1
|
Li L, Wu ZT, Duan WH, Liu J, Zhu YR. Machine learning-based prognostic modelling of NK cells in PAAD for immunotherapy guidance. Discov Oncol 2025; 16:577. [PMID: 40253675 PMCID: PMC12009793 DOI: 10.1007/s12672-025-02266-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/28/2025] [Indexed: 04/22/2025] Open
Abstract
Pancreatic cancer's high incidence and mortality rates are underscored by ineffective treatments, particularly immunotherapy's poor performance. This could stem from an unclear immune microenvironment, where NK cells may play a unique role. Analyzing the NK cell-differentially expressed genes (NKDEGs) from the PAAD_GSE162708 single-cell dataset and utilizing the TCGA-PAAD and ICGC-PACA-AU datasets, we identified 11 NKDEGs linked to pancreatic adenocarcinoma (PAAD) prognosis and developed a prognostic model. This model's risk scores significantly outperformed traditional grading and TNM staging systems, validated through clinical and pathological analyses. Functional enrichment analysis pointed to the Neuroactive ligand-receptor interaction and MAPK signaling pathways, suggesting NK cells' distinctive role in PAAD. High-risk groups showed decreased overall NK cells but increased activated NK cells, which may mediate adverse inflammatory responses. NK cells exhibit synergistic interactions with plasma cells and macrophages and negative regulation by monocytes and naive B cells. Our model accurately predicts immunotherapy responses, indicating potential for targeted drugs to enhance treatment. Additionally, we introduced an NKDEGs-based immunotyping approach for personalized medicine and clinical decision-making in PAAD. This study emphasizes NK cells' potential in PAAD treatment, offering precise patient stratification and therapeutic targets for immunotherapy.
Collapse
Affiliation(s)
- Li Li
- The People'S Hospital of Wenshan Prefecture, Kunming University of Science and Technology, No. 228, Kaihua East Road, Wenshan, 663000, Yunnan, China
| | - Zu-Tao Wu
- The People'S Hospital of Wenshan Prefecture, Kunming University of Science and Technology, No. 228, Kaihua East Road, Wenshan, 663000, Yunnan, China
| | - Wen-Hong Duan
- The People'S Hospital of Wenshan Prefecture, Kunming University of Science and Technology, No. 228, Kaihua East Road, Wenshan, 663000, Yunnan, China
| | - Jiang Liu
- The People'S Hospital of Wenshan Prefecture, Kunming University of Science and Technology, No. 228, Kaihua East Road, Wenshan, 663000, Yunnan, China
| | - Yin-Rong Zhu
- The People'S Hospital of Wenshan Prefecture, Kunming University of Science and Technology, No. 228, Kaihua East Road, Wenshan, 663000, Yunnan, China.
| |
Collapse
|
2
|
Míčková K, Jelínek V, Tomášek O, Stopková R, Stopka P, Albrecht T. Proteomic analysis reveals dynamic changes in cloacal fluid composition during the reproductive season in a sexually promiscuous passerine. Sci Rep 2024; 14:14259. [PMID: 38902251 PMCID: PMC11190206 DOI: 10.1038/s41598-024-62244-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
Cryptic female choice (CFC) is a component of postcopulatory sexual selection that allows females to influence the fertilization success of sperm from different males. While its precise mechanisms remain unclear, they may involve the influence of the protein composition of the female reproductive fluids on sperm functionality. This study maps the protein composition of the cloacal fluid across different phases of female reproductive cycle in a sexually promiscuous passerine, the barn swallow. Similar to mammals, the protein composition in the female reproductive tract differed between receptive (when females copulate) and nonreceptive phases. With the change in the protein background, the enriched gene ontology terms also shifted. Within the receptive phase, distinctions were observed between proteomes sampled just before and during egg laying. However, three proteins exhibited increased abundance during the entire receptive phase compared to nonreceptive phases. These proteins are candidates in cryptic female choice, as all of them can influence the functionality of sperm or sperm-egg interaction. Our study demonstrates dynamic changes in the cloacal environment throughout the avian breeding cycle, emphasizing the importance of considering these fluctuations in studies of cryptic female choice.
Collapse
Affiliation(s)
- Kristýna Míčková
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic
| | - Václav Jelínek
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic
| | - Oldřich Tomášek
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Romana Stopková
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavel Stopka
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Tomáš Albrecht
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
3
|
Matějková T, Dodoková A, Kreisinger J, Stopka P, Stopková R. Microbial, proteomic, and metabolomic profiling of the estrous cycle in wild house mice. Microbiol Spectr 2024; 12:e0203723. [PMID: 38171017 PMCID: PMC10846187 DOI: 10.1128/spectrum.02037-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024] Open
Abstract
Symbiotic microbial communities affect the host immune system and produce molecules contributing to the odor of an individual. In many mammalian species, saliva and vaginal fluids are important sources of chemical signals that originate from bacterial metabolism and may act as honest signals of health and reproductive status. In this study, we aimed to define oral and vaginal microbiomes and their dynamics throughout the estrous cycle in wild house mice. In addition, we analyzed a subset of vaginal proteomes and metabolomes to detect potential interactions with microbiomes. 16S rRNA sequencing revealed that both saliva and vagina are dominated by Firmicutes and Proteobacteria but differ at the genus level. The oral microbiome is more stable during the estrous cycle and most abundant bacteria belong to the genera Gemella and Streptococcus, while the vaginal microbiome shows higher bacterial diversity and dynamics during the reproductive cycle and is characterized by the dominance of Muribacter and Rodentibacter. These two genera cover around 50% of the bacterial community during estrus. Proteomic profiling of vaginal fluids revealed specific protein patterns associated with different estrous phases. Highly expressed proteins in estrus involve the keratinization process thus providing estrus markers (e.g., Hrnr) while some proteins are downregulated such as immune-related proteins that limit bacterial growth (Camp, Clu, Elane, Lyz2, and Ngp). The vaginal metabolome contains volatile compounds potentially involved in chemical communication, for example, ketones, aldehydes, and esters of carboxylic acids. Data integration of all three OMICs data sets revealed high correlations, thus providing evidence that microbiomes, host proteomes, and metabolomes may interact.IMPORTANCEOur data revealed dynamic changes in vaginal, but not salivary, microbiome composition during the reproductive cycle of wild mice. With multiple OMICs platforms, we provide evidence that changes in microbiota in the vaginal environment are accompanied by changes in the proteomic and metabolomics profiles of the host. This study describes the natural microbiota of wild mice and may contribute to a better understanding of microbiome-host immune system interactions during the hormonal and cellular changes in the female reproductive tract. Moreover, analysis of volatiles in the vaginal fluid shows particular substances that can be involved in chemical communication and reproductive behavior.
