1
|
Liu Z, Gu A, Bao Y, Lin GN. Epigenetic Impacts of Non-Coding Mutations Deciphered Through Pre-Trained DNA Language Model at Single-Cell Resolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413571. [PMID: 39888214 PMCID: PMC11924033 DOI: 10.1002/advs.202413571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/20/2025] [Indexed: 02/01/2025]
Abstract
DNA methylation plays a critical role in gene regulation, affecting cellular differentiation and disease progression, particularly in non-coding regions. However, predicting the epigenetic consequences of non-coding mutations at single-cell resolution remains a challenge. Existing tools have limited prediction capacity and struggle to capture dynamic, cell-type-specific regulatory changes that are crucial for understanding disease mechanisms. Here, Methven, a deep learning framework designed is presented to predict the effects of non-coding mutations on DNA methylation at single-cell resolution. Methven integrates DNA sequence with single-cell ATAC-seq data and models SNP-CpG interactions over 100 kbp genomic distances. By using a divide-and-conquer approach, Methven accurately predicts both short- and long-range regulatory interactions and leverages the pre-trained DNA language model for enhanced precision in classification and regression tasks. Methven outperforms existing methods and demonstrates robust generalizability to monocyte datasets. Importantly, it identifies CpG sites associated with rheumatoid arthritis, revealing key pathways involved in immune regulation and disease progression. Methven's ability to detect progressive epigenetic changes provides crucial insights into gene regulation in complex diseases. These findings demonstrate Methven's potential as a powerful tool for basic research and clinical applications, advancing this understanding of non-coding mutations and their role in disease, while offering new opportunities for personalized medicine.
Collapse
Affiliation(s)
- Zhe Liu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200230, China
| | - An Gu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200230, China
| | - Yihang Bao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200230, China
| | - Guan Ning Lin
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200230, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 200230, China
- Engineering Research Center of Digital Medicine of the Ministry of Education, Shanghai, 200230, China
| |
Collapse
|
2
|
Funahashi Y, Dwivedi Y. Epigenetics and suicidal behavior in adolescents: a critical review. Epigenomics 2025; 17:247-262. [PMID: 39819344 PMCID: PMC11853622 DOI: 10.1080/17501911.2025.2453415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/10/2025] [Indexed: 01/19/2025] Open
Abstract
Suicide continues to be a significant public health issue globally, claiming over 700,000 lives annually. It is, therefore, important to assess the suicide risk properly and provide intervention in a timely fashion. While the heritability of suicidal behavior is around 50%, it does not explain the factors involved in causality. Recent evidence suggests that gene x environment interaction plays a vital role in suicidal behavior. In this paper, we critically evaluate the association between adolescent suicidal behavior and epigenetic modifications, including DNA methylation, histone modification, and non-coding RNAs, as well as epigenetic-based treatment options. It was noted that the prevalence of suicidal behavior in adolescents varied by age and sex and the presence of psychiatric disorders. Childhood adversity was closely associated with suicidal behavior. Studies show that alterations in epigenetic modifications may increase the risk of suicidal behavior independent of mental illnesses. Because epigenetic factors are reversible, environmental enrichment or the use of pharmacological agents that can target specific epigenetic modulation may be able to reduce suicidal behavior in this population.
Collapse
Affiliation(s)
- Yu Funahashi
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
3
|
Anas M, Ward AK, McCarthy KL, Borowicz PP, Reynolds LP, Caton JS, Dahlen CR, Diniz WJS. Intergenerational effects of maternal rate of body weight gain on the multi-omics hepatic profiles of bovine fetuses. Gene 2025; 936:149082. [PMID: 39536959 DOI: 10.1016/j.gene.2024.149082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Maternal periconceptual nutrition affects the growth trajectory of developing fetuses by modulating gene expression. The regulatory mechanisms and their role in fetal development remain underexplored in livestock models. Herein, we investigated the effects of maternal rate of body weight (BW) gain during early gestation on the DNA methylation, microRNA profiles, and their interaction with the hepatic gene expression in female fetuses. At breeding, 36 crossbred beef heifers (∼13 months of age) were randomly assigned to a nutritional plane to gain Low (0.28 kg/day; LG, n = 18) or Moderate (0.79 kg/day; MG, n = 18) BW through the first 83 days of gestation. A subset of pregnant heifers (n = 17) was selected, and fetal liver samples were collected on day 83 of gestation for DNA methylation and miRNA-Sequencing. After data quality control, miRDeep2 and Bismark tools were used to analyze miRNA and methylation data, respectively. The bta-miR-206 was the only differentially expressed miRNA (FDR = 0.02). Eight differentially methylated genes were identified (DMGs, FDR < 0.1). The over-represented pathways and biological processes (adj. p < 0.05) for bta-miR-206 targeted genes were associated with embryonic development, energy metabolism, and mineral transport, whereas the DMGs regulated anatomical structural development and transcriptional regulation. Our results show that key genes involved with liver metabolism, tissue structure, and function were regulated by DNA methylation and the miR-206. However, further investigation is warranted to determine physiological responses and long-term consequences on animal performance.
Collapse
Affiliation(s)
- Muhammad Anas
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58105, United States.
| | - Alison K Ward
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada.
| | - Kacie L McCarthy
- Department of Animal Sciences, University of Nebraska, Lincoln, NE 68588, United States.
| | - Pawel P Borowicz
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58105, United States.
| | - Lawrence P Reynolds
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58105, United States.
| | - Joel S Caton
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58105, United States.
| | - Carl R Dahlen
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58105, United States.
| | - Wellison J S Diniz
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
4
|
Alom KM, Tukova A, Lyu N, Rodger A, Wang Y. Label-Free Surface-Enhanced Raman Scattering for Genomic DNA Cytosine Methylation Reading. Molecules 2025; 30:403. [PMID: 39860272 PMCID: PMC11767753 DOI: 10.3390/molecules30020403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
DNA methylation has been widely studied with the goal of correlating the genome profiles of various diseases with epigenetic mechanisms. Multiple approaches have been developed that employ extensive steps, such as bisulfite treatments, polymerase chain reactions (PCR), restriction digestion, sequencing, mass analysis, etc., to identify DNA methylation. In this article, we report a facile label-free surface-enhanced Raman scattering (SERS) spectroscopy system that utilizes gold nanoparticles (AuNPs) for signal enhancement of methylated DNA. The key innovation of this work is to use anionic nanoparticles at a high ionic strength to introduce the aggregation of AuNPs with anionic DNA. When target methylated DNA is present, the presence of a methyl group in the cytosine C5 position of CpG sites induces a Raman peak at 1350 cm-1. Our amplification-free system has a limit of detection (LOD) of 5% and a limit of quantification (LOQ) of 16% with good specificity. The method was applied to determine the hypermethylated levels of the germline of colorectal cancer cell lines SW48 and SW480. Our simple label-free method holds the potential to read the disease-associated methylation of genomic DNA.
Collapse
Affiliation(s)
- Kazi Morshed Alom
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia; (K.M.A.); (A.T.); (N.L.)
| | - Anastasiia Tukova
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia; (K.M.A.); (A.T.); (N.L.)
| | - Nana Lyu
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia; (K.M.A.); (A.T.); (N.L.)
| | - Alison Rodger
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Yuling Wang
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia; (K.M.A.); (A.T.); (N.L.)
| |
Collapse
|
5
|
Vasileva F, Font-Lladó R, López-Ros V, Barretina J, Noguera-Castells A, Esteller M, López-Bermejo A, Prats-Puig A. An Integrated Neuromuscular Training Intervention Applied in Primary School Induces Epigenetic Modifications in Disease-Related Genes: A Genome-Wide DNA Methylation Study. Scand J Med Sci Sports 2025; 35:e70012. [PMID: 39757698 DOI: 10.1111/sms.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/14/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
Physical exercise has been shown to induce epigenetic modifications with various health implications, directly affect DNA methylation (DNAm), as well as reverse the epigenetic age. Hence, we aimed to identify differential methylation changes and assess the epigenetic age in the saliva of 7-9-year-old school children following a 3-month integrated neuromuscular training (INT), as well as to explore if any of the methylation changes are in core genes. Core genes are defined as genes of high relevance and essential importance within the human genome. Forty children (17 boys and 23 girls) were recruited from schools in Girona, Spain, and allocated into control (N = 20) or INT (N = 20) group. The INT group performed a 3-month INT as a warm-up during the physical education (PE) classes, encompassing strength, coordination, dynamic stabilization, plyometrics, speed, and agility exercises, whereas the control group performed traditional warm-up activities, encompassing aerobic exercises that will prepare the cardiovascular system and increase the joint mobility for the upcoming effort during the class. Genome-wide DNAm analysis was performed with the Illumina 900 K microarray. Core genes were recognized based on the accomplishment of a rigorous and widely accepted 3-point criteria: participation in the enriched pathways, high connectivity (≥ 10), and target genes of key transcription factors. There were 1200 differentially methylated positions (DMPs) in the control group and 414 DMPs in the INT group (FDR < 0.05, p < 0.05, Aβ < |0.1|), suggesting a non-significant trend of epigenetic age acceleration in the control group (1.18 months, p > 0.05) and a non-significant 1-month decrease of the epigenetic age in the INT group (p > 0.05). The genes with DMPs in the control group showed low similarity between enriched pathways and low interconnectivity, encompassing distinct pathways, mostly development and growth-related. Additionally, no core genes were identified in the control group. Interestingly, the genes with DMPs in the INT group showed high similarity between enriched pathways and high interconnectivity, encompassing related pathways involving signaling mechanisms, as well as hormone and protein metabolism pathways. Moreover, 17 DMPs in the children from the INT group were in core genes. The main findings of the present study are suggesting an integrated response to the training stimulus in 7-9-year-old school children that performed a 3-month INT, including epigenetic modifications in 17 genes considered as core genes. Trial Registration: The study protocol was registered in the ISRCTN registry (ISRCTN16744821).
