1
|
Changaris DG. Rapid Reversal of Forearm Supinator Rigidity With Topical Isomerized Potassium Linoleate: A Novel Perspective on Microbiome-Induced Tetany. Cureus 2025; 17:e80896. [PMID: 40114846 PMCID: PMC11925388 DOI: 10.7759/cureus.80896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2025] [Indexed: 03/22/2025] Open
Abstract
Microbes can alter host behavior, immunity, and neurological function at a distance without extension into the brain and spinal cord. Clostridia provides a predicate for such an infection in the periphery by causing "lock jaw" and generalized tetany. This case series presents five patients who showed rigidity or tetany of the forearm. All were diagnosed with vertigo of central origin by video nystagmography (VNG) and posturography. Each had an apparent slow-rolling tetany, most visible in the forearm. Each had a consistent focus of pain within the supinator, diminution of extended wrist rotation, and tender, taut bands. None had clinical evidence of injury to the ulnar, radial, or median nerves, ulnar epicondyles, or wrist. The author applied a commercial preparation of a cleanser containing isomerized potassium linoleate (KCLA) to the skin overlying the forearm's biceps, supinator, and pronator as an "alternative" medical approach to refractory rigidity and tenderness. The tenderness resolved within two to four minutes. After 3-10 minutes, follow-on extended wrist rotation improved toward the norm (p < 0.01). The improved range of motion lasted beyond discharge from the clinic visit. The rapid response in this series suggests the commensal skin biome may contribute to clinical tetany in the forearm supinator.
Collapse
|
2
|
Camenzind DW, Bruckner S, Neumann P, Van Oystaeyen A, Strobl V, Williams GR, Straub L. Microsporidian parasite impairs colony fitness in bumblebees. Open Biol 2025; 15:240304. [PMID: 39999878 PMCID: PMC11858756 DOI: 10.1098/rsob.240304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Emerging infectious diseases can have a major impact on fitness of novel hosts, thereby contributing to ongoing species declines. In social insects, collaborative brood care by workers and successful mating of male sexuals are key to colony fitness. The microsporidian endoparasite Nosema ceranae has spread almost globally, shifting across honeybee species and now to bumblebees. However, despite N. ceranae being linked to recent population declines, its possible impact on bumblebee colony fitness remains poorly understood. Here, we show that N. ceranae infections can significantly impact Bombus terrestris worker feeding glands, as well as longevity, sperm quality and mating abilities of drones. In the laboratory, workers and drones were either exposed to the parasite or not. Then, parasite infection rates and loads, as well as lethal and sublethal parameters, were assessed. Infected drones revealed higher parasite infection rates and spore titres, as well as mortality compared with female workers, suggesting sex-specific susceptibility. Furthermore, infections impaired feeding glands, affected sperm traits and altered mating behaviour, all of which are key to colony fitness. Our findings provide a mechanistic explanation on how N. ceranae contributes to the ongoing decline of wild bumblebee populations, calling for respective mitigation measures.
Collapse
Affiliation(s)
- Domenic W. Camenzind
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Selina Bruckner
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| | | | - Verena Strobl
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Geoffrey R. Williams
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Department of Biological Sciences, Centre for Ecology, Evolution and Behaviour, Royal Holloway University of London, Egham, UK
| |
Collapse
|
3
|
Brown GP, Shine R, Rollins LA. Does a biological invasion modify host immune responses to parasite infection? ROYAL SOCIETY OPEN SCIENCE 2025; 12:240669. [PMID: 39816740 PMCID: PMC11732422 DOI: 10.1098/rsos.240669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/13/2024] [Accepted: 12/04/2024] [Indexed: 01/18/2025]
Abstract
Biological invasions can disrupt the close and longstanding coevolved relationships between host and parasites. At the same time, the shifting selective forces acting on demography during invasion can result in rapid evolution of traits in both host and parasite. Hosts at the invasion front may reduce investment into costly immune defences and redistribute those resources to other fitness-enhancing traits. Parasites at the invasion front may have reduced pathogenicity because traits that negatively impact host dispersal are left behind in the expanding range. The host's immune system is its primary arsenal in the coevolutionary 'arms race' with parasites. To assess the effects of invasion history on immune responses to parasite infection, we conducted a cross-infection experiment which paired common-garden reared cane toads and lungworm parasites originating from various sites in their invaded range across northern Australia. Infected toads had larger spleens and higher concentrations of eosinophils than did uninfected toads. Infected toads also exhibited lower bacteria-killing ability, perhaps reflecting a trade-off of resources towards defences that are more specifically anthelminthic. The impact of infection intensity on multiple immune measures differed among toads and parasites from different parts of the invasion trajectory, supporting the hypothesis that invasion has disrupted patterns of local adaptation.
Collapse
Affiliation(s)
- Gregory P. Brown
- School of Natural Sciences, Macquarie University, Sydney, NSW2109, Australia
| | - Richard Shine
- School of Natural Sciences, Macquarie University, Sydney, NSW2109, Australia
| | - Lee A. Rollins
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW2052, Australia
| |
Collapse
|
4
|
Myers S, Taylor B, Wilson R, Caseltine S, Scimeca RC. Skrjabingylus chitwoodorum in a rabies-positive striped skunk in Texas. J Vet Diagn Invest 2025; 37:184-188. [PMID: 39511766 PMCID: PMC11559893 DOI: 10.1177/10406387241293421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
We describe here a case of the sinus roundworm, Skrjabingylus chitwoodorum, found incidentally in a rabies-positive striped skunk (Mephitis mephitis) in Texas, USA. Skunks serve as a natural definitive host for this metastrongylid nematode in North America, in which infections result in observable damage to the host cranium, where adult parasites reside. Additionally, skunks are considered the primary reservoir of rabies in Texas. In November 2022, the animal was discovered in northern Texas displaying neurologic signs before euthanasia and submission to the Oklahoma Animal Disease Diagnostic Laboratory for rabies testing. Direct fluorescent antibody testing indicated that the animal was rabies-positive, and, upon tissue collection, numerous adult nematodes were recovered from the cranium and identified as S. chitwoodorum by morphology and amplification of the mitochondrial cytochrome c oxidase subunit I gene. Histologically, we found lymphohistiocytic meningitis in several loci and chronic sinusitis rostral to the cribriform plate. Due to behavioral abnormalities, we additionally tested for Toxoplasma gondii via PCR, but no parasite DNA was detected. Concurrent infection by S. chitwoodorum and rabies virus may contribute to neurologic signs in skunks.
Collapse
Affiliation(s)
- Sarah Myers
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK, USA
| | - Brianne Taylor
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK, USA
| | - Ragan Wilson
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK, USA
| | - Shannon Caseltine
- Oklahoma Animal Disease Diagnostic Laboratory, Oklahoma State University, Stillwater, OK, USA
| | - Ruth C. Scimeca
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
5
|
Elizarraraz-Martínez IJ, Rojas-Raya MA, Feregrino-Pérez AA, Partida-Martínez LP, Heil M. Immunity priming and biostimulation by airborne nonanal increase yield of field-grown common bean plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1451864. [PMID: 39568456 PMCID: PMC11577088 DOI: 10.3389/fpls.2024.1451864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/13/2024] [Indexed: 11/22/2024]
Abstract
Introduction Stress-induced volatile organic compounds (VOCs) that induce plant immunity bear potential for biocontrol. Here, we explore the potential of nonanal to enhance the seed yield of common bean (Phaseolus vulgaris) under open field conditions that are realistic for smallholder farmers. Methods and results Using plastic cups with a nonanal-containing lanolin paste as low-cost dispensers, we observed that exposure of Flor de Junio Marcela (FJM) plants over 48h to airborne nonanal was followed by a 3-fold higher expression of pathogenesis-related (PR) genes PR1 and PR4. Both genes further increased their expression in response to subsequent challenge with the fungal pathogen Colletotrichum lindemuthianum. Therefore, we conclude that nonanal causes resistance gene priming. This effect was associated with ca. 2.5-fold lower infection rates and a 2-fold higher seed yield. Offspring of nonanal-exposed FJM plants exhibited a 10% higher emergence rate and a priming of PR1- and PR4-expression, which was associated with decreased infection by C. lindemuthianum and, ultimately, a ca. 3-fold increase in seed yield by anthracnose-infected offspring of nonanal-exposed plants. Seeds of nonanal-exposed and of challenged plants contained significantly more phenolic compounds (increase by ca 40%) and increased antioxidant and radical scavenging activity. Comparative studies including five widely used bean cultivars revealed 2-fold to 3-fold higher seed yield for nonanal-exposed plants. Finally, a cost-benefit analysis indicated a potential economic net profit of nonanal exposure for some, but not all cultivars. Outlook We consider nonanal as a promising candidate for an affordable tool that allows low-income smallholder farmers to increase the yield of an important staple-crop without using pesticides.
Collapse
Affiliation(s)
- Iris J Elizarraraz-Martínez
- Departamento de Ingeniería Genética, Laboratorio de Ecología de Plantas, Centro de Investigación y de Estudios Avanzados (CINVESTAV) - Unidad Irapuato, Irapuato, Mexico
| | - Mariana A Rojas-Raya
- Departamento de Ingeniería Genética, Laboratorio de Ecología de Plantas, Centro de Investigación y de Estudios Avanzados (CINVESTAV) - Unidad Irapuato, Irapuato, Mexico
| | | | - Laila P Partida-Martínez
- Departamento de Ingeniería Genética, Laboratorio de Interacciones Microbianas, Centro de Investigación y de Estudios Avanzados (CINVESTAV)- Unidad Irapuato, Irapuato, Mexico
| | - Martin Heil
- Departamento de Ingeniería Genética, Laboratorio de Ecología de Plantas, Centro de Investigación y de Estudios Avanzados (CINVESTAV) - Unidad Irapuato, Irapuato, Mexico
| |
Collapse
|
6
|
Liu C, Zhang Q, Shi X, Zhu H, Chai R, Hu G, Desneux N, Luo C, Hu Z. Direct effects of barley yellow dwarf virus on the performance, parasitoid resistance, and feeding behavior of its vector Sitobion avenae (Hemiptera: Aphididae). PEST MANAGEMENT SCIENCE 2024; 80:5112-5119. [PMID: 38860678 DOI: 10.1002/ps.8235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND The complex interaction between plant viruses and their insect vectors is the basis for the epidemiology of plant viruses. The 'Vector Manipulation Hypothesis' (VMH) was proposed to demonstrate the evolution of strategies in plant viruses to enhance their transmission to new hosts through direct effects on insect vector behavior and/or physiology. However, the aphid vectors used in previous studies were mostly obtained by feeding on virus-infected plants and as a result, it was difficult to eliminate the confounding effects of infected host plants. Furthermore, the mechanisms of the direct effects of plant viruses on insect vectors have rarely been examined comprehensively. RESULTS We fed Sitobion avenae on an artificial diet infused with a purified suspension of Barley yellow dwarf virus (BYDV) PAV strain to obtain viruliferous aphids. We then examined their growth and reproduction performance, resistance to the parasitoid Aphidius gifuensis Ashmead, and feeding behavior. The results indicate that (1) viruliferous aphids had a shorter life span and a lower relative growth rate at the nymphal stage; (2) A. gifuensis had a lower parasitism rate, mummification rate, and emergence rate in viruliferous aphids; (3) Viruliferous aphids spent more time on non-probing and salivation behavior and had a shorter total duration of penetration and ingestion compared with healthy conspecifics. CONCLUSION These results suggest that plant virus infection may directly alter vector fitness and behavior that improves plant virus transmission, but not vector growth. These findings highlight the mechanisms of VMH and the ecological significance of vector manipulation by plant viruses, and have implications for plant virus disease and vector management. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chiping Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Qi Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xiang Shi
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Huimin Zhu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Ruirui Chai
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Geyang Hu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | | | - Chen Luo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zuqing Hu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
7
|
Chai W, Mao X, Li C, Zhu L, He Z, Wang B. Neurotransmitter acetylcholine mediates the mummification of Ophiocordyceps sinensis-infected Thitarodes xiaojinensis larvae. Appl Environ Microbiol 2024; 90:e0033324. [PMID: 39109874 PMCID: PMC11409639 DOI: 10.1128/aem.00333-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/15/2024] [Indexed: 09/19/2024] Open
Abstract
Parasites can manipulate host behavior to facilitate parasite transmission. One such host-pathogen interaction occurs between the fungus Ophiocordyceps sinensis and the ghost moth Thitarodes xiaojinensis. O. sinensis is involved in the mummification process of infected host larvae. However, the underlying molecular and chemical mechanism for this phenomenon is unknown. We characterized the small molecules regulating host behaviors and the altered metabolites in infected and mummified host larvae. Lipid-related metabolites, such as phosphatidylcholine, were identified in infected and mummified larvae. Decreased levels of the neurotransmitter acetylcholine (ACh) and elevated choline levels were observed in the brains of both the infected and mummified larvae. The aberrant activity of acetylcholinesterase (AChE) and relative mRNA expression of ACE2 (acetylcholinesterase) may mediate the altered transformation between ACh and choline, leading to the brain dysfunction of mummified larvae. Caspofungin treatment inhibited the mummification of infected larvae and the activity of AChE. These findings indicate the importance of ACh in the mummification of host larvae after O. sinensis infection.IMPORTANCEOphiocordyceps sinensis-infected ghost moth larvae are manipulated to move to the soil surface with their heads up in death. A fruiting body then grows from the caterpillar's head, eventually producing conidia for dispersal. However, the underlying molecular and chemical mechanism has not been characterized. In this study, we describe the metabolic profile of Thitarodes xiaojinensis host larvae after O. sinensis infection. Altered metabolites, particularly lipid-related metabolites, were identified in infected and mummified larvae, suggesting that lipids are important in O. sinensis-mediated behavioral manipulation of host larvae. Decreased levels of the neurotransmitter acetylcholine were observed in both infected and mummified larvae brains. This suggests that altered or reduced acetylcholine can mediate brain dysfunction and lead to aberrant behavior. These results reveal the critical role of acetylcholine in the mummification process of infected host larvae.
