1
|
Thornburg CD, Pipe SW, Cantore A, Unzu C, Jones M, Miesbach WA. Clinical perspective: Advancing hemophilia treatment through gene therapy approaches. Mol Ther 2025:S1525-0016(25)00297-7. [PMID: 40263938 DOI: 10.1016/j.ymthe.2025.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/21/2025] [Accepted: 04/16/2025] [Indexed: 04/24/2025] Open
Abstract
Hemophilia, a congenital bleeding disorder, can cause arthropathy, impaired mobility, pain, and life-threatening hemorrhage events, significantly impacting quality of life for patients and caregivers. Current therapies, although effective, necessitate costly lifelong treatment, often in specialized settings. However, as a monogenic disorder caused by loss-of-function genetic variants, hemophilia is amenable to gene therapy. In this article, three primary gene therapy approaches at the forefront of clinical development are reviewed. Adeno-associated virus-based gene therapy, having secured approval in the EU, UK, and US after promising phase 3 trial results, demonstrates clear superiority over standard-of-care treatment. Lentivirus-based approaches capable of transducing dividing and nondividing cells may improve the durability of treatment and have low susceptibility to pre-existing neutralizing antibodies to viral vectors. Finally, gene editing techniques such as zinc finger nucleases and CRISPR aim to correct genetic defects directly, holding promise as novel, effective, and highly durable therapeutic strategies in adults and children with hemophilia. This review provides a comprehensive summary of the current status of these gene therapy approaches, highlighting advantages, limitations, and potential future developments.
Collapse
Affiliation(s)
- Courtney D Thornburg
- National Institutes of Health, National Heart, Lung, and Blood Institute, Division of Blood Diseases and Resources, Bethesda, MD, USA
| | - Steve W Pipe
- Pediatric Hematology-Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Alessio Cantore
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Carmen Unzu
- DNA and RNA Medicine Division, CIMA Universidad de Navarra, Pamplona, Spain
| | | | - Wolfgang A Miesbach
- Department of Haemostaseology University Hospital Frankfurt, Frankfurt, Germany.
| |
Collapse
|
2
|
Laurent M, Harb R, Jenny C, Oustelandt J, Jimenez S, Cosette J, Landini F, Ferrante A, Corre G, Vujic N, Piccoli C, Brassier A, Van Wittenberghe L, Ronzitti G, Kratky D, Pacelli C, Amendola M. Rescue of lysosomal acid lipase deficiency in mice by rAAV8 liver gene transfer. COMMUNICATIONS MEDICINE 2025; 5:110. [PMID: 40216942 PMCID: PMC11992068 DOI: 10.1038/s43856-025-00816-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Lysosomal acid lipase deficiency (LAL-D) is an autosomal recessive disorder caused by mutations in the LIPA gene, which results in lipid accumulation leading to multi-organ failure. If left untreated, the severe form of LAL-D results in premature death within the first year of life due to failure to thrive and hepatic insufficiency. Weekly systemic injections of recombinant LAL protein, referred as enzyme replacement therapy, is the only available supportive treatment. METHOD Here, we characterized a novel Lipa-/- mouse model and developed a curative gene therapy treatment based on the in vivo administration of recombinant (r)AAV8 vector encoding the human LIPA transgene under the control of a hepatocyte-specific promoter. RESULTS Here we define the minimal rAAV8 dose required to rescue disease lethality and to correct cholesterol and triglyceride accumulation in multiple organs and blood. Finally, using liver transcriptomic and biochemical analysis, we show mitochondrial impairment in Lipa-/- mice and its recovery by gene therapy. CONCLUSIONS Overall, our in vivo gene therapy strategy achieves a stable long-term LAL expression sufficient to correct the disease phenotype in the Lipa-/- mouse model and offers a new therapeutic option for LAL-D patients.
Collapse
Affiliation(s)
- Marine Laurent
- Genethon, 91000, Evry, France
- Paris-Saclay University, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, 91000, Evry, France
| | - Rim Harb
- Genethon, 91000, Evry, France
- Paris-Saclay University, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, 91000, Evry, France
| | - Christine Jenny
- Genethon, 91000, Evry, France
- Paris-Saclay University, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, 91000, Evry, France
| | - Julie Oustelandt
- Genethon, 91000, Evry, France
- Paris-Saclay University, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, 91000, Evry, France
| | | | | | - Francesca Landini
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Aristide Ferrante
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Guillaume Corre
- Genethon, 91000, Evry, France
- Paris-Saclay University, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, 91000, Evry, France
| | - Nemanja Vujic
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medicine University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Claudia Piccoli
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Anais Brassier
- Necker-Enfants-Malades University Hospital, Paris, France
| | | | - Giuseppe Ronzitti
- Genethon, 91000, Evry, France
- Paris-Saclay University, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, 91000, Evry, France
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medicine University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Consiglia Pacelli
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Mario Amendola
- Genethon, 91000, Evry, France.