Collapse
Affiliation(s)
- Fidanka Vasileva
- Pediatric Endocrinology Research Group, Biomedical Research Institute of Girona, Girona, Spain
- University School of Health and Sport, University of Girona, Girona, Spain
| | - Raquel Font-Lladó
- University School of Health and Sport, University of Girona, Girona, Spain
- Faculty of Education and Psychology, University of Girona, Girona, Spain
- Research Group of Culture, Education and Human Development, Institute of Educational Research, University of Girona, Girona, Spain
- Chair of Sport and Physical Education - Centre of Olympic Studies, University of Girona, Girona, Spain
| | - Víctor López-Ros
- Faculty of Education and Psychology, University of Girona, Girona, Spain
- Research Group of Culture, Education and Human Development, Institute of Educational Research, University of Girona, Girona, Spain
| | | | - Aleix Noguera-Castells
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- Department of Biosciences, Faculty of Science, Technology and Engineering, University of Vic-Central University of Catalonia, Barcelona, Spain
- Biomedical Research Centre in Cancer Network, Madrid, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- Biomedical Research Centre in Cancer Network, Madrid, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Abel López-Bermejo
- Pediatric Endocrinology Research Group, Biomedical Research Institute of Girona, Girona, Spain
- Department of Medical Sciences, University of Girona, Girona, Spain
- Pediatric Endocrinology, Dr. Josep Trueta Hospital, Girona, Spain
| | - Anna Prats-Puig
- University School of Health and Sport, University of Girona, Girona, Spain
- Research Group Health and Health Care, Nursing Department, University of Girona, Girona, Spain
| |
Collapse
|
6
|
Du Y, Benny PA, Shao Y, Schlueter RJ, Gurary A, Lum-Jones A, Lassiter CB, AlAkwaa FM, Tiirikainen M, Towner D, Ward WS, Garmire LX. Multi-omics Analysis of Umbilical Cord Hematopoietic Stem Cells from a Multi-ethnic Cohort of Hawaii Reveals the Intergenerational Effect of Maternal Pre-Pregnancy Obesity and Risk Prediction for Cancers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.27.24310936. [PMID: 39108521 PMCID: PMC11302719 DOI: 10.1101/2024.07.27.24310936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Background Maternal obesity is a health concern that may predispose newborns to a high risk of medical problems later in life. To understand the intergenerational effect of maternal obesity, we hypothesized that the maternal obesity effect is mediated by epigenetic changes in the CD34+/CD38-/Lin- hematopoietic stem cells (uHSCs) in the offspring. Towards this, we conducted a DNA methylation centric multi-omics study. We measured the DNA methylation and gene expression in the CD34+/CD38-/Lin- uHSCs and metabolomics of the cord blood, all from a multi-ethnic cohort (n=72) from Kapiolani Medical Center for Women and Children in Honolulu, Hawaii (collected between 2016 and 2018). Results Differential methylation (DM) analysis unveiled a global hypermethylation pattern in the maternal pre-pregnancy obese group (BH adjusted p<0.05), after adjusting for major clinical confounders. KEGG pathway enrichment, WGCNA, and PPI analyses revealed hypermethylated CpG sites were involved in critical biological processes, including cell cycle, protein synthesis, immune signaling, and lipid metabolism. . Utilizing Shannon entropy on uHSCs methylation, we discerned notably higher quiescence of uHSCs impacted by maternal obesity. Additionally, the integration of multi-omics data-including methylation, gene expression, and metabolomics-provided further evidence of dysfunctions in adipogenesis, erythropoietin production, cell differentiation, and DNA repair, aligning with the findings at the epigenetic level. Furthermore, we trained a random forest classifier using the CpG sites in the genes of the top pathways associated with maternal obesity, and applied it to predict cancer vs. adjacent normal labels from samples in 14 Cancer Genome Atlas (TCGA) cancer types. Five of 14 cancers showed balanced accuracy of 0.6 or higher: LUSC (0.87), PAAD (0.83), KIRC (0.71), KIRP (0.63) and BRCA (0.60). Conclusions This study revealed the significant correlation between pre-pregnancy maternal obesity and multi-omics level molecular changes in the uHSCs of offspring, particularly in DNA methylation. Moreover, these maternal obesity epigenetic markers in uHSCs may predispose offspring to higher risks in certain cancers.
Collapse
Affiliation(s)
- Yuheng Du
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
| | - Paula A. Benny
- Department of Obstetrics and Gynecology, University of Hawaii, Honolulu, HI
| | - Yuchen Shao
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI
| | - Ryan J. Schlueter
- Department of Obstetrics and Gynecology, University of Hawaii, Honolulu, HI
| | - Alexandra Gurary
- Department of Obstetrics and Gynecology, University of Hawaii, Honolulu, HI
| | - Annette Lum-Jones
- University of Hawaii Cancer Center, Population Sciences of the Pacific Program-Epidemiology, Honolulu, HI
| | - Cameron B Lassiter
- University of Hawaii Cancer Center, Population Sciences of the Pacific Program-Epidemiology, Honolulu, HI
| | | | - Maarit Tiirikainen
- University of Hawaii Cancer Center, Population Sciences of the Pacific Program-Epidemiology, Honolulu, HI
| | - Dena Towner
- Department of Obstetrics and Gynecology, University of Hawaii, Honolulu, HI
| | - W. Steven Ward
- Department of Obstetrics and Gynecology, University of Hawaii, Honolulu, HI
| | - Lana X Garmire
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
| |
Collapse
|
7
|
Zhu J, Cai R, Yu Y, Wang Y, Zheng M, Zhao G, Wen J, Wang S, Cui H. Integrative multiomics analysis identifies key genes regulating intramuscular fat deposition during development. Poult Sci 2024; 103:104404. [PMID: 39447331 PMCID: PMC11538867 DOI: 10.1016/j.psj.2024.104404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024] Open
Abstract
Intramuscular fat (IMF) content is an important indicator of livestock and poultry meat quality. Enhancing IMF deposition can significantly improve meat quality. Focusing on the core process of IMF deposition, this study used the Jingxing Yellow (JXY) chickens as a model organism and employed multi-omics approaches, including RNA-sequencing (RNA-seq), Whole-genome bisulfite sequencing (WGBS), and metabolomics, to identify the key genes influencing IMF deposition in chickens during development. The results indicated that the contents of triglycerides (TG) and phospholipids (PLIP) exhibited an upward trend. The TG content did not differ significantly between day 1 (D1) and day 7 (D7), but increased significantly after 35 days (D35) of age. The WGBS results revealed that CpG methylation was the predominant methylation type in the breast muscle tissue of JXY chickens. Integrative analysis of RNA-seq and WGBS identified 50 genes, including PLA2G4F, PALMD, PLSCR5, ARHGEF26, LUM, DCN, TNRC6B, CACNA1C, ROBO1, and MBTPS2, whose methylation levels were significantly negatively correlated with their expression levels. In addition, the combined Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of differentially-expressed metabolites (DEM) and differentially-expressed genes (DEG) converged on the glycerophospholipid metabolism pathway, which was significantly enriched in DEGs such as PLA2G4F, PLA2G15, LPIN1, MBOAT2, DGKH, AGPAT2, and CHKA, as well as DEM like glycerophosphocholine and phosphocholine. Notably, PLA2G4F was identified as a DEG by DNA methylation, suggesting that PLA2G4F could be a key candidate gene influencing IMF deposition during chicken development. These findings are expected to provide a solid theoretical foundation for improving meat quality through targeted genetic and epigenetic interventions.
Collapse
Affiliation(s)
- Jinmei Zhu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Richun Cai
- Guangxi Jingling Agriculture and Animal Husbandry Group Co., LTD, Nanning, 530049, China
| | - Yang Yu
- Guangxi Jingling Agriculture and Animal Husbandry Group Co., LTD, Nanning, 530049, China
| | - Yongli Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Maiqing Zheng
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Guiping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jie Wen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shubai Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Huanxian Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
8
|
Xia S, Li G, Zhao X, Zhou C, Yu H, Han W. Methylome and transcriptome joint analyses identify differentially expressed genes based on purebred and crossbred Tianjin-monkey Chicken. Anim Biotechnol 2024; 35:2397812. [PMID: 39739657 DOI: 10.1080/10495398.2024.2397812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 08/22/2024] [Indexed: 01/02/2025]
Abstract
Tianjin-monkey Chicken is a locally bred naked neck poultry with limited population size. Herein, we intended to identify potential breed-related genes based on methylome and transcriptome analyses. Tianjin-monkey Chicken and Hy-line Brown Chicken were crossbred and the individuals were divided into three groups: PN (Purebred naked neck chicken(Tianjin-monkey Chicken)) group (n = 10); CN (Crossbred naked neck chicken) group (n = 10); CF (Crossbred feathered chicken) group (n = 10). These 30 individuals were subjected to whole genome bisulfite sequencing (WGBS) and transcriptome sequencing. Differential methylated regions were detected by WGBS. No significant difference existed in naked-neck-related traits between PN and CN chicken. CpG methylation level of the promoter region differed in PN, CN vs. CF chicken. By integrating methylome and transcriptome results, four genes were identified between PN and CN groups, and 24 key genes were identified between CN and CF groups, with great potential in breeding. The 24 genes were enriched on 32 GO terms and 3 KEGG pathways, such as ion transport. The promoter region CpG methylation level was distinct between feathered and naked neck groups. We identified 24 potential genes for future breeding, valuable for targeted breeding and genetic enhancement in poultry production.
Collapse
Affiliation(s)
- Shuli Xia
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Guohui Li
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
| | - Xianghua Zhao
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Chenghao Zhou
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
| | - Haitao Yu
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Wei Han
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
| |
Collapse
|
9
|
Jeong J, Yang Y, Song MS, Won HY, Han AT, Kim S. High-Resolution Melting (HRM) analysis of DNA methylation using semiconductor chip-based digital PCR. Genes Genomics 2024; 46:909-915. [PMID: 38849705 DOI: 10.1007/s13258-024-01527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/26/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Digital PCR (dPCR) technology allows absolute quantification and detection of disease-associated rare variants, and thus the use of dPCR technology has been increasing in clinical research and diagnostics. The high-resolution melting curve analysis (HRM) of qPCR is widely used to distinguish true positives from false positives and detect rare variants. In particular, qPCR-HRM is commonly used for methylation assessment in research and diagnostics due to its simplicity and high reproducibility. Most dPCR instruments have limited fluorescence channels available and separate heating and imaging systems. Therefore, it is difficult to perform HRM analysis using dPCR instruments. OBJECTIVE A new digital real-time PCR instrument (LOAA) has been recently developed to integrate partitioning, thermocycling, and imaging in a single dPCR instrument. In addition, a new technique to perform HRM analysis is utilized in LOAA. The aim of the present study is to evaluate the efficiency and accuracy of LOAA dPCR on HRM analysis for the detection of methylation. METHODS In this study, comprehensive comparison with Bio-Rad qRT-PCR and droplet-based dPCR equipment was performed to verify the HRM analysis-based methylation detection efficiency of the LOAA digital PCR equipment. Here, sodium bisulfite modification method was applied to detect methylated DNA sequences by each PCR method. RESULTS Melting curve analysis detected four different Tm values using LOAA and qPCR, and found that LOAA, unlike qPCR, successfully distinguished between different Tm values when the Tm values were very similar. In addition, melting temperatures increased by each methylation were about 0.5℃ for qPCR and about 0.2 ~ 0.6℃ for LOAA. The melting temperature analyses of methylated and unmethylated DNA samples were conducted using LOAA dPCR with TaqMan probes and EvaGreen, and the result found that Tm values of methylated DNA samples are higher than those of unmethylated DNA samples. CONCLUSION The present study shows that LOAA dPCR could detect different melting temperatures according to methylation status of target sequences, indicating that LOAA dPCR would be useful for diagnostic applications that require the accurate quantification and assessment of DNA methylation.