Collapse
Affiliation(s)
- Wenmin Chai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xianbing Mao
- Chongqing Xinstant Biotechnology Co., Ltd., Chongqing, China
| | - Chunfeng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Zongyi He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
8
|
Guan H, Zhang S, Yang N, Huangpu Y, Lan B, Nikas KJ, Wu X, Sun S. Parasitic flies alter the dietary preference of grasshoppers. Integr Zool 2024; 19:743-752. [PMID: 37427453 DOI: 10.1111/1749-4877.12748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Parasitism is known to affect the behavior of host species to enhance parasite dispersal and transmission. However, host behavioral responses to parasitism unrelated to parasite dispersal and transmission have been much less studied. The objective of this study was to determine whether grasshopper hosts infected and uninfected with a parasitic fly (Blaesoxipha sp.) differ in terms of the nutrient content of the diet they consume. We investigated the dietary preferences of two grasshopper species (i.e. Asulconotus chinghaiensis and Chorthippus fallax) in terms of the C/N composition of plant species consumed, and determined whether this affected the egg production of unparasitized and parasitized grasshoppers by flies in a Tibetan alpine meadow. The composition of plants consumed differed significantly between the unparasitized and parasitized grasshoppers. Specifically, the abundance of N-rich legumes was lower and that of high C/N grasses was higher in the diet of the parasitized compared to the unparasitized grasshoppers. Diet N content was higher and C/N was lower in the diet of unparasitized grasshoppers, and parasitized females produced fewer eggs than their unparasitized conspecifics. Future enquiries are needed to understand the specific mechanisms underlying these dietary differences. The effects of parasites on the fitness-associated behavior of hosts should be studied more broadly to better understand parasite evolution and adaptation.
Collapse
Affiliation(s)
- Huanhuan Guan
- Department of Ecology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shangyun Zhang
- Department of Ecology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Nan Yang
- Department of Ecology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yifei Huangpu
- Department of Ecology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Bin Lan
- Department of Ecology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Karl J Nikas
- School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Xinwei Wu
- Department of Ecology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shucun Sun
- Department of Ecology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
9
|
Kazemi Arababadi M, Abdollahi SH, Ramezani M, Zare-Bidaki M. A Review of Immunological and Neuropsychobehavioral Effects of Latent Toxoplasmosis on Humans. Parasite Immunol 2024; 46:e13060. [PMID: 39072801 DOI: 10.1111/pim.13060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024]
Abstract
Toxoplasmosis as a zoonotic disease has a worldwide distribution and can infect a wide range of animal hosts, as well as at least one third of the world's human population. The disease is usually mild or asymptomatic in immunocompetent individuals, but dormant tissue cysts survive especially in the brain for the host lifespan, known as latent toxoplasmosis (LT). Recent studies suggest that LT can have certain neurological, immunological psychological and behavioural effects on human including schizophrenia, bipolar disorder, Alzheimer's disease, depression, suicide anxiety and sleeping disorders. LT effects are controversial, and their exact mechanisms of action is not yet fully understood. This review aims to provide an overview of the potential effects, their basic mechanisms including alteration of neurotransmitter levels, immune activation in the central nervous system and induction of oxidative stress. Additionally, beneficial effects of LT, and an explanation of the effects within the framework of manipulation hypothesis, and finally, the challenges and limitations of the current research are discussed.
Collapse
Affiliation(s)
- Mohammad Kazemi Arababadi
- Immunology of Infectious Diseases Research Center, , Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Seyyed Hossein Abdollahi
- Molecular Medicine Research Center, , Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mahnaz Ramezani
- Immunology of Infectious Diseases Research Center, , Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Zare-Bidaki
- Immunology of Infectious Diseases Research Center, , Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
10
|
Kelly B, Izenour K, Zohdy S. Parasite–Host Coevolution. GENETICS AND EVOLUTION OF INFECTIOUS DISEASES 2024:141-161. [DOI: 10.1016/b978-0-443-28818-0.00008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Hartke J, Ceron-Noriega A, Stoldt M, Sistermans T, Kever M, Fuchs J, Butter F, Foitzik S. Long live the host! Proteomic analysis reveals possible strategies for parasitic manipulation of its social host. Mol Ecol 2023; 32:5877-5889. [PMID: 37795937 DOI: 10.1111/mec.17155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
Parasites with complex life cycles often manipulate the phenotype of their intermediate hosts to increase the probability of transmission to their definitive hosts. Infection with Anomotaenia brevis, a cestode that uses Temnothorax nylanderi ants as intermediate hosts, leads to a multiple-fold extension of host lifespan and to changes in behaviour, morphology and colouration. The mechanisms behind these changes are unknown, as is whether the increased longevity is achieved through parasite manipulation. Here, we demonstrate that the parasite releases proteins into its host with functions that might explain the observed changes. These parasitic proteins make up a substantial portion of the proteome of the hosts' haemolymph, and thioredoxin peroxidase and superoxide dismutase, two antioxidants, exhibited the highest abundances among them. The largest part of the secreted proteins could not be annotated, indicating they are either novel or severely altered during recent coevolution to function in host manipulation. We also detected shifts in the hosts' proteome with infection, in particular an overabundance of vitellogenin-like A in infected ants, a protein that regulates division of labour in Temnothorax ants, which could explain the observed behavioural changes. Our results thus suggest two different strategies that might be employed by this parasite to manipulate its host: secreting proteins with immediate influence on the host's phenotype and altering the host's translational activity. Our findings highlight the intricate molecular interplay required to influence the phenotype of a host and point to potential signalling pathways and genes involved in parasite-host communication.
Collapse
Affiliation(s)
- Juliane Hartke
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Marah Stoldt
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Tom Sistermans
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Marion Kever
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jenny Fuchs
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Falk Butter
- Institute of Molecular Biology, Mainz, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
12
|
Lauringson M, Kahar S, Veevo T, Silm M, Philpott D, Svirgsden R, Rohtla M, Päkk P, Gross R, Kaart T, Vasemägi A. Spatial and intra-host distribution of myxozoan parasite Tetracapsuloides bryosalmonae among Baltic sea trout (Salmo trutta). JOURNAL OF FISH DISEASES 2023; 46:1073-1083. [PMID: 37387198 DOI: 10.1111/jfd.13827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Proliferative kidney disease caused by the myxozoan parasite Tetracapsuloides bryosalmonae has been actively studied in juvenile salmonids for decades. However, very little is known about parasite prevalence and its geographical and intra-host distribution at older life stages. We screened T. bryosalmonae among adult sea trout (Salmo trutta) (n = 295) collected along the Estonian Baltic Sea coastline together with juvenile trout from 33 coastal rivers (n = 1752) to assess spatial infection patterns of the adult and juvenile fish. The parasite was detected among 38.6% of adult sea trout with the prevalence increasing from west to east, and south to north, along the coastline. A similar pattern was observed in juvenile trout. Infected sea trout were also older than uninfected fish and the parasite was detected in sea trout up to the age of 6 years. Analysis of intra-host distribution of the parasite and strontium to calcium ratios from the otoliths revealed that (re)infection through freshwater migration may occur among adult sea trout. The results of this study indicate that T. bryosalmonae can persist in a brackish water environment for several years and that returning sea trout spawners most likely contribute to the parasite life cycle by transmitting infective spores.
Collapse
Affiliation(s)
- Magnus Lauringson
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Siim Kahar
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Taigor Veevo
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Maidu Silm
- Centre for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Duncan Philpott
- Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, Drottningholm, Sweden
| | | | - Mehis Rohtla
- Estonian Marine Institute, University of Tartu, Tartu, Estonia
| | - Priit Päkk
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Riho Gross
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Tanel Kaart
- Chair of Animal Breeding and Biotechnology, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Anti Vasemägi
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, Drottningholm, Sweden
| |
Collapse
|
13
|
Lobbia PA, Rodríguez C, Mougabure-Cueto G. Can infection with Trypanosoma cruzi modify the toxicological response of Triatoma infestans susceptible and resistant to deltamethrin? Acta Trop 2023; 245:106969. [PMID: 37328120 DOI: 10.1016/j.actatropica.2023.106969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
Chemical control plays a central role in interrupting the vector transmission of Chagas disease. In recent years, high levels of resistance to pyrethroids have been detected in the main vector Triatoma infestans, which were associated with less effectiveness in chemical control campaigns in different regions of Argentina and Bolivia. The presence of the parasite within its vector can modify a wide range of insect physiological processes, including toxicological susceptibility and the expression of resistance to insecticides. This study examined for the first time the possible effects of Trypanosoma cruzi infection on susceptibility and resistance to deltamethrin in T. infestans. Using WHO protocol resistance monitoring assays, we exposed resistant and susceptible strains of T. infestans, uninfected and infected with T. cruzi to different concentrations of deltamethrin in fourth-instar nymphs at days 10-20 post-emergence and monitored survival at 24, 48, and 72 h. Our findings suggest that the infection affected the toxicological susceptibility of the susceptible strain, showing higher mortality than uninfected susceptible insects when exposed to both deltamethrin and acetone. On the other hand, the infection did not affect the toxicological susceptibility of the resistant strain, infected and uninfected showed similar toxic responses and the resistance ratios was not modified. This is the first report of the effect of T. cruzi on the toxicological susceptibility of T. infestans and triatomines in general and, to our knowledge, one of the few on the effect of a parasite on the insecticide susceptibility of its insect vector.
Collapse
Affiliation(s)
- Patricia A Lobbia
- Unidad Operativa de Vectores y Ambiente (UnOVE), Centro Nacional de Diagnóstico e Investigación en Endemo-Epidemias (CeNDIE), Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos Malbrán", Ministerio de Salud de la Nación, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Claudia Rodríguez
- Cátedra de Morfología animal, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Argentina; Instituto de Investigaciones Biológicas y Tecnológicas (IIByT/CONICET), Argentina
| | - Gastón Mougabure-Cueto
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Laboratorio de Fisiología de Insectos, Instituto de Biodiversidad y Biología Experimental y Aplicada - IBBEA (UBA/CONICET), Argentina.
| |
Collapse
|
14
|
Will I, Attardo GM, de Bekker C. Multiomic interpretation of fungus-infected ant metabolomes during manipulated summit disease. Sci Rep 2023; 13:14363. [PMID: 37658067 PMCID: PMC10474057 DOI: 10.1038/s41598-023-40065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/03/2023] [Indexed: 09/03/2023] Open
Abstract
Camponotus floridanus ants show altered behaviors followed by a fatal summiting phenotype when infected with manipulating Ophiocordyceps camponoti-floridani fungi. Host summiting as a strategy to increase transmission is also observed with parasite taxa beyond fungi, including aquatic and terrestrial helminths and baculoviruses. The drastic phenotypic changes can sometimes reflect significant molecular changes in gene expression and metabolite concentrations measured in manipulated hosts. Nevertheless, the underlying mechanisms still need to be fully characterized. To investigate the small molecules producing summiting behavior, we infected C. floridanus ants with O. camponoti-floridani and sampled their heads for LC-MS/MS when we observed the characteristic summiting phenotype. We link this metabolomic data with our previous genomic and transcriptomic data to propose mechanisms that underlie manipulated summiting behavior in "zombie ants." This "multiomic" evidence points toward the dysregulation of neurotransmitter levels and neuronal signaling. We propose that these processes are altered during infection and manipulation based on (1) differential expression of neurotransmitter synthesis and receptor genes, (2) altered abundance of metabolites and neurotransmitters (or their precursors) with known behavioral effects in ants and other insects, and (3) possible suppression of a connected immunity pathway. We additionally report signals for metabolic activity during manipulation related to primary metabolism, detoxification, and anti-stress protectants. Taken together, these findings suggest that host manipulation is likely a multi-faceted phenomenon, with key processes changing at multiple levels of molecular organization.
Collapse
Affiliation(s)
- I Will
- Biology Department, University of Central Florida, Orlando, USA.
| | - G M Attardo
- Entomology and Nematology Department, University of California-Davis, Davis, USA
| | - C de Bekker
- Biology Department, University of Central Florida, Orlando, USA.
- Biology Department, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
15
|
van Beest FM, Petersen HH, Krogh AK, Frederiksen ML, Schmidt NM, Hansson SV. Estimating parasite-condition relationships and potential health effects for fallow deer ( Dama dama) and red deer ( Cervus elaphus) in Denmark. Int J Parasitol Parasites Wildl 2023; 21:143-152. [PMID: 37215531 PMCID: PMC10196918 DOI: 10.1016/j.ijppaw.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
Parasites can exert a substantial influence on the ecology of wildlife populations by altering host condition. Our objectives were to estimate single and multiparasite-condition relationships for fallow deer (Dama dama) and red deer (Cervus elaphus) in Denmark and to assess potential health effects along the parasite burden gradient. Fallow deer hosted on average two endoparasite taxa per individual (min = 0, max = 5) while red deer carried on average five parasite taxa per individual (min = 2, max = 9). Body condition of both deer species was negatively related to presence of Trichuris ssp. eggs while body condition of red deer was positively related to antibodies of the protozoan Toxoplasma gondii. For the remaining parasite taxa (n = 12), we either found weak or no apparent association between infection and deer body condition or low prevalence levels restricted formal testing. Importantly, we detected a strong negative relationship between body condition and the sum of endoparasite taxa carried by individual hosts, a pattern that was evident in both deer species. We did not detect systemic inflammatory reactions, yet serology revealed reduced total protein and iron concentrations with increased parasite load in both deer species, likely due to maldigestion of forage or malabsorption of nutrients. Despite moderate sample sizes, our study highlights the importance of considering multiparasitism when assessing body condition impacts in deer populations. Moreover, we show how serum chemistry assays are a valuable diagnostic tool to detect subtle and sub-clinical health impacts of parasitism, even at low-level infestation.
Collapse
Affiliation(s)
- Floris M. van Beest
- Department of Ecoscience, Aarhus University, Frederiksborgvej, 399, 4000, Roskilde, Denmark
| | - Heidi H. Petersen
- Center for Diagnostics, Technical University of Denmark, Kemitorvet, 2800, Kgs. Lyngby, Denmark
| | - Anne K.H. Krogh
- Department of Veterinary Clinical Sciences, University of Copenhagen, Dyrlægevej 16, 1870, Frederiksberg, Denmark
| | | | - Niels M. Schmidt
- Department of Ecoscience, Aarhus University, Frederiksborgvej, 399, 4000, Roskilde, Denmark
| | - Sophia V. Hansson
- Laboratoire Ecologie Fonctionnelle et Environnement (UMR- 5245), CNRS, Université de Toulouse, Ave. de l'Agrobiopole, 31326 Castanet Tolosan, France
| |
Collapse
|
16
|
Borer ET, Kendig AE, Holt RD. Feeding the fever: Complex host-pathogen dynamics along continuous resource gradients. Ecol Evol 2023; 13:e10315. [PMID: 37502304 PMCID: PMC10368943 DOI: 10.1002/ece3.10315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
Food has long been known to perform dual functions of nutrition and medicine, but mounting evidence suggests that complex host-pathogen dynamics can emerge along continuous resource gradients. Empirical examples of nonmonotonic responses of infection with increasing host resources (e.g., low prevalence at low and high resource supply but high prevalence at intermediate resources) have been documented across the tree of life, but these dynamics, when observed, often are interpreted as nonintuitive, idiosyncratic features of pathogen and host biology. Here, by developing generalized versions of existing models of resource dependence for within- and among-host infection dynamics, we provide a synthetic view of nonmonotonic infection dynamics. We demonstrate that where resources jointly impact two (or more) processes (e.g., growth, defense, transmission, mortality, predation), nonmonotonic infection dynamics, including alternative states, can emerge across a continuous resource supply gradient. We review the few empirical examples that concurrently measured resource effects on multiple rates and pair this with a wide range of examples in which resource dependence of multiple rates could generate nonmonotonic infection outcomes under realistic conditions. This review and generalized framework highlight the likely generality of such resource effects in natural systems and point to opportunities ripe for future empirical and theoretical work.
Collapse
Affiliation(s)
- Elizabeth T. Borer
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSaint PaulMinnesotaUSA
| | - Amy E. Kendig
- Agronomy DepartmentUniversity of FloridaGainesvilleFloridaUSA
- Minnesota Department of Natural ResourcesMinnesota Biological SurveySaint PaulMinnesotaUSA
| | - Robert D. Holt
- Department of BiologyUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
17
|
Forti LR, Szabo JK, Japyassú HF. Host manipulation by parasites through the lens of Niche Construction Theory. Behav Processes 2023:104907. [PMID: 37352944 DOI: 10.1016/j.beproc.2023.104907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
The effect of parasites on host behaviour is generally considered an example of the extended phenotype, implying that parasite genes alter host behaviour to benefit the parasite. While the extended phenotype is a valid perspective supported by empirical examples, this approach was proposed from an evolutionary perspective and it does not fully explain all processes that occur at ecological time scales. For instance, the roles of the ontogenetic environment, memory and learning in forming the host phenotype are not explicitly mentioned. Furthermore, the cumulative effect of diverse populations or communities of parasites on host phenotype cannot be attributed to a particular genotype, much less to a particular gene. Building on the idea that the behaviour of a host is the result of a complex process, which certainly goes beyond a specific parasite gene, we use Niche Construction Theory to describe certain systems that are not generally the main focus in the extended phenotype (EP) model. We introduce three niche construction models with corresponding empirical examples that capture the diversity and complexity of host-parasite interactions, providing predictions that simpler models cannot generate. We hope that this novel perspective will inspire further research on the topic, given the impact of ecological factors on both short-, and long-term effects of parasitism.
Collapse
Affiliation(s)
- Lucas Rodriguez Forti
- Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, 668 - Campus de Ondina CEP: 40170-115 Salvador - Bahia, Brazil; Departamento de Biociências, Universidade Federal Rural do Semi-Árido, Av. Francisco Mota, 572 - Bairro Costa e Silva, 59625-900, Mossoró - Rio Grande do Norte, Brazil.
| | - Judit K Szabo
- Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, 668 - Campus de Ondina CEP: 40170-115 Salvador - Bahia, Brazil; College of Engineering, IT and Environment, Charles Darwin University, Casuarina, Northern Territory 0909, Australia
| | - Hilton F Japyassú
- Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, 668 - Campus de Ondina CEP: 40170-115 Salvador - Bahia, Brazil; INCT-INTREE: Instituto Nacional de Ciência e Tecnologia para estudos Interdisciplinares e Transdisciplinares em Ecologia e Evolução, Universidade Federal da Bahia
| |
Collapse
|
18
|
Dougherty LR, Rovenolt F, Luyet A, Jokela J, Stephenson JF. Ornaments indicate parasite load only if they are dynamic or parasites are contagious. Evol Lett 2023; 7:176-190. [PMID: 37251584 PMCID: PMC10210455 DOI: 10.1093/evlett/qrad017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
Choosing to mate with an infected partner has several potential fitness costs, including disease transmission and infection-induced reductions in fecundity and parental care. By instead choosing a mate with no, or few, parasites, animals avoid these costs and may also obtain resistance genes for offspring. Within a population, then, the quality of sexually selected ornaments on which mate choice is based should correlate negatively with the number of parasites with which a host is infected ("parasite load"). However, the hundreds of tests of this prediction yield positive, negative, or no correlation between parasite load and ornament quality. Here, we use phylogenetically controlled meta-analysis of 424 correlations from 142 studies on a wide range of host and parasite taxa to evaluate explanations for this ambiguity. We found that ornament quality is weakly negatively correlated with parasite load overall, but the relationship is more strongly negative among ornaments that can dynamically change in quality, such as behavioral displays and skin pigmentation, and thus can accurately reflect current parasite load. The relationship was also more strongly negative among parasites that can transmit during sex. Thus, the direct benefit of avoiding parasite transmission may be a key driver of parasite-mediated sexual selection. No other moderators, including methodological details and whether males exhibit parental care, explained the substantial heterogeneity in our data set. We hope to stimulate research that more inclusively considers the many and varied ways in which parasites, sexual selection, and epidemiology intersect.
