1
|
Xiong L, Huang YX, Mao L, Xu Y, Deng YQ. Targeting gut microbiota and its associated metabolites as a potential strategy for promoting would healing in diabetes. World J Diabetes 2025; 16:98788. [DOI: 10.4239/wjd.v16.i5.98788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/03/2025] [Accepted: 03/05/2025] [Indexed: 04/25/2025] Open
Abstract
Impaired healing of diabetic wounds is one of the most important complications of diabetes, often leading to lower limb amputations and incurring significant economic and psychosocial costs. Unfortunately, there are currently no effective prevention or treatment strategies available. Recent research has reported that an imbalance in the gut microbiota, known as dysbiosis, was linked to the onset of type 2 diabetes, as well as the development and progression of diabetic complications. Indeed, the gut microbiota has emerged as a promising therapeutic approach for treating type 2 diabetes and related diseases. However, there is few of literatures specifically discussing the relationship between gut microbiota and diabetic wounds. This review aims to explore the potential role of the gut microbiota, especially probiotics, and its associated byproducts such as short chain fatty acids, bile acids, hydrogen sulfide, and tryptophan metabolites on wound healing to provide fresh insights and novel perspectives for the treatment of chronic wounds in diabetes.
Collapse
Affiliation(s)
- Ling Xiong
- Department of Dermatology & STD, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Ya-Xin Huang
- Department of Dermatology & STD, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Lan Mao
- Department of Dermatology & STD, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Yong-Qiong Deng
- Department of Dermatology & STD, Chengdu Integrated TCM & Western Medicine Hospital, Chengdu 610000, Sichuan Province, China
- Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| |
Collapse
|
2
|
Lin DJ, Hu DX, Wu QT, Huang LG, Lin ZH, Xu JT, He XX, Wu L. Analysis of influencing factors of washed microbiota transplantation in treating patients with metabolic syndrome. Front Nutr 2025; 12:1508381. [PMID: 39963663 PMCID: PMC11830617 DOI: 10.3389/fnut.2025.1508381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Background and aims Metabolic Syndrome (MS) is a cluster of metabolic abnormalities closely associated with hypertension, diabetes, hyperlipidemia, obesity, etc. Our previous research indicated that fecal microbiota transplantation (FMT) could improve MS, but the factors influencing the efficacy of washed microbiota transplantation (WMT) in treating MS patients remain unclear. The objective of this study is to analyze the influencing factors of WMT in treating MS patients. Methods The clinical data and influencing factors related to MS patients were collected retrospectively. Not only the changes in body mass index [BMI = weight (kg)/height (m)2], blood glucose, blood lipids, and blood pressure were analyzed, but also the influencing factors of WMT in treating MS patients were carried out based on Logistic Regression. The 16S rRNA gene amplicon sequencing was performed on fecal samples before and after WMT treatment. Results A total of 210 patients were included, including 68 patients in the WMT group and 142 patients in the drug treatment (DT) group. WMT had a significant improvement and ASCVD downregulation effect on MS patients, and 42.65% of MS patients removed the label of MS after WMT treatment. Independent influencing factors for treating MS patients through WMT include age < 60 years old, high smoking index, infection, single donor selection, single-course WMT treatment, and having hypertension, diabetes, or obesity. WMT treated MS patients by maintaining the balance of gut microbiota. Conclusions WMT has a significant effect in improving MS and downregulating ASCVD risk stratification. The therapeutic effect of WMT on MS patients is closely related to their age, smoking index, infection, chronic disease status, donor type, and WMT courses. Therefore, we can improve the efficacy of WMT by reducing independent influencing factors that affect gut microbiota homeostasis.
Collapse
Affiliation(s)
- De-Jiang Lin
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Dong-Xia Hu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Qing-Ting Wu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Lin-Gui Huang
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Zi-Han Lin
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Jia-Ting Xu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xing-Xiang He
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Lei Wu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- School of Biological Sciences and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
3
|
Li J, Xie Z, Yang L, Guo K, Zhou Z. The impact of gut microbiome on immune and metabolic homeostasis in type 1 diabetes: Clinical insights for prevention and treatment strategies. J Autoimmun 2025; 151:103371. [PMID: 39883994 DOI: 10.1016/j.jaut.2025.103371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/01/2025]
Abstract
Type 1 diabetes (T1D) is a complex disease triggered by a combination of genetic and environmental factors, where abnormal autoimmune responses lead to progressive damage of the pancreatic β cells and severe glucose metabolism disorder. Recent studies have increasingly highlighted the close link between gut microbiota dysbiosis and the development of T1D. This review delves into existing population studies to explore the intricate interactions between the gut microbiota and the immune and metabolic homeostasis in T1D. It summarizes how changes in the structure and function of the gut microbiota are closely associated with the onset and progression of T1D across its natural course and clinical stages. More importantly, based on evidence accumulated from clinical observations and trials, we pioneer the discussion on gut microbiota-based T1D prevention and treatment strategies, this not only enriches our understanding of the complex pathological mechanisms of T1D but also provides potential directions for developing novel prevention and treatment strategies.
