1
|
Mhaske PS, Nathan B, Nallusamy S, Raman R, Sampathkumar V, Kathirvel P, Ravikumar CN, Sathyaseelan C, Selvakumar D. Exploring the anti-diabetic potential of barnyard millet: insights from virtual screening, MD simulation and MM-PBSA. J Biomol Struct Dyn 2025:1-15. [PMID: 40084843 DOI: 10.1080/07391102.2025.2478466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 01/18/2025] [Indexed: 03/16/2025]
Abstract
Barnyard millet (Echinochloa frumentacea) is a nutritionally superior grain and a rich source of dietary fiber, and protein. It helps in managing health and dietary issues such as malnutrition, diabetes, obesity, and celiac disease. Its low content of slowly digestible carbohydrates promotes a gradual release of glucose, helping to maintain stable blood glucose levels. The present study aims to identify and screen phytochemicals in the barnyard millet and explore its anti-diabetic activity through an in-silico study. Gas chromatography-mass spectrometry (GC-MS) analyses of the seed extract revealed the occurrence of 73 bioactive compounds that are known to possess a variety of pharmacological activities. Based on the virtual screening analysis, phytochemicals interacted with five different diabetic targets, with diosgenin demonstrating the lowest binding affinity across four receptors. Specifically, diosgenin showed a binding affinity of -9.2 kcal/mol with the Insulin receptor (PDB ID: 1IR3), -8.7 kcal/mol with Peroxisome proliferator-activated receptors (PDB ID: 3G9E), -7.5 kcal/mol with Tyrosine phosphatase 1-beta (2F70), and -6.5 kcal/mol with the Glucagon receptor (PDB ID: 5EE7). For Aldose reductase (PDB ID: 4XZH), Docosahexaenoic acid exhibited the lowest binding affinity of -9.9 kcal/mol. The dynamic behavior of 2F70-Diosgenin docked complexes throughout a 500 ns trajectory run was investigated further. The RMSD and RMSF analyses reveal that the complex remains structurally stable. The binding free energies were computed using the Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) methodology. The calculation results show that the predicted free energies of the complex are stable. These results suggest that the 2F70-Diosgenin complex is stable, highlighting its potential for further wet lab validation.
Collapse
Affiliation(s)
- Pallavi Sukdev Mhaske
- Department of Plant Molecular Biology and Bioinformatics, CPMB&B, TNAU, Coimbatore, India
| | - Bharathi Nathan
- Department of Plant Molecular Biology and Bioinformatics, CPMB&B, TNAU, Coimbatore, India
| | - Saranya Nallusamy
- Department of Plant Molecular Biology and Bioinformatics, CPMB&B, TNAU, Coimbatore, India
| | - Renuka Raman
- Department of Plant Biotechnology, CPMB&B, TNAU, Coimbatore, India
| | | | - Pavitra Kathirvel
- Department of Plant Molecular Biology and Bioinformatics, CPMB&B, TNAU, Coimbatore, India
| | | | - Chakkarai Sathyaseelan
- Department of Plant Molecular Biology and Bioinformatics, CPMB&B, TNAU, Coimbatore, India
| | - Divya Selvakumar
- Department of Plant Molecular Biology and Bioinformatics, CPMB&B, TNAU, Coimbatore, India
| |
Collapse
|
2
|
Yue Z, Zhang R, Feng N, Yuan X. Uncovering the Differences in Flavour Volatiles from Hybrid and Conventional Foxtail Millet Varieties Based on Gas Chromatography-Ion Migration Spectrometry and Chemometrics. PLANTS (BASEL, SWITZERLAND) 2025; 14:708. [PMID: 40094604 PMCID: PMC11902185 DOI: 10.3390/plants14050708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
The flavour of foxtail millet (Setaria italica (L.) P. Beauv.) is an important indicator for evaluating the quality of the millet. The volatile components in steamed millet porridge samples were analysed using electronic nose (E-Nose) and gas chromatography-ion mobility spectrometry (GC-IMS) techniques, and characteristic volatile fingerprints were constructed to clarify the differences in the main flavour substances in different foxtail millet varieties (two hybrids and two conventional foxtail millets). After sensory evaluation by judges, Jingu 21 (JG) scored significantly higher than the other varieties, and the others were, in order, Jinmiao K1 (JM), Changzagu 466 (CZ) and Zhangzagu 3 (ZZ). E-Nose analysis showed differences in sulphides and terpenoids, nitrogen oxides, organosulphides and aromatic compounds in different varieties of millet porridge. A total of 59 volatile components were determined by GC-IMS in the four varieties of millet porridge, including 23 aldehydes, 17 alcohols, 9 ketones, 4 esters, 2 acids, 3 furans and 1 pyrazine. Comparative analyses of the volatile components in JG, JM, ZZ and CZ revealed that the contents of octanal, nonanal and 3-methyl-2-butenal were higher in JG; the contents of trans-2-butenal, 2-methyl-1-propanol, trans-2-heptenal and trans-2-pentenal were higher in JM; and the contents of 2-octanone, hexanol, 1-octen-3-ol, 2-pentanone and butyraldehyde were higher in ZZ. The contents of 2-butanol, propionic acid and acetic acid were higher in CZ. A prediction model with good stability was established by orthogonal partial least squares discriminant analysis (OPLS-DA), and 25 potential characteristic markers (VIP > 1) were screened out from 59 volatile organic compounds (VOCs). These volatile components can be used to distinguish the different varieties of millet porridge samples. Moreover, we found conventional foxtail millet contained more aldehydes than the hybridised foxtail millet; especially decanal, 1-nonanal-D, heptanal-D, 1-octanal-M, 1-octanal-D and 1-nonanal-M were significantly higher in JG than in the other varieties. These results indicate that the E-Nose combined with GC-IMS can be used to characterise the flavour volatiles of different foxtail millet, and the results of this study may provide some information for future understanding of the aroma characteristics of foxtail millet and the genetic improvement of hybrid grains.