Collapse
Affiliation(s)
- Liam R Dougherty
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, United Kingdom
| | - Faith Rovenolt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alexia Luyet
- Department of Aquatic Ecology, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Institute for Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Jukka Jokela
- Department of Aquatic Ecology, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Institute for Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Jessica F Stephenson
- Corresponding author: University of Pittsburgh Department of Biological Sciences, Clapp Hall, 4249 Fifth Avenue, Pittsburgh, PA 15260 USA.
| |
Collapse
|
19
|
Kanzaki N, Makino S, Kosaka H, Sayama K, Hamaguchi K, Narayama S. Nematode and Strepsipteran Parasitism in Bait-Trapped and Hand-Collected Hornets (Hymenoptera, Vespidae, Vespa). INSECTS 2023; 14:398. [PMID: 37103213 PMCID: PMC10143633 DOI: 10.3390/insects14040398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
The parasitism of two groups of host-manipulating parasites of hornets was examined in Kyoto, Japan. Vespa mandarinia (661 individuals), V. simillima (303), V. analis (457), V. ducalis (158), V. crabro (57), and V. dybowskii (4) were collected either by bait trap or hand collection with an insect net, and examined for their parasites. An endoparasitic nematode, Sphaerularia vespae was isolated from three overwintered gynes of V. mandarinia and a gyne of V. ducalis. While endoparasitic insects, Xenos spp., were recovered from 13 V. mandarinia, 77 V. analis, two V. ducalis, and three V. crabro, and those recovered from V. analis and others were molecularly identified as X. oxyodontes and X. moutoni, respectively. Comparing Xenos parasitism level and capturing methods, the parasitism level was significantly higher in trapped hosts than in hand-collected ones, suggesting that stylopized hosts are more strongly attracted to the food source (bait trap) compared with unparasitized hosts. The genotypes of S. vespae were identical to each other, and near identical to its type population. While each of the two Xenos spp. showed four mitochondrial DNA haplotypes. A phylogenetic comparison suggested that Xenos haplotypes found in the present study are close to those previously reported from Japan and other Asian countries.
Collapse
Affiliation(s)
- Natsumi Kanzaki
- Kansai Research Center, Forestry and Forest Products Research Institute (FFPRI), 68 Nagaikyutaroh, Momoyama, Fushimi, Kyoto 612-0855, Japan; (K.H.); (S.N.)
| | - Shun’ichi Makino
- Department of Forest Entomology, Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan;
| | - Hajime Kosaka
- Department of Mushroom Science and Forest Microbiology, FFPRI, 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan;
| | - Katsuhiko Sayama
- Kyushu Research Center, Forestry and Forest Products Research Institute, 4-11-16 Kurokami, Chuo, Kumamoto 860-0862, Japan
| | - Keiko Hamaguchi
- Kansai Research Center, Forestry and Forest Products Research Institute (FFPRI), 68 Nagaikyutaroh, Momoyama, Fushimi, Kyoto 612-0855, Japan; (K.H.); (S.N.)
| | - Shinji Narayama
- Kansai Research Center, Forestry and Forest Products Research Institute (FFPRI), 68 Nagaikyutaroh, Momoyama, Fushimi, Kyoto 612-0855, Japan; (K.H.); (S.N.)
| |
Collapse
|
20
|
The Phytopathogen Fusarium verticillioides Modifies the Intestinal Morphology of the Sugarcane Borer. Pathogens 2023; 12:pathogens12030443. [PMID: 36986365 PMCID: PMC10056812 DOI: 10.3390/pathogens12030443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Background: In tropical sugarcane crops, the fungus Fusarium verticillioides, the agent responsible for the occurrence of the red rot complex, occurs in association with the sugarcane borer Diatraea saccharalis. This fungus, in addition to being transmitted vertically, can manipulate both the insect and the plant for its own dissemination in the field. Due to the complex interaction between F. verticillioides and D. saccharalis, and the high incidence of the fungus in the intestinal region, our objective was to investigate whether F. verticillioides could alter the intestinal structure of the insect. Methods: We combined analysis of scanning electron microscopy and light microscopy to identify whether the presence of the fungus F. verticillioides, in artificial diets or in sugarcane, could lead to any alteration or regional preference in the insect’s intestinal ultrastructure over the course of its development, or its offspring development, analyzing the wall and microvillous structures of the mid-digestive system. Results: Here, we show that the fungus F. verticillioides alters the intestinal morphology of D. saccharalis, promoting an increase of up to 3.3 times in the thickness of the midgut compared to the control. We also observed that the phytopathogen colonizes the intestinal microvilli for reproduction, suggesting that this region can be considered the gateway of the fungus to the insect’s reproductive organs. In addition, the colonization of this region promoted the elongation of microvillous structures by up to 180% compared to the control, leading to an increase in the area used for colonization. We also used the fungus Colletotrichum falcatum in the tests, and it did not differ from the control in any test, showing that this interaction is specific between D. saccharalis and F. verticillioides. Conclusions: The phytopathogenic host F. verticillioides alters the intestinal morphology of the vector insect in favor of its colonization.
Collapse
|
21
|
Meuthen D, Reinhold K. On the use of antibiotics in plasticity research: Gastropod shells unveil a tale of caution. J Anim Ecol 2023; 92:1055-1064. [PMID: 36869422 DOI: 10.1111/1365-2656.13909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/24/2023] [Indexed: 03/05/2023]
Abstract
Through phenotypic plasticity, individual genotypes can produce multiple phenotypes dependent on the environment. In the modern world, anthropogenic influences such as man-made pharmaceuticals are increasingly prevalent. They might alter observable patterns of plasticity and distort our conclusions regarding the adaptive potential of natural populations. Antibiotics are nowadays nearly ubiquitous in aquatic environments and prophylactic antibiotic use is also becoming more common to optimize animal survival and reproductive output in artificial settings. In the well-studied plasticity model system Physella acuta, prophylactic erythromycin treatment acts against gram-positive bacteria and thereby reduces mortality. Here, we study its consequences for inducible defence formation in the same species. In a 2 × 2 split-clutch design, we reared 635 P. acuta in either the presence or absence of this antibiotic, followed by 28-day exposure to either high or low predation risk as perceived through conspecific alarm cues. Under antibiotic treatment, risk-induced increases in shell thickness, a well-known plastic response in this model system, were larger and consistently detectable. Antibiotic treatment reduced shell thickness in low-risk individuals, suggesting that in controls, undiscovered pathogen infection increased shell thickness under low risk. Family variation in risk-induced plasticity was low, but the large variation in responses to antibiotics among families suggests different pathogen susceptibility between genotypes. Lastly, individuals that developed thicker shells had reduced total mass, which highlights resource trade-offs. Antibiotics thus have the potential to uncover a larger extent of plasticity, but might counterintuitively distort plasticity estimates for natural populations where pathogens are a part of natural ecology.
Collapse
Affiliation(s)
- Denis Meuthen
- Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| | - Klaus Reinhold
- Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
22
|
May-Concha IJ, Escalante-Talavera MJ, Dujardin JP, Waleckx E. Does Trypanosoma cruzi (Chagas, 1909) (Kinetoplastida: Trypanosomatidae) modify the antennal phenotype of Triatoma dimidiata (Latreille, 1811) (Hemiptera: Triatominae)? Parasit Vectors 2022; 15:466. [PMCID: PMC9749310 DOI: 10.1186/s13071-022-05587-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
Triatoma dimidiata is a vector of the protozoan parasite Trypanosoma cruzi, the etiologic agent of Chagas disease. Phenotypic plasticity allows an organism to adjust its phenotype in response to stimuli or environmental conditions. Understanding the effect of T. cruzi on the phenotypic plasticity of its vectors, known as triatomines, has attracted great interest because of the implications of the parasite–triatomine interactions in the eco-epidemiology and transmission of the etiologic agent of Chagas disease. We investigated if the infection of the vector with T. cruzi may be associated with a change in the antennal phenotype of sylvatic, domestic, and laboratory-reared populations of T. dimidiata.
Methods
The abundance of each type of sensillum (bristles, basiconic, thick- and thin-walled trichoid) on the antennae of T.cruzi-infected and non-infected T.dimidiata reared in the laboratory or collected in sylvatic and domestic ecotopes were measured under light microscopy and compared using Kruskal–Wallis non-parametric tests and permutational multivariate analysis of variance.
Results
We found significant differences between sensilla patterns of infected and non-infected insects within sylvatic and domestic populations. Conversely, we found no significant differences between sensilla patterns of infected and non-infected insects within the laboratory-reared population. Besides, for sylvatic and domestic populations, sexual dimorphism tended to be increased in infected insects.
Conclusion
The differences observed in infected insects could be linked to higher efficiency in the perception of odor molecules related to the search for distant mates and hosts and the flight dispersal in search of new habitats. In addition, these insects could have a positive effect on population dynamics and the transmission of T.cruzi.
Graphical Abstract
Collapse
|
23
|
Abstract
Freshwater mussels in the order Unionida are highly adapted to parasitize fish for the primary purpose of dispersal. The parasitic larval stage affixes itself to the gills or fins of the host where it becomes encysted in the tissue, eventually excysting to develop into a free-living adult. Research on the parasitic interactions between unionids and their host fishes has garnered attention recently due to the increase in worldwide preservation efforts surrounding this highly endangered and ecologically significant order. With the exception of heavy infestation events, these mussels cause minor effects to their hosts, typically only observable effect in combination with other stressors. Moreover, the range of effect intensities on the host varies greatly with the species involved in the interaction, an effect that may arise from different evolutionary strategies between long- and short-infesting mussels; a distinction not typically made in conservation practices. Lower growth and reduced osmotic potential in infested hosts are commonly observed and correlated with infestation load. These effects are typically also associated with increases in metabolic rate and behaviour indicative of stress. Host fish seem to compensate for this through a combination of rapid wound healing in the parasitized areas and higher ventilation rates. The findings are heavily biased towards Margaritifera margaritifera, a unique mussel not well suited for cross-species generalizations. Furthermore, the small body of molecular and genetic studies should be expanded as many conclusions are drawn from studies on the ultimate effects of glochidiosis rather than proximate studies on the underlying mechanisms.
Collapse
|
24
|
Mohan P, Sinu PA. Is direct bodyguard manipulation a parasitoid-induced stress sleep? A new perspective. Biol Lett 2022; 18:20220280. [PMID: 36448293 PMCID: PMC9709512 DOI: 10.1098/rsbl.2022.0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/08/2022] [Indexed: 12/02/2022] Open
Abstract
Bodyguard manipulation is a behavioural manipulation in which the host's behaviour is altered to protect the inducer's offspring from imminent biotic threats. The behaviour of a post-parasitoid-egressed host resembles a quiescence state with a characteristic reduction in motor activities like feeding, locomotion, respiration, and metabolic rate. Yet, they respond aggressively through a defensive response when disturbed, which ensures better fitness for the parasitoid's offspring. The behavioural changes in the parasitized host appear after the parasitoid egression. Several hypotheses have been proposed to elucidate how the parasitized host's behaviour is manipulated for the fitness benefits of the inducers, but the exact mechanism is still unknown. We review evidence to explain the behavioural changes and their mechanism in the parasitized hosts. The evidence suggests that parasitoid pre-pupal egression may drive the host to stress-induced sleep. The elevated octopamine concentration also reflects the stress response in the host. Given the theoretical links between the behavioural and the physiological changes in the post-parasitoid-egressed host and stress-induced sleep of other invertebrates, we suggest that behavioural studies combined with functional genomics, proteomics, and histological analyses might give a better understanding of bodyguard manipulation.
Collapse
Affiliation(s)
- Prabitha Mohan
- Department of Zoology, Central University of Kerala, Kasaragod, Kerala, India
- Zoological Survey of India, Chennai, Tamilnadu, India
| | - Palatty Allesh Sinu
- Department of Zoology, Central University of Kerala, Kasaragod, Kerala, India
| |
Collapse
|
25
|
A Novel Role of Secretory Cytosolic Tryparedoxin Peroxidase in Delaying Apoptosis of Leishmania-Infected Macrophages. Mol Cell Biol 2022; 42:e0008122. [PMID: 36073913 PMCID: PMC9583715 DOI: 10.1128/mcb.00081-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The cytosolic tryparedoxin peroxidase (cTXNPx) of Leishmania donovani is a defensive enzyme. Apart from the nonsecretory form, the cTXNPx is released in the spent media of Leishmania cultures and also in the host cell cytosol. The secretory form of the enzyme from the parasite interacts with multiple proteins in the host cell cytosol, the apoptosis-inducing factor (AIF) being one of them. Immunoprecipitation with anti-cTXNPx and anti-AIF antibodies suggests a strong interaction between AIF and cTXNPx. Consequent to parasite invasion, the migration of AIF to the nucleus to precipitate apoptosis is inhibited in the presence of recombinant cTXNPx expressed in the host cell. This inhibition of AIF movement results in lesser host cell death, giving an advantage to the parasite for continued survival. Staurosporine-induced AIF migration to the nucleus was also inhibited in the presence of recombinant cTXNPx in the host cell. Therefore, this study demonstrates the ability of a Leishmania parasite enzyme, cTXNPx, to interfere with the migration of the host AIF protein, providing a survival advantage to the Leishmania parasite.