Collapse
Affiliation(s)
- Jiaqi Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lin Yang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Keyu Guo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
4
|
Cheng X, Yang J, Wang Z, Zhou K, An X, Xu ZZ, Lu H. Modulating intestinal viruses: A potential avenue for improving metabolic diseases with unresolved challenges. Life Sci 2025; 361:123309. [PMID: 39674267 DOI: 10.1016/j.lfs.2024.123309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
The gut microbiome affects the occurrence and development of metabolic diseases, with a significant amount of research focused on intestinal bacteria. As an important part of the gut microbiome, gut viruses were studied recently, particularly through fecal virome transplantation (FVT), revealing manipulating the gut virus could reverse overweight and glucose intolerance in mice. And human cohort studies found gut virome changed significantly in patients with metabolic disease. By summarizing those studies, we compared the research and analytical methods, as well as the similarities and differences in their results, and analyzed the reasons for these discrepancies. FVT provided potential value to improve metabolic diseases, but the mechanisms involved and the effect of FVT on humans should be investigated further. The potential methods of regulating intestinal virome composition and the possible mechanisms of intestinal virome changes affecting metabolic diseases were also discussed.
Collapse
Affiliation(s)
- Xiaoxiao Cheng
- Jiangxi Agricultural University, College of Bioscience and Bioengineering, Nanchang, PR China
| | - Jie Yang
- Jiangxi Agricultural University, College of Bioscience and Bioengineering, Nanchang, PR China
| | - Zhijie Wang
- Jiangxi Agricultural University, College of Bioscience and Bioengineering, Nanchang, PR China
| | - Kefan Zhou
- Jiangxi Agricultural University, College of Bioscience and Bioengineering, Nanchang, PR China
| | - Xuejiao An
- Jiangxi Agricultural University, College of Bioscience and Bioengineering, Nanchang, PR China
| | - Zhenjiang Zech Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, PR China
| | - Hui Lu
- Jiangxi Agricultural University, College of Bioscience and Bioengineering, Nanchang, PR China.
| |
Collapse
|
5
|
Wang Z, Wu X, Wang Y, Wen Q, Cui B, Zhang F. Colonic transendoscopic enteral tubing is revolutionizing intestinal therapeutics, diagnosis, and microbiome research. Therap Adv Gastroenterol 2024; 17:17562848241301574. [PMID: 39582897 PMCID: PMC11585053 DOI: 10.1177/17562848241301574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/14/2024] [Indexed: 11/26/2024] Open
Abstract
The intestine, as a crucial organ of the human body, has remained enigmatic despite the remarkable advancements in modern medical technology. Over the past decades, the invention of endoscopic technology has made the noninvasive intervention of the intestine a reality, expanding diagnostic and therapeutic options for diseases. However, due to the single-treatment feature of endoscopic procedures, continuous or repeated medication administration, sampling, and decompression drainage within the intestine have yet to be fulfilled. These limitations persisted until the invention of colonic transendoscopic enteral tubing (TET) in 2014, which realized repeated fecal microbiota transplantation, medication administration, and decompression drainage for the treatment of colon perforation and intestinal obstruction, as well as in situ dynamic sampling. These breakthroughs have not gone unnoticed, gaining global attention and recommendations from guidelines and consensuses. TET has emerged as a novel microbial research tool that offers new paradigms for human microbiome research. This review aims to update the research progress based on TET.
Collapse
Affiliation(s)
- Zheyu Wang
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Engineering Research Center for Advanced Microbiota Medicine, Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, China
| | - Xia Wu
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Engineering Research Center for Advanced Microbiota Medicine, Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, China
| | - Yaxue Wang
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Engineering Research Center for Advanced Microbiota Medicine, Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, China
| | - Quan Wen
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Engineering Research Center for Advanced Microbiota Medicine, Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, China
| | - Bota Cui
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Engineering Research Center for Advanced Microbiota Medicine, Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, China
| | - Faming Zhang
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing 210011, China
- Jiangsu Engineering Research Center for Advanced Microbiota Medicine, Key Lab of Holistic Integrative Enterology, Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing 210011, China
| |
Collapse
|
6
|
Hu X, Wu Q, Huang L, Xu J, He X, Wu L. Clinical efficacy of washed microbiota transplantation on metabolic syndrome and metabolic profile of donor outer membrane vesicles. Front Nutr 2024; 11:1465499. [PMID: 39628464 PMCID: PMC11611574 DOI: 10.3389/fnut.2024.1465499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/29/2024] [Indexed: 12/06/2024] Open
Abstract
Object To clarify the clinical efficacy of washed microbiota transplantation (WMT) for metabolic syndrome (MetS), and explore the differences in the metabolic profile of bacterial outer membrane vesicles (OMVs) in donor fecal bacteria suspension received by MetS patients with good and poor outcomes, and to construct a predictive model for the efficacy of WMT for MetS using differential metabolites. Methods Medical data 65 MetS patients who had completed at least 2 courses of WMT from 2017.05 to 2023.07 were collected. Fecal bacteria suspension of WMT donors were collected, and the clinical data of MetS patients treated with WMT during this period were collected as well. The changes of BMI, blood glucose, blood lipids, blood pressure and other indicators before and after WMT were compared. OMVs were isolated from donor fecal bacteria suspension and off-target metabolomic sequencing was performed by Liquid Chromatograph Mass Spectrometer (LC-MS). Results Compared with baseline, Body mass index (BMI), Systolic blood pressure (SBP) and Diastolic blood pressure (DBP) of MetS patients showed significant decreases after the 1st (short-term) and 2nd (medium-term) courses, and fasting blood glucose (FBG) also showed significant decreases after the 1st session. There was a significant difference between the Marked Response OMVs and the Moderate Response OMVs. It was showed that 960 metabolites were significantly up-regulated in Marked Response OMVs and 439 metabolites that were significantly down-regulated. The ROC model suggested that 9-carboxymethoxymethylguanine, AUC = 0.8127, 95% CI [0.6885, 0.9369], was the most potent metabolite predicting the most available metabolite for efficacy. Conclusion WMT had significant short-term and medium-term clinical efficacy in MetS. There were differences in the structure of metabolites between Marked Response OMVs and Moderate Response OMVs. The level of 9-Carboxy methoxy methylguanine in Marked Response OMVs can be a good predictor of the efficacy of WMT in the treatment of MetS.