- Paris-Saclay University, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, 91000, Evry, France.
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| |
Collapse
|
3
|
De Giorgi M, Park SH, Castoreno A, Cao M, Hurley A, Saxena L, Chuecos MA, Walkey CJ, Doerfler AM, Furgurson MN, Ljungberg MC, Patel KR, Hyde S, Chickering T, Lefebvre S, Wassarman K, Miller P, Qin J, Schlegel MK, Zlatev I, Han J, Beeton C, Li RG, Kim J, Martin JF, Bissig KD, Jadhav V, Bao G, Lagor WR. In vivo expansion of gene-targeted hepatocytes through transient inhibition of an essential gene. Sci Transl Med 2025; 17:eadk3920. [PMID: 39937884 DOI: 10.1126/scitranslmed.adk3920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 07/29/2024] [Accepted: 01/17/2025] [Indexed: 02/14/2025]
Abstract
Homology-directed repair (HDR)-based genome editing is an approach that could permanently correct a broad range of genetic diseases. However, its utility is limited by inefficient and imprecise DNA repair mechanisms in terminally differentiated tissues. Here, we tested Repair Drive, a platform technology for selectively expanding HDR-corrected hepatocytes in adult mice in vivo. Repair Drive involves transient conditioning of the liver by knocking down an essential gene, fumarylacetoacetate hydrolase (Fah), and delivering an untargetable version of the essential gene in cis with a therapeutic transgene. We show that Repair Drive increased the percentage of correctly targeted hepatocytes in healthy wild-type mice up to 25%, which resulted in a fivefold increased expression of a therapeutic transgene, human factor IX (FIX). Repair Drive was well tolerated and did not induce toxicity or tumorigenesis during a 1-year follow-up. This approach may broaden the range of liver diseases that can be treated with somatic genome editing.
Collapse
Affiliation(s)
- Marco De Giorgi
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - So Hyun Park
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | | | - Mingming Cao
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Ayrea Hurley
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lavanya Saxena
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Marcel A Chuecos
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christopher J Walkey
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexandria M Doerfler
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mia N Furgurson
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - M Cecilia Ljungberg
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Kalyani R Patel
- Department of Pathology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Sarah Hyde
- Alnylam Pharmaceuticals Inc., Cambridge, MA 02142, USA
| | | | | | | | | | - June Qin
- Alnylam Pharmaceuticals Inc., Cambridge, MA 02142, USA
| | | | - Ivan Zlatev
- Alnylam Pharmaceuticals Inc., Cambridge, MA 02142, USA
| | - Jun Han
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
- UVic-GBC Proteomics Centre, Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Christine Beeton
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rich Gang Li
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Heart Institute, Houston, TX 77030, USA
| | - Jong Kim
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Heart Institute, Houston, TX 77030, USA
| | - James F Martin
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Heart Institute, Houston, TX 77030, USA
| | - Karl-Dimiter Bissig
- Department of Pediatrics, Alice and Y. T. Chen Center for Genetics and Genomics, Division of Medical Genetics, Duke University, Durham, NC 27710, USA
| | - Vasant Jadhav
- Alnylam Pharmaceuticals Inc., Cambridge, MA 02142, USA
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - William R Lagor
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
4
|
Zanganeh S, Zahedi AM, Sattarzadeh Bardsiri M, Bazi A, Bastanifard M, Shool S, Kouhbananinejad SM, Farsinejad A, Afgar A, Shahabi A, Mirzaei-Parsa MJ. Recent advances and applications of the CRISPR-Cas system in the gene therapy of blood disorders. Gene 2024; 931:148865. [PMID: 39168259 DOI: 10.1016/j.gene.2024.148865] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Affiliation(s)
- Saeed Zanganeh
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran; Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran.