Collapse
|
26
|
Infection increases activity via Toll dependent and independent mechanisms in Drosophila melanogaster. PLoS Pathog 2022; 18:e1010826. [PMID: 36129961 PMCID: PMC9529128 DOI: 10.1371/journal.ppat.1010826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 10/03/2022] [Accepted: 08/23/2022] [Indexed: 11/19/2022] Open
Abstract
Host behavioural changes are among the most apparent effects of infection. ‘Sickness behaviour’ can involve a variety of symptoms, including anorexia, depression, and changed activity levels. Here, using a real-time tracking and behavioural profiling platform, we show that in Drosophila melanogaster, several systemic bacterial infections cause significant increases in physical activity, and that the extent of this activity increase is a predictor of survival time in some lethal infections. Using multiple bacteria and D. melanogaster immune and activity mutants, we show that increased activity is driven by at least two different mechanisms. Increased activity after infection with Micrococcus luteus, a Gram-positive bacterium rapidly cleared by the immune response, strictly requires the Toll ligand spätzle. In contrast, increased activity after infection with Francisella novicida, a Gram-negative bacterium that cannot be cleared by the immune response, is entirely independent of both Toll and the parallel IMD pathway. The existence of multiple signalling mechanisms by which bacterial infections drive increases in physical activity implies that this effect may be an important aspect of the host response. Sickness behaviours are often observed during infection. Animals have been shown to change their feeding, mating, social and resting (sleeping) behaviours in response to infection. We show here that fruit-flies infected with bacteria respond by increasing their physical activity and decreasing the amount of time spent sleeping. This increase in activity is seen in some, but not all, bacterial infections, and appears to be driven by at least two different mechanisms: with some bacteria, activating the immune response is the only requirement to induce increased activity, while other bacteria induce increased activity independently of known immune detection pathways. The biological role of increased activity is unclear; flies in the wild may be driven to flee sites where infection risk or pathogen burden is high. Alternatively, increased activity could serve a less direct anti-microbial function. For example, active animals may be more likely to encounter potential mates or food resource.
Collapse
|
27
|
Aavani P, Rice SH. When sexual selection in hosts benefits parasites. Infect Dis Model 2022; 7:561-570. [PMID: 36158519 PMCID: PMC9474839 DOI: 10.1016/j.idm.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/24/2022] [Accepted: 08/04/2022] [Indexed: 12/03/2022] Open
Abstract
In host-parasite coevolution, the parasite is selected to increase its infectivity while host is selected to resist the parasite infection. It is widely held that parasite-mediated sexual selection can further amplify the selective pressure on the host to overcome parasite infection. In this paper we focus on certain types of parasites, those that can impair the activity of the host immune function to prevent signs of sickness. We show that the effect of sexual selection can actually reduce the selective pressure on the host immune response to adapt to the parasite infection. We design a simple mathematical model for a population of sexually reproducing organism in which individuals are choosy, preferring traits that are correlated negatively with immune system activity. We introduce to this population a parasite that can suppress activation of the host's immune response. Our results show that even though the host immune system is likely to ultimately evolve and adapt to the parasite infection, when sexual selection is part of this process, it can slow down this evolution on the host and give the parasite more time to get established.
Collapse
Affiliation(s)
- Pooya Aavani
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.,Department of Biology, Emory University, Atlanta, GA, USA
| | - Sean H Rice
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
28
|
Townsend AK, Sewall KB, Leonard AS, Hawley DM. Infectious disease and cognition in wild populations. Trends Ecol Evol 2022; 37:899-910. [PMID: 35872026 DOI: 10.1016/j.tree.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/19/2022]
Abstract
Infectious disease is linked to impaired cognition across a breadth of host taxa and cognitive abilities, potentially contributing to variation in cognitive performance within and among populations. Impaired cognitive performance can stem from direct damage by the parasite, the host immune response, or lost opportunities for learning. Moreover, cognitive impairment could be compounded by factors that simultaneously increase infection risk and impair cognition directly, such as stress and malnutrition. As highlighted in this review, however, answers to fundamental questions remain unresolved, including the frequency, duration, and fitness consequences of infection-linked cognitive impairment in wild animal populations, the cognitive abilities most likely to be affected, and the potential for adaptive evolution of cognition in response to accelerating emergence of infectious disease.
Collapse
Affiliation(s)
- Andrea K Townsend
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA.
| | - Kendra B Sewall
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Anne S Leonard
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Dana M Hawley
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
29
|
da Silva RD, Benicio L, Moreira J, Paschoal F, Pereira FB. Parasite communities and their ecological implications: comparative approach on three sympatric clupeiform fish populations (Actinopterygii: Clupeiformes), off Rio de Janeiro, Brazil. Parasitol Res 2022; 121:1937-1949. [PMID: 35589866 DOI: 10.1007/s00436-022-07550-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/12/2022] [Indexed: 10/18/2022]
Abstract
Fish parasite communities can be directly influenced by characteristics of host species. However, little is known about the host-parasite relationships in commercially important fish of the southeastern Atlantic. To address this knowledge gap, a comparative analysis of the parasite communities of three sympatric Clupeiformes was conducted. Cetengraulis edentulus (Engraulidae), Opisthonema oglinum (Clupeidae) and Sardinella brasiliensis (Clupeidae) were collected from an estuarine lagoon near Rio de Janeiro, Brazil. Prevalence, abundance and aggregation were estimated for infrapopulations; richness, diversity, evenness and dominance for infracommunities. The three component communities were compared using both quantitative and qualitative components. Canonical discriminant analysis was used to determine if a host population could be characterised by the component community of its parasites. Multivariate models revealed that host species, a proxy for diet and phylogenetic relationships, was the main factor influencing the composition of parasite infracommunities. Diet was found to be the main factor shaping the communities of endoparasites, in which digeneans were dominant and best indicator of host population. Ectoparasites (copepods, isopods and monogeneans) displayed strong host-specificity with some species restricted to a single host population. The similarity of the component communities of the two clupeid populations demonstrated the influence of host phylogeny. Parasite infracommunities exhibited low diversity and high dominance, with many taxa restricted to a single host species (specialists) and few occurring in more than one (generalists). Host phylogeny and by extension, diet, morphology and coevolution with parasites appear to be important factors in determining the host-parasite relationships of clupeiform fish in the southeastern Atlantic.
Collapse
Affiliation(s)
- Richard D da Silva
- Programa de Pós-Graduação em Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha, CEP, Belo Horizonte, MG, 31270-901, Brazil
| | - Luana Benicio
- Laboratório de Parasitologia Animal, Centro de Estudos e Pesquisas em Biologia, Universidade Castelo Branco, Av. Santa Cruz, 1631, Realengo, CEP, 21710-255, Rio de Janeiro, RJ, Brasil
| | - Juliana Moreira
- Laboratório de Parasitologia Animal, Centro de Estudos e Pesquisas em Biologia, Universidade Castelo Branco, Av. Santa Cruz, 1631, Realengo, CEP, 21710-255, Rio de Janeiro, RJ, Brasil
| | - Fabiano Paschoal
- Laboratório de Parasitologia Animal, Centro de Estudos e Pesquisas em Biologia, Universidade Castelo Branco, Av. Santa Cruz, 1631, Realengo, CEP, 21710-255, Rio de Janeiro, RJ, Brasil
| | - Felipe B Pereira
- Programa de Pós-Graduação em Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha, CEP, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
30
|
Marzal A, Magallanes S, Garcia-Longoria L. Stimuli Followed by Avian Malaria Vectors in Host-Seeking Behaviour. BIOLOGY 2022; 11:726. [PMID: 35625454 PMCID: PMC9138572 DOI: 10.3390/biology11050726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/30/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Vector-borne infectious diseases (e.g., malaria, dengue fever, and yellow fever) result from a parasite transmitted to humans and other animals by blood-feeding arthropods. They are major contributors to the global disease burden, as they account for nearly a fifth of all infectious diseases worldwide. The interaction between vectors and their hosts plays a key role driving vector-borne disease transmission. Therefore, identifying factors governing host selection by blood-feeding insects is essential to understand the transmission dynamics of vector-borne diseases. Here, we review published information on the physical and chemical stimuli (acoustic, visual, olfactory, moisture and thermal cues) used by mosquitoes and other haemosporidian vectors to detect their vertebrate hosts. We mainly focus on studies on avian malaria and related haemosporidian parasites since this animal model has historically provided important advances in our understanding on ecological and evolutionary process ruling vector-borne disease dynamics and transmission. We also present relevant studies analysing the capacity of feather and skin symbiotic bacteria in the production of volatile compounds with vector attractant properties. Furthermore, we review the role of uropygial secretions and symbiotic bacteria in bird-insect vector interactions. In addition, we present investigations examining the alterations induced by haemosporidian parasites on their arthropod vector and vertebrate host to enhance parasite transmission. Finally, we propose future lines of research for designing successful vector control strategies and for infectious disease management.
Collapse
Affiliation(s)
- Alfonso Marzal
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain;
- Grupo de Investigación y Sostenibilidad Ambiental, Universidad Nacional Federico Villarreal, Lima 15007, Peru
| | - Sergio Magallanes
- Department of Wetland Ecology, Biological Station (EBD-CSIC), Avda, Américo Vespucio 26, 41092 Sevilla, Spain;
| | - Luz Garcia-Longoria
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain;
| |
Collapse
|
31
|
Ray S, Casteel CL. Effector-mediated plant-virus-vector interactions. THE PLANT CELL 2022; 34:1514-1531. [PMID: 35277714 PMCID: PMC9048964 DOI: 10.1093/plcell/koac058] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/14/2022] [Indexed: 05/30/2023]
Abstract
Hemipterans (such as aphids, whiteflies, and leafhoppers) are some of the most devastating insect pests due to the numerous plant pathogens they transmit as vectors, which are primarily viral. Over the past decade, tremendous progress has been made in broadening our understanding of plant-virus-vector interactions, yet on the molecular level, viruses and vectors have typically been studied in isolation of each other until recently. From that work, it is clear that both hemipteran vectors and viruses use effectors to manipulate host physiology and successfully colonize a plant and that co-evolutionary dynamics have resulted in effective host immune responses, as well as diverse mechanisms of counterattack by both challengers. In this review, we focus on advances in effector-mediated plant-virus-vector interactions and the underlying mechanisms. We propose that molecular synergisms in vector-virus interactions occur in cases where both the virus and vector benefit from the interaction (mutualism). To support this view, we show that mutualisms are common in virus-vector interactions and that virus and vector effectors target conserved mechanisms of plant immunity, including plant transcription factors, and plant protein degradation pathways. Finally, we outline ways to identify true effector synergisms in the future and propose future research directions concerning the roles effectors play in plant-virus-vector interactions.