Collapse
Affiliation(s)
- Tereza Matějková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
| | - Alica Dodoková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
| | - Jakub Kreisinger
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
| | - Pavel Stopka
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
| | - Romana Stopková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
| |
Collapse
|
4
|
Macholán M, Daniszová K, Hiadlovská Z. The Expansion of House Mouse Major Urinary Protein Genes Likely Did Not Facilitate Commensalism with Humans. Genes (Basel) 2023; 14:2090. [PMID: 38003032 PMCID: PMC10671799 DOI: 10.3390/genes14112090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Mouse wild-derived strains (WDSs) combine the advantages of classical laboratory stocks and wild animals, and thus appear to be promising tools for diverse biomedical and evolutionary studies. We employed 18 WDSs representing three non-synanthropic species (Mus spretus, Mus spicilegus, and M. macedonicus) and three house mouse subspecies (Mus musculus musculus, M. m. domesticus, M. m. castaneus), which are all important human commensals to explore whether the number of major urinary protein (MUP) genes and their final protein levels in urine are correlated with the level of commensalism. Contrary to expectations, the MUP copy number (CN) and protein excretion in the strains derived from M. m. castaneus, which is supposed to be the strongest commensal, were not significantly different from the non-commensal species. Regardless of an overall tendency for higher MUP amounts in taxa with a higher CN, there was no significant correlation at the strain level. Our study thus suggests that expansion of the Mup cluster, which appeared before the house mouse diversification, is unlikely to facilitate commensalism with humans in three house mouse subspecies. Finally, we found considerable variation among con(sub)specific WDSs, warning against generalisations of results based on a few strains.
Collapse
Affiliation(s)
- Miloš Macholán
- Institute of Animal Physiology and Genetics, Laboratory of Mammalian Evolutionary Genetics, Czech Academy of Sciences, 602 00 Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, 601 77 Brno, Czech Republic
| | - Kristina Daniszová
- Institute of Animal Physiology and Genetics, Laboratory of Mammalian Evolutionary Genetics, Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Zuzana Hiadlovská
- Institute of Animal Physiology and Genetics, Laboratory of Mammalian Evolutionary Genetics, Czech Academy of Sciences, 602 00 Brno, Czech Republic
| |
Collapse
|
5
|
Stopková R, Matějková T, Dodoková A, Talacko P, Zacek P, Sedlacek R, Piálek J, Stopka P. Variation in mouse chemical signals is genetically controlled and environmentally modulated. Sci Rep 2023; 13:8573. [PMID: 37237091 DOI: 10.1038/s41598-023-35450-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
In most mammals and particularly in mice, chemical communication relies on the detection of ethologically relevant fitness-related cues from other individuals. In mice, urine is the primary source of these signals, so we employed proteomics and metabolomics to identify key components of chemical signalling. We show that there is a correspondence between urinary volatiles and proteins in the representation of genetic background, sex and environment in two house mouse subspecies Mus musculus musculus and M. m. domesticus. We found that environment has a strong influence upon proteomic and metabolomic variation and that volatile mixtures better represent males while females have surprisingly more sex-biased proteins. Using machine learning and combined-omics techniques, we identified mixtures of metabolites and proteins that are associated with biological features.
Collapse
Affiliation(s)
- Romana Stopková
- Department of Zoology, Faculty of Science, BIOCEV, Charles University, Vestec, Prague, Czech Republic
| | - Tereza Matějková
- Department of Zoology, Faculty of Science, BIOCEV, Charles University, Vestec, Prague, Czech Republic
| | - Alica Dodoková
- Department of Zoology, Faculty of Science, BIOCEV, Charles University, Vestec, Prague, Czech Republic
| | - Pavel Talacko
- Department of Zoology, Faculty of Science, BIOCEV, Charles University, Vestec, Prague, Czech Republic
| | - Petr Zacek
- Department of Zoology, Faculty of Science, BIOCEV, Charles University, Vestec, Prague, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Jaroslav Piálek
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Pavel Stopka
- Department of Zoology, Faculty of Science, BIOCEV, Charles University, Vestec, Prague, Czech Republic.
| |
Collapse
|
6
|
Yao G, Xie S, Wan X, Zhang L, Liu Q, Hu S. Identification, characterization and expression analysis of rLcn13, an epididymal lipocalin in rats. Acta Biochim Biophys Sin (Shanghai) 2023; 55:314-321. [PMID: 36762499 PMCID: PMC10157533 DOI: 10.3724/abbs.2023008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/26/2022] [Indexed: 02/11/2023] Open
Abstract
As the essential tissue for sperm maturation and storage, the epididymis secretes a number of tissue-specific proteins to exert its functions. Among these proteins, epididymal lipocalins have been intensively studied because of their epididymis-specific expression pattern and clustered genomic organization. In this study, rLcn13, a member of the rat epididymal lipocalin family, is identified and elaborately characterized. The cDNA sequence of rLcn13 consists of 719 nucleotides and encodes a 176 amino-acid protein with a predicted N-terminal signal peptide of 19 amino acids. rLcn13 shares a similar genomic structure and predicted 3D protein structure with other lipocalin family members. A recombinant rLCN13 mature peptide of 157 amino acids is expressed and purified, which is used to raise a polyclonal antibody against rLCN13 with high specificity and sensitivity. Northern blot, western blot, and immunohistochemistry assays reveal that rLcn13 is an epididymis-specific gene which is expressed predominantly in the initial segment and proximal caput epididymis and influenced by androgen. The rLCN13 protein is modified by N-glycosylation and secreted into the epididymal lumen, and then binds to the acrosome region of the sperm. Our data demonstrate that rLcn13 exhibits a specific temporospatial expression pattern and androgen dependence, indicating its potential roles in sperm maturation.
Collapse
Affiliation(s)
- Guangxin Yao
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsCenter for Reproductive MedicineRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200135China
| | - Shengsong Xie
- Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
| | - Xiaofeng Wan
- National Health Commission (NHC) Key Laboratory of Reproduction RegulationShanghai Institute for Biomedical and Pharmaceutical TechnologiesShanghai200032China
| | - Ling Zhang
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsCenter for Reproductive MedicineRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200135China
| | - Qiang Liu
- Shanghai Key Laboratory of Reproductive MedicineDepartment of HistoembryologyGenetics and Developmental BiologySchool of MedicineShanghai Jiao Tong UniversityShanghai200025China
| | - Shuanggang Hu
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsCenter for Reproductive MedicineRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200135China
| |
Collapse
|
7
|
Perioral secretions enable complex social signaling in African mole-rats (genus Fukomys). Sci Rep 2022; 12:22366. [PMID: 36572727 PMCID: PMC9792591 DOI: 10.1038/s41598-022-26351-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
Subterranean common mole-rats of the genus Fukomys (family Bathyergidae) live in large, cooperatively-breeding families. Odor cues have been hypothesized to play an important role in mediating social behaviors in the underground ecotope, but only little is known about the role of olfactory signaling in burrowing mammals. Here we characterize the so far neglected perioral glands of Fukomys and other African mole-rats as an important source of olfactory social information. Histology demonstrates these structures to be derived sebaceous glands that are developed regardless of sex and reproductive status. However, gland activity is higher in Fukomys males, leading to sexually dimorphic patterns of stain and clotting of the facial pelage. Behavioral assays revealed that conspecifics prefer male but not female perioral swabs over scent samples from the back fur and that male sebum causes similar attraction as anogenital scent, a known source of social information in Fukomys. Finally, we assessed volatile compounds in the perioral sebum of the giant mole-rat (Fukomys mechowii) via GCxGC-MS-based metabolomic profiling. Volatiles display pronounced sex-specific signatures but also allow to differentiate between intrasexual reproductive status groups. These different lines of evidence suggest that mole-rat perioral glands provide complex odor signals which play a crucial role in social communication.
Collapse
|
8
|
Sperm morphology and performance in relation to postmating prezygotic isolation in two recently diverged passerine species. Sci Rep 2022; 12:22275. [PMID: 36566302 PMCID: PMC9789955 DOI: 10.1038/s41598-022-26101-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
Divergence in sperm phenotype and female reproductive environment may be a common source of postmating prezygotic (PMPZ) isolation between species. However, compared to other reproductive barriers it has received much less attention. In this study, we examined sperm morphology and velocity in two hybridizing passerine species, the common nightingale (Luscinia megarhynchos) and thrush nightingale (L. luscinia). In addition, we for the first time characterized a passerine female reproductive tract fluid proteome. We demonstrate that spermatozoa of the common nightingale have significantly longer and wider midpiece (proximal part of the flagellum containing mitochondria) and longer tail compared to spermatozoa of thrush nightingale. On the other hand, they have significantly shorter and narrower acrosome. Importantly, these differences did not have any effect on sperm velocity. Furthermore, the fluid from the reproductive tract of common nightingale females did not differentially affect velocity of conspecific and heterospecific sperm. Our results indicate that the observed changes in the flagellum and acrosome size are unlikely to contribute to PMPZ isolation through differential sperm velocity of conspecific and heterospecific sperm in the female reproductive tract. However, they could affect other postcopulatory processes, which might be involved in PMPZ isolation, such as sperm storage, longevity or sperm-egg interaction.
Collapse
|
9
|
Ligand Binding Properties of Odorant-Binding Protein OBP5 from Mus musculus. BIOLOGY 2022; 12:biology12010002. [PMID: 36671695 PMCID: PMC9855133 DOI: 10.3390/biology12010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Odorant-binding proteins (OBPs) are abundant soluble proteins secreted in the nasal mucus of a variety of species that are believed to be involved in the transport of odorants toward olfactory receptors. In this study, we report the functional characterization of mouse OBP5 (mOBP5). mOBP5 was recombinantly expressed as a hexahistidine-tagged protein in bacteria and purified using metal affinity chromatography. The oligomeric state and secondary structure composition of mOBP5 were investigated using gel filtration and circular dichroism spectroscopy. Fluorescent experiments revealed that mOBP5 interacts with the fluorescent probe N-phenyl naphthylamine (NPN) with micromolar affinity. Competitive binding experiments with 40 odorants indicated that mOBP5 binds a restricted number of odorants with good affinity. Isothermal titration calorimetry (ITC) confirmed that mOBP5 binds these compounds with association constants in the low micromolar range. Finally, protein homology modeling and molecular docking analysis indicated the amino acid residues of mOBP5 that determine its binding properties.
Collapse
|
10
|
Stopková R, Otčenášková T, Matějková T, Kuntová B, Stopka P. Biological Roles of Lipocalins in Chemical Communication, Reproduction, and Regulation of Microbiota. Front Physiol 2021; 12:740006. [PMID: 34594242 PMCID: PMC8476925 DOI: 10.3389/fphys.2021.740006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/18/2021] [Indexed: 01/13/2023] Open
Abstract
Major evolutionary transitions were always accompanied by genetic remodelling of phenotypic traits. For example, the vertebrate transition from water to land was accompanied by rapid evolution of olfactory receptors and by the expansion of genes encoding lipocalins, which - due to their transporting functions - represent an important interface between the external and internal organic world of an individual and also within an individual. Similarly, some lipocalin genes were lost along other genes when this transition went in the opposite direction leading, for example, to cetaceans. In terrestrial vertebrates, lipocalins are involved in the transport of lipophilic substances, chemical signalling, odour reception, antimicrobial defence and background odour clearance during ventilation. Many ancestral lipocalins have clear physiological functions across the vertebrate taxa while many other have - due to pleiotropic effects of their genes - multiple or complementary functions within the body homeostasis and development. The aim of this review is to deconstruct the physiological functions of lipocalins in light of current OMICs techniques. We concentrated on major findings in the house mouse in comparison to other model taxa (e.g., voles, humans, and birds) in which all or most coding genes within their genomes were repeatedly sequenced and their annotations are sufficiently informative.
Collapse
Affiliation(s)
- Romana Stopková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Prague, Czechia
| | - Tereza Otčenášková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Prague, Czechia
| | - Tereza Matějková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Prague, Czechia
| | - Barbora Kuntová
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Prague, Czechia
| | - Pavel Stopka
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Prague, Czechia
| |
Collapse
|
11
|
Janssenswillen S, Roelants K, Carpentier S, de Rooster H, Metzemaekers M, Vanschoenwinkel B, Proost P, Bossuyt F. Odorant-binding proteins in canine anal sac glands indicate an evolutionarily conserved role in mammalian chemical communication. BMC Ecol Evol 2021; 21:182. [PMID: 34565329 PMCID: PMC8474896 DOI: 10.1186/s12862-021-01910-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 09/10/2021] [Indexed: 11/29/2022] Open
Abstract
Background Chemical communication is an important aspect of the behavioural ecology of a wide range of mammals. In dogs and other carnivores, anal sac glands are thought to convey information to conspecifics by secreting a pallet of small volatile molecules produced by symbiotic bacteria. Because these glands are unique to carnivores, it is unclear how their secretions relate to those of other placental mammals that make use of different tissues and secretions for chemical communication. Here we analyse the anal sac glands of domestic dogs to verify the secretion of proteins and infer their evolutionary relationship to those involved in the chemical communication of non-carnivoran mammals. Results Proteomic analysis of anal sac gland secretions of 17 dogs revealed the consistently abundant presence of three related proteins. Homology searches against online databases indicate that these proteins are evolutionary related to ‘odorant binding proteins’ (OBPs) found in a wide range of mammalian secretions and known to contribute to chemical communication. Screening of the dog’s genome sequence show that the newly discovered OBPs are encoded by a single cluster of three genes in the pseudoautosomal region of the X-chromosome. Comparative genomic screening indicates that the same locus is shared by a wide range of placental mammals and that it originated at least before the radiation of extant placental orders. Phylogenetic analyses suggest a dynamic evolution of gene duplication and loss, resulting in large gene clusters in some placental taxa and recurrent loss of this locus in others. The homology of OBPs in canid anal sac glands and those found in other mammalian secretions implies that these proteins maintained a function in chemical communication throughout mammalian evolutionary history by multiple shifts in expression between secretory tissues involved in signal release and nasal mucosa involved in signal reception. Conclusions Our study elucidates a poorly understood part of the biology of a species that lives in close association with humans. In addition, it shows that the protein repertoire underlying chemical communication in mammals is more evolutionarily stable than the variation of involved glands and tissues would suggest. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01910-w.
Collapse
Affiliation(s)
- Sunita Janssenswillen
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Kim Roelants
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| | - Sebastien Carpentier
- Proteomics Core - SyBioMa, Katholieke Universiteit Leuven, Herestraat 49 - 03.313, 3000, Leuven, Belgium
| | - Hilde de Rooster
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Mieke Metzemaekers
- Rega Institute, Molecular Immunology, Katholieke Universiteit Leuven, Herestraat 49 - Bus1042, 3000, Leuven, Belgium
| | - Bram Vanschoenwinkel
- Community Ecology Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.,Center for Environmental Management, University of the Free State, Bloemfontein, 9030, South Africa
| | - Paul Proost
- Rega Institute, Molecular Immunology, Katholieke Universiteit Leuven, Herestraat 49 - Bus1042, 3000, Leuven, Belgium
| | - Franky Bossuyt
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| |
Collapse
|
12
|
Johnson-Weaver BT, Choi HW, Yang H, Granek JA, Chan C, Abraham SN, Staats HF. Nasal Immunization With Small Molecule Mast Cell Activators Enhance Immunity to Co-Administered Subunit Immunogens. Front Immunol 2021; 12:730346. [PMID: 34566991 PMCID: PMC8461742 DOI: 10.3389/fimmu.2021.730346] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/23/2021] [Indexed: 01/02/2023] Open
Abstract
Mast cell activators are a novel class of mucosal vaccine adjuvants. The polymeric compound, Compound 48/80 (C48/80), and cationic peptide, Mastoparan 7 (M7) are mast cell activators that provide adjuvant activity when administered by the nasal route. However, small molecule mast cell activators may be a more cost-efficient adjuvant alternative that is easily synthesized with high purity compared to M7 or C48/80. To identify novel mast cell activating compounds that could be evaluated for mucosal vaccine adjuvant activity, we employed high-throughput screening to assess over 55,000 small molecules for mast cell degranulation activity. Fifteen mast cell activating compounds were down-selected to five compounds based on in vitro immune activation activities including cytokine production and cellular cytotoxicity, synthesis feasibility, and selection for functional diversity. These small molecule mast cell activators were evaluated for in vivo adjuvant activity and induction of protective immunity against West Nile Virus infection in BALB/c mice when combined with West Nile Virus envelope domain III (EDIII) protein in a nasal vaccine. We found that three of the five mast cell activators, ST101036, ST048871, and R529877, evoked high levels of EDIII-specific antibody and conferred comparable levels of protection against WNV challenge. The level of protection provided by these small molecule mast cell activators was comparable to the protection evoked by M7 (67%) but markedly higher than the levels seen with mice immunized with EDIII alone (no adjuvant 33%). Thus, novel small molecule mast cell activators identified by high throughput screening are as efficacious as previously described mast cell activators when used as nasal vaccine adjuvants and represent next-generation mast cell activators for evaluation in mucosal vaccine studies.
Collapse
Affiliation(s)
| | - Hae Woong Choi
- Pathology Department, School of Medicine, Duke University, Durham, NC, United States
| | - Hang Yang
- Biostatistics and Bioinformatics Department, School of Medicine, Duke University, Durham, NC, United States
| | - Josh A. Granek
- Biostatistics and Bioinformatics Department, School of Medicine, Duke University, Durham, NC, United States
| | - Cliburn Chan
- Biostatistics and Bioinformatics Department, School of Medicine, Duke University, Durham, NC, United States
| | - Soman N. Abraham
- Pathology Department, School of Medicine, Duke University, Durham, NC, United States
- Department of Immunology, School of Medicine, Duke University, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| | - Herman F. Staats
- Pathology Department, School of Medicine, Duke University, Durham, NC, United States
- Department of Immunology, School of Medicine, Duke University, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States
| |
Collapse
|
13
|
Titz B, Sewer A, Luettich K, Wong ET, Guedj E, Nury C, Schneider T, Xiang Y, Trivedi K, Vuillaume G, Leroy P, Büttner A, Martin F, Ivanov NV, Vanscheeuwijck P, Hoeng J, Peitsch MC. Respiratory Effects of Exposure to Aerosol From the Candidate Modified-Risk Tobacco Product THS 2.2 in an 18-Month Systems Toxicology Study With A/J Mice. Toxicol Sci 2021; 178:138-158. [PMID: 32780831 PMCID: PMC7657339 DOI: 10.1093/toxsci/kfaa132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Smoking cessation is the most effective measure for reducing the risk of smoking-related diseases. However, switching to less harmful products (modified-risk tobacco products [MRTP]) can be an alternative to help reduce the risk for adult smokers who would otherwise continue to smoke. In an 18-month chronic carcinogenicity/toxicity study in A/J mice (OECD Test Guideline 453), we assessed the aerosol of Tobacco Heating System 2.2 (THS 2.2), a candidate MRTP based on the heat-not-burn principle, compared with 3R4F cigarette smoke (CS). To capture toxicity- and disease-relevant mechanisms, we complemented standard toxicology endpoints with in-depth systems toxicology analyses. In this part of our publication series, we report on integrative assessment of the apical and molecular exposure effects on the respiratory tract (nose, larynx, and lungs). Across the respiratory tract, we found changes in inflammatory response following 3R4F CS exposure (eg, antimicrobial peptide response in the nose), with both shared and distinct oxidative and xenobiotic responses. Compared with 3R4F CS, THS 2.2 aerosol exerted far fewer effects on respiratory tract histology, including adaptive tissue changes in nasal and laryngeal epithelium and inflammation and emphysematous changes in the lungs. Integrative analysis of molecular changes confirmed the substantially lower impact of THS 2.2 aerosol than 3R4F CS on toxicologically and disease-relevant molecular processes such as inflammation, oxidative stress responses, and xenobiotic metabolism. In summary, this work exemplifies how apical and molecular endpoints can be combined effectively for toxicology assessment and further supports findings on the reduced respiratory health risks of THS 2.2 aerosol.
Collapse
Affiliation(s)
- Bjoern Titz
- PMI R&D, Philip Morris Products S.A, CH-2000 Neuchâtel, Switzerland
| | - Alain Sewer
- PMI R&D, Philip Morris Products S.A, CH-2000 Neuchâtel, Switzerland
| | - Karsta Luettich
- PMI R&D, Philip Morris Products S.A, CH-2000 Neuchâtel, Switzerland
| | - Ee Tsin Wong
- Philip Morris International Research Laboratories Pte. Ltd, Singapore 117406
| | - Emmanuel Guedj
- PMI R&D, Philip Morris Products S.A, CH-2000 Neuchâtel, Switzerland
| | - Catherine Nury
- PMI R&D, Philip Morris Products S.A, CH-2000 Neuchâtel, Switzerland
| | | | - Yang Xiang
- PMI R&D, Philip Morris Products S.A, CH-2000 Neuchâtel, Switzerland
| | - Keyur Trivedi
- PMI R&D, Philip Morris Products S.A, CH-2000 Neuchâtel, Switzerland
| | | | - Patrice Leroy
- PMI R&D, Philip Morris Products S.A, CH-2000 Neuchâtel, Switzerland
| | | | - Florian Martin
- PMI R&D, Philip Morris Products S.A, CH-2000 Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A, CH-2000 Neuchâtel, Switzerland
| | | | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A, CH-2000 Neuchâtel, Switzerland
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
14
|
Poitras T, Piragasam RS, Joy T, Jackson J, Chandrasekhar A, Fahlman R, Zochodne DW. Major urinary protein excreted in rodent hindpaw sweat. J Anat 2021; 239:529-535. [PMID: 33686663 PMCID: PMC8273588 DOI: 10.1111/joa.13423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 11/29/2022] Open
Abstract
Alternative roles for sweat production beyond thermoregulation, considered less frequently, include chemical signaling. We identified the presence of a well-established rodent urinary pheromone, major urinary protein (MUP) in sweat ductules of the footpad dermal skin of mice. A hindpaw sweat proteomic analysis in hindpaw sweat samples collected in rats and generated by unmyelinated axon activation, identified seven lipocalin family members including MUP and 19 additional unique proteins. Behavioural responses to sniffing male mouse foot protein lysates suggested avoidance in a subset of male mice, but were not definitive. Rodent hindpaw sweat glands secrete a repertoire of proteins that include MUPs known to have roles in olfactory communication.
Collapse
Affiliation(s)
- Trevor Poitras
- Division of NeurologyDepartment of Medicine and the Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonABCanada
| | | | - Twinkle Joy
- Division of NeurologyDepartment of Medicine and the Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonABCanada
| | - Jesse Jackson
- Department of Physiology and the Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonABCanada
| | - Ambika Chandrasekhar
- Division of NeurologyDepartment of Medicine and the Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonABCanada
| | - Richard Fahlman
- Department of BiochemistryUniversity of AlbertaEdmontonABCanada
| | - Douglas W. Zochodne
- Division of NeurologyDepartment of Medicine and the Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonABCanada
| |
Collapse
|
15
|
Master A, Kontzias A, Huang L, Huang W, Tsioulias A, Zarabi S, Wolek M, Wollocko BM, Honkanen R, Rigas B. The transcriptome of rabbit conjunctiva in dry eye disease: Large-scale changes and similarity to the human dry eye. PLoS One 2021; 16:e0254036. [PMID: 34324523 PMCID: PMC8321226 DOI: 10.1371/journal.pone.0254036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 01/31/2023] Open
Abstract
The pathophysiology of dry eye disease (DED) remains largely unknown, accounting in part for the lack of successful treatments. We explored the pathophysiology of DED using a rabbit model of chronic DED induced with 3 weekly injections of Concanavalin A into the periorbital lacrimal glands. The transcriptome of full-thickness's conjunctival tissue from rabbits with DED and from normal controls was determined using microarrays and, as needed, confirmatory real-time polymerase chain reactions. Results were subjected to bioinformatic analysis. DED induced large-scale changes in gene transcription involving 5,184 genes (22% of the total). Differentially expressed genes could be segregated into: functional modules and clusters; altered pathways; functionally linked genes; and groups of individual genes of known or suspected pathophysiological relevance to DED. A common feature of these subgroups is the breadth and magnitude of the changes that encompass ocular immunology and essentially all aspects of cell biology. Prominent changes concerned innate and adaptive immune responses; ocular surface inflammation; at least 25 significantly altered signaling pathways; a large number of chemokines; cell cycle; and apoptosis. Comparison of our findings to the limited extant transcriptomic data from DED patients associated with either Sjogren's syndrome or non-Sjogren's etiologies revealed a significant correlation between human and rabbit DED transcriptomes. Our data, establishing the large-scale transcriptomic changes of DED and their potential similarity to the human, underscore the enormous complexity of DED; establish a robust animal model of DED; will help expand our understanding of its pathophysiology; and could guide the development of successful therapeutic strategies.
Collapse
Affiliation(s)
- Adam Master
- Department of Preventive Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Apostolos Kontzias
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Liqun Huang
- Department of Preventive Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Medicon Pharmaceuticals, Inc., Setauket, New York, United States of America
| | - Wei Huang
- Department of Ophthalmology, Stony Brook University, Stony Brook, New York, United States of America
| | - Anna Tsioulias
- Department of Preventive Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Samaneh Zarabi
- Department of Pathology, Stony Brook University, Stony Brook, New York, United States of America
| | - Michael Wolek
- Renaissance Medical School, Stony Brook University, Stony Brook, New York, United States of America
| | - Brian M. Wollocko
- Renaissance Medical School, Stony Brook University, Stony Brook, New York, United States of America
| | - Robert Honkanen
- Department of Ophthalmology, Stony Brook University, Stony Brook, New York, United States of America
| | - Basil Rigas
- Department of Preventive Medicine, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
16
|
Bansal R, Nagel M, Stopkova R, Sofer Y, Kimchi T, Stopka P, Spehr M, Ben-Shaul Y. Do all mice smell the same? Chemosensory cues from inbred and wild mouse strains elicit stereotypic sensory representations in the accessory olfactory bulb. BMC Biol 2021; 19:133. [PMID: 34182994 PMCID: PMC8240315 DOI: 10.1186/s12915-021-01064-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/06/2021] [Indexed: 11/10/2022] Open
Abstract
Background For many animals, chemosensory cues are vital for social and defensive interactions and are primarily detected and processed by the vomeronasal system (VNS). These cues are often inherently associated with ethological meaning, leading to stereotyped behaviors. Thus, one would expect consistent representation of these stimuli across different individuals. However, individuals may express different arrays of vomeronasal sensory receptors and may vary in the pattern of connections between those receptors and projection neurons in the accessory olfactory bulb (AOB). In the first part of this study, we address the ability of individuals to form consistent representations despite these potential sources of variability. The second part of our study is motivated by the fact that the majority of research on VNS physiology involves the use of stimuli derived from inbred animals. Yet, it is unclear whether neuronal representations of inbred-derived stimuli are similar to those of more ethologically relevant wild-derived stimuli. Results First, we compared sensory representations to inbred, wild-derived, and wild urine stimuli in the AOBs of males from two distinct inbred strains, using them as proxies for individuals. We found a remarkable similarity in stimulus representations across the two strains. Next, we compared AOB neuronal responses to inbred, wild-derived, and wild stimuli, again using male inbred mice as subjects. Employing various measures of neuronal activity, we show that wild-derived and wild stimuli elicit responses that are broadly similar to those from inbred stimuli: they are not considerably stronger or weaker, they show similar levels of sexual dimorphism, and when examining population-level activity, cluster with inbred mouse stimuli. Conclusions Despite strain-specific differences and apparently random connectivity, the AOB can maintain stereotypic sensory representations for broad stimulus categories, providing a substrate for common stereotypical behaviors. In addition, despite many generations of inbreeding, AOB representations capture the key ethological features (i.e., species and sex) of wild-derived and wild counterparts. Beyond these broad similarities, representations of stimuli from wild mice are nevertheless distinct from those elicited by inbred mouse stimuli, suggesting that laboratory inbreeding has indeed resulted in marked modifications of urinary secretions. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01064-7.
Collapse
Affiliation(s)
- Rohini Bansal
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maximilian Nagel
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Romana Stopkova
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Yizhak Sofer
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Tali Kimchi
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Pavel Stopka
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Yoram Ben-Shaul
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
17
|
Bryche B, Baly C, Meunier N. Modulation of olfactory signal detection in the olfactory epithelium: focus on the internal and external environment, and the emerging role of the immune system. Cell Tissue Res 2021; 384:589-605. [PMID: 33961125 PMCID: PMC8102665 DOI: 10.1007/s00441-021-03467-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/26/2021] [Indexed: 12/18/2022]
Abstract
Detection and discrimination of odorants by the olfactory system plays a pivotal role in animal survival. Olfactory-based behaviors must be adapted to an ever-changing environment. Part of these adaptations includes changes of odorant detection by olfactory sensory neurons localized in the olfactory epithelium. It is now well established that internal signals such as hormones, neurotransmitters, or paracrine signals directly affect the electric activity of olfactory neurons. Furthermore, recent data have shown that activity-dependent survival of olfactory neurons is important in the olfactory epithelium. Finally, as olfactory neurons are directly exposed to environmental toxicants and pathogens, the olfactory epithelium also interacts closely with the immune system leading to neuroimmune modulations. Here, we review how detection of odorants can be modulated in the vertebrate olfactory epithelium. We choose to focus on three cellular types of the olfactory epithelium (the olfactory sensory neuron, the sustentacular and microvillar cells) to present the diversity of modulation of the detection of odorant in the olfactory epithelium. We also present some of the growing literature on the importance of immune cells in the functioning of the olfactory epithelium, although their impact on odorant detection is only just beginning to be unravelled.
Collapse
Affiliation(s)
- Bertrand Bryche
- Université Paris-Saclay, INRAE, UVSQ, 78350, Jouy-en-Josas, VIM, France
| | - Christine Baly
- Université Paris Saclay, INRAE, UVSQ, BREED, 78350, Jouy-en-Josas, France
| | - Nicolas Meunier
- Université Paris-Saclay, INRAE, UVSQ, 78350, Jouy-en-Josas, VIM, France.
| |
Collapse
|
18
|
Oral and vaginal microbiota in selected field mice of the genus Apodemus: a wild population study. Sci Rep 2020; 10:13246. [PMID: 32764739 PMCID: PMC7413396 DOI: 10.1038/s41598-020-70249-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/10/2020] [Indexed: 11/09/2022] Open
Abstract
Animal-associated microbiota is expected to impose crucial effects on the host's fitness-related performance, including reproduction. Most research to date has focused on interactions between the host with its gut microbiota; however, there remain considerable gaps in knowledge regarding microbial consortia in other organs, including interspecific divergence, temporal stability, variation drivers, and their effects on the host. To fill these gaps, we examined oral and vaginal microbiota composition in four free-living mouse species of the genus Apodemus, each varying in the degree of female promiscuity. To assess temporal stability and microbiota resistance to environmental change, we exposed one of the species, Apodemus uralensis, to standardized captive conditions and analyzed longitudinal changes in its microbiota structure. Our results revealed the existence of a "core" oral microbiota that was not only shared among all four species but also persisted almost unchanged in captivity. On the other hand, vaginal microbiota appears to be more plastic in captive conditions and less species-specific in comparison with oral microbiota. This study is amongst the first to describe oral microbiota dynamics. Furthermore, the vaginal microbiota results are especially surprising in light of the well-known role of stable vaginal microbiota as a defense against pathogens. The results indicate the existence of diverse mechanisms that shape each microbiota. On the other hand, our data provides somewhat ambiguous support for the systematic effect of phylogeny and social system on both oral and vaginal microbiota structures.
Collapse
|
19
|
Romero-Diaz C, Campos SM, Herrmann MA, Lewis KN, Williams DR, Soini HA, Novotny MV, Hews DK, Martins EP. Structural Identification, Synthesis and Biological Activity of Two Volatile Cyclic Dipeptides in a Terrestrial Vertebrate. Sci Rep 2020; 10:4303. [PMID: 32152427 PMCID: PMC7062908 DOI: 10.1038/s41598-020-61312-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/24/2020] [Indexed: 11/22/2022] Open
Abstract
Single substances within complex vertebrate chemical signals could be physiologically or behaviourally active. However, the vast diversity in chemical structure, physical properties and molecular size of semiochemicals makes identifying pheromonally active compounds no easy task. Here, we identified two volatile cyclic dipeptides, cyclo(L-Leu-L-Pro) and cyclo(L-Pro-L-Pro), from the complex mixture of a chemical signal in terrestrial vertebrates (lizard genus Sceloporus), synthesised one of them and investigated their biological activity in male intra-specific communication. In a series of behavioural trials, lizards performed more chemosensory behaviour (tongue flicks, lip smacks and substrate lickings) when presented with the synthesised cyclo(L-Pro-L-Pro) chemical blend, compared to the controls, the cyclo(L-Leu-L-Pro) blend, or a combined blend with both cyclic dipeptides. The results suggest a potential semiochemical role of cyclo(L-Pro-L-Pro) and a modulating effect of cyclo(L-Leu-L-Pro) that may depend on the relative concentration of both compounds in the chemical signal. In addition, our results stress how minor compounds in complex mixtures can produce a meaningful behavioural response, how small differences in structural design are crucial for biological activity, and highlight the need for more studies to determine the complete functional landscape of biologically relevant compounds.
Collapse
Affiliation(s)
| | - Stephanie M Campos
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, 47405, USA.,Center for Behavioral Neuroscience, Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA
| | - Morgan A Herrmann
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Kristen N Lewis
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | - David R Williams
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Helena A Soini
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA.,Institute for Pheromone Research, Indiana University, Bloomington, IN, 47405, USA
| | - Milos V Novotny
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA.,Institute for Pheromone Research, Indiana University, Bloomington, IN, 47405, USA
| | - Diana K Hews
- Department of Biology, Indiana State University, Terre Haute, IN, 47809, USA
| | - Emília P Martins
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
20
|
Heydel JM, Menetrier F, Belloir C, Canon F, Faure P, Lirussi F, Chavanne E, Saliou JM, Artur Y, Canivenc-Lavier MC, Briand L, Neiers F. Characterization of rat glutathione transferases in olfactory epithelium and mucus. PLoS One 2019; 14:e0220259. [PMID: 31339957 PMCID: PMC6656353 DOI: 10.1371/journal.pone.0220259] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/11/2019] [Indexed: 12/15/2022] Open
Abstract
The olfactory epithelium is continuously exposed to exogenous chemicals, including odorants. During the past decade, the enzymes surrounding the olfactory receptors have been shown to make an important contribution to the process of olfaction. Mammalian xenobiotic metabolizing enzymes, such as cytochrome P450, esterases and glutathione transferases (GSTs), have been shown to participate in odorant clearance from the olfactory receptor environment, consequently contributing to the maintenance of sensitivity toward odorants. GSTs have previously been shown to be involved in numerous physiological processes, including detoxification, steroid hormone biosynthesis, and amino acid catabolism. These enzymes ensure either the capture or the glutathione conjugation of a large number of ligands. Using a multi-technique approach (proteomic, immunocytochemistry and activity assays), our results indicate that GSTs play an important role in the rat olfactory process. First, proteomic analysis demonstrated the presence of different putative odorant metabolizing enzymes, including different GSTs, in the rat nasal mucus. Second, GST expression was investigated in situ in rat olfactory tissues using immunohistochemical methods. Third, the activity of the main GST (GSTM2) odorant was studied with in vitro experiments. Recombinant GSTM2 was used to screen a set of odorants and characterize the nature of its interaction with the odorants. Our results support a significant role of GSTs in the modulation of odorant availability for receptors in the peripheral olfactory process.
Collapse
Affiliation(s)
- Jean-Marie Heydel
- University Bourgogne Franche-Comté, Faculty of Health Sciences, Dijon, France
- CSGA, Laboratory of taste and olfaction: from the molecule to behavior, University Bourgogne Franche-Comté, INRA, CNRS, France
- * E-mail: (FN); (J-MH)
| | - Franck Menetrier
- CSGA, Laboratory of taste and olfaction: from the molecule to behavior, University Bourgogne Franche-Comté, INRA, CNRS, France
| | - Christine Belloir
- CSGA, Laboratory of taste and olfaction: from the molecule to behavior, University Bourgogne Franche-Comté, INRA, CNRS, France
| | - Francis Canon
- CSGA, Laboratory of taste and olfaction: from the molecule to behavior, University Bourgogne Franche-Comté, INRA, CNRS, France
| | - Philippe Faure
- University Bourgogne Franche-Comté, Faculty of Health Sciences, Dijon, France
- CSGA, Laboratory of taste and olfaction: from the molecule to behavior, University Bourgogne Franche-Comté, INRA, CNRS, France
| | - Frederic Lirussi
- University Bourgogne Franche-Comté, Faculty of Health Sciences, Dijon, France
- Université de Bourgogne, Centre Hospitalier Universitaire de Dijon, INSERM, U1231, Lipides Nutrition Cancer, Équipe labellisée Ligue Nationale contre le Cancer, Dijon, France
| | - Evelyne Chavanne
- University Bourgogne Franche-Comté, Faculty of Health Sciences, Dijon, France
- CSGA, Laboratory of taste and olfaction: from the molecule to behavior, University Bourgogne Franche-Comté, INRA, CNRS, France
| | - Jean-Michel Saliou
- University of Lille, CNRS, INSERM, CHU Lille, Pasteur Institute of Lille, U1019-UMR8204-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Yves Artur
- University Bourgogne Franche-Comté, Faculty of Health Sciences, Dijon, France
- CSGA, Laboratory of taste and olfaction: from the molecule to behavior, University Bourgogne Franche-Comté, INRA, CNRS, France
| | - Marie-Chantal Canivenc-Lavier
- CSGA, Laboratory of taste and olfaction: from the molecule to behavior, University Bourgogne Franche-Comté, INRA, CNRS, France
| | - Loïc Briand
- CSGA, Laboratory of taste and olfaction: from the molecule to behavior, University Bourgogne Franche-Comté, INRA, CNRS, France
| | - Fabrice Neiers
- University Bourgogne Franche-Comté, Faculty of Health Sciences, Dijon, France
- CSGA, Laboratory of taste and olfaction: from the molecule to behavior, University Bourgogne Franche-Comté, INRA, CNRS, France
- * E-mail: (FN); (J-MH)
| |
Collapse
|
21
|
Heydel JM, Faure P, Neiers F. Nasal odorant metabolism: enzymes, activity and function in olfaction. Drug Metab Rev 2019; 51:224-245. [DOI: 10.1080/03602532.2019.1632890] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jean-Marie Heydel
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Philippe Faure
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Fabrice Neiers
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| |
Collapse
|
22
|
Santoro SW, Jakob S. Gene expression profiling of the olfactory tissues of sex-separated and sex-combined female and male mice. Sci Data 2018; 5:180260. [PMID: 30512012 PMCID: PMC6278690 DOI: 10.1038/sdata.2018.260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/01/2018] [Indexed: 12/14/2022] Open
Abstract
Olfactory experience can alter the molecular and cellular composition of chemosensory neurons within the olfactory sensory epithelia of mice. We sought to investigate the scope of cellular and molecular changes within a mouse's olfactory system as a function of its exposure to complex and salient sets of odors: those emitted from members of the opposite sex. We housed mice either separated from members of the opposite sex (sex-separated) or together with members of the opposite sex (sex-combined) until six months of age, resulting in the generation of four cohorts of mice. From each mouse, the main olfactory epithelium (MOE), vomeronasal organ (VNO), and olfactory bulb (OB) were removed and RNA-extracted. A total of 36 RNA samples, representing three biological replicates per sex/condition/tissue combination, were analyzed for integrity and used to prepare RNA-seq libraries, which were subsequently analyzed via qPCR for the presence of tissue- or sex-specific markers. Libraries were paired-end sequenced to a depth of ~20 million fragments per replicate and the data were analyzed using the Tuxedo suite.