| | - Amir Mohammad Zahedi
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahla Sattarzadeh Bardsiri
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Bazi
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdieh Bastanifard
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Sanaz Shool
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Alireza Farsinejad
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Afgar
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Arman Shahabi
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | | |
Collapse
|
5
|
Lara-Navarro IJ, Jave-Suárez LF, Marchal JA, Jaloma-Cruz AR. CRISPR/Cas9 Edition of the F9 Gene in Human Mesenchymal Stem Cells for Hemophilia B Therapy. Life (Basel) 2024; 14:1640. [PMID: 39768347 PMCID: PMC11676118 DOI: 10.3390/life14121640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Hemophilia B is a genetic disorder characterized by clotting factor IX deficiency and bleeding in joints and muscles. Current treatments involve intravenous infusion of plasma-derived products or recombinant proteins, which have limited efficacy due to the short half-life of infused proteins. Recently, gene therapy for bleeding disorders has offered a potential solution. This study aimed to develop an in vitro gene therapy model using the CRISPR/Cas9 system to incorporate the F9 cDNA in human mesenchymal stem cells (hMSCs) to produce clotting factor IX. RNA guide sequences targeting the promoter-exon 1 region of the F9 gene were designed to incorporate a wild-type F9 cDNA into the cells. Knockin was performed with the CRISPR/Cas9 system and pDONOR-CMV/cDNAF9/IRES/EGFP vector template recombination in Lenti-X HEK293 cells and MSCs. A lentiviral F9 cDNA vector was designed as a FIX secretor model to validate the CRISPR/Cas9 system. Results showed successful gene editing and F9 expression in both cell models, although editing efficiency was lower in hMSCs. Future investigations will focus on improving gene editing efficiency using different transfection conditions or hybrid methodologies. This study demonstrates the potential of CRISPR/Cas9-based gene therapy in hMSCs as a target for hemophilia B. Further optimizations are required to translate these findings into clinical applications.
Collapse
Affiliation(s)
- Irving Jair Lara-Navarro
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico;
| | - Luis Felipe Jave-Suárez
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico;
| | - Juan Antonio Marchal
- Departamento de Anatomía y Embriología Humana, Universidad de Granada, 18012 Granada, Spain;
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18100 Granada, Spain
- Excellence Research Unit Modelling Nature (MNat), BioFab i3D-Biofabricación y 3D (Bio) Printing Laboratory Granada, Universidad de Granada, 18100 Granada, Spain
| | - Ana Rebeca Jaloma-Cruz
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
6
|
Chen Y, van Til NP, Bosma PJ. Gene Therapy for Inherited Liver Disease: To Add or to Edit. Int J Mol Sci 2024; 25:12514. [PMID: 39684224 DOI: 10.3390/ijms252312514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
Patients suffering from an inherited severe liver disorder require lifelong treatment to prevent premature death. Until recently, the only curative treatment option was liver transplantation, which requires lifelong immune suppression. Now, liver-directed gene therapy, which is a much less invasive procedure, has become a market-approved treatment for hemophilia A and B. This may pave the way for it to become the treatment of choice for many other recessive inherited liver disorders with loss-of-function mutations. Inherited liver disease with toxic-gain-of-function or intrinsic hepatocyte damage may require alternative applications, such as integrating vectors or genome editing technologies, that can provide permanent or specific modification of the genome. We present an overview of currently available gene therapy strategies, i.e., gene supplementation, gene editing, and gene repair investigated in preclinical and clinical studies to treat inherited severe liver disorders. The advantages and limitations of these gene therapy applications are discussed in relation to the underlying disease mechanism.
Collapse
Affiliation(s)
- Yue Chen
- Amsterdam University Medical Center, Tytgat Institute for Liver and Intestinal Research, AG&M, University of Amsterdam, Meibergdreef 69-71, 1105 BK Amsterdam, The Netherlands
| | - Niek P van Til
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Piter J Bosma
- Amsterdam University Medical Center, Tytgat Institute for Liver and Intestinal Research, AG&M, University of Amsterdam, Meibergdreef 69-71, 1105 BK Amsterdam, The Netherlands
| |
Collapse
|
7
|
Torella L, Santana-Gonzalez N, Zabaleta N, Gonzalez Aseguinolaza G. Gene editing in liver diseases. FEBS Lett 2024; 598:2348-2371. [PMID: 39079936 DOI: 10.1002/1873-3468.14989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/19/2024] [Indexed: 10/16/2024]
Abstract
The deliberate and precise modification of the host genome using engineered nucleases represents a groundbreaking advancement in modern medicine. Several clinical trials employing these approaches to address metabolic liver disorders have been initiated, with recent remarkable outcomes observed in patients with transthyretin amyloidosis, highlighting the potential of these therapies. Recent technological improvements, particularly CRISPR Cas9-based technology, have revolutionized gene editing, enabling in vivo modification of the cellular genome for therapeutic purposes. These modifications include gene supplementation, correction, or silencing, offering a wide range of therapeutic possibilities. Moving forward, we anticipate witnessing the unfolding therapeutic potential of these strategies in the coming years. The aim of our review is to summarize preclinical data on gene editing in animal models of inherited liver diseases and the clinical data obtained thus far, emphasizing both therapeutic efficacy and potential limitations of these medical interventions.