Collapse
Affiliation(s)
- Zhongxiao Yue
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030801, China;
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan 030031, China; (R.Z.); (N.F.)
| | - Ruidong Zhang
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan 030031, China; (R.Z.); (N.F.)
| | - Naihong Feng
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan 030031, China; (R.Z.); (N.F.)
| | - Xiangyang Yuan
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030801, China;
| |
Collapse
|
3
|
Chu Q, Gong X, Hu Y, Zhu QH, Fan L, Ye CY. The DNA methylomes of Echinochloa species provide insights into polyploidization-driven adaptation and orphan crop domestication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70033. [PMID: 39908207 DOI: 10.1111/tpj.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/19/2025] [Accepted: 01/27/2025] [Indexed: 02/07/2025]
Abstract
The genus Echinochloa (Poaceae) contains problematic weeds worldwide and two domesticated orphan crops. In this study, through sequencing DNA methylomes and transcriptomes, we aimed to reveal the epigenome changes and their relationship with gene expression in Echinochloa species during their polyploidization and domestication. Compared with hexaploid crop bread wheat, we found common and distinctive methylation patterns in hexaploid Echinochloa crus-galli. More diverse methylation patterns were uncovered during hexaploidization of E. crus-galli, suggesting more plasticity of the weed genome, which might contribute to its environmental adaptation. In addition, less changes in DNA methylation were observed in the two cultivated Echinochloa species, as compared with rice, indicating incomplete domestication of the Echinochloa orphan crops. Our results provide new insights into plant polyploidization and orphan crop domestication from an epigenomic perspective.
Collapse
Affiliation(s)
- Qinjie Chu
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiaojiao Gong
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Yiyu Hu
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, 2601, Australia
| | - Longjiang Fan
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Chu-Yu Ye
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
4
|
Mazumder S, Bhattacharya D, Lahiri D, Moovendhan M, Sarkar T, Nag M. Harnessing the nutritional profile and health benefits of millets: a solution to global food security problems. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 39434598 DOI: 10.1080/10408398.2024.2417801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
India is dealing with both nutritional and agricultural issues. The maximum area of agricultural land with irrigation capabilities has been largely utilized, while the amount of dry land is expanding. The influence is distinct on farmer's livelihoods and earnings, which ultimately affects nutritional security. In order to attain nutritional security and the goal of SDG (Sustainable Development Goals), millets are sustainable solutions, with respect to high nutritional content, bioactive and medicinal properties, and climate resilience. The nutrient profile of millet includes 60%-70% carbohydrate content, 3.5%-5.2% fat, and 7.52%-12.1% protein sources. A wide spectrum of amino acids, including cysteine, isoleucine, arginine, leucine, tryptophan, lysine, histidine, methionine, tyrosine, phenylalanine, threonine, and valine are generally present in millets. Mineral content in millets includes calcium, phosphorus, potassium, sodium, and magnesium. Additionally, millets are an excellent source of bioactive molecules such as polyphenol, phenolic acid, flavonoids, active peptides, and soluble fiber, which have a wide range of therapeutic applications, including the prevention of free radical damage, diabetes, anti-microbial, anti- biofilm, and anti-cancer effects. This review will focus on the nutritional profile and health benefits of millet considering the present-day food security problems.
Collapse
Affiliation(s)
- Saikat Mazumder
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata
- Department of Food Technology, Guru Nanak Institute of Technology, Kolkata
| | - Debasmita Bhattacharya
- Department of Basic Science and Humanities, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata
| | - Dibyajit Lahiri
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata
| | - Meivelu Moovendhan
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Moupriya Nag
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata
| |
Collapse
|
5
|
Kumar V, Yadav M, Awala SK, Valombola JS, Saxena MS, Ahmad F, Saxena SC. Millets: a nutritional powerhouse for ensuring food security. PLANTA 2024; 260:101. [PMID: 39302511 DOI: 10.1007/s00425-024-04533-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
MAIN CONCLUSION Millets are important food source to ensure global food and nutritional security and are associated with health benefits. Millets have emerged as a nutritional powerhouse with the potential to address food security challenges worldwide. These ancient grains, which come in various forms, including finger millet, proso millet, and pearl millet, among others, are essential to a balanced diet, since they provide a wide range of nutritional advantages. Millets have a well-rounded nutritional profile with a high protein, dietary fiber, vitamin, and mineral content for optimal health and wellness. In addition to their nutritional advantages, millets exhibit remarkable adaptability and durability to various agroecological conditions, making them a valuable resource for smallholder farmers functioning in resource-poor regions. Promoting the growth and use of millet can lead to several benefits that researchers and development experts may discover, including improved nutrition, increased food security, and sustainable agricultural methods. Therefore, millets are food crops, that are climate smart, nutritional, and food secured to feed the increasing global population, and everyone could have a healthier, more resilient future.
Collapse
Affiliation(s)
- Vikash Kumar
- Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Mohini Yadav
- Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Simon Kamwele Awala
- Department of Crop Production and Agricultural Technologies, University of Namibia (Ogongo Campus), Oshakati, 15001, Namibia
| | - Johanna Shekupe Valombola
- Department of Intermediate and Vocational Education, University of Namibia (Hifikepunye Pohamba Campus), Oshakati, 15001, Namibia
| | - Maneesha S Saxena
- Department of Biochemistry, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India
| | - Faheem Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| | - Saurabh C Saxena
- Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana, 123031, India.
| |
Collapse
|
6
|
Mazumder S, Bhattacharya D, Lahiri D, Nag M. Milletomics: a metabolomics centered integrated omics approach toward genetic progression. Funct Integr Genomics 2024; 24:149. [PMID: 39218822 DOI: 10.1007/s10142-024-01430-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/25/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Producing alternative staple foods like millet will be essential to feeding ten billion people by 2050. The increased demand for millet is driving researchers to improve its genetic variation. Millets include protein, dietary fiber, phenolic substances, and flavonoid components. Its climate resilience makes millet an appealing crop for agronomic sustainability. Integrative omics technologies could potentially identify and develop millets with desirable phenotypes that may have high agronomic value. Millets' salinity and drought tolerance have been enhanced using transcriptomics. In foxtail, finger, and pearl millet, proteomics has discovered salt-tolerant protein, phytohormone-focused protein, and drought tolerance. Metabolomics studies have revealed that certain metabolic pathways including those involving lignin, flavonoids, phenylpropanoid, and lysophospholipids are critical for many processes, including seed germination, photosynthesis, energy metabolism, and the synthesis of bioactive chemicals necessary for drought tolerance. Metabolomics integration with other omics revealed metabolome engineering and trait-specific metabolite creation. Integrated metabolomics and ionomics are still in the development stage, but they could potentially assist in comprehending the pathway of ionomers to control nutrient levels and biofortify millet. Epigenomic analysis has shown alterations in DNA methylation patterns and chromatin structure in foxtail and pearl millets in response to abiotic stress. Whole-genome sequencing utilizing next-generation sequencing is the most proficient method for finding stress-induced phytoconstituent genes. New genome sequencing enables novel biotechnological interventions including genome-wide association, mutation-based research, and other omics approaches. Millets can breed more effectively by employing next-generation sequencing and genotyping by sequencing, which may mitigate climate change. Millet marker-assisted breeding has advanced with high-throughput markers and combined genotyping technologies.
