11 major cell types in the pancreatic islets of T1D mice, with heterogeneity observed in the alpha and beta cell subgroups, which may play a crucial role in the progression of T1D. Flow cytometry further confirmed a mature alpha and beta cell reduction in T1D mice. Overall, our scRNA-Seq analysis provided insights into the cellular heterogeneity of T1D islet tissue and highlighted the potential importance of alpha and beta cells in developing T1D.NEW & NOTEWORTHY In this study, we created a comprehensive single-cell atlas of pancreatic islets in a T1D mouse model using scRNA-Seq and identified 11 major cell types in the islets, highlighting the role of alpha and beta cells in T1D. This study revealed a significant reduction in the maturity alpha and beta cells in T1D mice through flow cytometry. It also demonstrated the heterogeneity of alpha and beta cells, potentially crucial for T1D progression. Overall, our scRNA-Seq analysis provided new insights for understanding and treating T1D by studying cell subtype changes and functions.
Collapse
Affiliation(s)
- Huan Yang
- Department of Endocrinology, Jiujiang University Affiliated Hospital, Jiujiang, People's Republic of China
| | - Junming Luo
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Xuyang Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Yue Luo
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Xiaoyang Lai
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Fang Zou
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
25
|
Aleman J, Ravikumar K, Wiegand C, Schurdak ME, Vernetti L, Gavlock D, Reese C, DeBiasio R, LaRocca G, Angarita YD, Gough A, Soto-Gutierrez A, Behari J, Yechoor V, Miedel MT, Stern AM, Banerjee I, Taylor DL. A metabolic-dysfunction associated steatotic liver acinus biomimetic induces pancreatic islet dysfunction in a coupled microphysiology system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590598. [PMID: 38712135 PMCID: PMC11071380 DOI: 10.1101/2024.04.22.590598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Preclinical and clinical studies suggest that lipid-induced hepatic insulin resistance is a primary defect that predisposes to dysfunction in pancreatic islets, implicating a perturbed liver-pancreas axis underlying the comorbidity of T2DM and MASLD. To investigate this hypothesis, we developed a human biomimetic microphysiological system (MPS) coupling our vascularized liver acinus MPS (vLAMPS) with primary islets on a chip (PANIS) enabling MASLD progression and islet dysfunction to be quantitatively assessed. The modular design of this system (vLAMPS-PANIS) allows intra-organ and inter-organ dysregulation to be deconvoluted. When compared to normal fasting (NF) conditions, under early metabolic syndrome (EMS) conditions, the standalone vLAMPS exhibited characteristics of early stage MASLD, while no significant differences were observed in the standalone PANIS. In contrast, with EMS, the coupled vLAMPS-PANIS exhibited a perturbed islet-specific secretome and a significantly dysregulated glucose stimulated insulin secretion (GSIS) response implicating direct signaling from the dysregulated liver acinus to the islets. Correlations between several pairs of a vLAMPS-derived and a PANIS-derived secreted factors were significantly altered under EMS, as compared to NF conditions, mechanistically connecting MASLD and T2DM associated hepatic factors with islet-derived GLP-1 synthesis and regulation. Since vLAMPS-PANIS is compatible with patient-specific iPSCs, this platform represents an important step towards addressing patient heterogeneity, identifying complex disease mechanisms, and advancing precision medicine.
Collapse
|
26
|
Allard C, Cota D, Quarta C. Poly-Agonist Pharmacotherapies for Metabolic Diseases: Hopes and New Challenges. Drugs 2024; 84:127-148. [PMID: 38127286 DOI: 10.1007/s40265-023-01982-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2023] [Indexed: 12/23/2023]
Abstract
The use of glucagon-like peptide-1 (GLP-1) receptor-based multi-agonists in the treatment of type 2 diabetes and obesity holds great promise for improving glycaemic control and weight management. Unimolecular dual and triple agonists targeting multiple gut hormone-related pathways are currently in clinical trials, with recent evidence supporting their efficacy. However, significant knowledge gaps remain regarding the biological mechanisms and potential adverse effects associated with these multi-target agents. The mechanisms underlying the therapeutic efficacy of GLP-1 receptor-based multi-agonists remain somewhat mysterious, and hidden threats may be associated with the use of gut hormone-based polyagonists. In this review, we provide a critical analysis of the benefits and risks associated with the use of these new drugs in the management of obesity and diabetes, while also exploring new potential applications of GLP-1-based pharmacology beyond the field of metabolic disease.
Collapse
Affiliation(s)
- Camille Allard
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - Carmelo Quarta
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France.
| |
Collapse
|
27
|
Paradiž Leitgeb E, Kerčmar J, Križančić Bombek L, Pohorec V, Skelin Klemen M, Slak Rupnik M, Gosak M, Dolenšek J, Stožer A. Exendin-4 affects calcium signalling predominantly during activation and activity of beta cell networks in acute mouse pancreas tissue slices. Front Endocrinol (Lausanne) 2024; 14:1315520. [PMID: 38292770 PMCID: PMC10826511 DOI: 10.3389/fendo.2023.1315520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/22/2023] [Indexed: 02/01/2024] Open
Abstract
Tight control of beta cell stimulus-secretion coupling is crucial for maintaining homeostasis of energy-rich nutrients. While glucose serves as a primary regulator of this process, incretins augment beta cell function, partly by enhancing cytosolic [Ca2+] dynamics. However, the details of how precisely they affect beta cell recruitment during activation, their active time, and functional connectivity during plateau activity, and how they influence beta cell deactivation remain to be described. Performing functional multicellular Ca2+ imaging in acute mouse pancreas tissue slices enabled us to systematically assess the effects of the GLP-1 receptor agonist exendin-4 (Ex-4) simultaneously in many coupled beta cells with high resolution. In otherwise substimulatory glucose, Ex-4 was able to recruit approximately a quarter of beta cells into an active state. Costimulation with Ex-4 and stimulatory glucose shortened the activation delays and accelerated beta cell activation dynamics. More specifically, active time increased faster, and the time required to reach half-maximal activation was effectively halved in the presence of Ex-4. Moreover, the active time and regularity of [Ca2+]IC oscillations increased, especially during the first part of beta cell response. In contrast, subsequent addition of Ex-4 to already active cells did not significantly enhance beta cell activity. Network analyses further confirmed increased connectivity during activation and activity in the presence of Ex-4, with hub cell roles remaining rather stable in both control experiments and experiments with Ex-4. Interestingly, Ex-4 demonstrated a biphasic effect on deactivation, slightly prolonging beta cell activity at physiological concentrations and shortening deactivation delays at supraphysiological concentrations. In sum, costimulation by Ex-4 and glucose increases [Ca2+]IC during beta cell activation and activity, indicating that the effect of incretins may, to an important extent, be explained by enhanced [Ca2+]IC signals. During deactivation, previous incretin stimulation does not critically prolong cellular activity, which corroborates their low risk of hypoglycemia.
Collapse
Affiliation(s)
- Eva Paradiž Leitgeb
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Jasmina Kerčmar
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | | | - Vilijem Pohorec
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Marjan Slak Rupnik
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Alma Mater Europaea-European Center Maribor, Maribor, Slovenia
| | - Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Alma Mater Europaea-European Center Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
28
|
Kumar PP, Rao GV, Shetty M, Pradeep R, PremaVani C, Sasikala M, Reddy DN. Understanding the Structural Arrangement of Islets in Chronic Pancreatitis. J Histochem Cytochem 2024; 72:25-40. [PMID: 38063163 PMCID: PMC10795563 DOI: 10.1369/00221554231217552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 10/20/2023] [Indexed: 12/31/2023] Open
Abstract
Islet transplantation has become an established method for the treatment of insulin-deficient diabetes such as type 1 and type 3C (pancreatogenic). An effective transplantation necessitates a thorough understanding of the islet architecture and related functions to improve engraftment outcomes. However, in chronic pancreatitis (CP), the structural and related functional information is inadequate. Hence, the present study is aimed to understand the cytoarchitecture of endocrine cells and their functional implications in CP with and without diabetes. Herein, a set of human pancreatic tissue specimens (normal, n=5 and CP, n=20) was collected and processed for islet isolation. Furthermore, immunohistochemistry was used to assess the vascular densities, cell mass, organization, and cell-cell interactions. The glucose-stimulated insulin release results revealed that in chronic pancreatitis without diabetes mellitus altered (CPNDA), at basal glucose concentration the insulin secretion was increased by 24.2%, whereas at high glucose concentration the insulin levels were reduced by 77.4%. The impaired insulin secretion may be caused by alterations in the cellular architecture of islets during CP progression, particularly in chronic pancreatitis with diabetes mellitus and CPNDA conditions. Based on the results, a deeper comprehension of islet architecture would be needed to enhance successful transplantation in CP patients: (J Histochem Cytochem XX.XXX-XXX, XXXX).