Collapse
Affiliation(s)
- Swayamjit Ray
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, New York 14850, USA
| | | |
Collapse
|
32
|
High Blood Parasite Infection Rate and Low Fitness Suggest That Forest Water Bodies Comprise Ecological Traps for Pied Flycatchers. BIRDS 2022. [DOI: 10.3390/birds3020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Blood parasites are considered to have strong negative effects on host fitness. Negative fitness consequences may be associated with proximity to areas where blood parasite vectors reproduce. This study tested for relationships between haemosporidian infection prevalence, parasitemia, and fitness parameters of breeding Pied Flycatchers (Ficedula hypoleuca) at different distances from forest water bodies. Prevalence and parasitemias (the intensity of infection) of haemosporidians and vector abundance generally decreased with increasing distance from forest lakes, streams, and bogs. Fledgling numbers were lower, and their condition was worse in the vicinity of water bodies, compared with those located one kilometer away from lakes and streams. At the beginning of the breeding season, adult body mass was not related to distance to the nearest water body, whereas at the end of the breeding season body mass was significantly lower closer to water bodies. Forest areas around water bodies may represent ecological traps for Pied Flycatchers. Installing nest boxes in the vicinity of forest water bodies creates unintended ecological traps that may have conservation implications.
Collapse
|
33
|
Borráz-León JI, Rantala MJ, Krams IA, Cerda-Molina AL, Contreras-Garduño J. Are Toxoplasma-infected subjects more attractive, symmetrical, or healthier than non-infected ones? Evidence from subjective and objective measurements. PeerJ 2022; 10:e13122. [PMID: 35356475 PMCID: PMC8958965 DOI: 10.7717/peerj.13122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/24/2022] [Indexed: 01/12/2023] Open
Abstract
Background Parasites are among the main factors that negatively impact the health and reproductive success of organisms. However, if parasites diminish a host's health and attractiveness to such an extent that finding a mate becomes almost impossible, the parasite would decrease its odds of reproducing and passing to the next generation. There is evidence that Toxoplasma gondii (T. gondii) manipulates phenotypic characteristics of its intermediate hosts to increase its spread. However, whether T. gondii manipulates phenotypic characteristics in humans remains poorly studied. Therefore, the present research had two main aims: (1) To compare traits associated with health and parasite resistance in Toxoplasma-infected and non-infected subjects. (2) To investigate whether other people perceive differences in attractiveness and health between Toxoplasma-infected and non-infected subjects of both sexes. Methods For the first aim, Toxoplasma-infected (n = 35) and non-infected subjects (n = 178) were compared for self-perceived attractiveness, number of sexual partners, number of minor ailments, body mass index, mate value, handgrip strength, facial fluctuating asymmetry, and facial width-to-height ratio. For the second aim, an independent group of 205 raters (59 men and 146 women) evaluated the attractiveness and perceived health of facial pictures of Toxoplasma-infected and non-infected subjects. Results First, we found that infected men had lower facial fluctuating asymmetry whereas infected women had lower body mass, lower body mass index, a tendency for lower facial fluctuating asymmetry, higher self-perceived attractiveness, and a higher number of sexual partners than non-infected ones. Then, we found that infected men and women were rated as more attractive and healthier than non-infected ones. Conclusions Our results suggest that some sexually transmitted parasites, such as T. gondii, may produce changes in the appearance and behavior of the human host, either as a by-product of the infection or as the result of the manipulation of the parasite to increase its spread to new hosts. Taken together, these results lay the foundation for future research on the manipulation of the human host by sexually transmitted pathogens and parasites.
Collapse
Affiliation(s)
| | | | - Indrikis A. Krams
- Department of Biotechnology, Daugavpils University, Daugavpils, Latvia
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
- Department of Zoology and Animal Ecology, University of Latvia, Riga, Latvia
| | - Ana Lilia Cerda-Molina
- Department of Ethology, National Institute of Psychiatry “Ramón de la Fuente Muñiz”, Mexico City, Mexico
| | | |
Collapse
|
34
|
Liu X, Tian Z, Cai L, Shen Z, Michaud JP, Zhu L, Yan S, Ros VID, Hoover K, Li Z, Zhang S, Liu X. Baculoviruses hijack the visual perception of their caterpillar hosts to induce climbing behavior, thus promoting virus dispersal. Mol Ecol 2022; 31:2752-2765. [PMID: 35258140 DOI: 10.1111/mec.16425] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 11/30/2022]
Abstract
Baculoviruses can induce climbing behavior in their caterpillar hosts to ensure they die at elevated positions to enhance virus transmission, providing an excellent model to study parasitic manipulation of host behavior. Here, we demonstrate that climbing behavior occurred mostly during daylight hours, and that the height at death of Helicoverpa armigera single nucleopolyhedrovirus (HearNPV)-infected larvae increases with the height of the light source. Phototaxic and electroretinogram (ERG) responses were enhanced after HearNPV-infection in host larvae, and ablation of stemmata in infected larvae prevented both phototaxis and climbing behavior. Through transcriptome and quantitative PCR, we confirmed that two opsin genes (a blue light-sensitive gene, HaBL; and a long wave-sensitive gene, HaLW) as well as the TRPL (transient receptor potential-like channel protein) gene, all integral to the host's visual perception pathway, were significantly up-regulated after HearNPV infection. Knockout of HaBL, HaLW, or TRPL genes using the CRISPR/Cas9 system resulted in significantly reduced ERG responses, phototaxis, and climbing behavior in HearNPV-infected larvae. These results reveal that HearNPV alters the expression of specific genes to hijack host visual perception at fundamental levels - photoreception and phototransduction - in order to induce climbing behavior in host larvae.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China.,College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Zhiqiang Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Limei Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Zhongjian Shen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - J P Michaud
- Department of Entomology, Kansas State University, Agricultural Research Station-Hays, Hays, KS, 67601, USA
| | - Lin Zhu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Shuo Yan
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Vera I D Ros
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Kelli Hoover
- Department of Entomology, Pennsylvania State University, University Park, PA16802, USA
| | - Zhen Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Songdou Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| |
Collapse
|
35
|
Blecharz-Klin K, Świerczyńska M, Piechal A, Wawer A, Joniec-Maciejak I, Pyrzanowska J, Wojnar E, Zawistowska-Deniziak A, Sulima-Celińska A, Młocicki D, Mirowska-Guzel D. Infection with intestinal helminth (Hymenolepis diminuta) impacts exploratory behavior and cognitive processes in rats by changing the central level of neurotransmitters. PLoS Pathog 2022; 18:e1010330. [PMID: 35286352 PMCID: PMC8947016 DOI: 10.1371/journal.ppat.1010330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/24/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022] Open
Abstract
Parasites may significantly affect the functioning of the host organism including immune response and gut-brain-axis ultimately leading to alteration of the host behavior. The impact of intestinal worms on the host central nervous system (CNS) remains unexplored. The aim of this study was to evaluate the effect of intestinal infection by the tapeworm Hymenolepis diminuta on behavior and functions of the CNS in rats. The 3 months old animals were infected, and the effects on anxiety, exploration, sensorimotor skills and learning processes were assessed at 18 months in Open Field (OF), Novel Object Recognition (NOR) and the Water Maze (WM) tests. After completing the behavioral studies, both infected and non-infected rats were sacrificed, and the collected tissues were subjected to biochemical analysis. The levels of neurotransmitters, their metabolites and amino acids in selected structures of the CNS were determined by HPLC. In addition, the gene expression profile of the pro- and anti-inflammatory cytokines (TNF-α, IL-1β, IL-6 and IL-10) was evaluated by Real-Time PCR to determine the immune response within the CNS to the tapeworm infection. The parasites caused significant changes in exploratory behavior, most notably, a reduction of velocity and total distance moved in the OF test; the infected rats exhibited decreased frequency in the central zone, which may indicate a higher level of anxiety. Additionally, parasite infestation improved spatial memory, assessed in the WM test, and recognition of new objects. These changes are related to the identified reduction in noradrenaline level in the CNS structures and less pronounced changes in striatal serotonergic neurotransmission. H. diminuta infestation was also found to cause a significant reduction of hippocampal expression of IL-6. Our results provide new data for further research on brain function during parasitic infections especially in relation to helminths and diseases in which noradrenergic system may play an important role. Recent advances in the research on parasitic manipulation and/or control of the nervous system of their host resulted in the development of neuro-parasitology, a new and emerging branch of science. There have been advances in this area in relation to parasite-insect interactions or parasites directly invading central nervous system (CNS). However, the neuro-parasitology of parasitic infections in vertebrate hosts remains unexplored. In our study the effect of intestinal infection by the tapeworm on the behavior, neurotransmission and functions of the CNS in rats was evaluated. This infection positively influenced spatial memory and new object recognition. At the same time, the infected animals developed a greater level of anxiety and move more slowly. Behavioral changes were related to the reduction in noradrenaline level in the CNS structures, and less pronounced changes in striatal serotonergic neurotransmission. The results provide important data for the further progress in neuro-parasitology and our understanding of parasite-host interactions. In our opinion in the near future may turn out that the role of the intestinal host macrobiome in the CNS functioning may be just as significant as that of the microbiome. Presented neuro-immunological data provide a new perspectives for further studies on the CNS under intestinal parasite infection. The data of behavioral changes induced by active parasitic infection may be valid for explanations of the host-parasite relationship at the evolutionary level and their molecular adjustment.
Collapse
Affiliation(s)
- Kamilla Blecharz-Klin
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Warsaw, Poland
| | - Magdalena Świerczyńska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Warsaw, Poland
| | - Agnieszka Piechal
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Warsaw, Poland
| | - Adriana Wawer
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Warsaw, Poland
| | - Ilona Joniec-Maciejak
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Warsaw, Poland
| | - Justyna Pyrzanowska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Warsaw, Poland
| | - Ewa Wojnar
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Warsaw, Poland
| | | | - Anna Sulima-Celińska
- Department of General Biology and Parasitology, Medical University of Warsaw, Warsaw, Poland
| | - Daniel Młocicki
- W. Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- Department of General Biology and Parasitology, Medical University of Warsaw, Warsaw, Poland
- * E-mail: (DM); (DM-G)
| | - Dagmara Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Warsaw, Poland
- * E-mail: (DM); (DM-G)
| |
Collapse
|
36
|
Changes in Snail Chemical Profiles through Host-Parasite Interactions. Mol Biochem Parasitol 2022; 249:111464. [DOI: 10.1016/j.molbiopara.2022.111464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 11/21/2022]
|
37
|
Boutry J, Mistral J, Berlioz L, Klimovich A, Tökölyi J, Fontenille L, Ujvari B, Dujon AM, Giraudeau M, Thomas F. Tumors (re)shape biotic interactions within ecosystems: Experimental evidence from the freshwater cnidarian Hydra. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149923. [PMID: 34487898 DOI: 10.1016/j.scitotenv.2021.149923] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/22/2021] [Accepted: 08/22/2021] [Indexed: 05/25/2023]
Abstract
While it is often assumed that oncogenic processes in metazoans can influence species interactions, empirical evidence is lacking. Here, we use the cnidarian Hydra oligactis to experimentally explore the consequences of tumor associated phenotypic alterations for its predation ability, relationship with commensal ciliates and vulnerability to predators. Unexpectedly, hydra's predation ability was higher in tumorous polyps compared to non-tumorous ones. Commensal ciliates colonized preferentially tumorous hydras than non-tumorous ones, and had a higher replication rate on the former. Finally, in a choice experiment, tumorous hydras were preferentially eaten by a fish predator. This study, for the first time, provides evidence that neoplastic growth has the potential, through effect(s) on host phenotype, to alter biotic interactions within ecosystems and should thus be taken into account by ecologists.