Collapse
Affiliation(s)
- Laura Torella
- DNA & RNA Medicine Division, Gene Therapy for Rare Diseases Department, Center for Applied Medical Research (CIMA), University of Navarra, IdisNA, Pamplona, Spain
| | - Nerea Santana-Gonzalez
- DNA & RNA Medicine Division, Gene Therapy for Rare Diseases Department, Center for Applied Medical Research (CIMA), University of Navarra, IdisNA, Pamplona, Spain
| | - Nerea Zabaleta
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA
| | - Gloria Gonzalez Aseguinolaza
- DNA & RNA Medicine Division, Gene Therapy for Rare Diseases Department, Center for Applied Medical Research (CIMA), University of Navarra, IdisNA, Pamplona, Spain
- Vivet Therapeutics, Pamplona, Spain
| |
Collapse
|
8
|
Siow KM, Güngör M, Wrona D, Raimondi F, Pastukhov O, Tsapogas P, Menzi T, Schmitz M, Kulcsár PI, Schwank G, Schulz A, Jinek M, Modlich U, Siler U, Reichenbach J. Targeted knock-in of NCF1 cDNA into the NCF2 locus leads to myeloid phenotypic correction of p47 phox -deficient chronic granulomatous disease. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102229. [PMID: 38952440 PMCID: PMC11215332 DOI: 10.1016/j.omtn.2024.102229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/22/2024] [Indexed: 07/03/2024]
Abstract
p47 phox -deficient chronic granulomatous disease (p47-CGD) is a primary immunodeficiency caused by mutations in the neutrophil cytosolic factor 1 (NCF1) gene, resulting in defective NADPH oxidase function in phagocytes. Due to its complex genomic context, the NCF1 locus is not suited for safe gene editing with current genome editing technologies. Therefore, we developed a targeted NCF1 coding sequence knock-in by CRISPR-Cas9 ribonucleoprotein and viral vector template delivery, to restore p47 phox expression under the control of the endogenous NCF2 locus. NCF2 encodes for p67 phox , an NADPH oxidase subunit that closely interacts with p47 phox and is predominantly expressed in myeloid cells. This approach restored p47 phox expression and NADPH oxidase function in p47-CGD patient hematopoietic stem and progenitor cells (HSPCs) and in p47 phox -deficient mouse HSPCs, with the transgene expression following a myeloid differentiation pattern. Adeno-associated viral vectors performed favorably over integration-deficient lentiviral vectors for template delivery, with fewer off-target integrations and higher correction efficacy in HSPCs. Such myeloid-directed gene editing is promising for clinical CGD gene therapy, as it leads to the co-expression of p47 phox and p67 phox , ensuring spatiotemporal and near-physiological transgene expression in myeloid cells.
Collapse
Affiliation(s)
- Kah Mun Siow
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich, Schlieren, 8952 Zurich, Switzerland
| | - Merve Güngör
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich, Schlieren, 8952 Zurich, Switzerland
| | - Dominik Wrona
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich, Schlieren, 8952 Zurich, Switzerland
| | - Federica Raimondi
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich, Schlieren, 8952 Zurich, Switzerland
| | - Oleksandr Pastukhov
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich, Schlieren, 8952 Zurich, Switzerland
| | - Panagiotis Tsapogas
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich, Schlieren, 8952 Zurich, Switzerland
| | - Timon Menzi
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich, Schlieren, 8952 Zurich, Switzerland
| | - Michael Schmitz
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Péter István Kulcsár
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland
| | - Gerald Schwank
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland
| | - Ansgar Schulz
- Department of Pediatrics, University Medical Center Ulm, 89075 Ulm, Germany
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Ute Modlich
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich, Schlieren, 8952 Zurich, Switzerland
| | - Ulrich Siler
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich, Schlieren, 8952 Zurich, Switzerland
- School of Life Sciences, Institute for Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
| | - Janine Reichenbach
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich, Schlieren, 8952 Zurich, Switzerland
- Department of Somatic Gene Therapy, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
9
|
Simoni C, Barbon E, Muro AF, Cantore A. In vivo liver targeted genome editing as therapeutic approach: progresses and challenges. Front Genome Ed 2024; 6:1458037. [PMID: 39246827 PMCID: PMC11378722 DOI: 10.3389/fgeed.2024.1458037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
The liver is an essential organ of the body that performs several vital functions, including the metabolism of biomolecules, foreign substances, and toxins, and the production of plasma proteins, such as coagulation factors. There are hundreds of genetic disorders affecting liver functions and, for many of them, the only curative option is orthotopic liver transplantation, which nevertheless entails many risks and long-term complications. Some peculiar features of the liver, such as its large blood flow supply and the tolerogenic immune environment, make it an attractive target for in vivo gene therapy approaches. In recent years, several genome-editing tools mainly based on the clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR-Cas9) system have been successfully exploited in the context of liver-directed preclinical or clinical therapeutic applications. These include gene knock-out, knock-in, activation, interference, or base and prime editing approaches. Despite many achievements, important challenges still need to be addressed to broaden clinical applications, such as the optimization of the delivery methods, the improvement of the editing efficiency, and the risk of on-target or off-target unwanted effects and chromosomal rearrangements. In this review, we highlight the latest progress in the development of in vivo liver-targeted genome editing approaches for the treatment of genetic disorders. We describe the technological advancements that are currently under investigation, the challenges to overcome for clinical applicability, and the future perspectives of this technology.