Collapse
Affiliation(s)
- Jinuk Jeong
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Republic of Korea
- Smart Animal Bio Institute, Dankook University, Cheonan, 31116, Republic of Korea
| | - Yongsu Yang
- Department of Microbiology, College of Bio-Convergence, Dankook University, Cheonan, 31116, Republic of Korea
| | - Min-Sik Song
- BIO Institute, OPTOLANE Technologies Inc, Seongnam, South Korea
| | - Hee-Young Won
- BIO Institute, OPTOLANE Technologies Inc, Seongnam, South Korea
| | - Andrew T Han
- BIO Institute, OPTOLANE Technologies Inc, Seongnam, South Korea
| | - Songmi Kim
- Smart Animal Bio Institute, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
10
|
Germain L, Winn LM. The flame retardant triphenyl phosphate alters the epigenome of embryonic cells in an aquatic in vitro model. J Appl Toxicol 2024; 44:965-977. [PMID: 38419361 DOI: 10.1002/jat.4589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Triphenyl phosphate (TPhP) is an organophosphate flame retardant and plasticizer that is added to a wide variety of consumer and industrial products. It is also a ubiquitous environmental pollutant. Exposure to TPhP has been shown to alter gene expression in metabolic and estrogenic signaling pathways in in vitro and in vivo models of a variety of species, and as such, is considered to be an endocrine disrupting chemical. Exposure to endocrine disrupting chemicals is increasingly being associated with changes to the epigenome, especially during embryonic development. The aim of this study was to evaluate whether TPhP exposure in aquatic ecosystems has the ability to alter the epigenome in two immortal cell lines derived from trout (Oncorhynchus mykiss). This study assessed whether 24 h exposure to TPhP resulted in changes to histone modification and DNA methylation profiles in steelhead trout embryonic cells and rainbow trout gill epithelial cells. Results show that several epigenetic modifications on histone H3 and DNA methylation are altered in the embryonic cells following TPhP exposure, but not in the gill epithelial cells. Specifically, histone H3 acetylation, histone H3 mono-methylation and global DNA methylation were found to be reduced. The alterations of these epigenetic modification profiles in the embryonic cells suggest that exposure to TPhP during fetal development may alter gene expression in the developing embryo, likely in metabolic and estrogenic pathways. The impacts to the epigenome determined in this study may even carry multigenerational detrimental effects on human and ecosystem health, which requires further investigation.
Collapse
Affiliation(s)
- Logan Germain
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Louise M Winn
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- School of Environmental Studies, Queen's University, Kingston, Canada
| |
Collapse
|
11
|
Baranová I, Samec M, Dvorská D, Šťastný I, Janíková K, Kašubová I, Hornáková A, Lukáčová E, Kapinová A, Biringer K, Halašová E, Danková Z. Droplet digital PCR analysis of CDH13 methylation status in Slovak women with invasive ductal breast cancer. Sci Rep 2024; 14:14700. [PMID: 38926485 PMCID: PMC11208553 DOI: 10.1038/s41598-024-65580-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
Identifying novel epigenetic biomarkers is a promising way to improve the clinical management of patients with breast cancer. Our study aimed to determine the methylation pattern of 25 tumor suppressor genes (TSG) and select the best methylation biomarker associated with clinicopathological features in the cohort of Slovak patients diagnosed with invasive ductal carcinoma (IDC). Overall, 166 formalin-fixed, paraffin-embedded (FFPE) tissues obtained from patients with IDC were included in the study. The methylation status of the promoter regions of 25 TSG was analyzed using semiquantitative methylation-specific MLPA (MS-MLPA). We identified CDH13 as the most frequently methylated gene in our cohort of patients. Further analysis by ddPCR confirmed an increased level of methylation in the promoter region of CDH13. A significant difference in CDH13 methylation levels was observed between IDC molecular subtypes LUM A versus HER2 (P = 0.0116) and HER2 versus TNBC (P = 0.0234). In addition, significantly higher methylation was detected in HER2+ versus HER2- tumors (P = 0.0004) and PR- versus PR+ tumors (P = 0.0421). Our results provide evidence that alteration in CDH13 methylation is associated with clinicopathological features in the cohort of Slovak patients with IDC. In addition, using ddPCR as a methylation-sensitive method represents a promising approach characterized by higher precision and technical simplicity to measure the methylation of target CpGs in CDH13 compared to other conventional methods such as MS-MLPA.
Collapse
Affiliation(s)
- Ivana Baranová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
- Department of Pathological Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
- Biobank for Cancer and Rare Diseases, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Marek Samec
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
- Department of Medical Biology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| | - Dana Dvorská
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Igor Šťastný
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine in Martin and Martin University Hospital, Comenius University in Bratislava, Martin, Slovakia
| | - Katarína Janíková
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Ivana Kašubová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Andrea Hornáková
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Eva Lukáčová
- Department of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Andrea Kapinová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine in Martin and Martin University Hospital, Comenius University in Bratislava, Martin, Slovakia
| | - Erika Halašová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Zuzana Danková
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
- Biobank for Cancer and Rare Diseases, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
12
|
Yang PL, Lai TS, Chou YH, Lai LC, Lin SL, Chen YM. DNA methylation in peripheral blood is associated with renal aging and renal function decline: a national community study. Clin Epigenetics 2024; 16:80. [PMID: 38879526 PMCID: PMC11180394 DOI: 10.1186/s13148-024-01694-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/10/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Older patients are at risk for acute kidney injury and chronic kidney disease. Age-related increases in DNA methylation at CpG islands have been linked to aging-related diseases like cancer and cardiovascular disease, but the exact causal relationship between methylation in renal aging and other kidney diseases remains unclear. This study aimed to elucidate the methylation status of peripheral blood mononuclear cells (PBMCs) in the Asian population. Using human whole blood DNA methylation analysis from the Taiwan Biobank, we included participants with both whole blood genome-wide methylation data and follow-up data on serum creatinine. We investigated hyper- and hypomethylated genes in comparison of participants with higher and lower estimated glomerular filtration (eGFR) decline rate in overall cohort as well as in comparison of old and young participants in subgroup of participants with higher eGFR decline rate. Common genes and signaling pathways in both comparative analyses were identified. RESULTS Among 1587 participants in the analysis, 187 participants had higher eGFR decline rate. According to the comparison of methylation in participants with different eGFR declines and at different ages, respectively, we identified common hypermethylated genes, including DNMT3A and GGACT, as well as hypomethylated genes such as ARL6IP5, CYB5D1, BCL6, RPRD2, ZNF451, and MIAT in both participants with higher eGFR decline and those of older age. We observed associations between the methylation status of signaling pathways and aging as well as renal function decline. These pathways notably included autophagy, p38 mitogen-activated protein kinases, and sirtuins, which were associated with autophagy process and cytokine production. CONCLUSIONS Through methylation analysis of PBMCs, we identified genes and signaling pathways which could play crucial roles in the interplay of renal aging and renal function decline. These findings contribute to the development of novel biomarkers for identifying at-risk groups and even for therapeutic agent discovery.
Collapse
Affiliation(s)
- Po-Lung Yang
- Department of Geriatrics and Gerontology, National Taiwan University Hospital College of Medicine, National Taiwan University, Taipei, Taiwan
- Renal Division, Department of Internal Medicine, National Taiwan University, College of Medicine, No. 1, Jen-Ai Road, Section 1, Taipei, 100, Taiwan
| | - Tai-Shuan Lai
- Renal Division, Department of Internal Medicine, National Taiwan University, College of Medicine, No. 1, Jen-Ai Road, Section 1, Taipei, 100, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yu-Hsiang Chou
- Renal Division, Department of Internal Medicine, National Taiwan University, College of Medicine, No. 1, Jen-Ai Road, Section 1, Taipei, 100, Taiwan.
| | - Liang-Chuan Lai
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Bioinformatics and Biostatistics Core, Center of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Shuei-Liong Lin
- Renal Division, Department of Internal Medicine, National Taiwan University, College of Medicine, No. 1, Jen-Ai Road, Section 1, Taipei, 100, Taiwan
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung-Ming Chen
- Renal Division, Department of Internal Medicine, National Taiwan University, College of Medicine, No. 1, Jen-Ai Road, Section 1, Taipei, 100, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Bei-Hu Branch, Taipei, Taiwan
| |
Collapse
|
13
|
Mecca M, Picerno S, Cortellino S. The Killer's Web: Interconnection between Inflammation, Epigenetics and Nutrition in Cancer. Int J Mol Sci 2024; 25:2750. [PMID: 38473997 DOI: 10.3390/ijms25052750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Inflammation is a key contributor to both the initiation and progression of tumors, and it can be triggered by genetic instability within tumors, as well as by lifestyle and dietary factors. The inflammatory response plays a critical role in the genetic and epigenetic reprogramming of tumor cells, as well as in the cells that comprise the tumor microenvironment. Cells in the microenvironment acquire a phenotype that promotes immune evasion, progression, and metastasis. We will review the mechanisms and pathways involved in the interaction between tumors, inflammation, and nutrition, the limitations of current therapies, and discuss potential future therapeutic approaches.
Collapse
Affiliation(s)
- Marisabel Mecca
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, PZ, Italy
| | - Simona Picerno
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, PZ, Italy
| | - Salvatore Cortellino
- Laboratory of Preclinical and Translational Research, Responsible Research Hospital, 86100 Campobasso, CB, Italy
- Scuola Superiore Meridionale (SSM), Clinical and Translational Oncology, 80138 Naples, NA, Italy
- S.H.R.O. Italia Foundation ETS, 10060 Candiolo, TO, Italy
| |
Collapse
|
14
|
Viet-Nhi NK, Minh Quan T, Cong Truc V, Anh Bich T, Hoang Nam P, Le NQK, Chen PY, Hung SH. Multi-Omics Analysis Reveals the IFI6 Gene as a Prognostic Indicator and Therapeutic Target in Esophageal Cancer. Int J Mol Sci 2024; 25:2691. [PMID: 38473938 DOI: 10.3390/ijms25052691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
The role of the IFI6 gene has been described in several cancers, but its involvement in esophageal cancer (ESCA) remains unclear. This study aimed to identify novel prognostic indicators for ESCA-targeted therapy by investigating IFI6's expression, epigenetic mechanisms, and signaling activities. We utilized public data from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) to analyze IFI6's expression, clinical characteristics, gene function, pathways, and correlation with different immune cells in ESCA. The TIMER2.0 database was employed to assess the pan-cancer expression of IFI6, while UALCAN was used to examine its expression across tumor stages and histology subtypes. Additionally, the KEGG database helped identify related pathways. Our findings revealed 95 genes positively correlated and 15 genes negatively correlated with IFI6 in ESCA. IFI6 was over-expressed in ESCA and other cancers, impacting patient survival and showing higher expression in tumor tissues than normal tissues. IFI6 was also correlated with CD4+ T cells and B cell receptors (BCRs), both essential in immune response. GO Biological Process (GO BP) enrichment analysis indicated that IFI6 was primarily associated with the Type I interferon signaling pathway and the defense response to viruses. Intriguingly, KEGG pathway analysis demonstrated that IFI6 and its positively correlated genes in ESCA were mostly linked to the Cytosolic DNA-sensing pathway, which plays a crucial role in innate immunity and viral defense, and the RIG-I-like receptor (RLR) signaling pathway, which detects viral infections and activates immune responses. Pathways related to various viral infections were also identified. It is important to note that our study relied on online databases. Given that ESCA consists of two distinct subgroups (ESCC and EAC), most databases combine them into a single category. Future research should focus on evaluating IFI6 expression and its impact on each subgroup to gain more specific insights. In conclusion, inhibiting IFI6 using targeted therapy could be an effective strategy for treating ESCA considering its potential as a biomarker and correlation with immune cell factors.
