1
|
Lewis JM, Williams J, Sagona AP. Making the leap from technique to treatment - genetic engineering is paving the way for more efficient phage therapy. Biochem Soc Trans 2024; 52:1373-1384. [PMID: 38716972 PMCID: PMC11346441 DOI: 10.1042/bst20231289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/30/2024] [Accepted: 04/29/2024] [Indexed: 06/27/2024]
Abstract
Bacteriophages (phages) are viruses specific to bacteria that target them with great efficiency and specificity. Phages were first studied for their antibacterial potential in the early twentieth century; however, their use was largely eclipsed by the popularity of antibiotics. Given the surge of antimicrobial-resistant strains worldwide, there has been a renaissance in harnessing phages as therapeutics once more. One of the key advantages of phages is their amenability to modification, allowing the generation of numerous derivatives optimised for specific functions depending on the modification. These enhanced derivatives could display higher infectivity, expanded host range or greater affinity to human tissues, where some bacterial species exert their pathogenesis. Despite this, there has been a noticeable discrepancy between the generation of derivatives in vitro and their clinical application in vivo. In most instances, phage therapy is only used on a compassionate-use basis, where all other treatment options have been exhausted. A lack of clinical trials and numerous regulatory hurdles hamper the progress of phage therapy and in turn, the engineered variants, in becoming widely used in the clinic. In this review, we outline the various types of modifications enacted upon phages and how these modifications contribute to their enhanced bactericidal function compared with wild-type phages. We also discuss the nascent progress of genetically modified phages in clinical trials along with the current issues these are confronted with, to validate it as a therapy in the clinic.
Collapse
Affiliation(s)
| | - Joshua Williams
- School of Life Sciences, University of Warwick, Coventry, U.K
| | | |
Collapse
|
2
|
Alves SIA, Ferreira VBC, Dantas CWD, da Silva ALDC, Ramos RTJ. EasySSR: a user-friendly web application with full command-line features for large-scale batch microsatellite mining and samples comparison. Front Genet 2023; 14:1228552. [PMID: 37693309 PMCID: PMC10483286 DOI: 10.3389/fgene.2023.1228552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/28/2023] [Indexed: 09/12/2023] Open
Abstract
Microsatellites, also known as SSRs or STRs, are polymorphic DNA regions with tandem repetitions of a nucleotide motif of size 1-6 base pairs with a broad range of applications in many fields, such as comparative genomics, molecular biology, and forensics. However, the majority of researchers do not have computational training and struggle while running command-line tools or very limited web tools for their SSR research, spending a considerable amount of time learning how to execute the software and conducting the post-processing data tabulation in other tools or manually-time that could be used directly in data analysis. We present EasySSR, a user-friendly web tool with command-line full functionality, designed for practical use in batch identifying and comparing SSRs in sequences, draft, or complete genomes, not requiring previous bioinformatic skills to run. EasySSR requires only a FASTA and an optional GENBANK file of one or more genomes to identify and compare STRs. The tool can automatically analyze and compare SSRs in whole genomes, convert GenBank to PTT files, identify perfect and imperfect SSRs and coding and non-coding regions, compare their frequencies, abundancy, motifs, flanking sequences, and iterations, producing many outputs ready for download such as PTT files, interactive charts, and Excel tables, giving the user the data ready for further analysis in minutes. EasySSR was implemented as a web application, which can be executed from any browser and is available for free at https://computationalbiology.ufpa.br/easyssr/. Tutorials, usage notes, and download links to the source code can be found at https://github.com/engbiopct/EasySSR.
Collapse
Affiliation(s)
- Sandy Ingrid Aguiar Alves
- Laboratory of Biological Engineering, Biological Science Institute, Park of Science and Technology, Federal University of Pará, Belém, Brazil
| | - Victor Benedito Costa Ferreira
- Laboratory of Biological Engineering, Biological Science Institute, Park of Science and Technology, Federal University of Pará, Belém, Brazil
| | | | - Artur Luiz da Costa da Silva
- Laboratory of Biological Engineering, Biological Science Institute, Park of Science and Technology, Federal University of Pará, Belém, Brazil
| | - Rommel Thiago Jucá Ramos
- Laboratory of Biological Engineering, Biological Science Institute, Park of Science and Technology, Federal University of Pará, Belém, Brazil
| |
Collapse
|
3
|
Gheibzadeh MS, Manyumwa CV, Tastan Bishop Ö, Shahbani Zahiri H, Parkkila S, Zolfaghari Emameh R. Genome Study of α-, β-, and γ-Carbonic Anhydrases from the Thermophilic Microbiome of Marine Hydrothermal Vent Ecosystems. BIOLOGY 2023; 12:770. [PMID: 37372055 DOI: 10.3390/biology12060770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023]
Abstract
Carbonic anhydrases (CAs) are metalloenzymes that can help organisms survive in hydrothermal vents by hydrating carbon dioxide (CO2). In this study, we focus on alpha (α), beta (β), and gamma (γ) CAs, which are present in the thermophilic microbiome of marine hydrothermal vents. The coding genes of these enzymes can be transferred between hydrothermal-vent organisms via horizontal gene transfer (HGT), which is an important tool in natural biodiversity. We performed big data mining and bioinformatics studies on α-, β-, and γ-CA coding genes from the thermophilic microbiome of marine hydrothermal vents. The results showed a reasonable association between thermostable α-, β-, and γ-CAs in the microbial population of the hydrothermal vents. This relationship could be due to HGT. We found evidence of HGT of α- and β-CAs between Cycloclasticus sp., a symbiont of Bathymodiolus heckerae, and an endosymbiont of Riftia pachyptila via Integrons. Conversely, HGT of β-CA genes from the endosymbiont Tevnia jerichonana to the endosymbiont Riftia pachyptila was detected. In addition, Hydrogenovibrio crunogenus SP-41 contains a β-CA gene on genomic islands (GIs). This gene can be transferred by HGT to Hydrogenovibrio sp. MA2-6, a methanotrophic endosymbiont of Bathymodiolus azoricus, and a methanotrophic endosymbiont of Bathymodiolus puteoserpentis. The endosymbiont of R. pachyptila has a γ-CA gene in the genome. If α- and β-CA coding genes have been derived from other microorganisms, such as endosymbionts of T. jerichonana and Cycloclasticus sp. as the endosymbiont of B. heckerae, through HGT, the theory of the necessity of thermostable CA enzymes for survival in the extreme ecosystem of hydrothermal vents is suggested and helps the conservation of microbiome natural diversity in hydrothermal vents. These harsh ecosystems, with their integral players, such as HGT and endosymbionts, significantly impact the enrichment of life on Earth and the carbon cycle in the ocean.
Collapse
Affiliation(s)
- Mohammad Sadegh Gheibzadeh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14965/161, Iran
| | - Colleen Varaidzo Manyumwa
- Research Unit in Bioinformatics (Rubi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (Rubi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | - Hossein Shahbani Zahiri
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14965/161, Iran
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
- Fimlab Ltd., Tampere University Hospital, 33520 Tampere, Finland
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14965/161, Iran
| |
Collapse
|
4
|
Kalatzis PG, Mauritzen JJ, Winther-Have CS, Michniewski S, Millard A, Tsertou MI, Katharios P, Middelboe M. Staying below the Radar: Unraveling a New Family of Ubiquitous "Cryptic" Non-Tailed Temperate Vibriophages and Implications for Their Bacterial Hosts. Int J Mol Sci 2023; 24:3937. [PMID: 36835353 PMCID: PMC9966536 DOI: 10.3390/ijms24043937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
Bacteriophages are the most abundant biological entities in the oceans and play key roles in bacterial activity, diversity and evolution. While extensive research has been conducted on the role of tailed viruses (Class: Caudoviricetes), very little is known about the distribution and functions of the non-tailed viruses (Class: Tectiliviricetes). The recent discovery of the lytic Autolykiviridae family demonstrated the potential importance of this structural lineage, emphasizing the need for further exploration of the role of this group of marine viruses. Here, we report the novel family of temperate phages under the class of Tectiliviricetes, which we propose to name "Asemoviridae" with phage NO16 as a main representative. These phages are widely distributed across geographical regions and isolation sources and found inside the genomes of at least 30 species of Vibrio, in addition to the original V. anguillarum isolation host. Genomic analysis identified dif-like sites, suggesting that NO16 prophages recombine with the bacterial genome based on the XerCD site-specific recombination mechanism. The interactions between the NO16 phage and its V. anguillarum host were linked to cell density and phage-host ratio. High cell density and low phage predation levels were shown to favor the temperate over the lytic lifestyle for NO16 viruses, and their spontaneous induction rate was highly variable between different V. anguillarum lysogenic strains. NO16 prophages coexist with the V. anguillarum host in a mutualistic interaction by rendering fitness properties to the host, such as increased virulence and biofilm formation through lysogenic conversion, likely contributing to their global distribution.
Collapse
Affiliation(s)
- Panos G. Kalatzis
- Marine Biological Section, Department of Biology, University of Copenhagen, 3000 Elsinore, Denmark
| | - Jesper Juel Mauritzen
- Marine Biological Section, Department of Biology, University of Copenhagen, 3000 Elsinore, Denmark
| | | | - Slawomir Michniewski
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Andrew Millard
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Maria Ioanna Tsertou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Former American Base of Gournes, 71500 Heraklion, Greece
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Former American Base of Gournes, 71500 Heraklion, Greece
| | - Mathias Middelboe
- Marine Biological Section, Department of Biology, University of Copenhagen, 3000 Elsinore, Denmark
- Department of Biology, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
5
|
Bajiya N, Dhall A, Aggarwal S, Raghava GPS. Advances in the field of phage-based therapy with special emphasis on computational resources. Brief Bioinform 2023; 24:6961791. [PMID: 36575815 DOI: 10.1093/bib/bbac574] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/07/2022] [Accepted: 11/25/2022] [Indexed: 12/29/2022] Open
Abstract
In the current era, one of the major challenges is to manage the treatment of drug/antibiotic-resistant strains of bacteria. Phage therapy, a century-old technique, may serve as an alternative to antibiotics in treating bacterial infections caused by drug-resistant strains of bacteria. In this review, a systematic attempt has been made to summarize phage-based therapy in depth. This review has been divided into the following two sections: general information and computer-aided phage therapy (CAPT). In the case of general information, we cover the history of phage therapy, the mechanism of action, the status of phage-based products (approved and clinical trials) and the challenges. This review emphasizes CAPT, where we have covered primary phage-associated resources, phage prediction methods and pipelines. This review covers a wide range of databases and resources, including viral genomes and proteins, phage receptors, host genomes of phages, phage-host interactions and lytic proteins. In the post-genomic era, identifying the most suitable phage for lysing a drug-resistant strain of bacterium is crucial for developing alternate treatments for drug-resistant bacteria and this remains a challenging problem. Thus, we compile all phage-associated prediction methods that include the prediction of phages for a bacterial strain, the host for a phage and the identification of interacting phage-host pairs. Most of these methods have been developed using machine learning and deep learning techniques. This review also discussed recent advances in the field of CAPT, where we briefly describe computational tools available for predicting phage virions, the life cycle of phages and prophage identification. Finally, we describe phage-based therapy's advantages, challenges and opportunities.
Collapse
Affiliation(s)
- Nisha Bajiya
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India
| | - Anjali Dhall
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India
| | - Suchet Aggarwal
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India
| |
Collapse
|
6
|
Isolation and Characterization of Chi-like Salmonella Bacteriophages Infecting Two Salmonella enterica Serovars, Typhimurium and Enteritidis. Pathogens 2022; 11:pathogens11121480. [PMID: 36558814 PMCID: PMC9783114 DOI: 10.3390/pathogens11121480] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Salmonella enterica Serovar Typhimurium and Salmonella enterica Serovar Enteritidis are well-known pathogens that cause foodborne diseases in humans. The emergence of antibiotic-resistant Salmonella serovars has caused serious public health problems worldwide. In this study, two lysogenic phages, STP11 and SEP13, were isolated from a wastewater treatment plant in Jeddah, KSA. Transmission electron microscopic images revealed that both phages are new members of the genus “Chivirus” within the family Siphoviridae. Both STP11 and SEP13 had a lysis time of 90 min with burst sizes of 176 and 170 PFU/cell, respectively. The two phages were thermostable (0 °C ≤ temperature < 70 °C) and pH tolerant at 3 ≤ pH < 11. STP11 showed lytic activity for approximately 42.8% (n = 6), while SEP13 showed against 35.7% (n = 5) of the tested bacterial strains. STP11 and STP13 have linear dsDNA genomes consisting of 58,890 bp and 58,893 bp nucleotide sequences with G + C contents of 57% and 56.5%, respectively. Bioinformatics analysis revealed that the genomes of phages STP11 and SEP13 contained 70 and 71 ORFs, respectively. No gene encoding tRNA was detected in their genome. Of the 70 putative ORFs of phage STP11, 27 (38.6%) were assigned to functional genes and 43 (61.4%) were annotated as hypothetical proteins. Similarly, 29 (40.8%) of the 71 putative ORFs of phage SEP13 were annotated as functional genes, whereas the remaining 42 (59.2%) were assigned as nonfunctional proteins. Phylogenetic analysis of the whole genome sequence demonstrated that the isolated phages are closely related to Chi-like Salmonella viruses.
Collapse
|
7
|
Zhou F, Gan R, Zhang F, Ren C, Yu L, Si Y, Huang Z. PHISDetector: A Tool to Detect Diverse In Silico Phage-host Interaction Signals for Virome Studies. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:508-523. [PMID: 35272051 PMCID: PMC9801046 DOI: 10.1016/j.gpb.2022.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/22/2021] [Accepted: 02/28/2022] [Indexed: 01/26/2023]
Abstract
Phage-microbe interactions are appealing systems to study coevolution, and have also been increasingly emphasized due to their roles in human health, disease, and the development of novel therapeutics. Phage-microbe interactions leave diverse signals in bacterial and phage genomic sequences, defined as phage-host interaction signals (PHISs), which include clustered regularly interspaced short palindromic repeats (CRISPR) targeting, prophage, and protein-protein interaction signals. In the present study, we developed a novel tool phage-host interaction signal detector (PHISDetector) to predict phage-host interactions by detecting and integrating diverse in silico PHISs, and scoring the probability of phage-host interactions using machine learning models based on PHIS features. We evaluated the performance of PHISDetector on multiple benchmark datasets and application cases. When tested on a dataset of 758 annotated phage-host pairs, PHISDetector yields the prediction accuracies of 0.51 and 0.73 at the species and genus levels, respectively, outperforming other phage-host prediction tools. When applied to on 125,842 metagenomic viral contigs (mVCs) derived from 3042 geographically diverse samples, a detection rate of 54.54% could be achieved. Furthermore, PHISDetector could predict infecting phages for 85.6% of 368 multidrug-resistant (MDR) bacteria and 30% of 454 human gut bacteria obtained from the National Institutes of Health (NIH) Human Microbiome Project (HMP). The PHISDetector can be run either as a web server (http://www.microbiome-bigdata.com/PHISDetector/) for general users to study individual inputs or as a stand-alone version (https://github.com/HIT-ImmunologyLab/PHISDetector) to process massive phage contigs from virome studies.
Collapse
Affiliation(s)
- Fengxia Zhou
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Rui Gan
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Fan Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Chunyan Ren
- Department of Hematology/oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ling Yu
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Yu Si
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Zhiwei Huang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China,Corresponding author.
| |
Collapse
|
8
|
Bolduc B, Zablocki O, Guo J, Zayed AA, Vik D, Dehal P, Wood-Charlson EM, Arkin A, Merchant N, Pett-Ridge J, Roux S, Vaughn M, Sullivan MB. iVirus 2.0: Cyberinfrastructure-supported tools and data to power DNA virus ecology. ISME COMMUNICATIONS 2021; 1:77. [PMID: 36765102 PMCID: PMC9723767 DOI: 10.1038/s43705-021-00083-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 11/09/2022]
Abstract
Microbes drive myriad ecosystem processes, but under strong influence from viruses. Because studying viruses in complex systems requires different tools than those for microbes, they remain underexplored. To combat this, we previously aggregated double-stranded DNA (dsDNA) virus analysis capabilities and resources into 'iVirus' on the CyVerse collaborative cyberinfrastructure. Here we substantially expand iVirus's functionality and accessibility, to iVirus 2.0, as follows. First, core iVirus apps were integrated into the Department of Energy's Systems Biology KnowledgeBase (KBase) to provide an additional analytical platform. Second, at CyVerse, 20 software tools (apps) were upgraded or added as new tools and capabilities. Third, nearly 20-fold more sequence reads were aggregated to capture new data and environments. Finally, documentation, as "live" protocols, was updated to maximize user interaction with and contribution to infrastructure development. Together, iVirus 2.0 serves as a uniquely central and accessible analytical platform for studying how viruses, particularly dsDNA viruses, impact diverse microbial ecosystems.