Collapse
Affiliation(s)
- Chiara Simoni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Elena Barbon
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrés F Muro
- International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Alessio Cantore
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
10
|
Sarangi P, Kumar N, Sambasivan R, Ramalingam S, Amit S, Chandra D, Jayandharan GR. AAV mediated genome engineering with a bypass coagulation factor alleviates the bleeding phenotype in a murine model of hemophilia B. Thromb Res 2024; 238:151-160. [PMID: 38718473 DOI: 10.1016/j.thromres.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024]
Abstract
It is crucial to develop a long-term therapy that targets hemophilia A and B, including inhibitor-positive patients. We have developed an Adeno-associated virus (AAV) based strategy to integrate the bypass coagulation factor, activated FVII (murine, mFVIIa) gene into the Rosa26 locus using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 mediated gene-editing. AAV vectors designed for expression of guide RNA (AAV8-gRNA), Cas9 (AAV2 neddylation mutant-Cas9), and mFVIIa (AAV8-mFVIIa) flanked by homology arms of the target locus were validated in vitro. Hemophilia B mice were administered with AAV carrying gRNA, Cas9 (1 × 1011 vgs/mouse), and mFVIIa with homology arms (2 × 1011 vgs/mouse) with appropriate controls. Functional rescue was documented with suitable coagulation assays at various time points. The data from the T7 endonuclease assay revealed a cleavage efficiency of 20-42 %. Further, DNA sequencing confirmed the targeted integration of mFVIIa into the safe-harbor Rosa26 locus. The prothrombin time (PT) assay revealed a significant reduction in PT in mice that received the gene-editing vectors (22 %), and a 13 % decline in mice that received only the AAV-FVIIa when compared to mock treated mice, 8 weeks after vector administration. Furthermore, FVIIa activity in mice that received triple gene-editing vectors was higher (122.5mIU/mL vs 28.8mIU/mL) than the mock group up to 15 weeks post vector administration. A hemostatic challenge by tail clip assay revealed that hemophilia B mice injected with only FVIIa or the gene-editing vectors had significant reduction in blood loss. In conclusion, AAV based gene-editing facilitates sustained expression of coagulation FVIIa and phenotypic rescue in hemophilia B mice.
Collapse
Affiliation(s)
- Pratiksha Sarangi
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Centre for Engineering in Medicine and Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, UP, India
| | - Narendra Kumar
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Centre for Engineering in Medicine and Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, UP, India
| | - Ramkumar Sambasivan
- Department of Biology, Indian Institute of Science Education and Research Tirupati, Andhra Pradesh, India
| | | | - Sonal Amit
- Autonomous State Medical College, Kumbhi, Akbarpur, Kanpur, UP, India
| | - Dinesh Chandra
- Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Giridhara R Jayandharan
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Centre for Engineering in Medicine and Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, UP, India.
| |
Collapse
|
11
|
Zhang Z, Zhang S, Wong HT, Li D, Feng B. Targeted Gene Insertion: The Cutting Edge of CRISPR Drug Development with Hemophilia as a Highlight. BioDrugs 2024; 38:369-385. [PMID: 38489061 PMCID: PMC11055778 DOI: 10.1007/s40259-024-00654-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 03/17/2024]
Abstract
The remarkable advance in gene editing technology presents unparalleled opportunities for transforming medicine and finding cures for hereditary diseases. Human trials of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9)-based therapeutics have demonstrated promising results in disrupting or deleting target sequences to treat specific diseases. However, the potential of targeted gene insertion approaches, which offer distinct advantages over disruption/deletion methods, remains largely unexplored in human trials due to intricate technical obstacles and safety concerns. This paper reviews the recent advances in preclinical studies demonstrating in vivo targeted gene insertion for therapeutic benefits, targeting somatic solid tissues through systemic delivery. With a specific emphasis on hemophilia as a prominent disease model, we highlight advancements in insertion strategies, including considerations of DNA repair pathways, targeting site selection, and donor design. Furthermore, we discuss the complex challenges and recent breakthroughs that offer valuable insights for progressing towards clinical trials.
Collapse
Affiliation(s)
- Zhenjie Zhang
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Room 105A, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, NT, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Siqi Zhang
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Room 105A, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, NT, Hong Kong SAR, China
| | - Hoi Ting Wong
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Room 105A, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, NT, Hong Kong SAR, China
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Bo Feng
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Room 105A, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, NT, Hong Kong SAR, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
12
|
Lisjak M, Iaconcig A, Guarnaccia C, Vicidomini A, Moretti L, Collaud F, Ronzitti G, Zentilin L, Muro AF. Lethality rescue and long-term amelioration of a citrullinemia type I mouse model by neonatal gene-targeting combined to SaCRISPR-Cas9. Mol Ther Methods Clin Dev 2023; 31:101103. [PMID: 37744006 PMCID: PMC10514469 DOI: 10.1016/j.omtm.2023.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023]
Abstract
Citrullinemia type I is a rare autosomal-recessive disorder caused by deficiency of argininosuccinate synthetase (ASS1). The clinical presentation includes the acute neonatal form, characterized by ammonia and citrulline accumulation in blood, which may lead to encephalopathy, coma, and death, and the milder late-onset form. Current treatments are unsatisfactory, and the only curative treatment is liver transplantation. We permanently modified the hepatocyte genome in lethal citrullinemia mice (Ass1fold/fold) by inserting the ASS1 cDNA into the albumin locus through the delivery of two AAV8 vectors carrying the donor DNA and the CRISPR-Cas9 platform. The neonatal treatment completely rescued mortality ensuring survival up to 5 months of age, with plasma citrulline levels significantly decreased, while plasma ammonia levels remained unchanged. In contrast, neonatal treatment with a liver-directed non-integrative AAV8-AAT-hASS1 vector failed to improve disease parameters. To model late-onset citrullinemia, we dosed postnatal day (P) 30 juvenile animals using the integrative approach, resulting in lifespan improvement and a minor reduction in disease markers. Conversely, treatment with the non-integrative vector completely rescued mortality, reducing plasma ammonia and citrulline to wild-type values. In summary, the integrative approach in neonates is effective, although further improvements are required to fully correct the phenotype. Non-integrative gene therapy application to juvenile mice ensures a stable and very efficient therapeutic effect.
Collapse
Affiliation(s)
- Michela Lisjak
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Alessandra Iaconcig
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Corrado Guarnaccia
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Antonio Vicidomini
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Laura Moretti
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Fanny Collaud
- Généthon, 91000 Évry, France
- Université Paris-Saclay, Université d’Évry, Inserm, Généthon, Integrare Research Unit UMR_S951, 91000 Évry, France
| | - Giuseppe Ronzitti
- Généthon, 91000 Évry, France
- Université Paris-Saclay, Université d’Évry, Inserm, Généthon, Integrare Research Unit UMR_S951, 91000 Évry, France
| | - Lorena Zentilin
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Andrés F. Muro
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| |
Collapse
|
13
|
Thomas SP, Domm JM, van Vloten JP, Xu L, Vadivel A, Yates JGE, Pei Y, Ingrao J, van Lieshout LP, Jackson SR, Minott JA, Achuthan A, Mehrani Y, McAusland TM, Zhang W, Karimi K, Vaughan AE, de Jong J, Kang MH, Thebaud B, Wootton SK. A promoterless AAV6.2FF-based lung gene editing platform for the correction of surfactant protein B deficiency. Mol Ther 2023; 31:3457-3477. [PMID: 37805711 PMCID: PMC10727957 DOI: 10.1016/j.ymthe.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/07/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023] Open
Abstract
Surfactant protein B (SP-B) deficiency is a rare genetic disease that causes fatal respiratory failure within the first year of life. Currently, the only corrective treatment is lung transplantation. Here, we co-transduced the murine lung with adeno-associated virus 6.2FF (AAV6.2FF) vectors encoding a SaCas9-guide RNA nuclease or donor template to mediate insertion of promoterless reporter genes or the (murine) Sftpb gene in frame with the endogenous surfactant protein C (SP-C) gene, without disrupting SP-C expression. Intranasal administration of 3 × 1011 vg donor template and 1 × 1011 vg nuclease consistently edited approximately 6% of lung epithelial cells. Frequency of gene insertion increased in a dose-dependent manner, reaching 20%-25% editing efficiency with the highest donor template and nuclease doses tested. We next evaluated whether this promoterless gene editing platform could extend survival in the conditional SP-B knockout mouse model. Administration of 1 × 1012 vg SP-B-donor template and 5 × 1011 vg nuclease significantly extended median survival (p = 0.0034) from 5 days in the untreated off doxycycline group to 16 days in the donor AAV and nuclease group, with one gene-edited mouse living 243 days off doxycycline. This AAV6.2FF-based gene editing platform has the potential to correct SP-B deficiency, as well as other disorders of alveolar type II cells.
Collapse
Affiliation(s)
- Sylvia P Thomas
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jakob M Domm
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jacob P van Vloten
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Liqun Xu
- Regenerative Medicine Program, The Ottawa Hospital Research Institute (OHRI), Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO), and CHEO Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - Arul Vadivel
- Regenerative Medicine Program, The Ottawa Hospital Research Institute (OHRI), Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO), and CHEO Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - Jacob G E Yates
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Yanlong Pei
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Joelle Ingrao
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | - Sergio R Jackson
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Jessica A Minott
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Adithya Achuthan
- Regenerative Medicine Program, The Ottawa Hospital Research Institute (OHRI), Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO), and CHEO Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - Yeganeh Mehrani
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Thomas M McAusland
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Wei Zhang
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Khalil Karimi
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Andrew E Vaughan
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Jondavid de Jong
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Martin H Kang
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Bernard Thebaud
- Regenerative Medicine Program, The Ottawa Hospital Research Institute (OHRI), Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO), and CHEO Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - Sarah K Wootton
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
14
|
De Pablo-Moreno JA, Miguel-Batuecas A, Rodríguez-Merchán EC, Liras A. Treatment of congenital coagulopathies, from biologic to biotechnological drugs: The relevance of gene editing (CRISPR/Cas). Thromb Res 2023; 231:99-111. [PMID: 37839151 DOI: 10.1016/j.thromres.2023.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/09/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
Congenital coagulopathies have, throughout the history of medicine, been a focus of scientific study and of great interest as they constitute an alteration of one of the most important and conserved pathways of evolution. The first therapeutic strategies developed to address them were aimed at restoring the blood components lost during hemorrhage by administering whole blood or plasma. Later on, the use of cryoprecipitates was a significant breakthrough as it made it possible to decrease the volumes of blood infused. In the 1970' and 80', clotting factor concentrates became the treatment and, from the 1990's to the present day, recombinant factors -with increasingly longer half-lives- have taken over as the treatment of choice for certain coagulopathies in a seamless yet momentous transition from biological to biotechnological drugs. The beginning of this century, however, saw the emergence of new advanced (gene and cell) treatments, which are currently transforming the therapeutic landscape. The possibility to use cells and viruses as well as specific or bispecific antibodies as medicines is likely to spark a revolution in the world of pharmacology where therapies will be individualized and have long-term effects. Specifically, attention is nowadays focused on the development of gene editing strategies, chiefly those based on CRISPR/Cas technology. Rare coagulopathies such as hemophilia A and B, or even ultra-rare ones such as factor V deficiency, could be among those deriving the greatest benefit from these new developments.
Collapse
Affiliation(s)
- Juan A De Pablo-Moreno
- Department of Genetic, Physiology and Microbiology, Biology School, Complutense University of Madrid, Spain
| | - Andrea Miguel-Batuecas
- Department of Genetic, Physiology and Microbiology, Biology School, Complutense University of Madrid, Spain
| | - E Carlos Rodríguez-Merchán
- Osteoarticular Surgery Research, Hospital La Paz Institute for Health Research-IdiPAZ (La Paz University Hospital-Autonomous University of Madrid), Spain
| | - Antonio Liras
- Department of Genetic, Physiology and Microbiology, Biology School, Complutense University of Madrid, Spain.
| |
Collapse
|
15
|
Nakamura S, Morohoshi K, Inada E, Sato Y, Watanabe S, Saitoh I, Sato M. Recent Advances in In Vivo Somatic Cell Gene Modification in Newborn Pups. Int J Mol Sci 2023; 24:15301. [PMID: 37894981 PMCID: PMC10607593 DOI: 10.3390/ijms242015301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Germline manipulation at the zygote stage using the CRISPR/Cas9 system has been extensively employed for creating genetically modified animals and maintaining established lines. However, this approach requires a long and laborious task. Recently, many researchers have attempted to overcome these limitations by generating somatic mutations in the adult stage through tail vein injection or local administration of CRISPR reagents, as a new strategy called "in vivo somatic cell genome editing". This approach does not require manipulation of early embryos or strain maintenance, and it can test the results of genome editing in a short period. The newborn is an ideal stage to perform in vivo somatic cell genome editing because it is immune-privileged, easily accessible, and only a small amount of CRISPR reagents is required to achieve somatic cell genome editing throughout the entire body, owing to its small size. In this review, we summarize in vivo genome engineering strategies that have been successfully demonstrated in newborns. We also report successful in vivo genome editing through the neonatal introduction of genome editing reagents into various sites in newborns (as exemplified by intravenous injection via the facial vein), which will be helpful for creating models for genetic diseases or treating many genetic diseases.
