1
|
Zammit AR, Yu L, Poole VN, Arfanakis K, Schneider JA, Petyuk VA, De Jager PL, Kaddurah-Daouk R, Iturria-Medina Y, Bennett DA. Multi-omic subtypes of Alzheimer's dementia are differentially associated with psychological traits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.21.639584. [PMID: 40060468 PMCID: PMC11888240 DOI: 10.1101/2025.02.21.639584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Importance Psychological traits reflecting neuroticism, depressive symptoms, loneliness, and purpose in life are risk factors of AD dementia; however, the underlying biologic mechanisms of these associations remain largely unknown. Objective To examine whether one or more multi-omic brain molecular subtypes of AD is associated with neuroticism, depressive symptoms, loneliness, and/or purpose in life. Design Two cohort-based studies; Religious Orders Study (ROS) and Rush Memory and Aging Project (MAP), both ongoing longitudinal clinical pathological studies that began enrollment in 1994 and 1997. Setting Older priests, nuns, and brothers from across the U.S. (ROS) and older adults from across the greater Chicago metropolitan area (MAP). Participants 822 decedents with multi-omic data from the dorsolateral prefrontal cortex. Exposures Pseudotime, representing molecular distance from no cognitive impairment (NCI) to AD dementia, and three multi-omic brain molecular subtypes of AD dementia representing 3 omic pathways from no cognitive impairment (NCI) to AD dementia that differ by their omic constituents. Main outcomes and measures We first ran four separate linear regressions with neuroticism, depressive symptoms, loneliness, purpose in life as the outcomes, and pseudotime as the predictor, adjusting for age, sex and education. We then ran four separate analyses of covariance (ANCOVAs) with Bonferroni-corrected post-hoc tests to test whether the three multi-omic AD subtypes are differentially associated with the four traits, adjusting for the same covariates. Results Pseudotime was positively associated (p<0.05) with neuroticism and loneliness. AD subtypes were differentially associated with the traits: AD subtypes 1 and 3 were associated with neuroticism; AD subtype 2 with depressive symptoms; AD subtype 3 with loneliness, and AD subtype 2 with purpose in life. Conclusions and Relevance Three multi-omic brain molecular subtypes of AD dementia differentially share omic features with four psychological risk factors of AD dementia. Our data provide novel insights into the biology underlying well-established associations between psychological traits and AD dementia.
Collapse
Affiliation(s)
- Andrea R. Zammit
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Lei Yu
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Victoria N. Poole
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Konstantinos Arfanakis
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, IL, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Rush University Medical Center, Chicago, IL, USA
| | - Julie A. Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Vladislav A. Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Philip L. De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, USA
- Duke Institute of Brain Sciences, Duke University, Durham, North Carolina, USA
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Yasser Iturria-Medina
- Neurology and Neurosurgery Department, Montreal Neurological Institute, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
2
|
Asahina K, Zelikowsky M. Comparative Perspectives on Neuropeptide Function and Social Isolation. Biol Psychiatry 2025:S0006-3223(25)00061-7. [PMID: 39892690 DOI: 10.1016/j.biopsych.2025.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/07/2025] [Accepted: 01/25/2025] [Indexed: 02/04/2025]
Abstract
Chronic social isolation alters behavior across animal species. Genetic model organisms such as mice and flies provide crucial insight into the molecular and physiological effects of social isolation on brain cells and circuits. Here, we comparatively review recent findings regarding the function of conserved neuropeptides in social isolation in mice and flies. Analogous functions of 3 classes of neuropeptides-tachykinins, cholecystokinins, and neuropeptide Y/F-in the two model organisms suggest that these molecules may be involved in modulating behavioral changes induced by social isolation across a wider range of species, including humans. Comparative approaches armed with tools to dissect neuropeptidergic function can lead to an integrated understanding of the impacts of social isolation on brain circuits and behavior.
Collapse
Affiliation(s)
- Kenta Asahina
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California.
| | - Moriel Zelikowsky
- Department of Neurobiology, School of Medicine, The University of Utah, Salt Lake City, Utah
| |
Collapse
|
3
|
Jeong J, Kwon K, Geisseova TK, Lee J, Kwon T, Lim C. Drosulfakinin signaling encodes early-life memory for adaptive social plasticity. eLife 2024; 13:e103973. [PMID: 39692597 PMCID: PMC11706606 DOI: 10.7554/elife.103973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024] Open
Abstract
Drosophila establishes social clusters in groups, yet the underlying principles remain poorly understood. Here, we performed a systemic analysis of social network behavior (SNB) that quantifies individual social distance (SD) in a group over time. The SNB assessment in 175 inbred strains from the Drosophila Genetics Reference Panel showed a tight association of short SD with long developmental time, low food intake, and hypoactivity. The developmental inferiority in short-SD individuals was compensated by their group culturing. By contrast, developmental isolation silenced the beneficial effects of social interactions in adults and blunted the plasticity of SNB under physiological challenges. Transcriptome analyses revealed genetic diversity for SD traits, whereas social isolation reprogrammed select genetic pathways, regardless of SD phenotypes. In particular, social deprivation suppressed the expression of the neuropeptide Drosulfakinin (Dsk) in three pairs of adult brain neurons. Male-specific DSK signaling to cholecystokinin-like receptor 17D1 mediated the SNB plasticity. In fact, transgenic manipulations of the DSK neuron activity were sufficient to imitate the state of social experience. Given the functional conservation of mammalian Dsk homologs, we propose that animals may have evolved a dedicated neural mechanism to encode early-life experience and transform group properties adaptively.
Collapse
Affiliation(s)
- Jiwon Jeong
- Department of Biological Sciences, Ulsan National Institute of Science and TechnologyUlsanRepublic of Korea
| | - Kujin Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and TechnologyUlsanRepublic of Korea
| | - Terezia Klaudia Geisseova
- Department of Biological Sciences, Ulsan National Institute of Science and TechnologyUlsanRepublic of Korea
| | - Jongbin Lee
- Research Center for Cellular Identity, Korea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
| | - Taejoon Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and TechnologyUlsanRepublic of Korea
- Center for Genomic Integrity, Institute for Basic ScienceUlsanRepublic of Korea
- Graduate School of Health Science and Technology, Ulsan National Institute of Science and TechnologyUlsanRepublic of Korea
| | - Chunghun Lim
- Research Center for Cellular Identity, Korea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
- Graduate School of Stem Cell and Regenerative Biology, Korea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
| |
Collapse
|
4
|
Brusman LE, Sadino JM, Fultz AC, Kelberman MA, Dowell RD, Allen MA, Donaldson ZR. Single nucleus RNA-sequencing reveals transcriptional synchrony across different relationships. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587112. [PMID: 39605537 PMCID: PMC11601461 DOI: 10.1101/2024.03.27.587112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
As relationships mature, partners share common goals, improve their ability to work together, and experience coordinated emotions. However, the neural underpinnings responsible for this unique, pair-specific experience remain largely unexplored. Here, we used single nucleus RNA-sequencing to examine the transcriptional landscape of the nucleus accumbens (NAc) in socially monogamous prairie voles in peer or mating-based relationships. We show that, regardless of pairing type, prairie voles exhibit transcriptional synchrony with a partner. Further, we identify genes expressed in oligodendrocyte progenitor cells that are synchronized between partners, correlated with dyadic behavior, and sensitive to partner separation. Together, our data indicate that the pair-specific social environment profoundly shapes transcription in the NAc. This provides a potential biological mechanism by which shared social experience reinforces and strengthens relationships.
Collapse
Affiliation(s)
- Liza E. Brusman
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder; Boulder, CO 80309 USA
| | - Julie M. Sadino
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder; Boulder, CO 80309 USA
| | - Allison C. Fultz
- Department of Psychology and Neuroscience, University of Colorado Boulder; Boulder, CO, 80309 USA
| | - Michael A. Kelberman
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder; Boulder, CO 80309 USA
| | - Robin D. Dowell
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder; Boulder, CO 80309 USA
- Biofrontiers Institute, University of Colorado Boulder; Boulder, CO, 80309 USA
| | - Mary A. Allen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder; Boulder, CO 80309 USA
- Biofrontiers Institute, University of Colorado Boulder; Boulder, CO, 80309 USA
| | - Zoe R. Donaldson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder; Boulder, CO 80309 USA
- Department of Psychology and Neuroscience, University of Colorado Boulder; Boulder, CO, 80309 USA
| |
Collapse
|
5
|
Phan JMP, Yi J, Foote JHA, Ayabe ARK, Guan K, Garland T, Parfitt KD. Hippocampal long-term potentiation is modulated by exercise-induced alterations in dopaminergic synaptic transmission in mice selectively bred for high voluntary wheel running. Restor Neurol Neurosci 2024:9226028241290400. [PMID: 39973602 DOI: 10.1177/09226028241290400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BackgroundHigh-Runner (HR) mice, selectively bred for increased voluntary wheel running behavior, exhibit heightened motivation to run. Exercise has been shown to influence hippocampal long-term potentiation (LTP) and memory, and is neuroprotective in several neurodegenerative diseases.ObjectiveThis study aimed to determine the impact of intense running in HR mice with wheel access on hippocampal LTP, compared to HR mice without wheels and non-selected control (C) mice with/without wheels. Additionally, we investigated the involvement of D1/D5 receptors and the dopamine transporter (DAT) in LTP modulation and examined levels of these proteins in HR and C mice.MethodsAdult female HR and C mice were individually housed with/without running wheels for at least two weeks. Hippocampal LTP of extracellular field excitatory postsynaptic potentials (fEPSPs) was measured in area CA1, and SKF-38393 (D1/D5 receptor agonist) and GBR 12909 (DAT inhibitor) were used to probe the role of D1/D5 receptors and DAT in LTP differences. Western blot analyses assessed D1/D5 receptor and DAT expression in the hippocampus, prefrontal cortex, and cerebellum.ResultsHR mice with wheel access showed significantly increased hippocampal LTP compared to those without wheels and to C mice with/without wheels. Treatment with SKF-38393 or GBR 12909 prevented the heightened LTP in HR mice with wheels, aligning it with levels in C mice. Hippocampal D1/D5 receptor levels were lower, and DAT levels were higher in HR mice compared to C mice. No significant changes were observed in other brain regions.ConclusionsThe increased hippocampal LTP seen in HR mice with wheel access may be related to alterations in dopaminergic synaptic transmission that underlie the neurophysiological basis of hyperactivity, motor disorders, and/or motivation.
Collapse
Affiliation(s)
| | - Jiwon Yi
- Department of Neuroscience, Pomona College, Claremont, CA, USA
| | | | | | - Kevin Guan
- Department of Neuroscience, Pomona College, Claremont, CA, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
| | - Karen Diane Parfitt
- Program in Molecular Biology, Pomona College, Claremont, CA, USA
- Department of Neuroscience, Pomona College, Claremont, CA, USA
| |
Collapse
|
6
|
Huang F, Liu X, Guo Q, Mahaman YAR, Zhang B, Wang JZ, Luo H, Liu R, Wang X. Social isolation impairs cognition via Aβ-mediated synaptic dysfunction. Transl Psychiatry 2024; 14:380. [PMID: 39294141 PMCID: PMC11410967 DOI: 10.1038/s41398-024-03078-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/20/2024] Open
Abstract
Social isolation (SI) is a common phenomenon in the modern world, especially during the coronavirus disease 2019 pandemic, and causes lasting cognitive impairments and mental disorders. However, it is still unclear how SI alters molecules in the brain and induces behavioural dysfunctions. Here, we report that SI impairs cognitive function and induces depressive-like behaviours in C57BL/6 J mice, in addition to impairing synaptic plasticity and increasing the levels of APP cleavage-related enzymes, thereby promoting Aβ production. Moreover, we show that in APP/PS1 transgenic mice, SI accelerates pathological changes and behavioural deficits. Interestingly, downregulation of the expression of the BACE1 attenuates SI-induced Aβ toxicity and synaptic dysfunction. Furthermore, early intervention with BACE1 shRNA blocks SI-induced cognitive impairments. Together, our data strongly suggest that SI-induced upregulation of BACE1 expression mediates Aβ toxicity and induces behavioural deficits. Down-regulation of BACE1 may be a promising strategy for preventing SI-induced cognitive impairments.
Collapse
Affiliation(s)
- Fang Huang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China
| | - Xinghua Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Trauma Center/Department of Emergency and Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Guo
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yacoubou Abdoul Razak Mahaman
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bin Zhang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China
| | - Hongbin Luo
- Medical College, Hubei University for Nationalities, Enshi, 445000, HB, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China.
| |
Collapse
|
7
|
Raymond JS, Rehn S, James MH, Everett NA, Bowen MT. Sex differences in the social motivation of rats: Insights from social operant conditioning, behavioural economics, and video tracking. Biol Sex Differ 2024; 15:57. [PMID: 39030614 PMCID: PMC11264584 DOI: 10.1186/s13293-024-00612-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/09/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Social behaviour plays a key role in mental health and wellbeing, and developing greater understanding of mechanisms underlying social interaction-particularly social motivation-holds substantial transdiagnostic impact. Common rodent behavioural assays used to assess social behaviour are limited in their assessment of social motivation, whereas the social operant conditioning model can provide unique and valuable insights into social motivation. Further characterisation of common experimental parameters that may influence social motivation within the social operant model, as well as complementary methodological and analytical approaches, are warranted. METHODS This study investigated the effects of biological sex, housing condition, and time-of-day, on social motivation using the social operant model. This involved training rats to lever press (FR1) for 60-s access to a social reward (same-sex conspecific stimulus). Subjects were male and female Wistar rats, housed under individual or paired conditions, and sessions were conducted either in the mid-late light phase (ZT6-10) or early-mid dark phase (ZT13-17). A behavioural economics approach was implemented to measure social demand and the influence of stimulus partner sex (same- vs. opposite-sex stimulus) on social operant responding. Additionally, video tracking analyses were conducted to assess the degree of convergence between social appetitive and consummatory behaviours. RESULTS Biological sex, housing conditions, the interaction between sex and housing, and stimulus partner sex potently influenced social motivation, whereas time-of-day did not. Behavioural economics demonstrated that sex, housing, and their interaction influence both the hedonic set-point and elasticity of social demand. Video analysis of social interaction during social operant sessions revealed that social appetitive and consummatory behaviours are not necessarily convergent, and indicate potential social satiety. Lastly, oestrus phase of female experimental and stimulus rats did not impact social motivation within the model. CONCLUSIONS Social isolation-dependent sex differences exist in social motivation for rats, as assessed by social operant conditioning. The social operant model represents an optimal preclinical assay that comprehensively evaluates social motivation and offers a platform for future investigations of neurobiological mechanisms underlying sex differences in social motivation. These findings highlight the importance of continued consideration and inclusion of sex as a biological variable in future social operant conditioning studies. Humans are social creatures-our everyday interactions with others and the support this provides play a key role in our wellbeing. For those experiencing mental health conditions, people's motivation to engage with others can wane, which can lead them to withdraw from those who support them. Therefore, to develop better treatment strategies for these conditions, we need to gain a deeper understanding of social motivation. Studying social behaviour in animals can facilitate this investigation of social motivation as it allows for a causal understanding of underlying neurobiology that is not possible in human experiments. An optimal way to study social motivation in animals is using the social operant conditioning model, where rats learn to press a lever that opens a door and allows them to interact with another rat for a short time. This study characterised the social operant model by testing whether sex, housing conditions, time-of-day, and the sex of the stimulus partner influence rats' motivation to seek interaction with another rat. We found that female rats were more socially motivated than males, and that rats living alone were more motivated than those living with another rat; interestingly, this effect of housing affected females more than males. Regardless of sex, rats were more motivated to interact with a rat of the opposite sex. These findings provide insights into sex differences in social motivation in rats and new insights into the social operant model which will help guide future research into social motivation and other mental health conditions.
Collapse
Affiliation(s)
- Joel S Raymond
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
- Brain and Mind Centre, The University of Sydney, 94 Mallett Street, 2050, Sydney, NSW, Australia
| | - Simone Rehn
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Morgan H James
- Brain Health Institute, Rutgers Biomedical and Health Sciences, Rutgers University, Piscataway, NJ, USA
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers Biomedical Health Sciences, Rutgers University, Piscataway, NJ, USA
| | - Nicholas A Everett
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
- Brain and Mind Centre, The University of Sydney, 94 Mallett Street, 2050, Sydney, NSW, Australia
| | - Michael T Bowen
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, NSW, Australia.
- Brain and Mind Centre, The University of Sydney, 94 Mallett Street, 2050, Sydney, NSW, Australia.
| |
Collapse
|
8
|
Girella A, Di Bartolomeo M, Dainese E, Buzzelli V, Trezza V, D'Addario C. Fatty Acid Amide Hydrolase and Cannabinoid Receptor Type 1 Genes Regulation is Modulated by Social Isolation in Rats. Neurochem Res 2024; 49:1278-1290. [PMID: 38368587 DOI: 10.1007/s11064-024-04117-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 02/19/2024]
Abstract
Social isolation is a state of lack of social connections, involving the modulation of different molecular signalling cascades and associated with high risk of mental health issues. To investigate if and how gene expression is modulated by social experience at the central level, we analyzed the effects of 5 weeks of social isolation in rats focusing on endocannabinoid system genes transcription in key brain regions involved in emotional control. We observed selective reduction in mRNA levels for fatty acid amide hydrolase (Faah) and cannabinoid receptor type 1 (Cnr1) genes in the amygdala complex and of Cnr1 in the prefrontal cortex of socially isolated rats when compared to controls, and these changes appear to be partially driven by trimethylation of Lysine 27 and acetylation of Lysine 9 at Histone 3. The alterations of Cnr1 transcriptional regulation result also directly correlated with those of oxytocin receptor gene. We here suggest that to counteract the effects of SI, it is of relevance to restore the endocannabinoid system homeostasis via the use of environmental triggers able to revert those epigenetic mechanisms accounting for the alterations observed.
Collapse
Affiliation(s)
- Antonio Girella
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini, 1, 64100, Teramo, Italy
| | - Martina Di Bartolomeo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini, 1, 64100, Teramo, Italy
| | - Enrico Dainese
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini, 1, 64100, Teramo, Italy
| | | | - Viviana Trezza
- Department of Science, Roma Tre University, Rome, Italy
- Neuroendocrinology, Metabolism and Neuropharmacology Unit, IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Claudio D'Addario
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini, 1, 64100, Teramo, Italy.
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
9
|
Akbuğa-Schön T, Suzuki TA, Jakob D, Vu DL, Waters JL, Ley RE. The keystone gut species Christensenella minuta boosts gut microbial biomass and voluntary physical activity in mice. mBio 2024; 15:e0283623. [PMID: 38132571 PMCID: PMC10865807 DOI: 10.1128/mbio.02836-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 12/23/2023] Open
Abstract
The gut bacteria of the family Christensenellaceae are consistently associated with metabolic health, but their role in promoting host health is not fully understood. Here, we explored the effect of Christensenella minuta amendment on voluntary physical activity and the gut microbiome. We inoculated male and female germ-free mice with an obese human donor microbiota together with live or heat-killed C. minuta for 28 days and measured physical activity in respirometry cages. Compared to heat-killed, the live-C. minuta treatment resulted in reduced feed efficiency and higher levels of physical activity, with significantly greater distance traveled for males and higher levels of small movements and resting metabolic rate in females. Sex-specific effects of C. minuta treatment may be in part attributable to different housing conditions for males and females. Amendment with live C. minuta boosted gut microbial biomass in both sexes, immobilizing dietary carbon in the microbiome, and mice with high levels of C. minuta lose more energy in stool. Live C. minuta also reduced within and between-host gut microbial diversity. Overall, our results showed that C. minuta acts as a keystone species: despite low relative abundance, it has a large impact on its ecosystem, from the microbiome to host energy homeostasis.IMPORTANCEThe composition of the human gut microbiome is associated with human health. Within the human gut microbiome, the relative abundance of the bacterial family Christensenellaceae has been shown to correlate with metabolic health and a lean body type. The mechanisms underpinning this effect remain unclear. Here, we show that live C. minuta influences host physical activity and metabolic energy expenditure, accompanied by changes in murine metabolism and the gut microbial community in a sex-dependent manner in comparison to heat-killed C. minuta. Importantly, live C. minuta boosts the biomass of the microbiome in the gut, and a higher level of C. minuta is associated with greater loss of energy in stool. These observations indicate that modulation of activity levels and changes to the microbiome are ways in which the Christensenellaceae can influence host energy homeostasis and health.
Collapse
Affiliation(s)
- Tanja Akbuğa-Schön
- Department of Microbiome Science, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Taichi A. Suzuki
- Department of Microbiome Science, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Dennis Jakob
- Department of Microbiome Science, Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Mass Spectrometry Facility, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Dai Long Vu
- Mass Spectrometry Facility, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Jillian L. Waters
- Department of Microbiome Science, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Ruth E. Ley
- Department of Microbiome Science, Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| |
Collapse
|
10
|
Gallazzi M, Pizzolante M, Biganzoli EM, Bollati V. Wonder symphony: epigenetics and the enchantment of the arts. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae001. [PMID: 38496252 PMCID: PMC10944288 DOI: 10.1093/eep/dvae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/11/2023] [Accepted: 01/30/2024] [Indexed: 03/19/2024]
Abstract
Epigenetics, the study of heritable changes in gene expression without altering the DNA sequence, has gained significant attention due to its implications for gene regulation and chromatin stability. Epigenetic mechanisms play a fundamental role in gene-environment interactions, shaping individual development and adaptation. DNA methylation, histone modifications, and non-coding RNAs are key epigenetic regulators. Epigenetic changes can be triggered by environmental factors, including stress, toxins, and social interactions, influencing health and well-being. Positive experiences, such as engagement with the arts, have been linked to emotional responses and neurotransmitter release. While the impacts of detrimental factors on epigenetics have been widely studied, the effects of positive influences are less explored. