1
|
Murray CM, Coleman TS, Gabel W, Krauss KW. American alligators (Alligator mississippiensis) as wetland ecosystem carbon stock regulators. Sci Rep 2025; 15:3423. [PMID: 39870747 PMCID: PMC11772824 DOI: 10.1038/s41598-025-87369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/17/2025] [Indexed: 01/29/2025] Open
Abstract
Blue carbon refers to organic carbon sequestered by oceanic and coastal ecosystems. This stock has gained global attention as a high organic carbon repository relative to other ecosystems. Within blue carbon ecosystems, tidally influenced wetlands alone store a disproportionately higher amount of organic carbon than other blue carbon systems. North America harbors 42% of tidally influenced global wetland area, which has been identified as a critical carbon stock in the context of climate change mitigation. However, quantified associations between vertebrate biota and carbon sequestration within ecosystems are in their infancy and have been incidental, given that microbial trophic levels are thought to drive nutrient dynamics. Here, we assess the relationship between American alligator (Alligator mississippiensis) demography and tidally influenced wetland soil carbon stock among habitats at continental, biogeographically-relevant, and local scales. We used soil core profile data from the Smithsonian's Coastal Carbon Network and filtered for continuous core profiles in tidally influenced wetland areas along the Gulf and Atlantic Coasts of the United States. Results indicate that American alligator presence is positively correlated with soil carbon stock across habitats within their native distribution. Further, American alligator demographic variables are positively correlated with soil carbon stock at local scales. These conclusions are concordant with previous findings that apex predators, through trophic cascade theory, play a key role in regulating soil carbon stock and that alligators are functional apex predators in carbon dynamics and a key commercialized natural resource.
Collapse
Affiliation(s)
- Christopher M Murray
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA, USA.
| | - Tyler Steven Coleman
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA, USA
| | - Wray Gabel
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA, USA
| | - Ken W Krauss
- U.S. Geological Survey, Wetland and Aquatic Research Center, 700 Cajundome Boulevard, Lafayette, LA, 70506, USA
| |
Collapse
|
2
|
Dedman S, Moxley JH, Papastamatiou YP, Braccini M, Caselle JE, Chapman DD, Cinner JE, Dillon EM, Dulvy NK, Dunn RE, Espinoza M, Harborne AR, Harvey ES, Heupel MR, Huveneers C, Graham NAJ, Ketchum JT, Klinard NV, Kock AA, Lowe CG, MacNeil MA, Madin EMP, McCauley DJ, Meekan MG, Meier AC, Simpfendorfer CA, Tinker MT, Winton M, Wirsing AJ, Heithaus MR. Ecological roles and importance of sharks in the Anthropocene Ocean. Science 2024; 385:adl2362. [PMID: 39088608 DOI: 10.1126/science.adl2362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/17/2024] [Indexed: 08/03/2024]
Abstract
In ecosystems, sharks can be predators, competitors, facilitators, nutrient transporters, and food. However, overfishing and other threats have greatly reduced shark populations, altering their roles and effects on ecosystems. We review these changes and implications for ecosystem function and management. Macropredatory sharks are often disproportionately affected by humans but can influence prey and coastal ecosystems, including facilitating carbon sequestration. Like terrestrial predators, sharks may be crucial to ecosystem functioning under climate change. However, large ecosystem effects of sharks are not ubiquitous. Increasing human uses of oceans are changing shark roles, necessitating management consideration. Rebuilding key populations and incorporating shark ecological roles, including less obvious ones, into management efforts are critical for retaining sharks' functional value. Coupled social-ecological frameworks can facilitate these efforts.
Collapse
Affiliation(s)
- Simon Dedman
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Jerry H Moxley
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Yannis P Papastamatiou
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Matias Braccini
- Western Australian Fisheries and Marine Research Laboratories, Department of Primary Industries and Regional Development, North Beach, WA 6920, Australia
| | - Jennifer E Caselle
- Marine Science Institute, University of California, Santa Barbara, CA 93106, USA
| | - Demian D Chapman
- Sharks and Rays Conservation Research Program, Mote Marine Laboratory, Sarasota, FL 34236, USA
| | - Joshua Eli Cinner
- Thriving Oceans Research Hub, School of Geosciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Erin M Dillon
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
- Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| | - Nicholas K Dulvy
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Ruth Elizabeth Dunn
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
- The Lyell Centre, Heriot-Watt University, Edinburgh EH14 4BA, UK
| | - Mario Espinoza
- Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica, San Pedro de Montes de Oca, San José 2060-11501, Costa Rica
- Escuela de Biología, Universidad de Costa Rica, San Pedro de Montes de Oca, San José 2060-11501, Costa Rica
- MigraMar, Bodega Bay, CA 94923, USA
| | - Alastair R Harborne
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Euan S Harvey
- School of Molecular and Life Sciences, Curtin University, WA, Australia
| | - Michelle R Heupel
- Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7000, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
- Integrated Marine Observing System, University of Tasmania, Hobart, TAS, Australia
| | - Charlie Huveneers
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | | | - James T Ketchum
- MigraMar, Bodega Bay, CA 94923, USA
- Pelagios Kakunjá, La Paz, Baja California Sur, Mexico
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, Baja California Sur, Mexico
| | - Natalie V Klinard
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, NS B3H 4R2, Canada
| | - Alison A Kock
- Cape Research Centre, South African National Parks, Cape Town, South Africa
- South African Institute for Aquatic Biodiversity (SAIAB), Makhanda (Grahamstown), South Africa
| | - Christopher G Lowe
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - M Aaron MacNeil
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, NS B3H 4R2, Canada
| | - Elizabeth M P Madin
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Douglas J McCauley
- Marine Science Institute, University of California, Santa Barbara, CA 93106, USA
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Mark G Meekan
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, WA, Australia
| | - Amelia C Meier
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Colin A Simpfendorfer
- Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7000, Australia
- College of Science and Engineering, James Cook University, 1 James Cook Drive, Townsville, QLD 4811, Australia
| | - M Tim Tinker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
- US Geological Survey, Western Ecological Research Center, Santa Cruz, CA, USA
| | - Megan Winton
- Atlantic White Shark Conservancy, North Chatham, MA 02650, USA
| | - Aaron J Wirsing
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
| | - Michael R Heithaus
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| |
Collapse
|
3
|
James K, Macreadie PI, Burdett HL, Davies I, Kamenos NA. It's time to broaden what we consider a 'blue carbon ecosystem'. GLOBAL CHANGE BIOLOGY 2024; 30:e17261. [PMID: 38712641 DOI: 10.1111/gcb.17261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/10/2024] [Accepted: 02/18/2024] [Indexed: 05/08/2024]
Abstract
Photoautotrophic marine ecosystems can lock up organic carbon in their biomass and the associated organic sediments they trap over millennia and are thus regarded as blue carbon ecosystems. Because of the ability of marine ecosystems to lock up organic carbon for millennia, blue carbon is receiving much attention within the United Nations' 2030 Agenda for Sustainable Development as a nature-based solution (NBS) to climate change, but classically still focuses on seagrass meadows, mangrove forests, and tidal marshes. However, other coastal ecosystems could also be important for blue carbon storage, but remain largely neglected in both carbon cycling budgets and NBS strategic planning. Using a meta-analysis of 253 research publications, we identify other coastal ecosystems-including mud flats, fjords, coralline algal (rhodolith) beds, and some components or coral reef systems-with a strong capacity to act as blue carbon sinks in certain situations. Features that promote blue carbon burial within these 'non-classical' blue carbon ecosystems included: (1) balancing of carbon release by calcification via carbon uptake at the individual and ecosystem levels; (2) high rates of allochthonous organic carbon supply because of high particle trapping capacity; (3) high rates of carbon preservation and low remineralization rates; and (4) location in depositional environments. Some of these features are context-dependent, meaning that these ecosystems were blue carbon sinks in some locations, but not others. Therefore, we provide a universal framework that can evaluate the likelihood of a given ecosystem to behave as a blue carbon sink for a given context. Overall, this paper seeks to encourage consideration of non-classical blue carbon ecosystems within NBS strategies, allowing more complete blue carbon accounting.
Collapse
Affiliation(s)
| | - Peter I Macreadie
- Marine Research and Innovation Centre, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Heidi L Burdett
- Umeå Marine Sciences Centre, Umeå University, Norrbyn, Sweden
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| | | | - Nicholas A Kamenos
- Umeå Marine Sciences Centre, Umeå University, Norrbyn, Sweden
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| |
Collapse
|
4
|
Dolliver J, O’Connor N. Whole System Analysis Is Required To Determine The Fate Of Macroalgal Carbon: A Systematic Review. JOURNAL OF PHYCOLOGY 2022; 58:364-376. [PMID: 35397178 PMCID: PMC9325415 DOI: 10.1111/jpy.13251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
The role of marine primary producers in capturing atmospheric CO2 has received increased attention in the global mission to mitigate climate change. Yet, our understanding of carbon sequestration performed by macroalgae has been limited to a relatively small number of studies that have estimated the ultimate fate of macroalgal-derived carbon. This systematic review was conducted to provide a timely synthesis of the methods used to determine the fate of macroalgal carbon in this rapidly expanding research area. It also aimed to provide suggestions for more effective future research. We found that the most common methods to estimate the fate of macroalgal carbon can be categorized into groups based on those that quantify: (i) export of macroalgal carbon to other environments-known as horizontal transport; (ii) sequestration of macroalgal carbon into deep-sea sediments-known as vertical transport; (iii) burial of macroalgal carbon directly beneath a benthic community; (iv) the loss of macroalgal carbon as particulate carbon or dissolved carbon to the water column; (v) the loss of macroalgal carbon to primary consumers; and finally (vi) those studies that combined multiple methods in one location. Based on this review, several recommendations for future research were formulated, which require the combination of multiple methods in a whole system analysis approach.
Collapse
Affiliation(s)
- Jessie Dolliver
- Department of ZoologyTrinity College DublinDublinD02 F6N2Ireland
- Department of Plant SciencesUniversity of OxfordOxfordOX1 3RBUK
| | - Nessa O’Connor
- Department of ZoologyTrinity College DublinDublinD02 F6N2Ireland
| |
Collapse
|
5
|
Schmitz OJ, Leroux SJ. Food Webs and Ecosystems: Linking Species Interactions to the Carbon Cycle. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-011720-104730] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
All species within ecosystems contribute to regulating carbon cycling because of their functional integration into food webs. Yet carbon modeling and accounting still assumes that only plants, microbes, and invertebrate decomposer species are relevant to the carbon cycle. Our multifaceted review develops a case for considering a wider range of species, especially herbivorous and carnivorous wild animals. Animal control over carbon cycling is shaped by the animals’ stoichiometric needs and functional traits in relation to the stoichiometry and functional traits of their resources. Quantitative synthesis reveals that failing to consider these mechanisms can lead to serious inaccuracies in the carbon budget. Newer carbon-cycle models that consider food-web structure based on organismal functional traits and stoichiometry can offer mechanistically informed predictions about the magnitudes of animal effects that will help guide new empirical research aimed at developing a coherent understanding of the interactions and importance of all species within food webs.
Collapse
Affiliation(s)
- Oswald J. Schmitz
- School of the Environment, Yale University, New Haven, Connecticut 06511, USA
| | - Shawn J. Leroux
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X9, Canada
| |
Collapse
|
6
|
Tebbett SB, Goatley CHR, Streit RP, Bellwood DR. Algal turf sediments limit the spatial extent of function delivery on coral reefs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139422. [PMID: 32460082 DOI: 10.1016/j.scitotenv.2020.139422] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
The presence of key organisms is frequently associated with the delivery of specific ecosystem functions. Areas with such organisms are therefore often considered to have greater levels of these functions. While this assumption has been the backbone of coral reef ecosystem-based management approaches for decades, we currently have only a limited understanding of how fish presence equates to function on coral reefs and whether this relationship is susceptible to stressors. To assess the capacity of a stressor to shape function delivery we used a multi-scale approach ranging from tens of kilometres across the continental shelf of Australia's Great Barrier Reef, down to centimetres within a reef habitat. At each scale, we quantified the spatial extent of a model function (detritivory) by a coral reef surgeonfish (Ctenochaetus striatus) and its potential to be shaped by sediments. At broad spatial scales, C. striatus presence was correlated strongly with algal turf sediment loads, while at smaller spatial scales, function delivery appears to be constrained by algal turf sediment distributions. In all cases, sediment loads above ~250-500 g m-2 were associated with a marked decrease in fish abundance or feeding activity, suggesting that a common ecological threshold lies within this range. Our results reveal a complex functional dynamic between proximate agents of function delivery (fish) and the ultimate drivers of function delivery (sediments), which emphasizes: a) weaknesses in the assumed links between fish presence and function, and b) the multi-scale capacity of algal turf sediments to shape reef processes. Unless direct extractive activities (e.g. fishing) are the main driver of function loss on coral reefs, managing to conserve fish abundance is unlikely to yield the desired outcomes. It only addresses one potential driver. Instead, management of both the agents that deliver functions (e.g. fishes), and the drivers that modify functions (e.g. sediments), is needed.
Collapse
Affiliation(s)
- Sterling B Tebbett
- ARC Centre of Excellence for Coral Reef Studies and College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia.
| | - Christopher H R Goatley
- Function, Evolution and Anatomy Research Lab and Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia; Australian Museum Research Institute, Australian Museum, Sydney, New South Wales 2010, Australia
| | - Robert P Streit
- ARC Centre of Excellence for Coral Reef Studies and College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - David R Bellwood
- ARC Centre of Excellence for Coral Reef Studies and College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
7
|
Wilson MW, Ridlon AD, Gaynor KM, Gaines SD, Stier AC, Halpern BS. Ecological impacts of human-induced animal behaviour change. Ecol Lett 2020; 23:1522-1536. [PMID: 32705769 DOI: 10.1111/ele.13571] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/20/2022]
Abstract
A growing body of literature has documented myriad effects of human activities on animal behaviour, yet the ultimate ecological consequences of these behavioural shifts remain largely uninvestigated. While it is understood that, in the absence of humans, variation in animal behaviour can have cascading effects on species interactions, community structure and ecosystem function, we know little about whether the type or magnitude of human-induced behavioural shifts translate into detectable ecological change. Here we synthesise empirical literature and theory to create a novel framework for examining the range of behaviourally mediated pathways through which human activities may affect different ecosystem functions. We highlight the few empirical studies that show the potential realisation of some of these pathways, but also identify numerous factors that can dampen or prevent ultimate ecosystem consequences. Without a deeper understanding of these pathways, we risk wasting valuable resources on mitigating behavioural effects with little ecological relevance, or conversely mismanaging situations in which behavioural effects do drive ecosystem change. The framework presented here can be used to anticipate the nature and likelihood of ecological outcomes and prioritise management among widespread human-induced behavioural shifts, while also suggesting key priorities for future research linking humans, animal behaviour and ecology.
Collapse
Affiliation(s)
- Margaret W Wilson
- Bren School of Environmental Science & Management, University of California, Santa Barbara, CA, 93106, USA
| | - April D Ridlon
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, CA, 93101, USA
| | - Kaitlyn M Gaynor
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, CA, 93101, USA
| | - Steven D Gaines
- Bren School of Environmental Science & Management, University of California, Santa Barbara, CA, 93106, USA
| | - Adrian C Stier
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Benjamin S Halpern
- Bren School of Environmental Science & Management, University of California, Santa Barbara, CA, 93106, USA.,National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, CA, 93101, USA
| |
Collapse
|
8
|
Warming and temperature variability determine the performance of two invertebrate predators. Sci Rep 2020; 10:6780. [PMID: 32321937 PMCID: PMC7176636 DOI: 10.1038/s41598-020-63679-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 04/03/2020] [Indexed: 02/05/2023] Open
Abstract
In a warming ocean, temperature variability imposes intensified peak stress, but offers periods of stress release. While field observations on organismic responses to heatwaves are emerging, experimental evidence is rare and almost lacking for shorter-scale environmental variability. For two major invertebrate predators, we simulated sinusoidal temperature variability (±3 °C) around todays' warm summer temperatures and around a future warming scenario (+4 °C) over two months, based on high-resolution 15-year temperature data that allowed implementation of realistic seasonal temperature shifts peaking midpoint. Warming decreased sea stars' (Asterias rubens) energy uptake (Mytilus edulis consumption) and overall growth. Variability around the warming scenario imposed additional stress onto Asterias leading to an earlier collapse in feeding under sinusoidal fluctuations. High-peak temperatures prevented feeding, which was not compensated during phases of stress release (low-temperature peaks). In contrast, increased temperatures increased feeding on Mytilus but not growth rates of the recent invader Hemigrapsus takanoi, irrespective of the scale at which temperature variability was imposed. This study highlights species-specific impacts of warming and identifies temperature variability at the scale of days to weeks/months as important driver of thermal responses. When species' thermal limits are exceeded, temperature variability represents an additional source of stress as seen from future warming scenarios.
Collapse
|
9
|
Madin EMP, Harborne AR, Harmer AMT, Luiz OJ, Atwood TB, Sullivan BJ, Madin JS. Marine reserves shape seascapes on scales visible from space. Proc Biol Sci 2019; 286:20190053. [PMID: 31014221 PMCID: PMC6501923 DOI: 10.1098/rspb.2019.0053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/22/2019] [Indexed: 11/15/2022] Open
Abstract
Marine reserves can effectively restore harvested populations, and 'mega-reserves' increasingly protect large tracts of ocean. However, no method exists of monitoring ecological responses at this large scale. Herbivory is a key mechanism structuring ecosystems, and this consumer-resource interaction's strength on coral reefs can indicate ecosystem health. We screened 1372, and measured features of 214, reefs throughout Australia's Great Barrier Reef using high-resolution satellite imagery, combined with remote underwater videography and assays on a subset, to quantify the prevalence, size and potential causes of 'grazing halos'. Halos are known to be seascape-scale footprints of herbivory and other ecological interactions. Here we show that these halo-like footprints are more prevalent in reserves, particularly older ones (approx. 40 years old), resulting in predictable changes to reef habitat at scales visible from space. While the direct mechanisms for this pattern are relatively clear, the indirect mechanisms remain untested. By combining remote sensing and behavioural ecology, our findings demonstrate that reserves can shape large-scale habitat structure by altering herbivores' functional importance, suggesting that reserves may have greater value in restoring ecosystems than previously appreciated. Additionally, our results show that we can now detect macro-patterns in reef species interactions using freely available satellite imagery. Low-cost, ecosystem-level observation tools will be critical as reserves increase in number and scope; further investigation into whether halos may help seems warranted. Significance statement: Marine reserves are a widely used tool to mitigate fishing impacts on marine ecosystems. Predicting reserves' large-scale effects on habitat structure and ecosystem functioning is a major challenge, however, because these effects unfold over longer and larger scales than most ecological studies. We use a unique approach merging remote sensing and behavioural ecology to detect ecosystem change within reserves in Australia's vast Great Barrier Reef. We find evidence of changes in reefs' algal habitat structure occurring over large spatial (thousands of kilometres) and temporal (40+ years) scales, demonstrating that reserves can alter herbivory and habitat structure in predictable ways. This approach demonstrates that we can now detect aspects of reefs' ecological responses to protection even in remote and inaccessible reefs globally.
Collapse
Affiliation(s)
- Elizabeth M. P. Madin
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- Hawaii Institute of Marine Biology, University of Hawaii, Manoa, HI 96744, USA
| | - Alastair R. Harborne
- Marine Spatial Ecology Laboratory and Australian Research Council Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
- Department of Biological Sciences, Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA
| | - Aaron M. T. Harmer
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- Institute of Natural and Mathematical Sciences, Massey University, Auckland 0745, New Zealand
| | - Osmar J. Luiz
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Trisha B. Atwood
- Global Change Institute, University of Queensland, St Lucia, Queensland, Australia
- Department of Watershed Sciences and Ecology Center, Utah State University, Logan, UT, USA
| | | | - Joshua S. Madin
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- Hawaii Institute of Marine Biology, University of Hawaii, Manoa, HI 96744, USA
| |
Collapse
|
10
|
Madin EMP, Precoda K, Harborne AR, Atwood TB, Roelfsema CM, Luiz OJ. Multi-Trophic Species Interactions Shape Seascape-Scale Coral Reef Vegetation Patterns. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00102] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
11
|
Hammerschlag N. Quantifying shark predation effects on prey: dietary data limitations and study approaches. ENDANGER SPECIES RES 2019. [DOI: 10.3354/esr00950] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
12
|
Ecosystem Function and Services of Aquatic Predators in the Anthropocene. Trends Ecol Evol 2019; 34:369-383. [PMID: 30857757 DOI: 10.1016/j.tree.2019.01.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 11/23/2022]
Abstract
Arguments for the need to conserve aquatic predator (AP) populations often focus on the ecological and socioeconomic roles they play. Here, we summarize the diverse ecosystem functions and services connected to APs, including regulating food webs, cycling nutrients, engineering habitats, transmitting diseases/parasites, mediating ecological invasions, affecting climate, supporting fisheries, generating tourism, and providing bioinspiration. In some cases, human-driven declines and increases in AP populations have altered these ecosystem functions and services. We present a social ecological framework for supporting adaptive management decisions involving APs in response to social and environmental change. We also identify outstanding questions to guide future research on the ecological functions and ecosystem services of APs in a changing world.
Collapse
|
13
|
Fulton CJ, Abesamis RA, Berkström C, Depczynski M, Graham NAJ, Holmes TH, Kulbicki M, Noble MM, Radford BT, Tano S, Tinkler P, Wernberg T, Wilson SK. Form and function of tropical macroalgal reefs in the Anthropocene. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13282] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Christopher J. Fulton
- Research School of Biology; Australian National University; Canberra Australian Capital Territory Australia
| | - Rene A. Abesamis
- SU-Angelo King Center for Research and Environmental Management; Silliman University; Dumaguete Philippines
| | - Charlotte Berkström
- Department of Ecology, Environment & Plant Sciences; Stockholm University; Stockholm Sweden
- Department of Aquatic Resources, Institute of Coastal Research; Swedish University of Agricultural Sciences; Öregrund Sweden
| | - Martial Depczynski
- Australian Institute of Marine Science; Crawley Western Australia Australia
- Oceans Institute; University of Western Australia; Crawley Western Australia Australia
| | | | - Thomas H. Holmes
- Oceans Institute; University of Western Australia; Crawley Western Australia Australia
- Marine Science Program, Department of Biodiversity, Conservation & Attractions; Government of Western Australia; Kensington Western Australia Australia
| | - Michel Kulbicki
- UMR “Entropie”, Labex Corail, IRD; University of Perpignan; Perpignan France
| | - Mae M. Noble
- Fenner School of Environment & Society; Australian National University; Canberra Australian Capital Territory Australia
| | - Ben T. Radford
- Australian Institute of Marine Science; Crawley Western Australia Australia
- Oceans Institute; University of Western Australia; Crawley Western Australia Australia
| | - Stina Tano
- Department of Ecology, Environment & Plant Sciences; Stockholm University; Stockholm Sweden
| | - Paul Tinkler
- School of Life & Environmental Sciences; Deakin University; Warrnambool Victoria Australia
| | - Thomas Wernberg
- Oceans Institute; University of Western Australia; Crawley Western Australia Australia
- School of Biological Sciences; University of Western Australia; Crawley Western Australia Australia
| | - Shaun K. Wilson
- Oceans Institute; University of Western Australia; Crawley Western Australia Australia
- Marine Science Program, Department of Biodiversity, Conservation & Attractions; Government of Western Australia; Kensington Western Australia Australia
| |
Collapse
|
14
|
Schmitz OJ, Wilmers CC, Leroux SJ, Doughty CE, Atwood TB, Galetti M, Davies AB, Goetz SJ. Animals and the zoogeochemistry of the carbon cycle. Science 2018; 362:362/6419/eaar3213. [DOI: 10.1126/science.aar3213] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Predicting and managing the global carbon cycle requires scientific understanding of ecosystem processes that control carbon uptake and storage. It is generally assumed that carbon cycling is sufficiently characterized in terms of uptake and exchange between ecosystem plant and soil pools and the atmosphere. We show that animals also play an important role by mediating carbon exchange between ecosystems and the atmosphere, at times turning ecosystem carbon sources into sinks, or vice versa. Animals also move across landscapes, creating a dynamism that shapes landscape-scale variation in carbon exchange and storage. Predicting and measuring carbon cycling under such dynamism is an important scientific challenge. We explain how to link analyses of spatial ecosystem functioning, animal movement, and remote sensing of animal habitats with carbon dynamics across landscapes.
Collapse
|
15
|
Atwood TB, Hammill E. The Importance of Marine Predators in the Provisioning of Ecosystem Services by Coastal Plant Communities. FRONTIERS IN PLANT SCIENCE 2018; 9:1289. [PMID: 30233626 PMCID: PMC6129962 DOI: 10.3389/fpls.2018.01289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 08/16/2018] [Indexed: 06/08/2023]
Abstract
Food web theory predicts that current global declines in marine predators could generate unwanted consequences for many marine ecosystems. In coastal plant communities (kelp, seagrass, mangroves, and salt marsh), several studies have documented the far-reaching effects of changing predator populations. Across coastal ecosystems, the loss of marine predators appears to negatively affect coastal plant communities and the ecosystem services they provide. Here, we discuss some of the documented and suspected effects of predators on coastal protection, carbon sequestration, and the stability and resilience of coastal plant communities. In addition, we present a meta-analysis to assess the strength and direction of trophic cascades in kelp forests, seagrasses, salt marshes, and mangroves. We demonstrate that the strength and direction of trophic cascades varied across ecosystem types, with predators having a large positive effect on plants in salt marshes, a moderate positive effect on plants in kelp and mangroves, and no effect on plants in seagrasses. Our analysis also identified that there is a paucity of literature on trophic cascades for all four coastal plant systems, but especially seagrass and mangroves. Our results demonstrate the crucial role of predators in maintaining coastal ecosystem services, but also highlights the need for further research before large-scale generalizations about the prevalence, direction, and strength of trophic cascade in coastal plant communities can be made.
Collapse
|