Collapse
Affiliation(s)
- Justine Boutry
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France.
| | - Juliette Mistral
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Laurent Berlioz
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | | | - Jácint Tökölyi
- MTA-DE Behavioural Ecology Research Group, Department of Evolutionary Zoology, University of Debrecen, 4032 Debrecen, Hungary
| | - Laura Fontenille
- AZELEAD, 377 Rue du Professeur Blayac, 34080 Montpellier, France
| | - Beata Ujvari
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France; Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
| | - Antoine M Dujon
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France; Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
| | - Mathieu Giraudeau
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France; LIENSs, UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
| | - Frédéric Thomas
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| |
Collapse
|
38
|
Franco FP, Túler AC, Gallan DZ, Gonçalves FG, Favaris AP, Peñaflor MFGV, Leal WS, Moura DS, Bento JMS, Silva-Filho MC. Fungal phytopathogen modulates plant and insect responses to promote its dissemination. THE ISME JOURNAL 2021; 15:3522-3533. [PMID: 34127802 PMCID: PMC8630062 DOI: 10.1038/s41396-021-01010-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 02/05/2023]
Abstract
Vector-borne plant pathogens often change host traits to manipulate vector behavior in a way that favors their spread. By contrast, infection by opportunistic fungi does not depend on vectors, although damage caused by an herbivore may facilitate infection. Manipulation of hosts and vectors, such as insect herbivores, has not been demonstrated in interactions with fungal pathogens. Herein, we establish a new paradigm for the plant-insect-fungus association in sugarcane. It has long been assumed that Fusarium verticillioides is an opportunistic fungus, where it takes advantage of the openings left by Diatraea saccharalis caterpillar attack to infect the plant. In this work, we show that volatile emissions from F. verticillioides attract D. saccharalis caterpillars. Once they become adults, the fungus is transmitted vertically to their offspring, which continues the cycle by inoculating the fungus into healthy plants. Females not carrying the fungus prefer to lay their eggs on fungus-infected plants than mock plants, while females carrying the fungus prefer to lay their eggs on mock plants than fungus-infected plants. Even though the fungus impacts D. saccharalis sex behavior, larval weight and reproduction rate, most individuals complete their development. Our data demonstrate that the fungus manipulates both the host plant and insect herbivore across life cycle to promote its infection and dissemination.
Collapse
Affiliation(s)
- Flávia P. Franco
- grid.11899.380000 0004 1937 0722Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP Brazil
| | - Amanda C. Túler
- grid.11899.380000 0004 1937 0722Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP Brazil
| | - Diego Z. Gallan
- grid.11899.380000 0004 1937 0722Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP Brazil
| | - Felipe G. Gonçalves
- grid.11899.380000 0004 1937 0722Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP Brazil
| | - Arodí P. Favaris
- grid.11899.380000 0004 1937 0722Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP Brazil
| | | | - Walter S. Leal
- grid.27860.3b0000 0004 1936 9684Department of Molecular and Cellular Biology, University of California, Davis, CA USA
| | - Daniel S. Moura
- grid.11899.380000 0004 1937 0722Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP Brazil
| | - José Maurício S. Bento
- grid.11899.380000 0004 1937 0722Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP Brazil
| | - Marcio C. Silva-Filho
- grid.11899.380000 0004 1937 0722Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP Brazil
| |
Collapse
|
39
|
Cuffey J, Lepczyk CA, Zhao S, Fountain-Jones NM. Cross-sectional association of Toxoplasma gondii exposure with BMI and diet in US adults. PLoS Negl Trop Dis 2021; 15:e0009825. [PMID: 34597323 PMCID: PMC8513882 DOI: 10.1371/journal.pntd.0009825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 10/13/2021] [Accepted: 09/20/2021] [Indexed: 11/19/2022] Open
Abstract
Toxoplasmosis gondii exposure has been linked to increased impulsivity and risky behaviors, which has implications for eating behavior. Impulsivity and risk tolerance is known to be related with worse diets and a higher chance of obesity. There is little known, however, about the independent link between Toxoplasma gondii (T. gondii) exposure and diet-related outcomes. Using linear and quantile regression, we estimated the relationship between T. gondii exposure and BMI, total energy intake (kcal), and diet quality as measured by the Health Eating Index-2015 (HEI) among 9,853 adults from the 2009–2014 National Health and Nutrition Examination Survey. Previous studies have shown different behavioral responses to T. gondii infection among males and females, and socioeconomic factors are also likely to be important as both T. gondii and poor diet are more prevalent among U.S. populations in poverty. We therefore measured the associations between T. gondii and diet-related outcomes separately for men and women and for respondents in poverty. Among females <200% of the federal poverty level Toxoplasmosis gondii exposure was associated with a higher BMI by 2.0 units (95% CI [0.22, 3.83]) at median BMI and a lower HEI by 5.05 units (95% CI [-7.87, -2.24]) at the 25th percentile of HEI. Stronger associations were found at higher levels of BMI and worse diet quality among females. No associations were found among males. Through a detailed investigation of mechanisms, we were able to rule out T. gondii exposure from cat ownership, differing amounts of meat, and drinking water source as potential confounding factors; environmental exposure to T. gondii as well as changes in human behavior due to parasitic infection remain primary mechanisms. Toxoplasmosis gondii (T. gondii) is a parasite that infects over 10 percent of the US population. T. gondii infection can cause serious health problems for some people, but most infections remain undiagnosed and subclinical. When an individual is infected, T. gondii can chronically reside in muscle and central nervous system (including brain) tissue. Previous studies have found that individuals with prior exposure to T. gondii may engage in more risky and impulsive behaviors, and risk tolerance and impulsivity may be related with individual’s diet. Our study examines whether individuals with T. gondii exposure have higher body mass index (BMI) and worse diets. We further discuss and test for alternative explanations that prevent us from establishing a causal relationship between T. gondii and BMI/diet. Overall, our results show that T. gondii exposure is related with higher BMI and worse diets among lower-income females in the US. Our results uncover a novel correlate of BMI and diets, and suggest the importance of investigating the broader public health impacts of chronic T. gondii infection.
Collapse
Affiliation(s)
- Joel Cuffey
- Department of Agricultural Economics and Rural Sociology, Auburn University, Auburn, Alabama, United States of America
- * E-mail:
| | - Christopher A. Lepczyk
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Shuoli Zhao
- Department of Agricultural Economics, University of Kentucky, Lexington, Kentucky, United States of America
| | | |
Collapse
|
40
|
Pecina P, Vidlička Ľ, Majtán J, Purkart A, Prokop P. Why do zombies clean themselves? An initial test of the antimicrobial hypothesis in a parasite‐host relationship. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00694-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Korgaonkar A, Han C, Lemire AL, Siwanowicz I, Bennouna D, Kopec RE, Andolfatto P, Shigenobu S, Stern DL. A novel family of secreted insect proteins linked to plant gall development. Curr Biol 2021; 31:1836-1849.e12. [PMID: 33657407 PMCID: PMC8119383 DOI: 10.1016/j.cub.2021.01.104] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/23/2020] [Accepted: 01/28/2021] [Indexed: 12/17/2022]
Abstract
In an elaborate form of inter-species exploitation, many insects hijack plant development to induce novel plant organs called galls that provide the insect with a source of nutrition and a temporary home. Galls result from dramatic reprogramming of plant cell biology driven by insect molecules, but the roles of specific insect molecules in gall development have not yet been determined. Here, we study the aphid Hormaphis cornu, which makes distinctive "cone" galls on leaves of witch hazel Hamamelis virginiana. We found that derived genetic variants in the aphid gene determinant of gall color (dgc) are associated with strong downregulation of dgc transcription in aphid salivary glands, upregulation in galls of seven genes involved in anthocyanin synthesis, and deposition of two red anthocyanins in galls. We hypothesize that aphids inject DGC protein into galls and that this results in differential expression of a small number of plant genes. dgc is a member of a large, diverse family of novel predicted secreted proteins characterized by a pair of widely spaced cysteine-tyrosine-cysteine (CYC) residues, which we named BICYCLE proteins. bicycle genes are most strongly expressed in the salivary glands specifically of galling aphid generations, suggesting that they may regulate many aspects of gall development. bicycle genes have experienced unusually frequent diversifying selection, consistent with their potential role controlling gall development in a molecular arms race between aphids and their host plants.
Collapse
Affiliation(s)
- Aishwarya Korgaonkar
- Janelia Research Campus of the Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Clair Han
- Janelia Research Campus of the Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Andrew L Lemire
- Janelia Research Campus of the Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Igor Siwanowicz
- Janelia Research Campus of the Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Djawed Bennouna
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, 262G Campbell Hall, 1787 Neil Avenue, Columbus, OH 43210, USA
| | - Rachel E Kopec
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, 262G Campbell Hall, 1787 Neil Avenue, Columbus, OH 43210, USA; Ohio State University's Foods for Health Discovery Theme, The Ohio State University, 262G Campbell Hall, 1787 Neil Avenue, Columbus, OH 43210, USA
| | - Peter Andolfatto
- Department of Biology, Columbia University, 600 Fairchild Center, New York, NY 10027, USA
| | - Shuji Shigenobu
- Laboratory of Evolutionary Genomics, Center for the Development of New Model Organism, National Institute for Basic Biology, Okazaki 444-8585, Japan; NIBB Research Core Facilities, National Institute for Basic Biology, Okazaki 444-8585, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki 444-8585, Japan
| | - David L Stern
- Janelia Research Campus of the Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| |
Collapse
|
42
|
Korgaonkar A, Han C, Lemire AL, Siwanowicz I, Bennouna D, Kopec RE, Andolfatto P, Shigenobu S, Stern DL. A novel family of secreted insect proteins linked to plant gall development. Curr Biol 2021. [PMID: 33974861 DOI: 10.1101/2020.10.28.359562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
AbstractIn an elaborate form of inter-species exploitation, many insects hijack plant development to induce novel plant organs called galls that provide the insect with a source of nutrition and a temporary home. Galls result from dramatic reprogramming of plant cell biology driven by insect molecules, but the roles of specific insect molecules in gall development have not yet been determined. Here we study the aphidHormaphis cornu, which makes distinctive “cone” galls on leaves of witch hazelHamamelis virginiana. We found that derived genetic variants in the aphid genedeterminant of gall color(dgc) are associated with strong downregulation ofdgctranscription in aphid salivary glands, upregulation in galls of seven genes involved in anthocyanin synthesis, and deposition of two red anthocyanins in galls. We hypothesize that aphids inject DGC protein into galls, and that this results in differential expression of a small number of plant genes.Dgcis a member of a large, diverse family of novel predicted secreted proteins characterized by a pair of widely spaced cysteine-tyrosine-cysteine (CYC) residues, which we named BICYCLE proteins.Bicyclegenes are most strongly expressed in the salivary glands specifically of galling aphid generations, suggesting that they may regulate many aspects of gall development.Bicyclegenes have experienced unusually frequent diversifying selection, consistent with their potential role controlling gall development in a molecular arms race between aphids and their host plants.One Sentence SummaryAphidbicyclegenes, which encode diverse secreted proteins, contribute to plant gall development.
Collapse
|
43
|
Hague MTJ, Woods HA, Cooper BS. Pervasive effects of Wolbachia on host activity. Biol Lett 2021; 17:20210052. [PMID: 33947218 PMCID: PMC8097217 DOI: 10.1098/rsbl.2021.0052] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Heritable symbionts have diverse effects on the physiology, reproduction and fitness of their hosts. Maternally transmitted Wolbachia are one of the most common endosymbionts in nature, infecting about half of all insect species. We test the hypothesis that Wolbachia alter host behaviour by assessing the effects of 14 different Wolbachia strains on the locomotor activity of nine Drosophila host species. We find that Wolbachia alter the activity of six different host genotypes, including all hosts in our assay infected with wRi-like Wolbachia strains (wRi, wSuz and wAur), which have rapidly spread among Drosophila species in about the last 14 000 years. While Wolbachia effects on host activity were common, the direction of these effects varied unpredictably and sometimes depended on host sex. We hypothesize that the prominent effects of wRi-like Wolbachia may be explained by patterns of Wolbachia titre and localization within host somatic tissues, particularly in the central nervous system. Our findings support the view that Wolbachia have wide-ranging effects on host behaviour. The fitness consequences of these behavioural modifications are important for understanding the evolution of host-symbiont interactions, including how Wolbachia spread within host populations.
Collapse
Affiliation(s)
- Michael T. J. Hague
- Division of Biological Sciences, University of Montana, 32 Campus Dr., Missoula, MT 59812
| | - H. Arthur Woods
- Division of Biological Sciences, University of Montana, 32 Campus Dr., Missoula, MT 59812
| | - Brandon S. Cooper
- Division of Biological Sciences, University of Montana, 32 Campus Dr., Missoula, MT 59812
| |
Collapse
|
44
|
Rajarapu SP, Ullman DE, Uzest M, Rotenberg D, Ordaz NA, Whitfield AE. Plant–Virus–Vector Interactions. Virology 2021. [DOI: 10.1002/9781119818526.ch7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
Mangold CA, Hughes DP. Insect Behavioral Change and the Potential Contributions of Neuroinflammation-A Call for Future Research. Genes (Basel) 2021; 12:465. [PMID: 33805190 PMCID: PMC8064348 DOI: 10.3390/genes12040465] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/21/2022] Open
Abstract
Many organisms are able to elicit behavioral change in other organisms. Examples include different microbes (e.g., viruses and fungi), parasites (e.g., hairworms and trematodes), and parasitoid wasps. In most cases, the mechanisms underlying host behavioral change remain relatively unclear. There is a growing body of literature linking alterations in immune signaling with neuron health, communication, and function; however, there is a paucity of data detailing the effects of altered neuroimmune signaling on insect neuron function and how glial cells may contribute toward neuron dysregulation. It is important to consider the potential impacts of altered neuroimmune communication on host behavior and reflect on its potential role as an important tool in the "neuro-engineer" toolkit. In this review, we examine what is known about the relationships between the insect immune and nervous systems. We highlight organisms that are able to influence insect behavior and discuss possible mechanisms of behavioral manipulation, including potentially dysregulated neuroimmune communication. We close by identifying opportunities for integrating research in insect innate immunity, glial cell physiology, and neurobiology in the investigation of behavioral manipulation.
Collapse
Affiliation(s)
- Colleen A. Mangold
- Department of Entomology, College of Agricultural Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA;
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - David P. Hughes
- Department of Entomology, College of Agricultural Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA;
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA
- Department of Biology, Eberly College of Science, Pennsylvania State University, University Park, State College, PA 16802, USA
| |
Collapse
|
46
|
Friesen OC, Detwiler JT. Parasite-Modified Chemical Communication: Implications for Aquatic Community Dynamics. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.634754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chemical communication within an aquatic environment creates an intricate signaling web that provides species with information about their surroundings. Signaling molecules, like oxylipins, mediate a multitude of interactions between free-living members of a community including non-consumptive effects by predators. Parasites are another source of signaling molecules in aquatic communities and contribute directly by synthesizing them or indirectly by manipulating host chemical cues. If chemical cues of infected hosts are altered, then non-consumptive interactions between other members of the community may also be affected. Different cues from infected hosts may alter behaviors in other individuals related to foraging, competition, and defense priming. Here, we discuss how parasites could modify host chemical cues, which may have far reaching consequences for other community members and the ecosystem. We discuss how the modification of signaling molecules by parasites may also represent a mechanism for parasite-modified behavior within some systems and provide a mechanism for non-consumptive effects of parasites. Further, we propose a host-parasite system that could be used to investigate some key, unanswered questions regarding the relationship between chemical cues, parasite-modified behavior, and non-consumptive effects. We explain how trematode-gastropod systems can be used to test whether there are alterations in the diversity and amounts of signaling molecules available, and if habitat use, immune function, and behavior of other individuals and species are affected. Finally, we argue that changes to pathway crosstalk by parasites within communities may have broad ecological implications.
Collapse
|
47
|
The Adaptiveness of Host Behavioural Manipulation Assessed Using Tinbergen's Four Questions. Trends Parasitol 2021; 37:597-609. [PMID: 33568325 DOI: 10.1016/j.pt.2021.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 11/20/2022]
Abstract
Host organisms show altered phenotypic reactions when parasitised, some of which result from adaptive host manipulation, a phenomenon that has long been debated. Here, we provide an overview and discuss the rationale in distinguishing adaptive versus nonadaptive host behavioural manipulation. We discuss Poulin's criteria of adaptive host behavioural manipulation within the context of Tinbergen's four questions of ethology, while highlighting the importance of both the proximate and evolutionary explanations of such traits. We also provide guidelines for future studies exploring the adaptiveness of host behavioural manipulation. Through this article, we seek to encourage researchers to consider both the proximate and ultimate causes of host behavioural manipulation to infer on the adaptiveness of such traits.
Collapse
|
48
|
Silva V, Palacios-Muñoz A, Okray Z, Adair KL, Waddell S, Douglas AE, Ewer J. The impact of the gut microbiome on memory and sleep in Drosophila. J Exp Biol 2021; 224:jeb233619. [PMID: 33376141 PMCID: PMC7875489 DOI: 10.1242/jeb.233619] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022]
Abstract
The gut microbiome has been proposed to influence diverse behavioral traits of animals, although the experimental evidence is limited and often contradictory. Here, we made use of the tractability of Drosophila melanogaster for both behavioral analyses and microbiome studies to test how elimination of microorganisms affects a number of behavioral traits. Relative to conventional flies (i.e. with unaltered microbiome), microbiologically sterile (axenic) flies displayed a moderate reduction in memory performance in olfactory appetitive conditioning and courtship assays. The microbiological status of the flies had a small or no effect on anxiety-like behavior (centrophobism) or circadian rhythmicity of locomotor activity, but axenic flies tended to sleep for longer and displayed reduced sleep rebound after sleep deprivation. These last two effects were robust for most tests conducted on both wild-type Canton S and w1118 strains, as well for tests using an isogenized panel of flies with mutations in the period gene, which causes altered circadian rhythmicity. Interestingly, the effect of absence of microbiota on a few behavioral features, most notably instantaneous locomotor activity speed, varied among wild-type strains. Taken together, our findings demonstrate that the microbiome can have subtle but significant effects on specific aspects of Drosophila behavior, some of which are dependent on genetic background.
Collapse
Affiliation(s)
- Valeria Silva
- Instituto de Neurociencias, and Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Angelina Palacios-Muñoz
- Instituto de Neurociencias, and Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Centro de Investigación Interoperativo en Ciencias Odontológicas y Médicas, Facultad de Odontología, Universidad de Valparaíso, Valparaíso 2360004, Chile
| | - Zeynep Okray
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford OX1 3TA, UK
| | - Karen L Adair
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Scott Waddell
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford OX1 3TA, UK
| | - Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - John Ewer
- Instituto de Neurociencias, and Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2360102, Chile
| |
Collapse
|
49
|
Cotes B, Thöming G, Amaya-Gómez CV, Novák O, Nansen C. Root-associated entomopathogenic fungi manipulate host plants to attract herbivorous insects. Sci Rep 2020; 10:22424. [PMID: 33380734 PMCID: PMC7773740 DOI: 10.1038/s41598-020-80123-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/15/2020] [Indexed: 01/08/2023] Open
Abstract
Root-associated entomopathogenic fungi (R-AEF) indirectly influence herbivorous insect performance. However, host plant-R-AEF interactions and R-AEF as biological control agents have been studied independently and without much attention to the potential synergy between these functional traits. In this study, we evaluated behavioral responses of cabbage root flies [Delia radicum L. (Diptera: Anthomyiidae)] to a host plant (white cabbage cabbage Brassica oleracea var. capitata f. alba cv. Castello L.) with and without the R-AEF Metarhizium brunneum (Petch). We performed experiments on leaf reflectance, phytohormonal composition and host plant location behavior (behavioral processes that contribute to locating and selecting an adequate host plant in the environment). Compared to control host plants, R-AEF inoculation caused, on one hand, a decrease in reflectance of host plant leaves in the near-infrared portion of the radiometric spectrum and, on the other, an increase in the production of jasmonic, (+)-7-iso-jasmonoyl-l-isoleucine and salicylic acid in certain parts of the host plant. Under both greenhouse and field settings, landing and oviposition by cabbage root fly females were positively affected by R-AEF inoculation of host plants. The fungal-induced change in leaf reflectance may have altered visual cues used by the cabbage root flies in their host plant selection. This is the first study providing evidence for the hypothesis that R-AEF manipulate the suitability of their host plant to attract herbivorous insects.
Collapse
Affiliation(s)
- Belén Cotes
- Integrated Plant Protection Unit, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53, Alnarp, Sweden.
| | - Gunda Thöming
- Division for Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, 1433, Ås, Norway
| | - Carol V Amaya-Gómez
- Integrated Plant Protection Unit, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53, Alnarp, Sweden.,Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), La Libertad, 900005, Villavicencio, Colombia
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, 78371, Olomouc, Czech Republic
| | - Christian Nansen
- Department of Entomology and Nematology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
50
|
Decker LE, Jeffrey CS, Ochsenrider KM, Potts AS, de Roode JC, Smilanich AM, Hunter MD. Elevated atmospheric concentrations of CO 2 increase endogenous immune function in a specialist herbivore. J Anim Ecol 2020; 90:628-640. [PMID: 33241571 DOI: 10.1111/1365-2656.13395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/20/2020] [Indexed: 11/30/2022]
Abstract
Animals rely on a balance of endogenous and exogenous sources of immunity to mitigate parasite attack. Understanding how environmental context affects that balance is increasingly urgent under rapid environmental change. In herbivores, immunity is determined, in part, by phytochemistry which is plastic in response to environmental conditions. Monarch butterflies Danaus plexippus, consistently experience infection by a virulent parasite Ophryocystis elektroscirrha, and some medicinal milkweed (Asclepias) species, with high concentrations of toxic steroids (cardenolides), provide a potent source of exogenous immunity. We investigated plant-mediated influences of elevated CO2 (eCO2 ) on endogenous immune responses of monarch larvae to infection by O. elektroscirrha. Recently, transcriptomics have revealed that infection by O. elektroscirrha does not alter monarch immune gene regulation in larvae, corroborating that monarchs rely more on exogenous than endogenous immunity. However, monarchs feeding on medicinal milkweed grown under eCO2 lose tolerance to the parasite, associated with changes in phytochemistry. Whether changes in milkweed phytochemistry induced by eCO2 alter the balance between exogenous and endogenous sources of immunity remains unknown. We fed monarchs two species of milkweed; A. curassavica (medicinal) and A. incarnata (non-medicinal) grown under ambient CO2 (aCO2 ) or eCO2 . We then measured endogenous immune responses (phenoloxidase activity, haemocyte concentration and melanization strength), along with foliar chemistry, to assess mechanisms of monarch immunity under future atmospheric conditions. The melanization response of late-instar larvae was reduced on medicinal milkweed in comparison to non-medicinal milkweed. Moreover, the endogenous immune responses of early-instar larvae to infection by O. elektroscirrha were generally lower in larvae reared on foliage from aCO2 plants and higher in larvae reared on foliage from eCO2 plants. When grown under eCO2 , milkweed plants exhibited lower cardenolide concentrations, lower phytochemical diversity and lower nutritional quality (higher C:N ratios). Together, these results suggest that the loss of exogenous immunity from foliage under eCO2 results in increased endogenous immune function. Animal populations face multiple threats induced by anthropogenic environmental change. Our results suggest that shifts in the balance between exogenous and endogenous sources of immunity to parasite attack may represent an underappreciated consequence of environmental change.
Collapse
Affiliation(s)
- Leslie E Decker
- Department of Biology, Stanford University, Stanford, CA, USA.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Abigail S Potts
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Mark D Hunter
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|