Collapse
Affiliation(s)
- Saikat Mazumder
- Department of Biotechnology, Institute of Engineering and Management, University of Engineering and Management, Kolkata, West Bengal, India
- Department of Food Technology, Guru Nanak Institute of Technology, Kolkata, West Bengal, India
| | - Debasmita Bhattacharya
- Department of Basic Science and Humanities, Institute of Engineering and Management, Kolkata University of Engineering and Management, Kolkata, West Bengal, India
| | - Dibyajit Lahiri
- Department of Biotechnology, Institute of Engineering and Management, University of Engineering and Management, Kolkata, West Bengal, India
| | - Moupriya Nag
- Department of Biotechnology, Institute of Engineering and Management, University of Engineering and Management, Kolkata, West Bengal, India.
| |
Collapse
|
7
|
DiMario RJ, Kophs AN, Apalla AJA, Schnable JN, Cousins AB. Multiple highly expressed phosphoenolpyruvate carboxylase genes have divergent enzyme kinetic properties in two C4 grasses. ANNALS OF BOTANY 2023; 132:413-428. [PMID: 37675505 PMCID: PMC10667006 DOI: 10.1093/aob/mcad116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/06/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND AND AIMS Phosphoenolpyruvate (PEP) carboxylase (PEPC) catalyses the irreversible carboxylation of PEP with bicarbonate to produce oxaloacetate. This reaction powers the carbon-concentrating mechanism (CCM) in plants that perform C4 photosynthesis. This CCM is generally driven by a single PEPC gene product that is highly expressed in the cytosol of mesophyll cells. We found two C4 grasses, Panicum miliaceum and Echinochloa colona, that each have two highly expressed PEPC genes. We characterized the kinetic properties of the two most abundant PEPCs in E. colona and P. miliaceum to better understand how the enzyme's amino acid structure influences its function. METHODS Coding sequences of the two most abundant PEPC proteins in E. colona and P. miliaceum were synthesized by GenScript and were inserted into bacteria expression plasmids. Point mutations resulting in substitutions at conserved amino acid residues (e.g. N-terminal serine and residue 890) were created via site-directed PCR mutagenesis. The kinetic properties of semi-purified plant PEPCs from Escherichia coli were analysed using membrane-inlet mass spectrometry and a spectrophotometric enzyme-coupled reaction. KEY RESULTS The two most abundant P. miliaceum PEPCs (PmPPC1 and PmPPC2) have similar sequence identities (>95 %), and as a result had similar kinetic properties. The two most abundant E. colona PEPCs (EcPPC1 and EcPPC2) had identities of ~78 % and had significantly different kinetic properties. The PmPPCs and EcPPCs had different responses to allosteric inhibitors and activators, and substitutions at the conserved N-terminal serine and residue 890 resulted in significantly altered responses to allosteric regulators. CONCLUSIONS The two, significantly expressed C4Ppc genes in P. miliaceum were probably the result of genomes combining from two closely related C4Panicum species. We found natural variation in PEPC's sensitivity to allosteric inhibition that seems to bypass the conserved 890 residue, suggesting alternative evolutionary pathways for increased malate tolerance and other kinetic properties.
Collapse
Affiliation(s)
- Robert J DiMario
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Ashley N Kophs
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Anthony J A Apalla
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - James N Schnable
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA
| | - Asaph B Cousins
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
8
|
Bhatt D, Rasane P, Singh J, Kaur S, Fairos M, Kaur J, Gunjal M, Mahato DK, Mehta C, Avinashe H, Sharma N. Nutritional advantages of barnyard millet and opportunities for its processing as value-added foods. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2748-2760. [PMID: 37711577 PMCID: PMC10497464 DOI: 10.1007/s13197-022-05602-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/25/2022] [Accepted: 09/14/2022] [Indexed: 11/07/2022]
Abstract
Barnyard millet (Echinochloa species) has received appreciable attention for its susceptibility to biotic and abiotic stresses, multiple harvests in a year and rich in micronutrients, fibers and phytochemicals. It is believed that the consumption of barnyard millet can possess various health benefits against diabetes, cardiovascular diseases, obesity, skin problems, cancer and celiac disease. The flour of barnyard millet is gluten-free and can be incorporated into the diet of celiac and diabetic patients. Considering the nutritional value of millet, various millet-based food products like bread, snack, baby foods, millet wine, porridge, fast foods and millet nutrition powder can be prepared. Future research and developments on barnyard millet and its products may help cope with various diseases known to humans. This paper discusses barnyard millet's nutritional and health benefits as whole grain and its value-added products. The paper also provides insights into the processing of barnyard millet and its effect on the functional properties and, future uses of barnyard millet in the field food industry as ready-to-cook and ready-to-eat products as well as in industrial uses, acting as a potential future crop contributing to food and nutritional security.