Collapse
Affiliation(s)
- Stephen W. Santoro
- Neuroscience Program, Dept. of Zoology & Physiology, University of Wyoming, Laramie, WY, USA
| | - Susanne Jakob
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
23
|
Bílková B, Świderská Z, Zita L, Laloë D, Charles M, Beneš V, Stopka P, Vinkler M. Domestic Fowl Breed Variation in Egg White Protein Expression: Application of Proteomics and Transcriptomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11854-11863. [PMID: 30296079 DOI: 10.1021/acs.jafc.8b03099] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Avian egg white is essential for protecting and nourishing bird embryos during their development. Being produced in the female magnum, variability in hen oviduct gene expression may affect egg white composition in domestic chickens. Since traditional poultry breeds may represent a source of variation, in the present study we describe the egg white proteome (mass spectrometry) and corresponding magnum transcriptome (high-throughput sequencing) for 20 hens from five domestic fowl breeds (large breeds: Araucana, Czech golden pencilled, Minorca; and small breeds: Booted bantam, Rosecomb bantam). In total, we identified 189 egg white proteins and 16391 magnum-expressed genes. The majority of egg white protein content comprised proteins with an antimicrobial function. Despite general similarity, Between-class Principal Component Analysis revealed significant breed-specific variability in protein abundances, differentiating especially small and large breeds. Though we found strong association between magnum mRNA expression and egg white protein abundance across genes, coinertia analysis revealed no transcriptome/proteome costructure at the individual level. Our study is the first to show variation in protein abundances in egg white across chicken breeds with potential effects on egg quality, biosafety, and chick development. The observed interindividual variation probably results from post-transcriptional regulation creating a discrepancy between proteomic and transcriptomic data.
Collapse
Affiliation(s)
- Barbora Bílková
- Charles University , Faculty of Science, Department of Zoology , Prague , Czech Republic
| | - Zuzana Świderská
- Charles University , Faculty of Science, Department of Zoology , Prague , Czech Republic
- Charles University , Faculty of Science, Department of Cell Biology , Prague , Czech Republic
| | - Lukáš Zita
- Czech University of Life Sciences , Faculty of Agrobiology, Food and Natural Resources, Department of Animal Science , Prague , Czech Republic
| | - Denis Laloë
- GABI, INRA, AgroParisTech , Université Paris-Saclay , Jouy-en-Josas , France
| | - Mathieu Charles
- GABI, INRA, AgroParisTech , Université Paris-Saclay , Jouy-en-Josas , France
| | - Vladimír Beneš
- European Molecular Biology Laboratory , Heidelberg 69117 , Germany
| | - Pavel Stopka
- Charles University , Faculty of Science, Department of Zoology , Prague , Czech Republic
| | - Michal Vinkler
- Charles University , Faculty of Science, Department of Zoology , Prague , Czech Republic
| |
Collapse
|
24
|
Ueha R, Shichino S, Ueha S, Kondo K, Kikuta S, Nishijima H, Matsushima K, Yamasoba T. Reduction of Proliferating Olfactory Cells and Low Expression of Extracellular Matrix Genes Are Hallmarks of the Aged Olfactory Mucosa. Front Aging Neurosci 2018; 10:86. [PMID: 29636678 PMCID: PMC5880952 DOI: 10.3389/fnagi.2018.00086] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/13/2018] [Indexed: 11/13/2022] Open
Abstract
Background: The incidence of olfactory impairment increases with age; however, the detailed molecular and cellular mechanisms underlying this increase are yet to be determined. Methods: We examined the influence of aging on olfactory receptor neurons (ORNs), which are maintained by a unique stem cell system, from olfactory progenitor cells to mature ORNs, by histological comparisons of the physiological status of the olfactory epithelium between young adult and aged mice. Furthermore, we clarified the expression of genes encoding inflammatory cytokines, neurotrophins, growth factors, and extracellular matrix proteins to reveal the molecular mechanisms underlying olfactory impairment caused by aging. Results: The numbers of mature and immature ORNs, but not olfactory progenitors, decreased in the aged olfactory epithelium, with a concurrent reduction in Ki-67-positive proliferating cells. Transcriptome analyses revealed an increase in Il6, encoding a component of senescence-associated secretary phenotypes (SASP), and a decrease in Igf1, encoding a growth factor for ORNs, in the aged nasal mucosa. Interestingly, expression levels of several extracellular matrix genes, including Col1a2, decreased in the aged nasal mucosa. Consistent with the transcriptional changes, the number of Col1a2-GFP-positive cells decreased in the aged lamina propria. Conclusions: Our data suggest that reduction in ORN number and cell proliferation, reduced extracellular matrix gene expression, and increased SASP contribute to olfactory impairment during aging.
Collapse
Affiliation(s)
- Rumi Ueha
- Department of Otolaryngology, The University of Tokyo, Tokyo, Japan
| | - Shigeyuki Shichino
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoshi Ueha
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenji Kondo
- Department of Otolaryngology, The University of Tokyo, Tokyo, Japan
| | - Shu Kikuta
- Department of Otolaryngology, The University of Tokyo, Tokyo, Japan
| | | | - Kouji Matsushima
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|