Collapse
Affiliation(s)
- Xuan Hu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Qingting Wu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Lingui Huang
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiating Xu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xingxiang He
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Lei Wu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- School of Biological Sciences and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
7
|
Lin D, Hu D, Song Y, He X, Wu L. Long-term efficacy of washed microbiota transplantation in overweight patients. Eur J Clin Invest 2024; 54:e14260. [PMID: 38858775 DOI: 10.1111/eci.14260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Faecal microbiota transplantation holds promise in mitigating fat accumulation and improving obesity. This study aimed to evaluate the long-term efficacy of washed microbiota transplantation (WMT) among overweight patients. METHODS The clinical data pertaining to the treatment of patients with WMT were collected retrospectively. Compared alterations in body mass index (BMI), blood glucose, blood lipids and blood pressure prior to and following WMT treatment. Comprehensive efficacy evaluation and atherosclerosis cardiovascular disease (ASCVD) grading evaluation were carried out, with an analysis of gut microbiota composition before and after WMT. RESULTS A total of 186 patients were included (80 overweight, 106 normal weight). WMT not only had the effect of improving overweight patients to the normal weight patients (p < .001), but also could significantly reduce BMI in the long term by restoring gut microbiota homeostasis (p < .001). In addition, the BMI improvement value of multi course was more significant than that of single course or double course. WMT had a significant ASCVD downgrade effect on the high-risk and medium-risk groups outside 1 year, while it did not increase the risk of upgrading ASCVD for low-risk group. CONCLUSIONS WMT could significantly reduce the BMI of overweight patients and still had an improvement effect in the long term.
Collapse
Affiliation(s)
- Dejiang Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Dongxia Hu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Youlin Song
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xingxiang He
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Lei Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
8
|
Aslam MR, Perala A, Wishart AV, Hamouda RK, Elsaady E, Khan S. Therapeutic Potential of Fecal Microbiota Transplantation in Type 2 Diabetes Mellitus: A Systematic Review. Cureus 2024; 16:e70642. [PMID: 39483608 PMCID: PMC11527334 DOI: 10.7759/cureus.70642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Diabetes mellitus is a chronic metabolic disease characterized by insulin resistance and hyperglycemia. It can cause various complications, which result in significant morbidity and mortality. There are multiple treatment options available to combat this disease; however, despite this, the incidence of type 2 diabetes mellitus is continuously increasing. Some promising results have shown that dysbiosis has a role in the pathogenesis of type 2 diabetes mellitus and fecal microbiota transplantation (FMT) in animals; however, the usage of FMT in humans needs further clarification and review. We explored PubMed, Popline, and Cochrane Library to identify relevant papers. Eight articles were then finalized after screening and applying eligibility criteria. These articles explored the role of the therapeutic efficacy of FMT in insulin resistance and hyperglycemia. The studies showed that the FMT had a positive impact on managing hyperglycemia and insulin resistance, which is evident in the decline of blood glucose and HBA1c levels and the rise of insulin and C-peptides. In addition, FMT also helped to control other risk factors such as hyperlipidemia and blood pressure; however, the impact on weight loss is not convincing. FMT also influenced the levels of some microbiota, which could be involved in controlling hyperglycemia and insulin resistance. Due to limited control trials and study periods and the small sample size of diabetic patients, more research is needed to explore the impact of FMT in controlling type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Muhammad Rizwan Aslam
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Alekya Perala
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Annetta V Wishart
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, California, USA
| | - Ranim K Hamouda
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Entesar Elsaady
- Internal Medicine/Hematology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Safeera Khan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
9
|
Zeng C, Wan SR, Guo M, Tan XZ, Zeng Y, Wu Q, Xie JJ, Yan P, Long Y, Zheng L, Jiang ZZ, Teng FY, Xu Y. Fecal virome transplantation: A promising strategy for the treatment of metabolic diseases. Biomed Pharmacother 2024; 177:117065. [PMID: 38971010 DOI: 10.1016/j.biopha.2024.117065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024] Open
Abstract
Metabolic diseases are a group of disorders caused by metabolic abnormalities, including obesity, diabetes, non-alcoholic fatty liver disease, and more. Increasing research indicates that, beyond inherent metabolic irregularities, the onset and progression of metabolic diseases are closely linked to alterations in the gut microbiota, particularly gut bacteria. Additionally, fecal microbiota transplantation (FMT) has demonstrated effectiveness in clinically treating metabolic diseases, notably diabetes. Recent attention has also focused on the role of gut viruses in disease onset. This review first introduces the characteristics and influencing factors of gut viruses, then summarizes their potential mechanisms in disease development, highlighting their impact on gut bacteria and regulation of host immunity. We also compare FMT, fecal filtrate transplantation (FFT), washed microbiota transplantation (WMT), and fecal virome transplantation (FVT). Finally, we review the current understanding of gut viruses in metabolic diseases and the application of FVT in treating these conditions. In conclusion, FVT may provide a novel and promising treatment approach for metabolic diseases, warranting further validation through basic and clinical research.
Collapse
Affiliation(s)
- Chen Zeng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Sheng-Rong Wan
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Man Guo
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiao-Zhen Tan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yan Zeng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Qi Wu
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China; Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jia-Jie Xie
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Pijun Yan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Institute of Cardiovascular Research, Peking University, Beijing 100871, China
| | - Yang Long
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Lemin Zheng
- Institute of Cardiovascular Research, Peking University, Beijing 100871, China
| | - Zong-Zhe Jiang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Fang-Yuan Teng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
10
|
Liang F, Song Y, Lin D, He H, Xu J, He X, Wu L. Washed Microbiota Transplantation Is Associated With Improved Lipid Profiles: Long-Term Efficacy and Safety in an Observational Cohort From South China. Clin Transl Gastroenterol 2024; 15:e00735. [PMID: 38920288 PMCID: PMC11272356 DOI: 10.14309/ctg.0000000000000735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
INTRODUCTION Dyslipidemia is one of the main risk factors of chronic metabolic diseases. Our previous studies have shown that washed microbiota transplantation (WMT) has a significant improvement effect on patients with hyperlipidemia and hypolipemia in the Chinese population. The purpose of this study was to further explore the long-term efficacy and safety of WMT in patients with hyperlipidemia. METHODS Clinical data of patients who received WMT for multicourse were collected. Changes of blood lipid indexes before and after WMT, including triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol, high-density lipoprotein cholesterol (HDL-C), non-high-density lipoprotein cholesterol (non-HDL-C), lipoprotein A, and Apolipoprotein B. RESULTS A total of 124 patients were enrolled, including 56 cases in the hyperlipidemia group and 68 cases with normal lipids. The mean observation time was 787.80 ± 371.45 days, and the longest follow-up time was 1,534 days. TC and non-HDL-C in the hyperlipidemia group with 1-4 courses of WMT were significantly reduced ( P < 0.05); TG decreased significantly after the second course ( P < 0.05); low-density lipoprotein cholesterol also significantly decreased after the fourth course of treatment ( P < 0.05); TG, TC, and non-HDL-C significantly decreased in single course, double course, and multiple course, respectively ( P < 0.05). In terms of time period, over 1 year, the improvement in multicourse treatment was more significant than the single and double-course ones. In terms of comprehensive efficacy, WMT restored 32.14% of patients in the hyperlipidemia group to the normal lipid group ( P < 0.001), of which 30.00% recovered to the normal lipid group within 1 year ( P = 0.004) and 65.38% were reassigned to the normal lipid group over 1 year ( P = 0.003). In addition, over the 1-year treatment period, WMT significantly degraded the high-risk and medium-risk groups of atherosclerotic cardiovascular disease risk stratification in hyperlipidemia cases. There were no serious adverse events. DISCUSSION WMT had a long-term improvement effect on patients with hyperlipidemia. The effect of multiple courses over 1 year was more significant than that of single/double courses and also had a significant destratification effect on the risk of atherosclerotic cardiovascular disease with high safety. Therefore, WMT provides a safe and long-term effective clinical treatment for patients with dyslipidemia.
Collapse
Affiliation(s)
- Fenfen Liang
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China;
| | - Youlin Song
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China;
| | - Dejiang Lin
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China;
| | - Hongxin He
- Sun Yat-sen University School of Medicine, Guangzhou, China.
| | - Jiating Xu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China;
| | - Xingxiang He
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China;
| | - Lei Wu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China;
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China;
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China;
| |
Collapse
|
11
|
He H, Li M, Qiu Y, Wu Z, Wu L. Washed microbiota transplantation improves sleep quality in patients with sleep disorder by the gut-brain axis. Front Neurosci 2024; 18:1415167. [PMID: 38979127 PMCID: PMC11228149 DOI: 10.3389/fnins.2024.1415167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024] Open
Abstract
Background The clinical impact of washed microbiota transplantation (WMT) from healthy donors in sleep disorder (SD) patients is unclear. This study aimed to investigate the effect of WMT in SD patients. Methods The clinical data were collected from patients with different indications receiving 1-3 courses of WMT, divided into two groups by 7 points of PSQI scale. The score of PQSI and SF-36 scale was used to assess the improvement in sleep quality and life quality among patients with sleep disorders following WMT. Finally, 16S rRNA gene amplicon sequencing was performed on fecal samples of patients with sleep disorders before and after WMT. Results WMT significantly improved sleep quality in patients with sleep disorder in the short and medium term. WMT significantly improved sleep latency, sleep time and total score in the short term. WMT significantly improved sleep quality and total score in the medium term. In terms of sleep quality and sleep latency, the improvement value also increased with the increase of treatment course, and the improvement effect of multiple treatment course was better than that of single and double treatment course. In the total score, the improvement effect of double and multiple treatment was better than that of single treatment. WMT also improved quality of life in the sleep disorder group. WMT significantly improved general health, vitality, social function and mental health in the short term. WMT significantly improved role-physical, general health, vitality, and mental health in the medium term. WMT regulated the disturbed gut microbiota in patients with sleep disorders. In the normal sleep group, WMT had no effect on the decline of sleep quality in the short, medium and long term, and had an improving effect on the quality of life. Conclusion WMT could significantly improve sleep quality and life quality in patients with sleep disorders with no adverse events. The improvement in sleep quality resulting from WMT could lead to an overall enhancement in life quality. WMT could be a potentially effective treatment for patients with sleep disorders by regulating the gut microbiota.
Collapse
Affiliation(s)
- Hongxin He
- Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Manqing Li
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangzhou Xinhai Hospital, Guangzhou, China
| | - Yifan Qiu
- Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Zhiqing Wu
- Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Lei Wu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- School of Biological Sciences and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
12
|
Sahle Z, Engidaye G, Shenkute Gebreyes D, Adenew B, Abebe TA. Fecal microbiota transplantation and next-generation therapies: A review on targeting dysbiosis in metabolic disorders and beyond. SAGE Open Med 2024; 12:20503121241257486. [PMID: 38826830 PMCID: PMC11143861 DOI: 10.1177/20503121241257486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/09/2024] [Indexed: 06/04/2024] Open
Abstract
The human microbiome, particularly the gut microbiome, has emerged as a central determinant of health and disease. Dysbiosis, an imbalance in the microbial composition of the gut, is associated with a variety of metabolic and other diseases, highlighting the potential for microbiota-targeted treatments. Fecal microbiota transplantation has received considerable attention as a promising therapy to modulate the gut microbiome and restore microbial homeostasis. However, challenges remain, including standardization, safety, and long-term efficacy. This review summarizes current knowledge on fecal microbiota transplantation and describes the next generation therapies targeting microbiome. This review looked at the mechanistic understanding of fecal microbiota transplantation and alternative strategies, elucidating their potential role in improving dysbiosis-associated metabolic disorders, such as obesity, and type 2 diabetes and others. Additionally, this review discussed the growing application of therapies targeting the gut microbiome. Insights from clinical trials, preclinical studies, and emerging technologies provide a comprehensive overview of the evolving landscape of microbiome-based interventions. Through a critical assessment of current advances and prospects, this review aims to highlight the therapeutic potential of targeting gut microbiome and pave the way for innovative approaches in precision medicine and personalized treatments.
Collapse
Affiliation(s)
- Zenawork Sahle
- Department of Medical Laboratory Science, Asrat Weldeyes Health Science Campus, Debre Berhan University, Debre Berhan, Ethiopia
| | - Getabalew Engidaye
- Department of Medical Laboratory Science, Asrat Weldeyes Health Science Campus, Debre Berhan University, Debre Berhan, Ethiopia
| | - Demissew Shenkute Gebreyes
- Department of Medical Laboratory Science, Asrat Weldeyes Health Science Campus, Debre Berhan University, Debre Berhan, Ethiopia
| | - Behailu Adenew
- Department of Medical Laboratory Science, Debre Berhan Compressive Specialized Hospital, Debre Berhan, Ethiopia
| | - Tsegahun Asfaw Abebe
- Department of Medical Laboratory Science, Asrat Weldeyes Health Science Campus, Debre Berhan University, Debre Berhan, Ethiopia
| |
Collapse
|
13
|
Pakmehr A, Mousavi SM, Ejtahed HS, Hoseini-Tavassol Z, Siadat SD, Hasani-Ranjbar S, Larijani B. The Effect of Fecal Microbiota Transplantation on Cardiometabolic Risk Factors: A Systematic Review and Meta-Analysis. Clin Ther 2024; 46:e87-e100. [PMID: 38087724 DOI: 10.1016/j.clinthera.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/03/2023] [Accepted: 11/21/2023] [Indexed: 02/27/2024]
Abstract
PURPOSE Cardiometabolic disease (CMD) is increasing along with its predisposing factors and adverse consequences. As gut microbiota dysbiosis is established in these patients, fecal microbiota transplantation (FMT), which alters the bacterial composition of the intestine, supposedly can help improve cardiometabolic disturbances. We conducted a systematic review and meta-analysis evaluating the impact of FMT on the cardiometabolic parameters and gut microbiota composition of patients experiencing at least one cardiometabolic issue. METHODS Eligible studies were searched through the PubMed, Web of Science, and Scopus databases until December 2022. The initial search results underwent duplication removal and screening until each included study was scanned for intended data. The Cochrane risk of bias tool was used to evaluate the methodologic accuracy of studies and the random effects model was used for conducting the meta-analysis. FINDINGS Eighteen of the original 2414 articles from the literature search were entered into the systematic review; of these, 11 were included in the meta-analysis. Insulin showed a significant decrease by 24.7 pmol/L (weighted mean difference [WMD], -24.77; 95% CI, -48.704 to -0.848) after short-term follow-up, and HDL increased by 0.1 mmol/l(WMD, 0.106; 95% CI, 0.027 to 0.184) and 0.12 mmol/l(WMD, 0.120; 95% CI, 0.003 to 0.237) in those using a capsule deliver mode and in short-term follow-up, respectively. No significant changes were seen in other lipid profiles, blood glucose, insulin resistance, or anthropometric indices. In addition, multiple studies reported gut microbiota alterations after the intervention, including an increase in butyrate-producing species. IMPLICATIONS Although some articles reported the beneficial effects of FMT on metabolic parameters, we failed to find a clinically significant alteration. Also, information regarding proper donors and the best method to induce FMT have not yet been sufficiently investigated, which should be considered along with means to prevent potential damages. PROSPERO identifier: CRD42022380705.