Collapse
Affiliation(s)
- Diksha Bhatt
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab India
| | - Prasad Rasane
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab India
| | - Jyoti Singh
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab India
| | - Sawinder Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab India
| | - Munavirul Fairos
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab India
| | - Jaspreet Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab India
| | - Mahendra Gunjal
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab India
| | | | - ChandraMohan Mehta
- Department of Agronomy, School of Agriculture, Lovely Professional University, Phagwara, Punjab India
| | - Harshal Avinashe
- Department of Genetics and Plant Breeding, School of Agriculture, Lovely Professional University, Phagwara, Punjab India
| | - Nitya Sharma
- Center for Rural Development and Technology, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
9
|
Sood S, Mondal T, Pal RS, Joshi DC, Kant L, Pattanayak A. Comparison of dehulling efficiency and grain nutritional parameters of two cultivated barnyard millet species ( Echinochloa spp.). Heliyon 2023; 9:e21594. [PMID: 38027865 PMCID: PMC10665728 DOI: 10.1016/j.heliyon.2023.e21594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Due to increased awareness regarding the health-promoting profile of millets, inclination towards their consumption has increased considerably. In the Himalayan region of India, cultivars of the two species of barnyard millet, namely Indian (Echinochloa frumentacea) and Japanese barnyard millet (E. esculenta), are grown. To compare the dehulled grain recovery, grain physical parameters, nutritional profile and antioxidant activity, an experiment was carried out at ICAR-VPKAS, Almora, Uttarakhand hills for two years using released and popular cultivars of Indian barnyard millet (VL 207 and VL 172) and Japanese barnyard millet (PRJ-1). The results indicated that the whole grain yield of Japanese barnyard millet cultivar PRJ-1 was significantly higher than Indian Barnyard millet cultivars VL 172 and VL 207; however, the dehulled grain recovery was considerably higher in VL 172 and VL 207 than PRJ-1. Similarly, the physical grain parameters were significantly higher in PRJ-1, but most dehulled grain parameters were at par in cultivars of both species. The nutritional estimation of dehulled grains of both species did not show remarkable differences for most traits. Still, crude fibre, Mn, and Zn were high in PRJ-1, while total digestible nutrients and phosphorous were high in VL 172 and VL 207. Dehulled grains exhibited much more crude protein, ash, minerals, and total digestible nutrients, but the husk accumulated significantly higher crude fibre and total polyphenols.
Collapse
Affiliation(s)
- Salej Sood
- ICAR- Central Potato Research Institute, Shimla, HP, India
| | - Tilak Mondal
- ICAR-Vivekananda Institute of Hill Agriculture, Almora, Uttarakhand, India
| | - Ramesh S. Pal
- ICAR-Vivekananda Institute of Hill Agriculture, Almora, Uttarakhand, India
| | - Dinesh C. Joshi
- ICAR-Vivekananda Institute of Hill Agriculture, Almora, Uttarakhand, India
| | - Lakshmi Kant
- ICAR-Vivekananda Institute of Hill Agriculture, Almora, Uttarakhand, India
| | - Arunava Pattanayak
- ICAR- Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
| |
Collapse
|
10
|
Renganathan VG, Renuka R, Vanniarajan C, Raveendran M, Elangovan A. Selection and validation of reliable reference genes for quantitative real-time PCR in Barnyard millet (Echinochloa spp.) under varied abiotic stress conditions. Sci Rep 2023; 13:15573. [PMID: 37731036 PMCID: PMC10511452 DOI: 10.1038/s41598-023-40526-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 08/11/2023] [Indexed: 09/22/2023] Open
Abstract
Quantitative real-time polymerase chain reaction (RT-qPCR) using a stable reference gene is widely used for gene expression research. Barnyard millet (Echinochloa spp.) is an ancient crop in Asia and Africa that is widely cultivated for food and fodder. It thrives well under drought, salinity, cold, and heat environmental conditions, besides adapting to any soil type. To date, there are no gene expression studies performed to identify the potential candidate gene responsible for stress response in barnyard millet, due to lack of reference gene. Here, 10 candidate reference genes, Actin (ACT), α-tubulin (α-TUB), β-tubulin (β-TUB), RNA pol II (RP II), elongation factor-1 alpha (EF-1α), adenine phosphoribosyltransferase (APRT), TATA-binding protein-like factor (TLF), ubiquitin-conjugating enzyme 2 (UBC2), ubiquitin-conjugating enzyme E2L5 (UBC5) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), were selected from mRNA sequences of E. crus-galli and E. colona var frumentacea. Five statistical algorithms (geNorm, NormFinder, BestKeeper, ΔCt, and RefFinder) were applied to determine the expression stabilities of these genes in barnyard millet grown under four different abiotic stress (drought, salinity, cold and heat) exposed at different time points. The UBC5 and ɑ-TUB in drought, GAPDH in salinity, GAPDH and APRT in cold, and EF-1α and RP II in heat were the most stable reference genes, whereas ß-TUB was the least stable irrespective of stress conditions applied. Further Vn/Vn + 1 analysis revealed two reference genes were sufficient to normalize gene expression across all sample sets. The suitability of identified reference genes was validated with Cu-ZnSOD (SOD1) in the plants exposed to different abiotic stress conditions. The results revealed that the relative quantification of the SOD1 gene varied according to reference genes and the number of reference genes used, thus highlighting the importance of the choice of a reference gene in such experiments. This study provides a foundational framework for standardizing RT-qPCR analyses, enabling accurate gene expression profiling in barnyard millet.
Collapse
Affiliation(s)
- Vellaichamy Gandhimeyyan Renganathan
- Department of Biotechnology, Centre of Excellence for Innovations, Agricultural College & Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | - Raman Renuka
- Department of Biotechnology, Centre of Excellence for Innovations, Agricultural College & Research Institute, Tamil Nadu Agricultural University, Madurai, India.
| | - Chockalingam Vanniarajan
- Anbil Dharmalingam Agricultural College & Research Institute, Tamil Nadu Agricultural University, Tiruchirappalli, India
| | - Muthurajan Raveendran
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Allimuthu Elangovan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| |
Collapse
|
11
|
Bhatt P, Kumar V, Rastogi H, Malik MK, Dixit R, Garg S, Kapoor G, Singh S. Functional and Tableting Properties of Alkali-Isolated and Phosphorylated Barnyard Millet ( Echinochloa esculenta) Starch. ACS OMEGA 2023; 8:30294-30305. [PMID: 37636954 PMCID: PMC10448648 DOI: 10.1021/acsomega.3c03158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023]
Abstract
The functional and tableting properties of barnyard millet starch (Echinochloa esculenta) were investigated in its native (alkali-treated) and chemically modified (phosphorylated) states. The grains were pulverized, soaked, and ground before filtration to separate starch and protein. Multiple NaOH treatments were performed. The starch was washed, neutralized, and dried. Sodium tripolyphosphate (STPP) and sodium sulfate were used to modify the starch, followed by maceration, washing, and drying to remove unreacted chemicals. The amylose content of alkali-treated barnyard millet starch increased by 19.96 ± 3.56% w/w. The amount of protein, the kind of starch used, and the size of the starch granules, all affected the ability of the starch granules to swell up. It was observed that alkali-extracted barnyard millet starch (AZS) has a swelling power of 194.3 ± 0.0064% w/w. The swelling capacity of treated starch was lesser as compared to the native alkali barnyard millet starch. Decrement in swelling power of phosphorylated starch was observed due to tightening of bonds in the molecular structure. The moisture content of the excipients may affect the overall stability of the formulation. The moisture content of the AZS was found to be 15.336 ± 1.012% w/w. Compared to AZS, cross-linked barnyard millet starch had a moisture content that was up to 20% lower than AZS. The Hausner ratio for phosphorylated starch was found to be 1.25, which indicates marked flow property. Similar morphologies could be seen in the alkali-isolated barnyard millet starch and the cross-linked/phosphorylated barnyard millet that was cross-linked using a mixture of sodium sulfate and sodium tripolyphosphate. The modest degree of substitution would have no effect on the surface morphology as shown by the scanning electron microscopic study. The crushing and compacting abilities of modified barnyard millet starch were also improved, but its friability and rate of disintegration were decreased. The whole study revealed that after cross-linking, barnyard millet had good tableting properties and it can be used as an excipient in drug delivery.
Collapse
Affiliation(s)
- Pankaj Bhatt
- KIET
Group of Institutions (KIET School of Pharmacy), Muradnagar, Ghaziabad, Uttar Pradesh 201206, India
- Department
of Pharmaceutical Sciences, Gurukul Kangri
(Deemed to be University), Haridwar, Uttarakhand 249404, India
| | - Vipin Kumar
- Department
of Pharmaceutical Sciences, Gurukul Kangri
(Deemed to be University), Haridwar, Uttarakhand 249404, India
| | - Harsh Rastogi
- KIET
Group of Institutions (KIET School of Pharmacy), Muradnagar, Ghaziabad, Uttar Pradesh 201206, India
| | - Mayank Kumar Malik
- Department
of Chemistry, Gurukul Kangri (Deemed to
be University), Haridwar, Haridwar, Uttarakhand 246404, India
| | - Raghav Dixit
- Department
of Pharmaceutical Sciences, Gurukul Kangri
(Deemed to be University), Haridwar, Uttarakhand 249404, India
| | - Sakshi Garg
- KIET
Group of Institutions (KIET School of Pharmacy), Muradnagar, Ghaziabad, Uttar Pradesh 201206, India
| | - Garima Kapoor
- KIET
Group of Institutions (KIET School of Pharmacy), Muradnagar, Ghaziabad, Uttar Pradesh 201206, India
| | - Suruchi Singh
- Accurate
College of Pharmacy, 49, Knowledge Park-III, Greater Noida, Uttar Pradesh201306, India
| |
Collapse
|
12
|
Khan ZS, Amir S, Sokač Cvetnić T, Jurinjak Tušek A, Benković M, Jurina T, Valinger D, Gajdoš Kljusurić J. Sustainable Isolation of Bioactive Compounds and Proteins from Plant-Based Food (and Byproducts). PLANTS (BASEL, SWITZERLAND) 2023; 12:2904. [PMID: 37631116 PMCID: PMC10458638 DOI: 10.3390/plants12162904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Plant-based food produces significantly less greenhouse gases, and due to its wealth of bioactive components and/or plant-based protein, it becomes an alternative in a sustainable food system. However, the processing and production of products from plant sources creates byproducts, which can be waste or a source of useful substances that can be reused. The waste produced during the production and processing of food is essentially nutrient- and energy-rich, and it is recognized as an excellent source of secondary raw materials that could be repurposed in the process of manufacturing and preparing food, or as feed for livestock. This review offers an overview of the sources and techniques of the sustainable isolation of bioactive substances and proteins from various sources that might represent waste in the preparation or production of food of plant origin. The aim is to uncover novel approaches to use waste and byproducts from the process of making food to provide this waste food an additional benefit, not forgetting the expectations of the end user, the consumer. For the successful isolation of bioactive ingredients and proteins from food of plant origin, it is crucial to develop more eco-friendly and efficient extraction techniques with a low CO2 footprint while considering the economic aspects.
Collapse
Affiliation(s)
- Zakir Showkat Khan
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar 143005, India
- Department of Food Technology, School of Applied and Life Sciences, Uttaranchal University, Dehradun 248007, India
| | - Saira Amir
- Department of Nutrition Sciences, School of Health Sciences, University of Management and Technology, C-II Johar Town, Lahore 54700, Pakistan
| | - Tea Sokač Cvetnić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, HR-10000 Zagreb, Croatia
| | - Ana Jurinjak Tušek
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, HR-10000 Zagreb, Croatia
| | - Maja Benković
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, HR-10000 Zagreb, Croatia
| | - Tamara Jurina
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, HR-10000 Zagreb, Croatia
| | - Davor Valinger
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, HR-10000 Zagreb, Croatia
| | - Jasenka Gajdoš Kljusurić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, HR-10000 Zagreb, Croatia
| |
Collapse
|
13
|
Pandey S, Singh A, Jaiswal P, Singh MK, Meena KR, Singh SK. The potentialities of omics resources for millet improvement. Funct Integr Genomics 2023; 23:210. [PMID: 37355501 DOI: 10.1007/s10142-023-01149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Millets are nutrient-rich (nutri-rich) cereals with climate resilience attributes. However, its full productive potential is not realized due to the lack of a focused yield improvement approach, as evidenced by the available literature. Also, the lack of well-characterized genomic resources significantly limits millet improvement. But the recent availability of genomic data and advancement in omics tools has shown its enormous potential to enhance the efficiency and precision faced by conventional breeding in millet improvement. The development of high throughput genotyping platforms based on next-generation sequencing (NGS) has provided a low-cost method for genomic information, specifically for neglected nutri-rich cereals with the availability of a limited number of reference genome sequences. NGS has created new avenues for millet biotechnological interventions such as mutation-based study, GWAS, GS, and other omics technologies. The simultaneous discovery of high-throughput markers and multiplexed genotyping platform has aggressively aided marker-assisted breeding for millet improvement. Therefore, omics technology offers excellent opportunities to explore and combine useful variations for targeted traits that could impart high nutritional value to high-yielding cultivars under changing climatic conditions. In millet improvement, an in-depth account of NGS, integrating genomics data with different biotechnology tools, is reviewed in this context.
Collapse
Affiliation(s)
- Saurabh Pandey
- Department of Agricultural, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Ashutosh Singh
- Centre for Advanced Studies on Climate Change, RPCAU, Pusa, Samastipur, Bihar, 848125, India.
| | - Priyanka Jaiswal
- Lovely Professional University, Jalandhar - Delhi G.T. Road, Phagwara, Punjab, 144411, India
| | - Mithilesh Kumar Singh
- Department of Genetics and Plant Breeding, RPCAU, Pusa, Samastipur, Bihar, 848125, India
| | - Khem Raj Meena
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Kishangarh, Rajasthan, 305817, India
| | - Satish Kumar Singh
- Department of Genetics and Plant Breeding, RPCAU, Pusa, Samastipur, Bihar, 848125, India
| |
Collapse
|
14
|
Nani M, Krishnaswamy K. A natural whitening alternative from upcycled food waste (acid whey) and underutilized grains (millet). Sci Rep 2023; 13:6482. [PMID: 37081016 PMCID: PMC10119097 DOI: 10.1038/s41598-023-32204-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/24/2023] [Indexed: 04/22/2023] Open
Abstract
The dairy industry faces a daunting challenge in managing acid whey (AW), a byproduct of Greek yogurt manufacturing that is costly to dispose of and challenging to incorporate into other food products. However, recent studies have demonstrated that AW can be transformed into a viable white powder by encapsulating it in millet flour. Recently, concerns over the safety of the commonly used food-grade whitener titanium dioxide (TiO2) have arisen, and the search for an alternative food-whitening agent has become essential. This study evaluated the color attribute, proximate composition, sugar profile, amino acid profile, total phenolic content, antioxidant activity, and antinutrient content of the novel acid whey millet (AWM) powder. The L* values of the AWM powders were significantly higher than TiO2 and the rest of the millet formulations. The crude protein content in the AWM powders was significantly (p < 0.05) lower when compared to the crude protein content in millet flours. AWM powders had higher lactose levels and retained all major amino acids after spray drying. Macrominerals (P, K, Ca, and Na) and microminerals (Zn and Cu) significantly increased in the AWM powder, while tannin content was reduced in AWM powders. These findings suggest that AWM powder is a white powder that contains a wide range of components with high nutritional value that could be readily incorporated into various applications. In summary, this study provides a valuable contribution to the dairy industry by highlighting the potential of AWM powders as a natural alternative food whitening agent to TiO2.
Collapse
Affiliation(s)
- Mercy Nani
- Division of Food, Nutrition and Exercise Science, University of Missouri, Columbia, MO, USA
| | - Kiruba Krishnaswamy
- Division of Food, Nutrition and Exercise Science, University of Missouri, Columbia, MO, USA.
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
15
|
Nisha R, Nickhil C, Pandiarajan T, Pandiselvam R, Jithender B, Kothakota A. Chemical, functional, rheological and structural properties of broken rice–barnyard millet–green gram grits blend for the production of extrudates. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- R. Nisha
- Department of Agricultural Engineering Nehru Institute of Technology Coimbatore Tamil Nadu India
| | - C. Nickhil
- Department of Food Engineering and Technology Tezpur University (A Central University) Tezpur Assam India
| | - T. Pandiarajan
- Department of Food Process Engineering Tamil Nadu Agricultural University Coimbatore Tamil Nadu India
| | - R. Pandiselvam
- Physiology, Biochemistry and Post‐Harvest Technology Division ICAR‐Central Plantation Crops Research Institute (CPCRI) Kasaragod Kerala India
| | - Bhukya Jithender
- School of Agriculture and Bio‐Engineering, Centurion University Technology and Management Paralakhemundi Odisha India
| | - Anjineyulu Kothakota
- Agro‐Processing & Technology Division CSIR‐National Institute for Interdisciplinary Science and Technology (NIIST) Thiruvananthapuram Kerala India
| |
Collapse
|
16
|
Shrestha N, Hu H, Shrestha K, Doust AN. Pearl millet response to drought: A review. FRONTIERS IN PLANT SCIENCE 2023; 14:1059574. [PMID: 36844091 PMCID: PMC9955113 DOI: 10.3389/fpls.2023.1059574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
The C4 grass pearl millet is one of the most drought tolerant cereals and is primarily grown in marginal areas where annual rainfall is low and intermittent. It was domesticated in sub-Saharan Africa, and several studies have found that it uses a combination of morphological and physiological traits to successfully resist drought. This review explores the short term and long-term responses of pearl millet that enables it to either tolerate, avoid, escape, or recover from drought stress. The response to short term drought reveals fine tuning of osmotic adjustment, stomatal conductance, and ROS scavenging ability, along with ABA and ethylene transduction. Equally important are longer term developmental plasticity in tillering, root development, leaf adaptations and flowering time that can both help avoid the worst water stress and recover some of the yield losses via asynchronous tiller production. We examine genes related to drought resistance that were identified through individual transcriptomic studies and through our combined analysis of previous studies. From the combined analysis, we found 94 genes that were differentially expressed in both vegetative and reproductive stages under drought stress. Among them is a tight cluster of genes that are directly related to biotic and abiotic stress, as well as carbon metabolism, and hormonal pathways. We suggest that knowledge of gene expression patterns in tiller buds, inflorescences and rooting tips will be important for understanding the growth responses of pearl millet and the trade-offs at play in the response of this crop to drought. Much remains to be learnt about how pearl millet's unique combination of genetic and physiological mechanisms allow it to achieve such high drought tolerance, and the answers to be found may well be useful for crops other than just pearl millet.
Collapse
Affiliation(s)
- Nikee Shrestha
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK, United States
- Center for Plant Science Innovation and Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Hao Hu
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK, United States
| | - Kumar Shrestha
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK, United States
| | - Andrew N. Doust
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
17
|
Lydia Pramitha J, Ganesan J, Francis N, Rajasekharan R, Thinakaran J. Revitalization of small millets for nutritional and food security by advanced genetics and genomics approaches. Front Genet 2023; 13:1007552. [PMID: 36699471 PMCID: PMC9870178 DOI: 10.3389/fgene.2022.1007552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/07/2022] [Indexed: 01/12/2023] Open
Abstract
Small millets, also known as nutri-cereals, are smart foods that are expected to dominate food industries and diets to achieve nutritional security. Nutri-cereals are climate resilient and nutritious. Small millet-based foods are becoming popular in markets and are preferred for patients with celiac and diabetes. These crops once ruled as food and fodder but were pushed out of mainstream cultivation with shifts in dietary habits to staple crops during the green revolution. Nevertheless, small millets are rich in micronutrients and essential amino acids for regulatory activities. Hence, international and national organizations have recently aimed to restore these lost crops for their desirable traits. The major goal in reviving these crops is to boost the immune system of the upcoming generations to tackle emerging pandemics and disease infestations in crops. Earlier periods of civilization consumed these crops, which had a greater significance in ethnobotanical values. Along with nutrition, these crops also possess therapeutic traits and have shown vast medicinal use in tribal communities for the treatment of diseases like cancer, cardiovascular disease, and gastrointestinal issues. This review highlights the significance of small millets, their values in cultural heritage, and their prospects. Furthermore, this review dissects the nutritional and therapeutic traits of small millets for developing sustainable diets in near future.