Collapse
Affiliation(s)
- Pondugala Pavan Kumar
- Translational Research Center, Asian Healthcare Foundation, Hyderabad, India
- AIG Hospitals, Hyderabad, India
| | | | | | | | | | - Mitnala Sasikala
- Translational Research Center, Asian Healthcare Foundation, Hyderabad, India
| | - Duvvur Nageshwar Reddy
- Translational Research Center, Asian Healthcare Foundation, Hyderabad, India
- AIG Hospitals, Hyderabad, India
| |
Collapse
|
29
|
Wu W, Krijgsveld J. Secretome Analysis: Reading Cellular Sign Language to Understand Intercellular Communication. Mol Cell Proteomics 2024; 23:100692. [PMID: 38081362 PMCID: PMC10793180 DOI: 10.1016/j.mcpro.2023.100692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024] Open
Abstract
A significant portion of mammalian proteomes is secreted to the extracellular space to fulfill crucial roles in cell-to-cell communication. To best recapitulate the intricate and multi-faceted crosstalk between cells in a live organism, there is an ever-increasing need for methods to study protein secretion in model systems that include multiple cell types. In addition, posttranslational modifications further expand the complexity and versatility of cellular communication. This review aims to summarize recent strategies and model systems that employ cellular coculture, chemical biology tools, protein enrichment, and proteomic methods to characterize the composition and function of cellular secretomes. This is all geared towards gaining better understanding of organismal biology in vivo mediated by secretory signaling.
Collapse
Affiliation(s)
- Wei Wu
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore; Department of Pharmacy, National University of Singapore, Singapore, Singapore.
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Medical Faculty, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
30
|
Sridhar A, Khan D, Flatt PR, Moffett CR, Irwin N. GLP-1 receptor agonism and GIP receptor antagonism induce substantial alterations in enteroendocrine and islet cell populations in obese high fat fed mice. Peptides 2023; 169:171093. [PMID: 37660881 DOI: 10.1016/j.peptides.2023.171093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Effects of sustained activation of glucagon-like peptide-1 (GLP-1) receptors (GLP-1R) as well as antagonism of receptors for glucose-dependent insulinotropic peptide (GIP) on intestinal morphology and related gut hormone populations have not been fully investigated. The present study assesses the impact of 21-days twice daily treatment with the GLP-1R agonist exendin-4 (Ex-4), or the GIP receptor (GIPR) antagonist mGIP(3-30), on these features in obese mice fed a high fat diet (HFD). HFD mice presented with reduced crypt depth when compared to normal diet (ND) controls, which was reversed by Ex-4 treatment. Both regimens lead to an enlargement of villi length in HFD mice. HFD mice had increased numbers of GIP and PYY positive ileal cells, with both treatment interventions reversing the effect on PYY positive cells, but only Ex-4 restoring GIP ileal cell populations to ND levels. Ex-4 and mGIP (3-30) marginally decreased GLP-1 villi immunoreactivity and countered the reduction of ileal GLP-1 content caused by HFD. As expected, HFD mice presented with elevated pancreatic islet area. Interestingly, mGIP(3-30), but not Ex-4, enhanced islet and beta-cell areas in HFD mice despite lack of effect of beta-cell turnover, whilst Ex-4 increased delta-cell area. Co-localisation of islet PYY or GLP-1 with glucagon was increased by Ex-4, whilst islet PYY co-immunoreactivity with somatostatin was enhanced by mGIP(3-30) treatment. These observations highlight potential new mechanisms linked to the metabolic benefits of GLP-1R agonism and GIPR antagonism in obesity.
Collapse
Affiliation(s)
- Ananyaa Sridhar
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, UK
| | - Dawood Khan
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, UK
| | - Peter R Flatt
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, UK
| | - Charlotte R Moffett
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, UK
| | - Nigel Irwin
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, UK.
| |
Collapse
|
31
|
Knuth ER, Foster HR, Jin E, Merrins MJ. Leucine suppresses glucagon secretion from pancreatic islets by directly modulating α-cell cAMP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551113. [PMID: 37577685 PMCID: PMC10418066 DOI: 10.1101/2023.07.31.551113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Objective Pancreatic islets are nutrient sensors that regulate organismal blood glucose homeostasis. Glucagon release from the pancreatic α-cell is important under fasted, fed, and hypoglycemic conditions, yet metabolic regulation of α-cells remains poorly understood. Here, we identified a previously unexplored role for physiological levels of leucine, which is classically regarded as a β-cell fuel, in the intrinsic regulation of α-cell glucagon release. Methods GcgCreERT:CAMPER and GcgCreERT:GCaMP6s mice were generated to perform dynamic, high-throughput functional measurements of α-cell cAMP and Ca2+ within the intact islet. Islet perifusion assays were used for simultaneous, time-resolved measurements of glucagon and insulin release from mouse and human islets. The effects of leucine were compared with glucose and the mitochondrial fuels 2-aminobicyclo(2,2,1)heptane-2-carboxylic acid (BCH, non-metabolized leucine analog that activates glutamate dehydrogenase), α-ketoisocaproate (KIC, leucine metabolite), and methyl-succinate (complex II fuel). CYN154806 (Sstr2 antagonist), diazoxide (KATP activator, which prevents Ca2+-dependent exocytosis from α, β, and δ-cells), and dispersed α-cells were used to inhibit islet paracrine signaling and identify α-cell intrinsic effects. Results Mimicking the effect of glucose, leucine strongly suppressed amino acid-stimulated glucagon secretion. Mechanistically, leucine dose-dependently reduced α-cell cAMP at physiological concentrations, with an IC50 of 57, 440, and 1162 μM at 2, 6, and 10 mM glucose, without affecting α-cell Ca2+. Leucine also reduced α-cell cAMP in islets treated with Sstr2 antagonist or diazoxide, as well as dispersed α-cells, indicating an α-cell intrinsic effect. The effect of leucine was matched by KIC and the glutamate dehydrogenase activator BCH, but not methyl-succinate, indicating a dependence on mitochondrial anaplerosis. Glucose, which stimulates anaplerosis via pyruvate carboxylase, had the same suppressive effect on α-cell cAMP but with lower potency. Similarly to mouse islets, leucine suppressed glucagon secretion from human islets under hypoglycemic conditions. Conclusions These findings highlight an important role for physiological levels of leucine in the metabolic regulation of α-cell cAMP and glucagon secretion. Leucine functions primarily through an α-cell intrinsic effect that is dependent on glutamate dehydrogenase, in addition to the well-established α-cell regulation by β/δ-cell paracrine signaling. Our results suggest that mitochondrial anaplerosis-cataplerosis facilitates the glucagonostatic effect of both leucine and glucose, which cooperatively suppress α-cell tone by reducing cAMP.
Collapse
Affiliation(s)
- Emily R. Knuth
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Hannah R. Foster
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Erli Jin
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Matthew J. Merrins
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| |
Collapse
|
32
|
Rial SA, Shishani R, Cummings BP, Lim GE. Is 14-3-3 the Combination to Unlock New Pathways to Improve Metabolic Homeostasis and β-Cell Function? Diabetes 2023; 72:1045-1054. [PMID: 37471599 PMCID: PMC10382651 DOI: 10.2337/db23-0094] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/10/2023] [Indexed: 07/22/2023]
Abstract
Since their discovery nearly five decades ago, molecular scaffolds belonging to the 14-3-3 protein family have been recognized as pleiotropic regulators of diverse cellular and physiological functions. With their ability to bind to proteins harboring specific serine and threonine phosphorylation motifs, 14-3-3 proteins can interact with and influence the function of docking proteins, enzymes, transcription factors, and transporters that have essential roles in metabolism and glucose homeostasis. Here, we will discuss the regulatory functions of 14-3-3 proteins that will be of great interest to the fields of metabolism, pancreatic β-cell biology, and diabetes. We first describe how 14-3-3 proteins play a central role in glucose and lipid homeostasis by modulating key pathways of glucose uptake, glycolysis, oxidative phosphorylation, and adipogenesis. This is followed by a discussion of the contributions of 14-3-3 proteins to calcium-dependent exocytosis and how this relates to insulin secretion from β-cells. As 14-3-3 proteins are major modulators of apoptosis and cell cycle progression, we will explore if 14-3-3 proteins represent a viable target for promoting β-cell regeneration and discuss the feasibility of targeting 14-3-3 proteins to treat metabolic diseases such as diabetes. ARTICLE HIGHLIGHTS 14-3-3 proteins are ubiquitously expressed scaffolds with multiple roles in glucose homeostasis and metabolism. 14-3-3ζ regulates adipogenesis via distinct mechanisms and is required for postnatal adiposity and adipocyte function. 14-3-3ζ controls glucose-stimulated insulin secretion from pancreatic β-cells by regulating mitochondrial function and ATP synthesis as well as facilitating cross talk between β-cells and α-cells.
Collapse
Affiliation(s)
- Sabri A. Rial
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
- Cardiometabolic Axis, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
| | - Rahaf Shishani
- Department of Surgery, Center for Alimentary and Metabolic Sciences, School of Medicine, University of California, Davis, Sacramento, CA
| | - Bethany P. Cummings
- Department of Surgery, Center for Alimentary and Metabolic Sciences, School of Medicine, University of California, Davis, Sacramento, CA
| | - Gareth E. Lim
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
- Cardiometabolic Axis, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
| |
Collapse
|
33
|
Oteng AB, Liu L. GPCR-mediated effects of fatty acids and bile acids on glucose homeostasis. Front Endocrinol (Lausanne) 2023; 14:1206063. [PMID: 37484954 PMCID: PMC10360933 DOI: 10.3389/fendo.2023.1206063] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Fatty acids and glucose are key biomolecules that share several commonalities including serving as energy substrates and as signaling molecules. Fatty acids can be synthesized endogenously from intermediates of glucose catabolism via de-novo lipogenesis. Bile acids are synthesized endogenously in the liver from the biologically important lipid molecule, cholesterol. Evidence abounds that fatty acids and bile acids play direct and indirect roles in systemic glucose homeostasis. The tight control of plasma glucose levels during postprandial and fasted states is principally mediated by two pancreatic hormones, insulin and glucagon. Here, we summarize experimental studies on the endocrine effects of fatty acids and bile acids, with emphasis on their ability to regulate the release of key hormones that regulate glucose metabolism. We categorize the heterogenous family of fatty acids into short chain fatty acids (SCFAs), unsaturated, and saturated fatty acids, and highlight that along with bile acids, these biomolecules regulate glucose homeostasis by serving as endogenous ligands for specific G-protein coupled receptors (GPCRs). Activation of these GPCRs affects the release of incretin hormones by enteroendocrine cells and/or the secretion of insulin, glucagon, and somatostatin by pancreatic islets, all of which regulate systemic glucose homeostasis. We deduce that signaling induced by fatty acids and bile acids is necessary to maintain euglycemia to prevent metabolic diseases such as type-2 diabetes and related metabolic disorders.
Collapse
|
34
|
Scheen AJ, Lefèbvre PJ. Glucagon, from past to present: a century of intensive research and controversies. Lancet Diabetes Endocrinol 2023; 11:129-138. [PMID: 36566754 DOI: 10.1016/s2213-8587(22)00349-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022]
Abstract
2022 corresponds to the 100th anniversary of the discovery of glucagon. This TimeCapsule aims to recall the main steps leading to the discovery, characterisation, and clinical importance of the so-called second pancreatic hormone. We describe the early historical findings in basic research (ie, discovery, purification, structure, α-cell origin, radioimmunoassay, glucagon gene [GCG], and glucagon receptor [GLR]), in which three future Nobel Prize laureates were actively involved. Considered as an anti-insulin hormone, glucagon was rapidly used to treat insulin-induced hypoglycaemic coma episodes in people with type 1 diabetes. A key step in the story of glucagon was the discovery of its role and the role of α cells in the physiology and pathophysiology (ie, paracrinopathy) of type 2 diabetes. This concept led to the design of different strategies targeting glucagon, among which GLP-1 receptor (GLP1R) agonists were a major breakthrough, and combination of inhibition of glucagon secretion with stimulation of insulin secretion (both in a glucose-dependent manner). Taking advantage of the glucagon-induced increase in energy metabolism, biased coagonists were developed. Besides the GLP-1 receptor, these coagonists also target the glucagon receptor to further promote weight loss. Thus, the 100-year story of glucagon has most probably not come to an end.
Collapse
Affiliation(s)
- André J Scheen
- Division of Diabetes, Nutrition and Metabolic Disorders, Department of medicine, CHU Liège, Liège University, Liège, Belgium.
| | - Pierre J Lefèbvre
- Division of Diabetes, Nutrition and Metabolic Disorders, Department of medicine, CHU Liège, Liège University, Liège, Belgium
| |
Collapse
|
35
|
Al-Abdulla R, Ferrero H, Boronat-Belda T, Soriano S, Quesada I, Alonso-Magdalena P. Exploring the Effects of Metabolism-Disrupting Chemicals on Pancreatic α-Cell Viability, Gene Expression and Function: A Screening Testing Approach. Int J Mol Sci 2023; 24:ijms24021044. [PMID: 36674557 PMCID: PMC9862653 DOI: 10.3390/ijms24021044] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Humans are constantly exposed to many environmental pollutants, some of which have been largely acknowledged as key factors in the development of metabolic disorders such as diabetes and obesity. These chemicals have been classified as endocrine-disrupting chemicals (EDCs) and, more recently, since they can interfere with metabolic functions, they have been renamed as metabolism-disrupting chemicals (MDCs). MDCs are present in many consumer products, including food packaging, personal care products, plastic bottles and containers, and detergents. The scientific literature has ever-increasingly focused on insulin-releasing pancreatic β-cells as one of the main targets for MDCs. Evidence highlights that these substances may disrupt glucose homeostasis by altering pancreatic β-cell physiology. However, their potential impact on glucagon-secreting pancreatic α-cells remains poorly known despite the essential role that this cellular type plays in controlling glucose metabolism. In the present study, we have selected seven paradigmatic MDCs representing major toxic classes, including bisphenols, phthalates, perfluorinated compounds, metals, and pesticides. By using an in vitro cell-based model, the pancreatic α-cell line αTC1-9, we have explored the effects of these compounds on pancreatic α-cell viability, gene expression, and secretion. We found that cell viability was moderately affected after bisphenol-A (BPA), bisphenol-F (BPF), and perfluorooctanesulfonic acid (PFOS) exposure, although cytotoxicity was relatively low. In addition, all bisphenols, as well as di(2-ethylhexyl) phthalate (DEHP) and cadmium chloride (CdCl2), promoted a marked decreased on glucagon secretion, together with changes in the expression of glucagon and/or transcription factors involved in cell function and identity, such as Foxo1 and Arx. Overall, our results indicated that most of the selected chemicals studied caused functional alterations in pancreatic α-cells. Moreover, we revealed, for the first time, their direct effects on key molecular aspects of pancreatic α-cell biology.
Collapse
Affiliation(s)
- Ruba Al-Abdulla
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Spain
| | - Hilda Ferrero
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Talía Boronat-Belda
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Spain
| | - Sergi Soriano
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Spain
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 Alicante, Spain
| | - Iván Quesada
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Paloma Alonso-Magdalena
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
36
|
Mannino GC, Mancuso E, Sbrignadello S, Morettini M, Andreozzi F, Tura A. Chemical Compounds and Ambient Factors Affecting Pancreatic Alpha-Cells Mass and Function: What Evidence? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16489. [PMID: 36554367 PMCID: PMC9778390 DOI: 10.3390/ijerph192416489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
The exposure to different substances present in the environment can affect the ability of the human body to maintain glucose homeostasis. Some review studies summarized the current evidence about the relationships between environment and insulin resistance or beta-cell dysfunction. Instead, no reviews focused on the relationships between the environment and the alpha cell, although in recent years clear indications have emerged for the pivotal role of the alpha cell in glucose regulation. Thus, the aim of this review was to analyze the studies about the effects of chemical, biological, and physical environmental factors on the alpha cell. Notably, we found studies focusing on the effects of different categories of compounds, including air pollutants, compounds of known toxicity present in common objects, pharmacological agents, and compounds possibly present in food, plus studies on the effects of physical factors (mainly heat exposure). However, the overall number of relevant studies was limited, especially when compared to studies related to the environment and insulin sensitivity or beta-cell function. In our opinion, this was likely due to the underestimation of the alpha-cell role in glucose homeostasis, but since such a role has recently emerged with increasing strength, we expect several new studies about the environment and alpha-cell in the near future.
Collapse
Affiliation(s)
- Gaia Chiara Mannino
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Elettra Mancuso
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | | | - Micaela Morettini
- Department of Information Engineering, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Andrea Tura
- CNR Institute of Neuroscience, 35127 Padova, Italy
| |
Collapse
|