Collapse
Affiliation(s)
- Nguyen-Kieu Viet-Nhi
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Tran Minh Quan
- Department of Thoracic Surgery, Cho Ray Hospital, Ho Chi Minh City 700000, Vietnam
| | - Vu Cong Truc
- Department of Otolaryngology, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Tran Anh Bich
- Department of Otolaryngology, Cho Ray Hospital, Ho Chi Minh City 700000, Vietnam
| | - Pham Hoang Nam
- Department of Otolaryngology, Cho Ray Hospital, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Quoc Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- AIBioMed Research Group, Taipei Medical University, Taipei 110, Taiwan
- Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei 110, Taiwan
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Po-Yueh Chen
- Department of Otolaryngology, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
- Department of Otolaryngology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Shih-Han Hung
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Otolaryngology, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
- Department of Otolaryngology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
15
|
Chaaban A, Salman Z, Karam L, Kobeissy PH, Ibrahim JN. Updates on the role of epigenetics in familial mediterranean fever (FMF). Orphanet J Rare Dis 2024; 19:90. [PMID: 38409042 PMCID: PMC10898143 DOI: 10.1186/s13023-024-03098-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024] Open
Abstract
Familial Mediterranean Fever (FMF) is an autosomal recessive autoinflammatory disease caused by mutations in the MEFV (MEditerranean FeVer) gene that affects people originating from the Mediterranean Sea. The high variability in severity and clinical manifestations observed not only between ethnic groups but also between and within families is mainly related to MEFV allelic heterogeneity and to some modifying genes. In addition to the genetic factors underlying FMF, the environment plays a significant role in the development and manifestation of this disease through various epigenetic mechanisms, including DNA methylation, histone modification, and noncoding RNAs. Indeed, epigenetic events have been identified as an important pathophysiological determinant of FMF and co-factors shaping the clinical picture and outcome of the disease. Therefore, it is essential to better understand the contribution of epigenetic factors to autoinflammatory diseases, namely, FMF, to improve disease prognosis and potentially develop effective targeted therapies. In this review, we highlight the latest updates on the role of epigenetics in FMF.
Collapse
Affiliation(s)
- Ahlam Chaaban
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon
| | - Zeina Salman
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon
| | - Louna Karam
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon
| | - Philippe Hussein Kobeissy
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon.
| | - José-Noel Ibrahim
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon.
| |
Collapse
|
16
|
Abbas A, Hammad AS, Al-Shafai M. The role of genetic and epigenetic GNAS alterations in the development of early-onset obesity. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 793:108487. [PMID: 38103632 DOI: 10.1016/j.mrrev.2023.108487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND GNAS (guanine nucleotide-binding protein, alpha stimulating) is an imprinted gene that encodes Gsα, the α subunit of the heterotrimeric stimulatory G protein. This subunit mediates the signalling of a diverse array of G protein-coupled receptors (GPCRs), including the melanocortin 4 receptor (MC4R) that serves a pivotal role in regulating food intake, energy homoeostasis, and body weight. Genetic or epigenetic alterations in GNAS are known to cause pseudohypoparathyroidism in its different subtypes and have been recently associated with isolated, early-onset, severe obesity. Given the diverse biological functions that Gsα serves, multiple molecular mechanisms involving various GPCRs, such as MC4R, β2- and β3-adrenoceptors, and corticotropin-releasing hormone receptor, have been implicated in the pathophysiology of severe, early-onset obesity that results from genetic or epigenetic GNAS changes. SCOPE OF REVIEW This review examines the structure and function of GNAS and provides an overview of the disorders that are caused by defects in this gene and may feature early-onset obesity. Moreover, it elucidates the potential molecular mechanisms underlying Gsα deficiency-induced early-onset obesity, highlighting some of their implications for the diagnosis, management, and treatment of this complex condition. MAJOR CONCLUSIONS Gsα deficiency is an underappreciated cause of early-onset, severe obesity. Therefore, screening children with unexplained, severe obesity for GNAS defects is recommended, to enhance the molecular diagnosis and management of this condition.
Collapse
Affiliation(s)
- Alaa Abbas
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Ayat S Hammad
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mashael Al-Shafai
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
17
|
Moulistanos A, Nikolaou T, Sismanoglou S, Gkagkavouzis K, Karaiskou N, Antonopoulou E, Triantafyllidis A, Papakostas S. Investigating the role of genetic variation in vgll3 and six6 in the domestication of gilthead seabream ( Sparus aurata Linnaeus) and European seabass ( Dicentrarchus labrax Linnaeus). Ecol Evol 2023; 13:e10727. [PMID: 38020694 PMCID: PMC10654472 DOI: 10.1002/ece3.10727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Gene function conservation is crucial in molecular ecology, especially for key traits like growth and maturation in teleost fish. The vgll3 and six6 genes are known to influence age-at-maturity in Atlantic salmon, but their impact on other fish species is poorly understood. Here, we investigated the association of vgll3 and six6 in the domestication of gilthead seabream and European seabass, both undergoing selective breeding for growth-related traits in the Mediterranean. We analysed two different sets of samples using two different genotyping approaches. The first dataset comprised farmed and wild populations from Greece, genotyped for SNPs within the two genes ('gene-level genotyping'). The second dataset examined 300-600 k SNPs located in the chromosomes of the two genes, derived from a meta-analysis of a Pool-Seq experiment involving farmed and wild populations distributed widely across the Mediterranean ('chromosome-level genotyping'). The gene-level analysis revealed a statistically significant allele frequency differences between farmed and wild populations on both genes in each species. This finding was partially supported by the chromosome-level analysis, identifying highly differentiated regions may be involved in the domestication process at varying distances from the candidate genes. Noteworthy genomic features were found, such as a CpG island in gilthead seabream and novel candidate genes in European seabass, warranting further investigation. These findings support a putative role of vgll3 and six6 in the maturation and growth of gilthead seabream and European seabass, emphasizing the need for further research on their conserved function.
Collapse
Affiliation(s)
- Aristotelis Moulistanos
- Department of Genetics, Development & Molecular Biology, School of Biology, Faculty of ScienceAristotle University of ThessalonikiThessalonikiGreece
- Genomics and Epigenomics Translational Research (GENeTres)Center for Interdisciplinary Research and Innovation (CIRI‐AUTH), Balkan CenterThessalonikiGreece
| | - Theopisti Nikolaou
- Department of Genetics, Development & Molecular Biology, School of Biology, Faculty of ScienceAristotle University of ThessalonikiThessalonikiGreece
| | - Smaragda Sismanoglou
- Department of Genetics, Development & Molecular Biology, School of Biology, Faculty of ScienceAristotle University of ThessalonikiThessalonikiGreece
| | - Konstantinos Gkagkavouzis
- Department of Genetics, Development & Molecular Biology, School of Biology, Faculty of ScienceAristotle University of ThessalonikiThessalonikiGreece
- Genomics and Epigenomics Translational Research (GENeTres)Center for Interdisciplinary Research and Innovation (CIRI‐AUTH), Balkan CenterThessalonikiGreece
| | - Nikoleta Karaiskou
- Department of Genetics, Development & Molecular Biology, School of Biology, Faculty of ScienceAristotle University of ThessalonikiThessalonikiGreece
- Genomics and Epigenomics Translational Research (GENeTres)Center for Interdisciplinary Research and Innovation (CIRI‐AUTH), Balkan CenterThessalonikiGreece
| | - Efthimia Antonopoulou
- Department of Zoology, School of BiologyAristotle University of ThessalonikiThessalonikiGreece
| | - Alexandros Triantafyllidis
- Department of Genetics, Development & Molecular Biology, School of Biology, Faculty of ScienceAristotle University of ThessalonikiThessalonikiGreece
- Genomics and Epigenomics Translational Research (GENeTres)Center for Interdisciplinary Research and Innovation (CIRI‐AUTH), Balkan CenterThessalonikiGreece
| | - Spiros Papakostas
- Department of Science and TechnologyInternational Hellenic UniversityThessalonikiGreece
| |
Collapse
|
18
|
Alikhani R, Pai MP. Reconsideration of the current models of estimated kidney function-based drug dose adjustment in older adults: The role of biological age. Clin Transl Sci 2023; 16:2095-2105. [PMID: 37702349 PMCID: PMC10651638 DOI: 10.1111/cts.13643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023] Open
Abstract
Human lifespan has increased from a median of 46.5 years in 1950 to 71.7 years in 2022. As people age, one of the inevitable consequences is a decline in kidney function and glomerular filtration rate (GFR) which can have direct or indirect effects on the pharmacokinetic and pharmacodynamic profiles of many drugs. Numerous equations have been developed to generate estimated GFR (eGFR) using the two principal biomarkers: serum creatinine and serum cystatin C. However, the trajectory of changes with aging is dissimilar in these equations. In addition, there is recognition that chronological age (lifespan) often does not reflect biological age (healthspan) as an essential parameter in kidney function equations. In the past decade, there has been an increasing interest in quantifying biological age and new commercially available assays have entered the marketplace. In this narrative review, we illustrate how dominant equations of eGFR model the fractional change in this parameter very differently across chronological age. In addition, we review various biological age indicators (aging clocks) and challenges to their application in clinical practice. Importantly, by comparing vancomycin's mean clearance as a drug with limited metabolism and unchanged elimination between two age milestones in some recent population pharmacokinetic models, we show how efforts to quantify kidney function in older adults optimally remain under-explored, particularly those at the upper end of their lifespan. We also propose considering new models that integrate biological age as a new pathway to improve precision drug dosing in older adults.
Collapse
Affiliation(s)
- Radin Alikhani
- Department of Clinical Pharmacy, College of PharmacyUniversity of MichiganAnn ArborMichiganUSA
| | - Manjunath P. Pai
- Department of Clinical Pharmacy, College of PharmacyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
19
|
Naveed S, Gandhi N, Billings G, Jones Z, Campbell BT, Jones M, Rustgi S. Alterations in Growth Habit to Channel End-of-Season Perennial Reserves towards Increased Yield and Reduced Regrowth after Defoliation in Upland Cotton ( Gossypium hirsutum L.). Int J Mol Sci 2023; 24:14174. [PMID: 37762483 PMCID: PMC10532291 DOI: 10.3390/ijms241814174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/03/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Cotton (Gossypium spp.) is the primary source of natural textile fiber in the U.S. and a major crop in the Southeastern U.S. Despite constant efforts to increase the cotton fiber yield, the yield gain has stagnated. Therefore, we undertook a novel approach to improve the cotton fiber yield by altering its growth habit from perennial to annual. In this effort, we identified genotypes with high-expression alleles of five floral induction and meristem identity genes (FT, SOC1, FUL, LFY, and AP1) from an Upland cotton mini-core collection and crossed them in various combinations to develop cotton lines with annual growth habit, optimal flowering time, and enhanced productivity. To facilitate the characterization of genotypes with the desired combinations of stacked alleles, we identified molecular markers associated with the gene expression traits via genome-wide association analysis using a 63 K SNP Array. Over 14,500 SNPs showed polymorphism and were used for association analysis. A total of 396 markers showed associations with expression traits. Of these 396 markers, 159 were mapped to genes, 50 to untranslated regions, and 187 to random genomic regions. Biased genomic distribution of associated markers was observed where more trait-associated markers mapped to the cotton D sub-genome. Many quantitative trait loci coincided at specific genomic regions. This observation has implications as these traits could be bred together. The analysis also allowed the identification of candidate regulators of the expression patterns of these floral induction and meristem identity genes whose functions will be validated.
Collapse
Affiliation(s)
- Salman Naveed
- Department of Plant and Environmental Sciences, Clemson University Pee Dee Research and Education Center, Florence, SC 29506, USA; (S.N.); (M.J.)
| | - Nitant Gandhi
- Department of Plant and Environmental Sciences, Clemson University Pee Dee Research and Education Center, Florence, SC 29506, USA; (S.N.); (M.J.)
| | - Grant Billings
- Department of Crop & Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Zachary Jones
- Department of Plant and Environmental Sciences, Clemson University Pee Dee Research and Education Center, Florence, SC 29506, USA; (S.N.); (M.J.)
| | - B. Todd Campbell
- USDA-ARS Coastal Plains Soil, Water, and Plant Research Center, Florence, SC 29501, USA;
| | - Michael Jones
- Department of Plant and Environmental Sciences, Clemson University Pee Dee Research and Education Center, Florence, SC 29506, USA; (S.N.); (M.J.)
| | - Sachin Rustgi
- Department of Plant and Environmental Sciences, Clemson University Pee Dee Research and Education Center, Florence, SC 29506, USA; (S.N.); (M.J.)
| |
Collapse
|
20
|
Roy L, Chatterjee O, Bose D, Roy A, Chatterjee S. Noncoding RNA as an influential epigenetic modulator with promising roles in cancer therapeutics. Drug Discov Today 2023; 28:103690. [PMID: 37379906 DOI: 10.1016/j.drudis.2023.103690] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/11/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
The epigenetic landscape has an important role in cellular homeostasis and its deregulation leads to cancer. Noncoding (nc)RNA networks function as major regulators of cellular epigenetic hallmarks via regulation of vital processes, such as histone modification and DNA methylation. They are integral intracellular components affecting multiple oncogenic pathways. Thus, it is important to elucidate the effects of ncRNA networks on epigenetic programming that lead to the initiation and progression of cancer. In this review, we summarize the effects of epigenetic modification influenced by ncRNA networks and crosstalk between diverse classes of ncRNA, which could aid the development of patient-specific cancer therapeutics targeting ncRNAs, thereby altering cellular epigenetics.
Collapse
Affiliation(s)
- Laboni Roy
- Department of Biophysics, Bose Institute, Kolkata 700091, India
| | | | - Debopriya Bose
- Department of Biophysics, Bose Institute, Kolkata 700091, India
| | - Ananya Roy
- Department of Biophysics, Bose Institute, Kolkata 700091, India
| | | |
Collapse
|
21
|
Costa GA, de Gusmão Taveiros Silva NK, Marianno P, Chivers P, Bailey A, Camarini R. Environmental Enrichment Increased Bdnf Transcripts in the Prefrontal Cortex: Implications for an Epigenetically Controlled Mechanism. Neuroscience 2023; 526:277-289. [PMID: 37419403 DOI: 10.1016/j.neuroscience.2023.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 06/26/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
Environmental enrichment (EE) is a condition characterized by its complexity regarding social contact, exposure to novelty, tactile stimuli and voluntary exercise, also is considered as a eustress model. The impact of EE on brain physiology and behavioral outcomes may be at least partly underpinned by mechanisms involving the modulation of the brain-derived neurotrophic factor (BDNF), but the connection between specific Bdnf exon expression and their epigenetic regulation remain poorly understood. This study aimed to dissect the transcriptional and epigenetic regulatory effect of 54-day exposure to EE on BDNF by analysing individual BDNF exons mRNA expression and the DNA methylation profile of a key transcriptional regulator of the Bdnf gene, exon IV, in the prefrontal cortex (PFC) of C57BL/6 male mice (sample size = 33). Bdnf exons II, IV, VI and IX mRNA expression were upregulated and methylation levels at two CpG sites of exon IV were reduced in the PFC of EE mice. As deficit in exon IV expression has also been causally implicated in stress-related psychopathologies, we also assessed anxiety-like behavior and plasma corticosterone levels in these mice to determine any potential correlation. However, no changes were observed in EE mice. The findings may suggest an EE-induced epigenetic control of BDNF exon expression via a mechanism involving exon IV methylation. The findings of this study contribute to the current literature by dissecting the Bdnf gene topology in the PFC where transcriptional and epigenetic regulatory effect of EE takes place.
Collapse
Affiliation(s)
- Gabriel Araújo Costa
- Pharmacology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Priscila Marianno
- Pharmacology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Priti Chivers
- School of Biosciences & Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - Alexis Bailey
- Pharmacology Section, Institute of Medical and Biomedical Education, St George's University of London, London, UK.
| | - Rosana Camarini
- Pharmacology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
22
|
Stepanyan A, Petrackova A, Hakobyan S, Savara J, Davitavyan S, Kriegova E, Arakelyan A. Long-term environmental metal exposure is associated with hypomethylation of CpG sites in NFKB1 and other genes related to oncogenesis. Clin Epigenetics 2023; 15:126. [PMID: 37550793 PMCID: PMC10405444 DOI: 10.1186/s13148-023-01536-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/20/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Long-term environmental exposure to metals leads to epigenetic changes and may increase risks to human health. The relationship between the type and level of metal exposure and epigenetic changes in subjects exposed to high concentrations of metals in the environment is not yet clear. The aim of our study is to find the possible association of environmental long-term exposure to metals with DNA methylation changes of genes related to immune response and carcinogenesis. We investigated the association of plasma levels of 21 essential and non-essential metals detected by ICP-MS and the methylation level of 654 CpG sites located on NFKB1, CDKN2A, ESR1, APOA5, IGF2 and H19 genes assessed by targeted bisulfite sequencing in a cohort of 40 subjects living near metal mining area and 40 unexposed subjects. Linear regression was conducted to find differentially methylated positions with adjustment for gender, age, BMI class, smoking and metal concentration. RESULTS In the metal-exposed group, five CpGs in the NFKB1 promoter region were hypomethylated compared to unexposed group. Four differentially methylated positions (DMPs) were associated with multiple metals, two of them are located on NFKB1 gene, and one each on CDKN2A gene and ESR1 gene. Two DMPs located on NFKB1 (chr4:102500951, associated with Be) and IGF2 (chr11:2134198, associated with U) are associated with specific metal levels. The methylation status of the seven CpGs located on NFKB1 (3), ESR1 (2) and CDKN2A (2) positively correlated with plasma levels of seven metals (As, Sb, Zn, Ni, U, I and Mn). CONCLUSIONS Our study revealed methylation changes in NFKB1, CDKN2A, IGF2 and ESR1 genes in individuals with long-term human exposure to metals. Further studies are needed to clarify the effect of environmental metal exposure on epigenetic mechanisms and pathways involved.
Collapse
Affiliation(s)
- Ani Stepanyan
- Institute of Molecular Biology, National Academy of Sciences, Yerevan, Republic of Armenia.
| | - Anna Petrackova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Siras Hakobyan
- Institute of Molecular Biology, National Academy of Sciences, Yerevan, Republic of Armenia
| | - Jakub Savara
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
- Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava, Czech Republic
| | - Suren Davitavyan
- Institute of Molecular Biology, National Academy of Sciences, Yerevan, Republic of Armenia
| | - Eva Kriegova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Arsen Arakelyan
- Institute of Molecular Biology, National Academy of Sciences, Yerevan, Republic of Armenia
| |
Collapse
|
23
|
Yoodee S, Thongboonkerd V. Epigenetic regulation of epithelial-mesenchymal transition during cancer development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 380:1-61. [PMID: 37657856 DOI: 10.1016/bs.ircmb.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Epithelial-mesenchymal transition (EMT) plays essential roles in promoting malignant transformation of epithelial cells, leading to cancer progression and metastasis. During EMT-induced cancer development, a wide variety of genes are dramatically modified, especially down-regulation of epithelial-related genes and up-regulation of mesenchymal-related genes. Expression of other EMT-related genes is also modified during the carcinogenic process. Especially, epigenetic modifications are observed in the EMT-related genes, indicating their involvement in cancer development. Mechanically, epigenetic modifications of histone, DNA, mRNA and non-coding RNA stably change the EMT-related gene expression at transcription and translation levels. Herein, we summarize current knowledge on epigenetic regulatory mechanisms observed in EMT process relate to cancer development in humans. The better understanding of epigenetic regulation of EMT during cancer development may lead to improvement of drug design and preventive strategies in cancer therapy.
Collapse
Affiliation(s)
- Sunisa Yoodee
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
24
|
Bassal MA. The Interplay between Dysregulated Metabolism and Epigenetics in Cancer. Biomolecules 2023; 13:944. [PMID: 37371524 DOI: 10.3390/biom13060944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular metabolism (or energetics) and epigenetics are tightly coupled cellular processes. It is arguable that of all the described cancer hallmarks, dysregulated cellular energetics and epigenetics are the most tightly coregulated. Cellular metabolic states regulate and drive epigenetic changes while also being capable of influencing, if not driving, epigenetic reprogramming. Conversely, epigenetic changes can drive altered and compensatory metabolic states. Cancer cells meticulously modify and control each of these two linked cellular processes in order to maintain their tumorigenic potential and capacity. This review aims to explore the interplay between these two processes and discuss how each affects the other, driving and enhancing tumorigenic states in certain contexts.
Collapse
Affiliation(s)
- Mahmoud Adel Bassal
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
25
|
Singh VK, Kainat KM, Sharma PK. Crosstalk between epigenetics and tumor promoting androgen signaling in prostate cancer. VITAMINS AND HORMONES 2023; 122:253-282. [PMID: 36863797 DOI: 10.1016/bs.vh.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Prostate cancer (PCa) is one of the major health burdens among all cancer types in men globally. Early diagnosis and efficacious treatment options are highly warranted as far as the incidence of PCa is concerned. Androgen-dependent transcriptional activation of androgen receptor (AR) is central to the prostate tumorigenesis and therefore hormonal ablation therapy remains the first line of treatment for PCa in the clinics. However, the molecular signaling engaged in AR-dependent PCa initiation and progression is infrequent and diverse. Moreover, apart from the genomic changes, non-genomic changes such as epigenetic modifications have also been suggested as critical regulator of PCa development. Among the non-genomic mechanisms, various epigenetic changes such as histones modifications, chromatin methylation and noncoding RNAs regulations etc. play decisive role in the prostate tumorigenesis. Given that epigenetic modifications are reversible using pharmacological modifiers, various promising therapeutic approaches have been designed for the better management of PCa. In this chapter, we discuss the epigenetic control of tumor promoting AR signaling that underlies the mechanism of prostate tumorigenesis and progression. In addition, we have discussed the approaches and opportunities to develop novel epigenetic modifications based therapeutic strategies for targeting PCa including castrate resistant prostate cancer (CRPC).
Collapse
Affiliation(s)
- Vipendra Kumar Singh
- Environmental Carcinogenesis Lab, Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - K M Kainat
- Environmental Carcinogenesis Lab, Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pradeep Kumar Sharma
- Environmental Carcinogenesis Lab, Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
26
|
Liu S, Matsuo T, Abe T. Revisiting Cryptocyanine Dye, NK-4, as an Old and New Drug: Review and Future Perspectives. Int J Mol Sci 2023; 24:4411. [PMID: 36901839 PMCID: PMC10002675 DOI: 10.3390/ijms24054411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
NK-4 plays a key role in the treatment of various diseases, such as in hay fever to expect anti-allergic effects, in bacterial infections and gum abscesses to expect anti-inflammatory effects, in scratches, cuts, and mouth sores from bites inside the mouth for enhanced wound healing, in herpes simplex virus (HSV)-1 infections for antiviral effects, and in peripheral nerve disease that causes tingling pain and numbness in hands and feet, while NK-4 is used also to expect antioxidative and neuroprotective effects. We review all therapeutic directions for the cyanine dye NK-4, as well as the pharmacological mechanism of NK-4 in animal models of related diseases. Currently, NK-4, which is sold as an over-the-counter drug in drugstores, is approved for treating allergic diseases, loss of appetite, sleepiness, anemia, peripheral neuropathy, acute suppurative diseases, wounds, heat injuries, frostbite, and tinea pedis in Japan. The therapeutic effects of NK-4's antioxidative and neuroprotective properties in animal models are now under development, and we hope to apply these pharmacological effects of NK-4 to the treatment of more diseases. All experimental data suggest that different kinds of utility of NK-4 in the treatment of diseases can be developed based on the various pharmacological properties of NK-4. It is expected that NK-4 could be developed in more therapeutic strategies to treat many types of diseases, such as neurodegenerative and retinal degenerative diseases.
Collapse
Affiliation(s)
- Shihui Liu
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8558, Japan
| | - Toshihiko Matsuo
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8558, Japan
- Department of Ophthalmology, Okayama University Hospital, Okayama 700-8558, Japan
| | - Takumi Abe
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
27
|
Mlinarec J, Boštjančić LL, Malenica N, Jurković A, Boland T, Yakovlev SS, Besendorfer V. Structure and Methylation of 35S rDNA in Allopolyploids Anemone multifida (2 n = 4 x = 32, BBDD) and Anemone baldensis (2 n = 6 x = 48, AABBDD) and Their Parental Species Show Evidence of Nucleolar Dominance. FRONTIERS IN PLANT SCIENCE 2022; 13:908218. [PMID: 35874014 PMCID: PMC9296772 DOI: 10.3389/fpls.2022.908218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/07/2022] [Indexed: 05/26/2023]
Abstract
Transcriptional silencing of 35S rDNA loci inherited from one parental species is occurring relatively frequently in allopolyploids. However, molecular mechanisms by which it is selected for transcriptional silencing remain unclear. We applied NGS, silver staining and bisulfite sequencing to study the structure, expression and methylation landscape of 35S rDNA in two allopolyploids of common origin, allotetraploid Anemone multifida (2n = 4x = 32, genome composition BBDD) and allohexaploid A. baldensis (2n = 6x = 48, AABBDD), and their genome donors, A. sylvestris (2n = 16, AA), A. cylindrica (2n = 16, BB) and A. parviflora (2n = 16, DD). The size of the recovered 35S rDNA units varied from 10,489 bp in A. cylindrica to 12,084 bp in A. sylvestris. Anemone showed an organization typical of most ribosomal 35S rDNA composed of NTS, ETS, rRNA genes, TTS and TIS with structural features of plant IGS sequences and all functional elements needed for rRNA gene activity. The NTS was more variable than the ETS and consisted of SRs which are highly variable among Anemone. Five to six CpG-rich islands were found within the ETS. CpG island located adjacent to the transcription initiation site (TIS) was highly variable regarding the sequence size and methylation level and exhibited in most of the species lower levels of methylation than CpG islands located adjacent to the 18S rRNA gene. Our results uncover hypomethylation of A. sylvestris- and A. parviflora-derived 35S rDNA units in allopolyploids A. multifida and A. baldensis. Hypomethylation of A. parviflora-derived 35S rDNA was more prominent in A. baldensis than in A. multifida. We showed that A. baldensis underwent coupled A. sylvestris-derived 35S rDNA array expansion and A. parviflora-derived 35S rDNA copy number decrease that was accompanied by lower methylation level of A. sylvestris-derived 35S rDNA units in comparison to A. parviflora-derived 35S rDNA units. These observations suggest that in A. baldensis nucleolar dominance is directed toward A. sylvestris-derived chromosomes. This work broadens our current knowledge of the 35S rDNA organization in Anemone and provides evidence of the progenitor-specific 35S rDNA methylation in nucleolar dominance.
Collapse
Affiliation(s)
| | - Ljudevit Luka Boštjančić
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt, Germany
- Department of Computer Science, ICube, UMR 7357, CNRS, Centre de Recherche en Biomédecine de Strasbourg, University of Strasbourg, Strasbourg, France
| | - Nenad Malenica
- Division of Molecular Biology, Department of Biology, University of Zagreb, Horvatovac, Croatia
| | - Adela Jurković
- Division of Molecular Biology, Department of Biology, University of Zagreb, Horvatovac, Croatia
| | - Todd Boland
- Memorial University of Newfoundland’s Botanical Gardens, St. John’s, NL, Canada
| | - Sonja Siljak Yakovlev
- CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France
| | - Višnja Besendorfer
- Division of Molecular Biology, Department of Biology, University of Zagreb, Horvatovac, Croatia
| |
Collapse
|
28
|
Integrated Analyses of DNA Methylation and Gene Expression of Rainbow Trout Muscle under Variable Ploidy and Muscle Atrophy Conditions. Genes (Basel) 2022; 13:genes13071151. [PMID: 35885934 PMCID: PMC9319582 DOI: 10.3390/genes13071151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
Rainbow trout, Oncorhynchus mykiss, is an important cool, freshwater aquaculture species used as a model for biological research. However, its genome reference has not been annotated for epigenetic markers affecting various biological processes, including muscle growth/atrophy. Increased energetic demands during gonadogenesis/reproduction provoke muscle atrophy in rainbow trout. We described DNA methylation and its associated gene expression in atrophying muscle by comparing gravid, diploid females to sterile, triploid females. Methyl Mini-seq and RNA-Seq were simultaneously used to characterize genome-wide DNA methylation and its association with gene expression in rainbow trout muscle. Genome-wide enrichment in the number of CpGs, accompanied by depleted methylation levels, was noticed around the gene transcription start site (TSS). Hypermethylation of CpG sites within ±1 kb on both sides of TSS (promoter and gene body) was weakly/moderately associated with reduced gene expression. Conversely, hypermethylation of the CpG sites in downstream regions of the gene body +2 to +10 kb was weakly associated with increased gene expression. Unlike mammalian genomes, rainbow trout gene promotors are poor in CpG islands, at <1% compared to 60%. No signs of genome-wide, differentially methylated (DM) CpGs were observed due to the polyploidy effect; only 1206 CpGs (0.03%) were differentially methylated, and these were primarily associated with muscle atrophy. Twenty-eight genes exhibited differential gene expression consistent with methylation levels of 31 DM CpGs. These 31 DM CpGs represent potential epigenetic markers of muscle atrophy in rainbow trout. The DM CpG-harboring genes are involved in apoptosis, epigenetic regulation, autophagy, collagen metabolism, cell membrane functions, and Homeobox proteins. Our study also identified genes explaining higher water content and modulated glycolysis previously shown as characteristic biochemical signs of rainbow trout muscle atrophy associated with sexual maturation. This study characterized DNA methylation in the rainbow trout genome and its correlation with gene expression. This work also identified novel epigenetic markers associated with muscle atrophy in fish/lower vertebrates.
Collapse
|
29
|
Nie F, Zhang J, Li M, Chang X, Duan H, Li H, Zhou J, Ji Y, Guo L. Transcriptome analysis of thymic tissues from Chinese Partridge Shank chickens with or without Newcastle disease virus LaSota vaccine injection via high-throughput RNA sequencing. Bioengineered 2022; 13:9131-9144. [PMID: 35403571 PMCID: PMC9161911 DOI: 10.1080/21655979.2021.2008737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Furong Nie
- Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Jingfeng Zhang
- Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Mengyun Li
- Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Xuanniu Chang
- Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Haitao Duan
- Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Haoyan Li
- Henan Chenxia Biomedical Co., Ltd, Zhengzhou, China
| | - Jia Zhou
- Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Yudan Ji
- Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Liangxing Guo
- Henan University of Animal Husbandry and Economy, Zhengzhou, China
| |
Collapse
|
30
|
Hamde F, Dinka H, Naimuddin M. In silico analysis of promoter regions to identify regulatory elements in TetR family transcriptional regulatory genes of Mycobacterium colombiense CECT 3035. J Genet Eng Biotechnol 2022; 20:53. [PMID: 35357597 PMCID: PMC8971250 DOI: 10.1186/s43141-022-00331-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/09/2022] [Indexed: 12/18/2022]
Abstract
Background Mycobacterium colombiense is an acid-fast, non-motile, rod-shaped mycobacterium confirmed to cause respiratory disease and disseminated infection in immune-compromised patients, and lymphadenopathy in immune-competent children. It has virulence mechanisms that allow them to adapt, survive, replicate, and produce diseases in the host. To tackle the diseases caused by M. colombiense, understanding of the regulation mechanisms of its genes is important. This paper, therefore, analyzes transcription start sites, promoter regions, motifs, transcription factors, and CpG islands in TetR family transcriptional regulatory (TFTR) genes of M. colombiense CECT 3035 using neural network promoter prediction, MEME, TOMTOM algorithms, and evolutionary analysis with the help of MEGA-X. Results The analysis of 22 protein coding TFTR genes of M. colombiense CECT 3035 showed that 86.36% and 13.64% of the gene sequences had one and two TSSs, respectively. Using MEME, we identified five motifs (MTF1, MTF2, MTF3, MTF4, and MTF5) and MTF1 was revealed as the common promoter motif for 100% TFTR genes of M. colombiense CECT 3035 which may serve as binding site for transcription factors that shared a minimum homology of 95.45%. MTF1 was compared to the registered prokaryotic motifs and found to match with 15 of them. MTF1 serves as the binding site mainly for AraC, LexA, and Bacterial histone-like protein families. Other protein families such as MATP, RR, σ-70 factor, TetR, LytTR, LuxR, and NAP also appear to be the binding candidates for MTF1. These families are known to have functions in virulence mechanisms, metabolism, quorum sensing, cell division, and antibiotic resistance. Furthermore, it was found that TFTR genes of M. colombiense CECT 3035 have many CpG islands with several fragments in their CpG islands. Molecular evolutionary genetic analysis showed close relationship among the genes. Conclusion We believe these findings will provide a better understanding of the regulation of TFTR genes in M. colombiense CECT 3035 involved in vital processes such as cell division, pathogenesis, and drug resistance and are likely to provide insights for drug development important to tackle the diseases caused by this mycobacterium. We believe this is the first report of in silico analyses of the transcriptional regulation of M. colombiense TFTR genes.