Collapse
Affiliation(s)
- J. Lydia Pramitha
- Karunya Institute of Technology and Sciences, Coimbatore, India,*Correspondence: J. Lydia Pramitha,
| | - Jeeva Ganesan
- Tamil Nadu Agricultural University, Coimbatore, India
| | - Neethu Francis
- Karunya Institute of Technology and Sciences, Coimbatore, India
| | | | | |
Collapse
|
18
|
Suri S, Dutta A, Shahi NC, Singh A, Raghuvanshi RS, Chopra CS. Formulation, process optimization, and quality evaluation of barnyard millet (
Echinochloa frumentacea
) based ready to eat (
RTE
) extruded snack. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shweta Suri
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonipat Haryana India
- Department of Foods and Nutrition Govind Ballabh Pant University of Agriculture and Technology Pantnagar India
| | - Anuradha Dutta
- Department of Foods and Nutrition Govind Ballabh Pant University of Agriculture and Technology Pantnagar India
| | - Navin Chandra Shahi
- Department of Post‐Harvest Process and Food Engineering Govind Ballabh Pant University of Agriculture and Technology Pantnagar India
| | - Anupama Singh
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonipat Haryana India
| | - Rita Singh Raghuvanshi
- Department of Foods and Nutrition Govind Ballabh Pant University of Agriculture and Technology Pantnagar India
| | - C. S. Chopra
- Department of Food Science and Technology Govind Ballabh Pant University of Agriculture and Technology Pantnagar India
| |
Collapse
|
19
|
Wilson ML, VanBuren R. Leveraging millets for developing climate resilient agriculture. Curr Opin Biotechnol 2022; 75:102683. [DOI: 10.1016/j.copbio.2022.102683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/16/2021] [Accepted: 01/03/2022] [Indexed: 01/31/2023]
|
20
|
Wu D, Shen E, Jiang B, Feng Y, Tang W, Lao S, Jia L, Lin HY, Xie L, Weng X, Dong C, Qian Q, Lin F, Xu H, Lu H, Cutti L, Chen H, Deng S, Guo L, Chuah TS, Song BK, Scarabel L, Qiu J, Zhu QH, Yu Q, Timko MP, Yamaguchi H, Merotto A, Qiu Y, Olsen KM, Fan L, Ye CY. Genomic insights into the evolution of Echinochloa species as weed and orphan crop. Nat Commun 2022; 13:689. [PMID: 35115514 PMCID: PMC8814039 DOI: 10.1038/s41467-022-28359-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/20/2022] [Indexed: 12/20/2022] Open
Abstract
As one of the great survivors of the plant kingdom, barnyard grasses (Echinochloa spp.) are the most noxious and common weeds in paddy ecosystems. Meanwhile, at least two Echinochloa species have been domesticated and cultivated as millets. In order to better understand the genomic forces driving the evolution of Echinochloa species toward weed and crop characteristics, we assemble genomes of three Echinochloa species (allohexaploid E. crus-galli and E. colona, and allotetraploid E. oryzicola) and re-sequence 737 accessions of barnyard grasses and millets from 16 rice-producing countries. Phylogenomic and comparative genomic analyses reveal the complex and reticulate evolution in the speciation of Echinochloa polyploids and provide evidence of constrained disease-related gene copy numbers in Echinochloa. A population-level investigation uncovers deep population differentiation for local adaptation, multiple target-site herbicide resistance mutations of barnyard grasses, and limited domestication of barnyard millets. Our results provide genomic insights into the dual roles of Echinochloa species as weeds and crops as well as essential resources for studying plant polyploidization, adaptation, precision weed control and millet improvements.
Collapse
Affiliation(s)
- Dongya Wu
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
| | - Enhui Shen
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou, 450000, China
| | - Bowen Jiang
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
| | - Yu Feng
- Institute of Ecology, Zhejiang University, Hangzhou, 310058, China
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Wei Tang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Sangting Lao
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
| | - Lei Jia
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
| | - Han-Yang Lin
- Institute of Ecology, Zhejiang University, Hangzhou, 310058, China
| | - Lingjuan Xie
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
| | - Xifang Weng
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
| | - Chenfeng Dong
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
| | - Qinghong Qian
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
| | - Feng Lin
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
| | - Haiming Xu
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
| | - Huabing Lu
- Institute of Maize and Upland Grain, Zhejiang Academy of Agricultural Sciences, Dongyang, 322105, China
| | - Luan Cutti
- Department of Crop Sciences, Agricultural School, Federal University of Rio Grande do Sul, Porto Alegre, RS, 91540-000, Brazil
| | - Huajun Chen
- College of Computer Science and Technology, Zhejiang University, Hangzhou, 310058, China
| | - Shuiguang Deng
- College of Computer Science and Technology, Zhejiang University, Hangzhou, 310058, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Tse-Seng Chuah
- Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA, 02600, Arau, Perlis, Malaysia
| | - Beng-Kah Song
- School of Science, Monash University Malaysia, 46150, Bandar Sunway, Selangor, Malaysia
| | - Laura Scarabel
- Istituto per la Protezione Sostenibile delle Piante (IPSP), CNR, Viale dell'Università, 16, 35020, Legnaro (PD), Italy
| | - Jie Qiu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200235, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Qin Yu
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Crawley, WA, 6009, Australia
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | | | - Aldo Merotto
- Department of Crop Sciences, Agricultural School, Federal University of Rio Grande do Sul, Porto Alegre, RS, 91540-000, Brazil
| | - Yingxiong Qiu
- Institute of Ecology, Zhejiang University, Hangzhou, 310058, China
| | - Kenneth M Olsen
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Longjiang Fan
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou, 450000, China
| | - Chu-Yu Ye
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
21
|
Ito Y, Suzuki A, Nasukawa H, Miyaki K, Yano A, Nagasawa T. Ameliorative effects of Japanese barnyard millet (<i>Echinochloa esculenta</i> H. Scholz) bran supplementation in streptozotocin-induced diabetic rats. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2022. [DOI: 10.3136/fstr.fstr-d-22-00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Yoshiaki Ito
- Biological Chemistry and Food Science, Faculty of Agriculture, Iwate University
| | - Ayaka Suzuki
- Biological Chemistry and Food Science, Faculty of Agriculture, Iwate University
| | - Haruka Nasukawa
- Biological Chemistry and Food Science, Faculty of Agriculture, Iwate University
| | - Kenji Miyaki
- Biological Chemistry and Food Science, Faculty of Agriculture, Iwate University
| | | | - Takashi Nagasawa
- Biological Chemistry and Food Science, Faculty of Agriculture, Iwate University
| |
Collapse
|
22
|
Kumar A, Rani M, Mani S, Shah P, Singh DB, Kudapa H, Varshney RK. Nutritional Significance and Antioxidant-Mediated Antiaging Effects of Finger Millet: Molecular Insights and Prospects. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.684318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aging is a multifaceted process that is associated with progressive, lethal, and unalterable changes like damage to different molecules (DNA, proteins, and lipids), cells, tissues, and organs. It is an inevitable process but can be delayed by both genetic and dietary interventions. Besides aging, premature death and age-associated diseases can be dealt with diet regulation and the use of compounds that inhibit the stress responsiveness or promote the damage repair signaling pathways. Natural compounds offer a repertoire of highly diverse structural scaffolds that can offer hopeful candidate chemical entities with antiaging potential. One such source of natural compounds is millets, which are minor cereals with an abundance of high fiber, methionine, calcium, iron, polyphenols, and secondary metabolites, responsible for numerous potential health benefits. The present review article elucidates the nature and significance of different phytochemicals derived from millets with a major focus on finger millet and highlights all the important studies supporting their health benefits with special emphasis on the antiaging effect of these compounds. The present article also proposes the possible mechanisms through which millets can play a significant role in the suppression of aging processes and aging-related diseases by influencing genetic repair, protein glycation, and stress-responsive pathways. We further discuss well-established natural compounds for their use as antiaging drugs and recommend raising awareness for designing novel formulations/combinations from them so that their maximum antiaging potential can be harnessed for the benefit of mankind.
Collapse
|
23
|
Kavi Kishor PB, Anil Kumar S, Naravula J, Hima Kumari P, Kummari D, Guddimalli R, Edupuganti S, Karumanchi AR, Venkatachalam P, Suravajhala P, Polavarapu R. Improvement of small seed for big nutritional feed. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2433-2446. [PMID: 34566283 PMCID: PMC8455807 DOI: 10.1007/s12298-021-01071-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/04/2021] [Accepted: 09/11/2021] [Indexed: 05/14/2023]
Abstract
Exploding global population, rapid urbanization, salinization of soils, decreasing arable land availability, groundwater resources, and dynamic climatic conditions pose impending damage to our food security by reducing the grain quality and quantity. This issue is further compounded in arid and semi-arid regions due to the shortage of irrigation water and erratic rainfalls. Millets are gluten (a family of proteins)-free and cultivated all over the globe for human consumption, fuel, feed, and fodder. They provide nutritional security for the under- and malnourished. With the deployment of strategies like foliar spray, traditional/marker-assisted breeding, identification of candidate genes for the translocation of important minerals, and genome-editing technologies, it is now tenable to biofortify important millets. Since the bioavailability of iron and zinc has been proven in human trials, the challenge is to make such grains accessible. This review encompasses nutritional benefits, progress made, challenges being encountered, and prospects of enriching millet crops with essential minerals.
Collapse
Affiliation(s)
- P. B. Kavi Kishor
- Department of Biotechnology, Vignan’s Foundation for Science, Technology and Research, Vadlamudi, Guntur, Andhra Pradesh 522 213 India
| | - S. Anil Kumar
- Department of Biotechnology, Vignan’s Foundation for Science, Technology and Research, Vadlamudi, Guntur, Andhra Pradesh 522 213 India
- Bioclues.Org, Hyderabad, India
| | - Jalaja Naravula
- Department of Biotechnology, Vignan’s Foundation for Science, Technology and Research, Vadlamudi, Guntur, Andhra Pradesh 522 213 India
| | | | - Divya Kummari
- Department of Genetics, Osmania University, Hyderabad, Telangana, 500 007 India
| | | | - Sujatha Edupuganti
- Department of Botany, Osmania University, Hyderabad, Telangana, 500 007 India
| | - Appa Rao Karumanchi
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, Andhra Pradesh, 522 508 India
| | | | - Prashanth Suravajhala
- Bioclues.Org, Hyderabad, India
- Amrita School of Biotechnology, Amrita University, Amritapuri, 690 525, Clappana, Kerala, India
| | | |
Collapse
|
24
|
Ye CY, Fan L. Orphan Crops and their Wild Relatives in the Genomic Era. MOLECULAR PLANT 2021; 14:27-39. [PMID: 33346062 DOI: 10.1016/j.molp.2020.12.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/01/2020] [Accepted: 12/15/2020] [Indexed: 05/06/2023]
Abstract
More than half of the calories consumed by humans are provided by three major cereal crops (rice, maize, and wheat). Orphan crops are usually well adapted to low-input agricultural conditions, and they not only play vital roles in local areas but can also contribute to food and nutritional needs worldwide. Interestingly, many wild relatives of orphan crops are important weeds of major crops. Although orphan crops and their wild relatives have received little attentions from researchers for many years, genomic studies have recently been performed on these plants. Here, we provide an overview of genomic studies on orphan crops, with a focus on orphan cereals and their wild relatives. The genomes of at least 12 orphan cereals and/or their wild relatives have been sequenced. In addition to genomic benefits for orphan crop breeding, we discuss the potential ways for mutual utilization of genomic data from major crops, orphan crops, and their wild relatives (including weeds) and provide perspectives on genetic improvement of both orphan and major crops (including de novo domestication of orphan crops) in the coming genomic era.
Collapse
Affiliation(s)
- Chu-Yu Ye
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Longjiang Fan
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572024, China.
| |
Collapse
|