Collapse
Affiliation(s)
- Benjamin Bolduc
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Columbus, OH, USA
- EMERGE Biology Integration Institute, Columbus, OH, USA
| | - Olivier Zablocki
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Columbus, OH, USA
- EMERGE Biology Integration Institute, Columbus, OH, USA
| | - Jiarong Guo
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Columbus, OH, USA
- EMERGE Biology Integration Institute, Columbus, OH, USA
| | - Ahmed A Zayed
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Columbus, OH, USA
- EMERGE Biology Integration Institute, Columbus, OH, USA
| | - Dean Vik
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Paramvir Dehal
- Environmental Genomics and Systems Biology Division, E.O. Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Elisha M Wood-Charlson
- Environmental Genomics and Systems Biology Division, E.O. Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Adam Arkin
- Environmental Genomics and Systems Biology Division, E.O. Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | | | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Life & Environmental Sciences Department, University of California Merced, Merced, CA, 95343, USA
| | - Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Matthew Vaughn
- Texas Advanced Computing Center, The University of Texas at Austin, Austin, TX, USA
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH, USA.
- Center of Microbiome Science, Columbus, OH, USA.
- EMERGE Biology Integration Institute, Columbus, OH, USA.
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
9
|
Martín-Galiano AJ, García E. Streptococcus pneumoniae: a Plethora of Temperate Bacteriophages With a Role in Host Genome Rearrangement. Front Cell Infect Microbiol 2021; 11:775402. [PMID: 34869076 PMCID: PMC8637289 DOI: 10.3389/fcimb.2021.775402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/29/2021] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages (phages) are viruses that infect bacteria. They are the most abundant biological entity on Earth (current estimates suggest there to be perhaps 1031 particles) and are found nearly everywhere. Temperate phages can integrate into the chromosome of their host, and prophages have been found in abundance in sequenced bacterial genomes. Prophages may modulate the virulence of their host in different ways, e.g., by the secretion of phage-encoded toxins or by mediating bacterial infectivity. Some 70% of Streptococcus pneumoniae (the pneumococcus)—a frequent cause of otitis media, pneumonia, bacteremia and meningitis—isolates harbor one or more prophages. In the present study, over 4000 S. pneumoniae genomes were examined for the presence of prophages, and nearly 90% were found to contain at least one prophage, either defective (47%) or present in full (43%). More than 7000 complete putative integrases, either of the tyrosine (6243) or serine (957) families, and 1210 full-sized endolysins (among them 1180 enzymes corresponding to 318 amino acid-long N-acetylmuramoyl-L-alanine amidases [LytAPPH]) were found. Based on their integration site, 26 different pneumococcal prophage groups were documented. Prophages coding for tRNAs, putative virulence factors and different methyltransferases were also detected. The members of one group of diverse prophages (PPH090) were found to integrate into the 3’ end of the host lytASpn gene encoding the major S. pneumoniae autolysin without disrupting it. The great similarity of the lytASpnand lytAPPH genes (85–92% identity) allowed them to recombine, via an apparent integrase-independent mechanism, to produce different DNA rearrangements within the pneumococcal chromosome. This study provides a complete dataset that can be used to further analyze pneumococcal prophages, their evolutionary relationships, and their role in the pathogenesis of pneumococcal disease.
Collapse
Affiliation(s)
- Antonio J Martín-Galiano
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
| | - Ernesto García
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
10
|
Manufacturing Bacteriophages (Part 1 of 2): Cell Line Development, Upstream, and Downstream Considerations. Pharmaceuticals (Basel) 2021; 14:ph14090934. [PMID: 34577634 PMCID: PMC8471501 DOI: 10.3390/ph14090934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 01/21/2023] Open
Abstract
Within this first part of the two-part series on phage manufacturing, we will give an overview of the process leading to bacteriophages as a drug substance, before covering the formulation into a drug product in the second part. The principal goal is to provide the reader with a comprehensive framework of the challenges and opportunities that present themselves when developing manufacturing processes for bacteriophage-based products. We will examine cell line development for manufacture, upstream and downstream processes, while also covering the additional opportunities that engineered bacteriophages present.
Collapse
|
11
|
Su M, Davis MH, Peterson J, Solis-Lemus C, Satola SW, Read TD. Effect of genetic background on the evolution of Vancomycin-Intermediate Staphylococcus aureus (VISA). PeerJ 2021; 9:e11764. [PMID: 34306830 PMCID: PMC8284308 DOI: 10.7717/peerj.11764] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/22/2021] [Indexed: 11/20/2022] Open
Abstract
Vancomycin-intermediate Staphylococcus aureus (VISA) typically arises through accumulation of chromosomal mutations that alter cell-wall thickness and global regulatory pathways. Genome-based prediction of VISA requires understanding whether strain background influences patterns of mutation that lead to resistance. We used an iterative method to experimentally evolve three important methicillin-resistant S. aureus (MRSA) strain backgrounds-(CC1, CC5 and CC8 (USA300)) to generate a library of 120 laboratory selected VISA isolates. At the endpoint, isolates had vancomycin MICs ranging from 4 to 10 μg/mL. We detected mutations in more than 150 genes, but only six genes (already known to be associated with VISA from prior studies) were mutated in all three background strains (walK, prs, rpoB, rpoC, vraS, yvqF). We found evidence of interactions between loci (e.g., vraS and yvqF mutants were significantly negatively correlated) and rpoB, rpoC, vraS and yvqF were more frequently mutated in one of the backgrounds. Increasing vancomycin resistance was correlated with lower maximal growth rates (a proxy for fitness) regardless of background. However, CC5 VISA isolates had higher MICs with fewer rounds of selection and had lower fitness costs than the CC8 VISA isolates. Using multivariable regression, we found that genes differed in their contribution to overall MIC depending on the background. Overall, these results demonstrated that VISA evolved through mutations in a similar set of loci in all backgrounds, but the effect of mutation in common genes differed with regard to fitness and contribution to resistance in different strains.
Collapse
Affiliation(s)
- Michelle Su
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Michelle H Davis
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Jessica Peterson
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Claudia Solis-Lemus
- Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sarah W Satola
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Timothy D Read
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA.,Department of Dermatology, School of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
12
|
Abdelsattar AS, Dawoud A, Makky S, Nofal R, Aziz RK, El-Shibiny A. Bacteriophages: from isolation to application. Curr Pharm Biotechnol 2021; 23:337-360. [PMID: 33902418 DOI: 10.2174/1389201022666210426092002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/29/2021] [Accepted: 03/11/2021] [Indexed: 11/22/2022]
Abstract
Bacteriophages are considered as a potential alternative to fight pathogenic bacteria during the antibiotic resistance era. With their high specificity, they are being widely used in various applications: medicine, food industry, agriculture, animal farms, biotechnology, diagnosis, etc. Many techniques have been designed by different researchers for phage isolation, purification, and amplification, each of which has strengths and weaknesses. However, all aim at having a reasonably pure phage sample that can be further characterized. Phages can be characterized based on their physiological, morphological or inactivation tests. Microscopy, in particular, has opened a wide gate not only for visualizing phage morphological structure, but also for monitoring biochemistry and behavior. Meanwhile, computational analysis of phage genomes provides more details about phage history, lifestyle, and potential for toxigenic or lysogenic conversion, which translate to safety in biocontrol and phage therapy applications. This review summarizes phage application pipelines at different levels and addresses specific restrictions and knowledge gaps in the field. Recently developed computational approaches, which are used in phage genome analysis, are critically assessed. We hope that this assessment provides researchers with useful insights for selection of suitable approaches for Phage-related research aims and applications.
Collapse
Affiliation(s)
- Abdallah S Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578. Egypt
| | - Alyaa Dawoud
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578. Egypt
| | - Salsabil Makky
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578. Egypt
| | - Rana Nofal
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578. Egypt
| | - Ramy K Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Qasr El-Ainy St, Cairo. Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578. Egypt
| |
Collapse
|
13
|
Genome-Wide Identification and Analysis of Chromosomally Integrated Putative Prophages Associated with Clinical Klebsiella pneumoniae Strains. Curr Microbiol 2021; 78:2015-2024. [PMID: 33813641 DOI: 10.1007/s00284-021-02472-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
Klebsiella pneumoniae, an opportunistic pathogen found in the environment and human mucosal surfaces, is a leading cause of nosocomial infections. K. pneumoniae is now considered a global threat owing to the emergence of multidrug-resistant strains making its infections untreatable. In this study, 254 strains of K. pneumoniae were screened for the presence of prophages using the PHASTER tool. Very few strains lacked prophages (3.1%), while the remaining harboured both intact (811) and defective prophages (709). A subset of 42 unique strains of K. pneumoniae was chosen for further analysis. Our analysis revealed the presence of 110 complete prophages which were further classified as belonging to Myoviridae (67.3%), Siphoviridae (28.2%) and Podoviridae family (4.5%). An alignment of the 110 complete, prophage genome sequences clustered the prophages into 16 groups and 3 singletons. While none of the prophages encoded for virulence factors, 2 (1.8%) prophages were seen to encode for the antibiotic resistance-related genes. The CRISPR-Cas system was prevalent in 10 (23.8%) out of the 42 strains. Further analysis of the CRISPR spacers revealed 11.42% of the total spacers integrated in K. pneumoniae chromosome to match prophage protein sequences.
Collapse
|
14
|
Mitchell SJ, Verma D, Griswold KE, Bailey-Kellogg C. Building blocks and blueprints for bacterial autolysins. PLoS Comput Biol 2021; 17:e1008889. [PMID: 33793553 PMCID: PMC8051824 DOI: 10.1371/journal.pcbi.1008889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/16/2021] [Accepted: 03/17/2021] [Indexed: 01/31/2023] Open
Abstract
Bacteria utilize a wide variety of endogenous cell wall hydrolases, or autolysins, to remodel their cell walls during processes including cell division, biofilm formation, and programmed death. We here systematically investigate the composition of these enzymes in order to gain insights into their associated biological processes, potential ways to disrupt them via chemotherapeutics, and strategies by which they might be leveraged as recombinant antibacterial biotherapies. To do so, we developed LEDGOs (lytic enzyme domains grouped by organism), a pipeline to create and analyze databases of autolytic enzyme sequences, constituent domain annotations, and architectural patterns of multi-domain enzymes that integrate peptidoglycan binding and degrading functions. We applied LEDGOs to eight pathogenic bacteria, gram negatives Acinetobacter baumannii, Klebsiella pneumoniae, Neisseria gonorrhoeae, and Pseudomonas aeruginosa; and gram positives Clostridioides difficile, Enterococcus faecium, Staphylococcus aureus, and Streptococcus pneumoniae. Our analysis of the autolytic enzyme repertoires of these pathogens reveals commonalities and differences in their key domain building blocks and architectures, including correlations and preferred orders among domains in multi-domain enzymes, repetitions of homologous binding domains with potentially complementarity recognition modalities, and sequence similarity patterns indicative of potential divergence of functional specificity among related domains. We have further identified a variety of unannotated sequence regions within the lytic enzymes that may themselves contain new domains with important functions.
Collapse
Affiliation(s)
- Spencer J. Mitchell
- Department of Computer Science, Dartmouth, Hanover, New Hampshire, United States of America
| | - Deeptak Verma
- Computational and Structural Chemistry, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Karl E. Griswold
- Thayer School of Engineering, Dartmouth, Hanover, New Hampshire, United States of America
- Lyticon LLC, Lebanon, New Hampshire, United States of America
| | - Chris Bailey-Kellogg
- Department of Computer Science, Dartmouth, Hanover, New Hampshire, United States of America
- Lyticon LLC, Lebanon, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
15
|
Abstract
Cystic fibrosis patients frequently suffer from recurring respiratory infections caused by colonizing pathogenic and commensal bacteria. Although modern therapies can sometimes alleviate respiratory symptoms by ameliorating residual function of the protein responsible for the disorder, management of chronic respiratory infections remains an issue. In cystic fibrosis, dynamic and complex communities of microbial pathogens and commensals can colonize the lung. Cultured isolates from lung sputum reveal high inter- and intraindividual variability in pathogen strains, sequence variants, and phenotypes; disease progression likely depends on the precise combination of infecting lineages. Routine clinical protocols, however, provide a limited overview of the colonizer populations. Therefore, a more comprehensive and precise identification and characterization of infecting lineages could assist in making corresponding decisions on treatment. Here, we describe longitudinal tracking for four cystic fibrosis patients who exhibited extreme clinical phenotypes and, thus, were selected from a pilot cohort of 11 patients with repeated sampling for more than a year. Following metagenomics sequencing of lung sputum, we find that the taxonomic identity of individual colonizer lineages can be easily established. Crucially, even superficially clonal pathogens can be subdivided into multiple sublineages at the sequence level. By tracking individual allelic differences over time, an assembly-free clustering approach allows us to reconstruct multiple lineage-specific genomes with clear structural differences. Our study showcases a culture-independent shotgun metagenomics approach for longitudinal tracking of sublineage pathogen dynamics, opening up the possibility of using such methods to assist in monitoring disease progression through providing high-resolution routine characterization of the cystic fibrosis lung microbiome.
Collapse
|
16
|
Kogay R, Neely TB, Birnbaum DP, Hankel CR, Shakya M, Zhaxybayeva O. Machine-Learning Classification Suggests That Many Alphaproteobacterial Prophages May Instead Be Gene Transfer Agents. Genome Biol Evol 2020; 11:2941-2953. [PMID: 31560374 PMCID: PMC6821227 DOI: 10.1093/gbe/evz206] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2019] [Indexed: 12/20/2022] Open
Abstract
Many of the sequenced bacterial and archaeal genomes encode regions of viral provenance. Yet, not all of these regions encode bona fide viruses. Gene transfer agents (GTAs) are thought to be former viruses that are now maintained in genomes of some bacteria and archaea and are hypothesized to enable exchange of DNA within bacterial populations. In Alphaproteobacteria, genes homologous to the "head-tail" gene cluster that encodes structural components of the Rhodobacter capsulatus GTA (RcGTA) are found in many taxa, even if they are only distantly related to Rhodobacter capsulatus. Yet, in most genomes available in GenBank RcGTA-like genes have annotations of typical viral proteins, and therefore are not easily distinguished from their viral homologs without additional analyses. Here, we report a "support vector machine" classifier that quickly and accurately distinguishes RcGTA-like genes from their viral homologs by capturing the differences in the amino acid composition of the encoded proteins. Our open-source classifier is implemented in Python and can be used to scan homologs of the RcGTA genes in newly sequenced genomes. The classifier can also be trained to identify other types of GTAs, or even to detect other elements of viral ancestry. Using the classifier trained on a manually curated set of homologous viruses and GTAs, we detected RcGTA-like "head-tail" gene clusters in 57.5% of the 1,423 examined alphaproteobacterial genomes. We also demonstrated that more than half of the in silico prophage predictions are instead likely to be GTAs, suggesting that in many alphaproteobacterial genomes the RcGTA-like elements remain unrecognized.
Collapse
Affiliation(s)
- Roman Kogay
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire
| | - Taylor B Neely
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire.,Amazon.com Inc., Seattle, WA
| | - Daniel P Birnbaum
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire.,School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | - Camille R Hankel
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire.,Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA
| | - Migun Shakya
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire.,Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM
| | - Olga Zhaxybayeva
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire.,Department of Computer Science, Dartmouth College, Hanover, New Hampshire
| |
Collapse
|
17
|
Yasuhara-Bell J, Arif M, Busot GY, Mann R, Rodoni B, Stack JP. Comparative Genomic Analysis Confirms Five Genetic Populations of the Select Agent, Rathayibacter toxicus. Microorganisms 2020; 8:E366. [PMID: 32150860 PMCID: PMC7143919 DOI: 10.3390/microorganisms8030366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 02/01/2023] Open
Abstract
Rathayibacter toxicus is a Gram-positive, nematode-vectored bacterium that infects several grass species in the family Poaceae. Unique in its genus, R. toxicus has the smallest genome, possesses a complete CRISPR-Cas system, a vancomycin-resistance cassette, produces tunicamycin, a corynetoxin responsible for livestock deaths in Australia, and is designated a Select Agent in the United States. In-depth, genome-wide analyses performed in this study support the previously designated five genetic populations, with a core genome comprising approximately 80% of the genome for all populations. Results varied as a function of the type of analysis and when using different bioinformatics tools for the same analysis; e.g., some programs failed to identify specific genomic regions that were actually present. The software variance highlights the need to verify bioinformatics results by additional methods; e.g., PCR, mapping genes to genomes, use of multiple algorithms). These analyses suggest the following relationships among populations: RT-IV ↔ RT-I ↔ RT-II ↔ RT-III ↔ RT-V, with RT-IV and RT-V being the most unrelated. This is the most comprehensive analysis of R. toxicus that included populations RT-I and RT-V. Future studies require underrepresented populations and more recent isolates from varied hosts and geographic locations.
Collapse
Affiliation(s)
- Jarred Yasuhara-Bell
- Department of Plant Pathology, Kansas State University, 1712 Claflin Road, 4024 Throckmorton Plant Science Center, Manhattan, KS 66506, USA; (J.Y.-B.); (G.Y.B.)
- Plant Biosecurity Cooperative Research Centre, CRC for National Plant Biosecurity, Level 2, Building 22, Innovation Centre, University Drive, University of Canberra, Bruce, Australian Capital Territory, Canberra 2617, Australia; (M.A.); (R.M.); (B.R.)
| | - Mohammad Arif
- Plant Biosecurity Cooperative Research Centre, CRC for National Plant Biosecurity, Level 2, Building 22, Innovation Centre, University Drive, University of Canberra, Bruce, Australian Capital Territory, Canberra 2617, Australia; (M.A.); (R.M.); (B.R.)
- Department of Plant and Environmental Protection Sciences, University of Hawai`i at Mānoa, Honolulu, HI 96822, USA
| | - Grethel Y. Busot
- Department of Plant Pathology, Kansas State University, 1712 Claflin Road, 4024 Throckmorton Plant Science Center, Manhattan, KS 66506, USA; (J.Y.-B.); (G.Y.B.)
- Plant Biosecurity Cooperative Research Centre, CRC for National Plant Biosecurity, Level 2, Building 22, Innovation Centre, University Drive, University of Canberra, Bruce, Australian Capital Territory, Canberra 2617, Australia; (M.A.); (R.M.); (B.R.)
| | - Rachel Mann
- Plant Biosecurity Cooperative Research Centre, CRC for National Plant Biosecurity, Level 2, Building 22, Innovation Centre, University Drive, University of Canberra, Bruce, Australian Capital Territory, Canberra 2617, Australia; (M.A.); (R.M.); (B.R.)
- Department of Jobs, Precincts and Regions, Microbial Sciences, Pests & Diseases, Agriculture Victoria, AgriBio Centre, La Trobe University, 5 Ring Rd, Bundoora, Victoria 3083, Australia
| | - Brendan Rodoni
- Plant Biosecurity Cooperative Research Centre, CRC for National Plant Biosecurity, Level 2, Building 22, Innovation Centre, University Drive, University of Canberra, Bruce, Australian Capital Territory, Canberra 2617, Australia; (M.A.); (R.M.); (B.R.)
- Department of Jobs, Precincts and Regions, Microbial Sciences, Pests & Diseases, Agriculture Victoria, AgriBio Centre, La Trobe University, 5 Ring Rd, Bundoora, Victoria 3083, Australia
| | - James P. Stack
- Department of Plant Pathology, Kansas State University, 1712 Claflin Road, 4024 Throckmorton Plant Science Center, Manhattan, KS 66506, USA; (J.Y.-B.); (G.Y.B.)
- Plant Biosecurity Cooperative Research Centre, CRC for National Plant Biosecurity, Level 2, Building 22, Innovation Centre, University Drive, University of Canberra, Bruce, Australian Capital Territory, Canberra 2617, Australia; (M.A.); (R.M.); (B.R.)
| |
Collapse
|
18
|
Huss P, Raman S. Engineered bacteriophages as programmable biocontrol agents. Curr Opin Biotechnol 2019; 61:116-121. [PMID: 31862543 PMCID: PMC7103757 DOI: 10.1016/j.copbio.2019.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 11/26/2022]
Abstract
Engineered bacteriophages are promising tools for use in food biotechnology. Diverse natural bacteriophages can be leveraged by engineering for specificity and infectivity. Engineered bacteriophages are potent tools for pathogen biocontrol. Engineered bacteriophages can be used for targeted delivery vectors and pathogen detection.
Bacteriophages (or ‘phages’) can be potent biocontrol agents but their potential has not been fully realized due to inherent limitations of natural phages. By leveraging new tools in synthetic biology, natural phages can be engineered to overcome these limitations to markedly improve their efficacy and programmability. Engineered phages can be used for targeted detection and removal of pathogens, in situ microbiome editing, gene delivery and programmable control of phage-bacterial interactions. In this mini review we examine different ways natural phages can be engineered as effective biocontrol agents through a design-build-test-learn platform and identify novel applications of engineered phages in food biotechnology.
Collapse
Affiliation(s)
- Phil Huss
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Srivatsan Raman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
19
|
Phytovirome Analysis of Wild Plant Populations: Comparison of Double-Stranded RNA and Virion-Associated Nucleic Acid Metagenomic Approaches. J Virol 2019; 94:JVI.01462-19. [PMID: 31597769 DOI: 10.1128/jvi.01462-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/01/2019] [Indexed: 12/29/2022] Open
Abstract
Metagenomic studies have indicated that the diversity of plant viruses was until recently far underestimated. As important components of ecosystems, there is a need to explore the diversity and richness of the viruses associated with plant populations and to understand the drivers shaping their diversity in space and time. Two viral sequence enrichment approaches, double-stranded RNA (dsRNA) and virion-associated nucleic acids (VANA), have been used and compared here for the description of the virome of complex plant pools representative of the most prevalent plant species in unmanaged and cultivated ecosystems. A novel bioinformatics strategy was used to assess viral richness not only at the family level but also by determining operational taxonomic units (OTU) following the clustering of conserved viral domains. A large viral diversity dominated by novel dsRNA viruses was detected in all sites, while a large between-site variability limited the ability to draw a clear conclusion on the impact of cultivation. A trend for a higher diversity of dsRNA viruses was nevertheless detected in unmanaged sites (118 versus 77 unique OTUs). The dsRNA-based approach consistently revealed a broader and more comprehensive diversity for RNA viruses than the VANA approach, whatever the assessment criterion. In addition, dissimilarity analyses indicated both approaches to be largely reproducible but not necessarily convergent. These findings illustrate features of phytoviromes in various ecosystems and a novel strategy for precise virus richness estimation. These results allow us to reason methodological choices in phytovirome studies and likely in other virome studies where RNA viruses are the focal taxa.IMPORTANCE There are today significant knowledge gaps on phytovirus populations and on the drivers impacting them but also on the comparative performance-methodological approaches for their study. We used and compared two viral sequence enrichment approaches, double-stranded RNAs (dsRNA) and virion-associated nucleic acids (VANA), for phytovirome description in complex pools representative of the most prevalent plant species in unmanaged and cultivated ecosystems. Viral richness was assessed by determining operational taxonomic units (OTU) following the clustering of conserved viral domains. There is some limited evidence of an impact of cultivation on viral populations. These results provide data allowing us to reason the methodological choices in virome studies. For researchers primarily interested in RNA viruses, the dsRNA approach is recommended because it consistently provided a more comprehensive description of the analyzed phytoviromes, but it understandably underrepresented DNA viruses and bacteriophages.
Collapse
|
20
|
Ramisetty BCM, Sudhakari PA. Bacterial 'Grounded' Prophages: Hotspots for Genetic Renovation and Innovation. Front Genet 2019; 10:65. [PMID: 30809245 PMCID: PMC6379469 DOI: 10.3389/fgene.2019.00065] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/24/2019] [Indexed: 01/07/2023] Open
Abstract
Bacterial genomes are highly plastic allowing the generation of variants through mutations and acquisition of genetic information. The fittest variants are then selected by the econiche thereby allowing the bacterial adaptation and colonization of the habitat. Larger genomes, however, may impose metabolic burden and hence bacterial genomes are optimized by the loss of frivolous genetic information. The activity of temperate bacteriophages has acute consequences on the bacterial population as well as the bacterial genome through lytic and lysogenic cycles. Lysogeny is a selective advantage as the prophage provides immunity to the lysogen against secondary phage attack. Since the non-lysogens are eliminated by the lytic phages, lysogens multiply and colonize the habitat. Nevertheless, all lysogens have an imminent risk of lytic cycle activation and cell lysis. However, a mutation in the attachment sites or in the genes that encode the specific recombinase responsible for prophage excision could result in 'grounding' of the prophage. Since the lysogens with grounded prophage are immune to respective phage infection as well as dodge the induction of lytic cycle, we hypothesize that the selection of these mutant lysogens is favored relative to their normal lysogenic counterparts. These grounded prophages offer several advantages to the bacterial genome evolution through propensity for genetic variations including inversions, deletions, and insertions via horizontal gene transfer. We propose that the grounded prophages expedite bacterial genome evolution by acting as 'genetic buffer zones' thereby increasing the frequency as well as the diversity of variations on which natural selection favors the beneficial variants. The grounded prophages are also hotspots for horizontal gene transfer wherein several ecologically significant genes such as those involved in stress tolerance, antimicrobial resistance, and novel metabolic pathways, are integrated. Moreover, the high frequency of genetic changes within prophages also allows proportionate probability for the de novo genesis of genetic information. Through sequence analyses of well-characterized E. coli prophages we exemplify various roles of grounded prophages in E. coli ecology and evolution. Therefore, the temperate prophages are one of the most significant drivers of bacterial genome evolution and sites of biogenesis of genetic information.
Collapse
Affiliation(s)
- Bhaskar Chandra Mohan Ramisetty
- Laboratory of Molecular Biology and Evolution, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Pavithra Anantharaman Sudhakari
- Laboratory of Molecular Biology and Evolution, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| |
Collapse
|