Collapse
Affiliation(s)
- Feyissa Hamde
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia.
| | - Hunduma Dinka
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| | - Mohammed Naimuddin
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia.
| |
Collapse
|
31
|
Yang C, Li D, Teng D, Zhou Y, Zhang L, Zhong Z, Yang GJ. Epigenetic Regulation in the Pathogenesis of Rheumatoid Arthritis. Front Immunol 2022; 13:859400. [PMID: 35401513 PMCID: PMC8989414 DOI: 10.3389/fimmu.2022.859400] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/03/2022] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease. The etiology of RA remains undetermined and the pathogenesis is complex. There remains a paucity of ideal therapeutic drugs and treatment strategies. The epigenetic modifications affect and regulate the function and characteristics of genes through mechanisms, including DNA methylation, histone modification, chromosome remodeling, and RNAi, thereby exerting a significant impact on the living state of the body. Recently, the phenomenon of epigenetic modification in RA has garnered growing research interest. The application of epigenetically modified methods is the frontier field in the research of RA pathogenesis. This review highlights the research on the pathogenesis of RA based on epigenetic modification in the recent five years, thereby suggesting new methods and strategies for the diagnosis and treatment of RA.
Collapse
Affiliation(s)
- Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dehong Teng
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, China
| | - Yueru Zhou
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Lei Zhang
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
- *Correspondence: Zhangfeng Zhong, ; Guan-Jun Yang,
| | - Guan-Jun Yang
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- *Correspondence: Zhangfeng Zhong, ; Guan-Jun Yang,
| |
Collapse
|
32
|
Abera B, Dinka H. MAGE genes encoding for embryonic development in cattle is mainly regulated by zinc finger transcription factor family and slightly by CpG Islands. BMC Genom Data 2022; 23:19. [PMID: 35303799 PMCID: PMC8932067 DOI: 10.1186/s12863-022-01034-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/01/2022] [Indexed: 11/20/2022] Open
Abstract
Background Melanoma Antigen Genes (MAGEs) are a family of genes that have piqued the interest of scientists for their unique expression pattern. The MAGE genes can be classified into type I MAGEs that expressed in testis and other reproductive tissues while type II MAGEs that have broad expression in many tissues. Several MAGE gene families are expressed in embryonic tissues in almost all eukaryotes, which is essential for embryo development mainly during germ cell differentiation. The aim of this study was to analyze the promoter regions and regulatory elements (transcription factors and CpG islands) of MAGE genes encoding for embryonic development in cattle. Results The in silico analysis revealed the highest promoter prediction scores (1.0) for TSS were obtained for two gene sequences (MAGE B4-like and MAGE-L2) while the lowest promoter prediction scores (0.8) was obtained for MAGE B17-like. It also revealed that the best common motif, motif IV, bear a resemblance with three TF families including Zinc-finger family, SMAD family and E2A related factors. From thirteen identified TFs candidates, majority of them (11/13) were clustered to Zinc-finger family serving as transcriptionally activator role whereas three (SP1, SP3 and Znf423) of them as activator or repressor in response to physiological and pathological stimuli. On the other hand we revealed slightly rich CpG islands in the gene body and promoter regions of MAGE genes encoding for embryonic development in cattle. Conclusion This in silico analysis of gene promoter regions and regulatory elements in MAGE genes could be useful for understanding regulatory networks and gene expression patterns during embryo development in bovine.
Collapse
Affiliation(s)
- Bosenu Abera
- Department of Applied Biology, School of Applied Natural Sciences, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia.,Department of Animal Science, College of Agriculture and Natural Resources, Salale University, P.O. Box 245, Salale, Ethiopia
| | - Hunduma Dinka
- Department of Applied Biology, School of Applied Natural Sciences, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia.
| |
Collapse
|
33
|
El-shaarawy F, Abo ElAzm MM, Mohamed RH, Radwan MI, Abo-Elmatty DM, Mehanna ET. Relation of the methylation state of RUNX3 and p16 gene promoters with hepatocellular carcinoma in Egyptian patients. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00256-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Hepatocellular carcinoma (HCC) is the most common primary hepatic malignancy of adults. RUNX3 and p16 are tumor suppressor genes that may be inactivated by hypermethylation which is a key epigenetic mechanism that contributes to the initiation and progression of various types of human carcinomas including HCC. The aim of this study was to assess the association of hypermethylation of RUNX3 and p16 gene promoters with the incidence of HCC in Egyptian patients. The study included 120 subjects: 30 HCC patients, 30 patients with hepatitis C virus (HCV) without cirrhosis, 30 cirrhotic patients, and 30 healthy volunteers. Methylation-specific polymerase chain reaction (PCR) was done for detection of hypermethylated p16 and RUNX3. Serum levels of liver enzymes and albumin were detected spectrophotometrically and alpha fetoprotein (AFP) was measured in serum by ELISA.
Results
Methylation of RUNX3 and p16 was detected in 25/30 (83.3%) and 26/30 (86.7%) of HCC patients, respectively. The methylation state of both RUNX3 and p16 genes was significantly higher in HCC patients compared to the control subjects (P = 0.016, OR = 4.38) and (P = 0.014, OR = 4.97), respectively. The methylation of both promoters was associated with higher AFP levels in the serum of all patients.
Conclusions
Hypermethylation of RUNX3 and p16 is significantly associated with the development of HCC and may be implicated in its pathogenesis.
Collapse
|
34
|
Epigenome-Wide DNA Methylation Profiling in Colorectal Cancer and Normal Adjacent Colon Using Infinium Human Methylation 450K. Diagnostics (Basel) 2022; 12:diagnostics12010198. [PMID: 35054365 PMCID: PMC8775085 DOI: 10.3390/diagnostics12010198] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 01/20/2023] Open
Abstract
The aims were to profile the DNA methylation in colorectal cancer (CRC) and to explore cancer-specific methylation biomarkers. Fifty-four pairs of CRCs and the adjacent normal tissues were subjected to Infinium Human Methylation 450K assay and analysed using ChAMP R package. A total of 26,093 differentially methylated probes were identified, which represent 6156 genes; 650 probes were hypermethylated, and 25,443 were hypomethylated. Hypermethylated sites were common in CpG islands, while hypomethylated sites were in open sea. Most of the hypermethylated genes were associated with pathways in cancer, while the hypomethylated genes were involved in the PI3K-AKT signalling pathway. Among the identified differentially methylated probes, we found evidence of four potential probes in CRCs versus adjacent normal; HOXA2 cg06786372, OPLAH cg17301223, cg15638338, and TRIM31 cg02583465 that could serve as a new biomarker in CRC since these probes were aberrantly methylated in CRC as well as involved in the progression of CRC. Furthermore, we revealed the potential of promoter methylation ADHFE1 cg18065361 in differentiating the CRC from normal colonic tissue from the integrated analysis. In conclusion, aberrant DNA methylation is significantly involved in CRC pathogenesis and is associated with gene silencing. This study reports several potential important methylated genes in CRC and, therefore, merit further validation as novel candidate biomarker genes in CRC.
Collapse
|
35
|
Ramos-Rosales DF, Vazquez-Alaniz F, Urtiz-Estrada N, Ramirez-Valles EG, Mendez-Hernádez EM, Salas-Leal AC, Barraza-Salas M. Epigenetic marks in suicide: a review. Psychiatr Genet 2021; 31:145-161. [PMID: 34412082 DOI: 10.1097/ypg.0000000000000297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Suicide is a complex phenomenon and a global public health problem that involves several biological factors that could contribute to the pathophysiology of suicide. There is evidence that epigenetic factors influence some psychiatric disorders, suggesting a predisposition to suicide or suicidal behavior. Here, we review studies of molecular mechanisms of suicide in an epigenetic perspective in the postmortem brain of suicide completers and peripheral blood cells of suicide attempters. Besides, we include studies of gene-specific DNA methylation, epigenome-wide association, histone modification, and interfering RNAs as epigenetic factors. This review provides an overview of the epigenetic mechanisms described in different biological systems related to suicide, contributing to an understanding of the genetic regulation in suicide. We conclude that epigenetic marks are potential biomarkers in suicide, and they could become attractive therapeutic targets due to their reversibility and importance in regulating gene expression.
Collapse
Affiliation(s)
| | - Fernando Vazquez-Alaniz
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango
- Hospital General 450. Servicios de Salud de Durango
| | | | | | - Edna M Mendez-Hernádez
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, México
| | - Alma C Salas-Leal
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, México
| | | |
Collapse
|
36
|
Faam B, Ghaffari MA, Khorsandi L, Ghadiri AA, Totonchi M, Amouzegar A, Fanaei SA, Azizi F, Shahbazian HB, Hashemi Tabar M. RAP1GAP Functions as a Tumor Suppressor Gene and Is Regulated by DNA Methylation in Differentiated Thyroid Cancer. Cytogenet Genome Res 2021; 161:227-235. [PMID: 34311462 DOI: 10.1159/000516122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/25/2021] [Indexed: 11/19/2022] Open
Abstract
Inactivation of tumor suppressor genes, such as RAP1GAP, by hypermethylation of their regulatory region can give rise to thyroid tumors. The aim of this study was to investigate the expression of the RAP1GAP gene and the DNA methylation patterns of its CpG74a, CpG74b, and CpG24 in an Iranian population with differentiated thyroid cancer (DTC). In this study, 160 individuals who underwent thyroidectomy in the Tehran Erfan Hospital between 2018 and 2020 were selected. DNA methylation patterns of selected CpG islands (CpG74a, CpG74b, and CpG24) were determined using methylation-specific PCR. The mRNA expression and protein level of -RAP1GAP were also evaluated. SW1736 and B-CPAP cells were treated with 5-aza-2'-deoxycytidine (5-Aza) to demethylate these regions. The hypermethylation rates of CpG74a and CpG24 in DTC samples were significantly higher than in the control. The mRNA expression and protein level of -RAP1GAP were significantly decreased in the DTC group. In the DTC group, hypermethylation in CpG74a was correlated with decreasing RAP1GAP expression (R2: 0.34; p = 0.043). CpG74a with a specificity of 86.4% has significant prediction power to distinguish between DTC and normal thyroid tissues. Additionally, hypermethylation of CpG74a was significantly associated with higher tumor stages (stage III-IV: 77%; stage I-II: 23%; p = 0.012). Increasing expression of RAP1GAP after demethylation with 15 µM of 5-Aza was observed in both cell lines. These results indicate that DNA hypermethylation in CpG74a can be considered as an epigenetic biomarker in DTC.