Collapse
Affiliation(s)
- Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Tokorozawa 359-8513, Japan;
| | - Kazunori Morohoshi
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Tokorozawa 359-8513, Japan;
| | - Emi Inada
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Yoko Sato
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Aoi-ku, Shizuoka 420-0881, Japan;
| | - Satoshi Watanabe
- Institute of Livestock and Grassland Science, NARO, Tsukuba 305-0901, Japan;
| | - Issei Saitoh
- Department of Pediatric Dentistry, Asahi University School of Dentistry, Mizuho 501-0296, Japan;
| | - Masahiro Sato
- Department of Genome Medicine, National Center for Child Health and Development, Setagaya-ku, Tokyo 157-8535, Japan;
| |
Collapse
|
16
|
De Giorgi M, Park SH, Castoreno A, Cao M, Hurley A, Saxena L, Chuecos MA, Walkey CJ, Doerfler AM, Furgurson MN, Ljungberg MC, Patel KR, Hyde S, Chickering T, Lefebvre S, Wassarman K, Miller P, Qin J, Schlegel MK, Zlatev I, Li RG, Kim J, Martin JF, Bissig KD, Jadhav V, Bao G, Lagor WR. In vivo expansion of gene-targeted hepatocytes through transient inhibition of an essential gene. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550728. [PMID: 37546995 PMCID: PMC10402145 DOI: 10.1101/2023.07.26.550728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Homology Directed Repair (HDR)-based genome editing is an approach that could permanently correct a broad range of genetic diseases. However, its utility is limited by inefficient and imprecise DNA repair mechanisms in terminally differentiated tissues. Here, we tested "Repair Drive", a novel method for improving targeted gene insertion in the liver by selectively expanding correctly repaired hepatocytes in vivo. Our system consists of transient conditioning of the liver by knocking down an essential gene, and delivery of an untargetable version of the essential gene in cis with a therapeutic transgene. We show that Repair Drive dramatically increases the percentage of correctly targeted hepatocytes, up to 25%. This resulted in a five-fold increased expression of a therapeutic transgene. Repair Drive was well-tolerated and did not induce toxicity or tumorigenesis in long term follow up. This approach will broaden the range of liver diseases that can be treated with somatic genome editing.
Collapse
Affiliation(s)
- Marco De Giorgi
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - So Hyun Park
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Adam Castoreno
- Alnylam Pharmaceuticals Inc, 675 W Kendall St, Cambridge, MA 02142, USA
| | - Mingming Cao
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Ayrea Hurley
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lavanya Saxena
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Marcel A. Chuecos
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christopher J. Walkey
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexandria M. Doerfler
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mia N. Furgurson
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - M. Cecilia Ljungberg
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Kalyani R. Patel
- Department of Pathology, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Sarah Hyde
- Alnylam Pharmaceuticals Inc, 675 W Kendall St, Cambridge, MA 02142, USA
| | - Tyler Chickering
- Alnylam Pharmaceuticals Inc, 675 W Kendall St, Cambridge, MA 02142, USA
| | | | - Kelly Wassarman
- Alnylam Pharmaceuticals Inc, 675 W Kendall St, Cambridge, MA 02142, USA
| | - Patrick Miller
- Alnylam Pharmaceuticals Inc, 675 W Kendall St, Cambridge, MA 02142, USA
| | - June Qin
- Alnylam Pharmaceuticals Inc, 675 W Kendall St, Cambridge, MA 02142, USA
| | - Mark K. Schlegel
- Alnylam Pharmaceuticals Inc, 675 W Kendall St, Cambridge, MA 02142, USA
| | - Ivan Zlatev
- Alnylam Pharmaceuticals Inc, 675 W Kendall St, Cambridge, MA 02142, USA
| | - Rich Gang Li
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Heart Institute, Houston, TX 77030, USA
| | - Jong Kim
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Heart Institute, Houston, TX 77030, USA
| | - James F. Martin
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Heart Institute, Houston, TX 77030, USA
| | - Karl-Dimiter Bissig
- Department of Pediatrics, Alice and Y. T. Chen Center for Genetics and Genomics, Division of Medical Genetics, Duke University, Durham, NC 27710, USA
| | - Vasant Jadhav
- Alnylam Pharmaceuticals Inc, 675 W Kendall St, Cambridge, MA 02142, USA
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - William R. Lagor
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|