Collapse
Affiliation(s)
- Azin Pakmehr
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Mousavi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Zahra Hoseini-Tavassol
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Shirin Hasani-Ranjbar
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Yuan L, Li Y, Chen M, Xue L, Wang J, Ding Y, Gu Q, Zhang J, Zhao H, Xie X, Wu Q. Therapeutic applications of gut microbes in cardiometabolic diseases: current state and perspectives. Appl Microbiol Biotechnol 2024; 108:156. [PMID: 38244075 PMCID: PMC10799778 DOI: 10.1007/s00253-024-13007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
Cardiometabolic disease (CMD) encompasses a range of diseases such as hypertension, atherosclerosis, heart failure, obesity, and type 2 diabetes. Recent findings about CMD's interaction with gut microbiota have broadened our understanding of how diet and nutrition drive microbes to influence CMD. However, the translation of basic research into the clinic has not been smooth, and dietary nutrition and probiotic supplementation have yet to show significant evidence of the therapeutic benefits of CMD. In addition, the published reviews do not suggest the core microbiota or metabolite classes that influence CMD, and systematically elucidate the causal relationship between host disease phenotypes-microbiome. The aim of this review is to highlight the complex interaction of the gut microbiota and their metabolites with CMD progression and to further centralize and conceptualize the mechanisms of action between microbial and host disease phenotypes. We also discuss the potential of targeting modulations of gut microbes and metabolites as new targets for prevention and treatment of CMD, including the use of emerging technologies such as fecal microbiota transplantation and nanomedicine. KEY POINTS: • To highlight the complex interaction of the gut microbiota and their metabolites with CMD progression and to further centralize and conceptualize the mechanisms of action between microbial and host disease phenotypes. • We also discuss the potential of targeting modulations of gut microbes and metabolites as new targets for prevention and treatment of CMD, including the use of emerging technologies such as FMT and nanomedicine. • Our study provides insight into identification-specific microbiomes and metabolites involved in CMD, and microbial-host changes and physiological factors as disease phenotypes develop, which will help to map the microbiome individually and capture pathogenic mechanisms as a whole.
Collapse
Affiliation(s)
- Lin Yuan
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yu Ding
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, 510632, China
| | - Qihui Gu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Hui Zhao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| |
Collapse
|
15
|
Yu Y, Wang W, Zhang F. The Next Generation Fecal Microbiota Transplantation: To Transplant Bacteria or Virome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301097. [PMID: 37914662 PMCID: PMC10724401 DOI: 10.1002/advs.202301097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/02/2023] [Indexed: 11/03/2023]
Abstract
Fecal microbiota transplantation (FMT) has emerged as a promising therapeutic approach for dysbiosis-related diseases. However, the clinical practice of crude fecal transplants presents limitations in terms of acceptability and reproductivity. Consequently, two alternative solutions to FMT are developed: transplanting bacteria communities or virome. Advanced methods for transplanting bacteria mainly include washed microbiota transplantation and bacteria spores treatment. Transplanting the virome is also explored, with the development of fecal virome transplantation, which involves filtering the virome from feces. These approaches provide more palatable options for patients and healthcare providers while minimizing research heterogeneity. In general, the evolution of the next generation of FMT in global trends is fecal microbiota components transplantation which mainly focuses on transplanting bacteria or virome.
Collapse
Affiliation(s)
- You Yu
- Department of Microbiota Medicine & Medical Center for Digestive DiseasesThe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011China
- Key Lab of Holistic Integrative EnterologyNanjing Medical UniversityNanjing210011China
| | - Weihong Wang
- Department of Microbiota Medicine & Medical Center for Digestive DiseasesThe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011China
- Key Lab of Holistic Integrative EnterologyNanjing Medical UniversityNanjing210011China
| | - Faming Zhang
- Department of Microbiota Medicine & Medical Center for Digestive DiseasesThe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011China
- Key Lab of Holistic Integrative EnterologyNanjing Medical UniversityNanjing210011China
- Department of Microbiota MedicineSir Run Run HospitalNanjing Medical UniversityNanjing211166China
| |
Collapse
|
16
|
Malnick SDH, Ohayon Michael S. The Intestinal Microbiome and the Metabolic Syndrome-How Its Manipulation May Affect Metabolic-Associated Fatty Liver Disease (MAFLD). Curr Issues Mol Biol 2023; 45:7197-7211. [PMID: 37754239 PMCID: PMC10527723 DOI: 10.3390/cimb45090455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/28/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is now the predominant liver disease worldwide consequent to the epidemic of obesity. The intestinal microbiome (IM), consisting of the bacteria, fungi, archaea, and viruses residing in the gastrointestinal tract, plays an important role in human metabolism and preserving the epithelial barrier function. Disturbances in the IM have been shown to influence the development and progression of MAFLD and play a role in the development of metabolic syndrome (MS). The main treatment for MAFLD involves lifestyle changes, which also influence the IM. Manipulation of the IM by fecal microbial transplantation (FMT) has been approved for the treatment of recurrent Closteroides difficile infection. This may be administered by endoscopic administration from the lower or upper GI tract. Other methods of administration include nasogastric tube, enema, and oral capsules of stool from healthy donors. In this narrative review, we elaborate on the role of the IM in developing MS and MAFLD and on the current experience with IM modulation by FMT on MAFLD.
Collapse
Affiliation(s)
- Stephen D. H. Malnick
- Department of Internal Medicine C, Kaplan Medical Center, Rehovot 76100, Israel;
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| | - Sheral Ohayon Michael
- Department of Internal Medicine C, Kaplan Medical Center, Rehovot 76100, Israel;
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| |
Collapse
|
17
|
Wu L, Lin ZH, Lu XJ, Hu X, Zhong HJ, Lin DJ, Liu T, Xu JT, Lin WY, Wu QP, He XX. Washed Microbiota Transplantation Improves Patients with Overweight by the Gut Microbiota and Sphingolipid Metabolism. Biomedicines 2023; 11:2415. [PMID: 37760856 PMCID: PMC10525780 DOI: 10.3390/biomedicines11092415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/25/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Overweight (OW) and obesity have become increasingly serious public health problems worldwide. The clinical impact of washed microbiota transplantation (WMT) from healthy donors in OW patients is unclear. This study aimed to investigate the effect of WMT in OW patients. METHODS The changes in body mass index (BMI = weight (kg)/height (m)2), blood glucose, blood lipids and other indicators before and after WMT were compared. At the same time, 16S rRNA gene amplicon sequencing was performed on fecal samples of OW patients before and after transplantation. Finally, serum samples were tested for sphingolipids targeted by lipid metabolomics. RESULTS A total of 166 patients were included, including 52 in the OW group and 114 in the normal weight (NOW) group. For OW patients, WMT significantly improved the comprehensive efficacy of OW. In the short term (about 1 month) and medium term (about 2 months), a significant reduction in BMI was seen. At the same time, in the short term (about 1 month), liver fat attenuation (LFA), triglyceride (TG) and fasting blood glucose (FBG) were significantly reduced. In the long term (about 5 months), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), non-high-density lipoprotein (non-HDL-c), etc. were significantly reduced. WMT improved the gut microbiota of OW patients, and also had an improvement effect on OW patients by regulating sphingolipid metabolism. CONCLUSION WMT had a significant improvement effect on OW patients. WMT could restore gut microbiota homeostasis and improve OW patients by regulating sphingolipid metabolism.
Collapse
Affiliation(s)
- Lei Wu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China; (L.W.); (Z.-H.L.); (X.-J.L.); (X.H.); (H.-J.Z.); (W.-Y.L.)
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Zi-Han Lin
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China; (L.W.); (Z.-H.L.); (X.-J.L.); (X.H.); (H.-J.Z.); (W.-Y.L.)
| | - Xin-Jian Lu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China; (L.W.); (Z.-H.L.); (X.-J.L.); (X.H.); (H.-J.Z.); (W.-Y.L.)
| | - Xuan Hu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China; (L.W.); (Z.-H.L.); (X.-J.L.); (X.H.); (H.-J.Z.); (W.-Y.L.)
| | - Hao-Jie Zhong
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China; (L.W.); (Z.-H.L.); (X.-J.L.); (X.H.); (H.-J.Z.); (W.-Y.L.)
| | - De-Jiang Lin
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China; (L.W.); (Z.-H.L.); (X.-J.L.); (X.H.); (H.-J.Z.); (W.-Y.L.)
| | - Tao Liu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China; (L.W.); (Z.-H.L.); (X.-J.L.); (X.H.); (H.-J.Z.); (W.-Y.L.)
| | - Jia-Ting Xu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China; (L.W.); (Z.-H.L.); (X.-J.L.); (X.H.); (H.-J.Z.); (W.-Y.L.)
| | - Wen-Ying Lin
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China; (L.W.); (Z.-H.L.); (X.-J.L.); (X.H.); (H.-J.Z.); (W.-Y.L.)
| | - Qing-Ping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xing-Xiang He
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China; (L.W.); (Z.-H.L.); (X.-J.L.); (X.H.); (H.-J.Z.); (W.-Y.L.)
| |
Collapse
|
18
|
Wu L, Xie X, Li Y, Liang T, Zhong H, Yang L, Xi Y, Zhang J, Ding Y, Wu Q. Gut microbiota as an antioxidant system in centenarians associated with high antioxidant activities of gut-resident Lactobacillus. NPJ Biofilms Microbiomes 2022; 8:102. [PMID: 36564415 PMCID: PMC9789086 DOI: 10.1038/s41522-022-00366-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 12/08/2022] [Indexed: 12/25/2022] Open
Abstract
The gut microbiota plays an important role in human health and longevity, and the gut microbiota of centenarians shows unique characteristics. Nowadays, most microbial research on longevity is usually limited to the bioinformatics level, lacking validating information on culturing functional microorganisms. Here, we combined metagenomic sequencing and large-scale in vitro culture to reveal the unique gut microbial structure of the world's longevity town-Jiaoling, China, centenarians and people of different ages. Functional strains were isolated and screened in vitro, and the possible relationship between gut microbes and longevity was explored and validated in vivo. 247 healthy Cantonese natives of different ages participated in the study, including 18 centenarians. Compared with young adults, the gut microbiota of centenarians exhibits higher microbial diversity, xenobiotics biodegradation and metabolism, oxidoreductases, and multiple species (the potential probiotics Lactobacillus, Akkermansia, the methanogenic Methanobrevibacter, gut butyrate-producing members Roseburia, and SCFA-producing species uncl Clostridiales, uncl Ruminococcaceae) known to be beneficial to host metabolism. These species are constantly changing with age. We also isolated 2055 strains from these samples by large-scale in vitro culture, most of which were detected by metagenomics, with clear complementarity between the two approaches. We also screened an age-related gut-resident Lactobacillus with independent intellectual property rights, and its metabolite (L-ascorbic acid) and itself have good antioxidant effects. Our findings underscore the existence of age-related trajectories in the human gut microbiota, and that distinct gut microbiota and gut-resident as antioxidant systems may contribute to health and longevity.
Collapse
Affiliation(s)
- Lei Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Tingting Liang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Haojie Zhong
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Lingshuang Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Yu Xi
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Yu Ding
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, Guangdong, China.
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China.
| |
Collapse
|
19
|
Wu L, Lu XJ, Lin DJ, Chen WJ, Xue XY, Liu T, Xu JT, Xie YT, Li MQ, Lin WY, Zhang Q, Wu QP, He XX. Washed microbiota transplantation improves patients with metabolic syndrome in South China. Front Cell Infect Microbiol 2022; 12:1044957. [PMID: 36457852 PMCID: PMC9705737 DOI: 10.3389/fcimb.2022.1044957] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Background Metabolic syndrome (MS) is a growing public health problem worldwide. The clinical impact of fecal microbiota transplantation (FMT) from healthy donors in MS patients is unclear, especially in southern Chinese populations. This study aimed to investigate the effect of washed microbiota transplantation (WMT) in MS patients in southern China. Methods The clinical data of patients with different indications receiving 1-3 courses of WMT were retrospectively collected. The changes of BMI, blood glucose, blood lipids, blood pressure and other indicators before and after WMT were compared, such as fasting blood glucose (FBG), glycated hemoglobin (HbA1c), total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-c)), high-density lipoprotein cholesterol (HDL-c), non-high-density lipoprotein (non-HDL-c), systolic blood pressure (SBP), diastolic blood pressure (DBP), etc. At the same time, comprehensive efficacy evaluation and atherosclerotic cardiovascular disease (ASCVD) grade assessment were performed on MS patients. Finally, 16S rRNA gene amplicon sequencing was performed on fecal samples of MS patients before and after transplantation. Results A total of 237 patients were included, including 42 in the MS group and 195 in the non-MS group. For MS patients, WMT significantly improved the comprehensive efficacy of MS in short term 40.48% (p<0.001), medium term 36.00% (p=0.003), and long term 46.15% (p=0.020). Short-term significantly reduced FBG (p=0.023), TG (p=0.030), SBP (p=0.026) and BMI (p=0.031), and increased HDL-c (p=0.036). The medium term had a significant reduction in FBG (p=0.048), TC (p=0.022), LDL-c (p=0.043), non-HDL-c (p=0.024) and BMI (p=0.048). WMT had a significant short term (p=0.029) and medium term (p=0.011) ASCVD downgrading effect in the high-risk group of MS patients. WMT improved gut microbiota in MS patients. Conclusion WMT had a significant improvement effect on MS patients and a significant downgrade effect on ASCVD risk in the high-risk group of patients with MS. WMT could restore gut microbiota homeostasis in MS patients. Therefore, the regulation of gut microbiota by WMT may provide a new clinical approach for the treatment of MS.
Collapse
Affiliation(s)
- Lei Wu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Xin-Jian Lu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - De-Jiang Lin
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Wen-Jia Chen
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xing-Ying Xue
- Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Tao Liu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Jia-Ting Xu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Ya-Ting Xie
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Man-Qing Li
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Wen-Ying Lin
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Qing Zhang
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Qing-Ping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xing-Xiang He
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|