Collapse
Affiliation(s)
- Bita Faam
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,
| | - Mohammad A Ghaffari
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ata A Ghadiri
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Totonchi
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Atieh Amouzegar
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hajeih B Shahbazian
- Chronic Diseases Care Research Center, School of Nursing and Midwifery, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahmoud Hashemi Tabar
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
37
|
Venney D, Mohd-Sarip A, Mills KI. The Impact of Epigenetic Modifications in Myeloid Malignancies. Int J Mol Sci 2021; 22:5013. [PMID: 34065087 PMCID: PMC8125972 DOI: 10.3390/ijms22095013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/19/2022] Open
Abstract
Myeloid malignancy is a broad term encapsulating myeloproliferative neoplasms (MPN), myelodysplastic syndrome (MDS) and acute myeloid leukaemia (AML). Initial studies into genomic profiles of these diseases have shown 2000 somatic mutations prevalent across the spectrum of myeloid blood disorders. Epigenetic mutations are emerging as critical components of disease progression, with mutations in genes controlling chromatin regulation and methylation/acetylation status. Genes such as DNA methyltransferase 3A (DNMT3A), ten eleven translocation methylcytosine dioxygenase 2 (TET2), additional sex combs-like 1 (ASXL1), enhancer of zeste homolog 2 (EZH2) and isocitrate dehydrogenase 1/2 (IDH1/2) show functional impact in disease pathogenesis. In this review we discuss how current knowledge relating to disease progression, mutational profile and therapeutic potential is progressing and increasing understanding of myeloid malignancies.
Collapse
Affiliation(s)
| | | | - Ken I Mills
- Patrick G Johnston Center for Cancer Research, Queens University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK; (D.V.); (A.M.-S.)
| |
Collapse
|
38
|
Alkaff AH, Saragih M, Imana SN, Nasution MAF, Tambunan USF. Identification of DNA Methyltransferase-1 Inhibitor for Breast Cancer Therapy through Computational Fragment-Based Drug Design. Molecules 2021; 26:E375. [PMID: 33450856 PMCID: PMC7828308 DOI: 10.3390/molecules26020375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 01/09/2023] Open
Abstract
Epimutation by DNA Methyltransferase 1 (DNMT1), an epigenetic regulator enzyme, may lead to the proliferation of breast cancer. In this report, 168,686 natural products from the PubChem database were screened and modified by in silico method to acquire the potential inhibitor of DNMT1. The initial screening of PubChem natural products using Lipinski's and Veber's rules of three and toxic properties have resulted in 2601 fragment candidates. Four fragments from pharmacophore-based molecular docking simulation were modified by utilizing FragFP and the Lipinski's and Veber's rules of five, and resulted in 51,200 ligands. The toxicological screening collected 13,563 ligands for a series of pharmacophore-based molecular docking simulations to sort out the modified ligands, which had the better binding activity and interactions to DNMT1 compared to the standards, SAH, SAM, and SFG. This step resulted in five ligand candidates, namely C-7756, C-5769, C-1723, C-2129, and C-2140. The ADME-Tox properties prediction showed that the selected ligands are generally better than standards in terms of druglikeness, GI absorption, and oral bioavailability. C-7756 exhibited a stronger affinity to DNMT1 as well as better ADME-Tox properties compared to the other ligands.
Collapse
Affiliation(s)
| | | | | | | | - Usman Sumo Friend Tambunan
- Bioinformatics and Biomedicals Research Group, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, West Java, Indonesia; (A.H.A.); (M.S.); (S.N.I.); (M.A.F.N.)
| |
Collapse
|
39
|
Nair J, Maheshwari A. Epigenetics in Necrotizing Enterocolitis. Curr Pediatr Rev 2021; 17:172-184. [PMID: 33882811 DOI: 10.2174/1573396317666210421110608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/14/2021] [Accepted: 02/26/2021] [Indexed: 11/22/2022]
Abstract
Epigenetic alterations in our genetic material can lead to heritable changes in the risk, clinical manifestations, course, and outcomes of many diseases. Understanding these epigenetic mechanisms can help in identifying potential therapeutic targets. This is especially important in necrotizing enterocolitis (NEC), where prenatal as well as postnatal factors impact susceptibility to this devastating condition, but our therapeutic options are limited. Developmental factors affecting intestinal structure and function, our immune system, gut microbiome, and postnatal enteral nutrition are all thought to play a prominent role in this disease. In this manuscript, we have reviewed the epigenetic mechanisms involved in NEC. These include key developmental changes in DNA methylation in the immature intestine, the role of long non-coding RNA (lncRNA) in maintaining intestinal barrier function, epigenetic influences of prenatal inflammation on immunological pathways in NEC pathogenesis such as Toll-Like Receptor 4 (TLR4) and epigenetic changes associated with enteral feeding causing upregulation of pro-inflammatory genes. We have assimilated research findings from our own laboratory with an extensive review of the literature utilizing key terms in multiple databases, including PubMed, EMBASE, and Science Direct.
Collapse
Affiliation(s)
- Jayasree Nair
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Akhil Maheshwari
- Department of Pediatrics, Johns Hopkins University, Baltimore, MA, United States
| |
Collapse
|
40
|
Carreras J, Kikuti YY, Miyaoka M, Hiraiwa S, Tomita S, Ikoma H, Kondo Y, Ito A, Nakamura N, Hamoudi R. Artificial Intelligence Analysis of the Gene Expression of Follicular Lymphoma Predicted the Overall Survival and Correlated with the Immune Microenvironment Response Signatures. MACHINE LEARNING AND KNOWLEDGE EXTRACTION 2020; 2:647-671. [DOI: 10.3390/make2040035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Follicular lymphoma (FL) is the second most common lymphoma in Western countries. FL is characterized by being incurable, usually having an indolent clinical course with frequent relapses, and an eventual patient’s death or transformation to Diffuse Large B-cell Lymphoma. The immune response and the tumoral immune microenvironment, including FOXP3+Tregs, PD-1+TFH cells, TNFRSF14 (HVEM), and BTLA play a role in the pathogenesis. We aimed to analyze the gene expression of FL by Artificial Intelligence (machine learning, deep learning), to identify genes associated with the prognosis of the patients and with the microenvironment in terms of overall survival (OS). A series of 184 cases of the GSE16131 dataset was analyzed by multilayer perceptron (MLP) and radial basis function (RBF) neural networks. In the analysis, MLP and RBF had a synergistic effect. From an initial set of 22,215 genes probes, a final set of 43 genes was highlighted. These 43 genes predicted the OS and correlated with the immune microenvironment: in a multivariate Cox analysis, 18 genes were associated with a poor prognosis (namely, MED8, KRT19, CDC40, SLC24A2, PRB1, KIAA0100, EVA1B, KLK10, TMEM70, BTN2A3P, TRPM4, MED6, FRYL, CBFA2T2, RANBP9, BNIP2, PTP4A2 and ALDH1L1) and 25 genes were associated with a good prognosis of the patients. Gene set enrichment analysis (GSEA) confirmed these findings and showed a typical sinusoidal-like shape. Some of the most relevant genes for poor OS were EVA1B, KRT19, BTN2A3P, KLK10, TRPM4, TMEM70, and SLC24A2 (hazard risk = from 1.7 to 4.3, p < 0.005) and for good OS, these were TDRD12 and ZNF230 (HR = 0.34 and 0.28, p < 0.001). EVA1B, KRT19, BTN2AP3, KLK10, and TRPM4 also associated with M2-like macrophage markers including CD163, MRC1 (CD206), and IL10 in the core enrichment for dead OS outcome by GSEA and to poor OS by Kaplan–Meier with Log rank test. The scientific literature showed that some of these genes also play a role in other types of cancer. In conclusion, by Artificial Intelligence, we have identified new biomarkers with prognostic relevance in FL.
Collapse
Affiliation(s)
- Joaquim Carreras
- Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Yara Yukie Kikuti
- Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Masashi Miyaoka
- Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Shinichiro Hiraiwa
- Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Sakura Tomita
- Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Haruka Ikoma
- Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Yusuke Kondo
- Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Atsushi Ito
- Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Naoya Nakamura
- Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Rifat Hamoudi
- Department of Clinical Sciences, College of Medicine, University of Sharjah, P.O. Box 27272 Sharjah, UAE
- Division of Surgery and Interventional Science, University College London, Gower Street, London WC1E-6BT, UK
| |
Collapse
|
41
|
Saw G, Tang FR. Epigenetic Regulation of the Hippocampus, with Special Reference to Radiation Exposure. Int J Mol Sci 2020; 21:ijms21249514. [PMID: 33327654 PMCID: PMC7765140 DOI: 10.3390/ijms21249514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 01/28/2023] Open
Abstract
The hippocampus is crucial in learning, memory and emotion processing, and is involved in the development of different neurological and neuropsychological disorders. Several epigenetic factors, including DNA methylation, histone modifications and non-coding RNAs, have been shown to regulate the development and function of the hippocampus, and the alteration of epigenetic regulation may play important roles in the development of neurocognitive and neurodegenerative diseases. This review summarizes the epigenetic modifications of various cell types and processes within the hippocampus and their resulting effects on cognition, memory and overall hippocampal function. In addition, the effects of exposure to radiation that may induce a myriad of epigenetic changes in the hippocampus are reviewed. By assessing and evaluating the current literature, we hope to prompt a more thorough understanding of the molecular mechanisms that underlie radiation-induced epigenetic changes, an area which can be further explored.
Collapse
|
42
|
Koudoufio M, Desjardins Y, Feldman F, Spahis S, Delvin E, Levy E. Insight into Polyphenol and Gut Microbiota Crosstalk: Are Their Metabolites the Key to Understand Protective Effects against Metabolic Disorders? Antioxidants (Basel) 2020; 9:E982. [PMID: 33066106 PMCID: PMC7601951 DOI: 10.3390/antiox9100982] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Lifestyle factors, especially diet and nutrition, are currently regarded as essential avenues to decrease modern-day cardiometabolic disorders (CMD), including obesity, metabolic syndrome, type 2 diabetes, and atherosclerosis. Many groups around the world attribute these trends, at least partially, to bioactive plant polyphenols given their anti-oxidant and anti-inflammatory actions. In fact, polyphenols can prevent or reverse the progression of disease processes through many distinct mechanisms. In particular, the crosstalk between polyphenols and gut microbiota, recently unveiled thanks to DNA-based tools and next generation sequencing, unravelled the central regulatory role of dietary polyphenols and their intestinal micro-ecology metabolites on the host energy metabolism and related illnesses. The objectives of this review are to: (1) provide an understanding of classification, structure, and bioavailability of dietary polyphenols; (2) underline their metabolism by gut microbiota; (3) highlight their prebiotic effects on microflora; (4) discuss the multifaceted roles of their metabolites in CMD while shedding light on the mechanisms of action; and (5) underscore their ability to initiate host epigenetic regulation. In sum, the review clearly documents whether dietary polyphenols and micro-ecology favorably interact to promote multiple physiological functions on human organism.
Collapse
Affiliation(s)
- Mireille Koudoufio
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada; (M.K.); (F.F.); (S.S.); (E.D.)
- Department of Nutrition, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Francis Feldman
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada; (M.K.); (F.F.); (S.S.); (E.D.)
- Department of Nutrition, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Schohraya Spahis
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada; (M.K.); (F.F.); (S.S.); (E.D.)
- Department of Nutrition, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Edgard Delvin
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada; (M.K.); (F.F.); (S.S.); (E.D.)
- Department of Biochemistry, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Emile Levy
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada; (M.K.); (F.F.); (S.S.); (E.D.)
- Department of Nutrition, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada;
- Department of Pediatrics, Université de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|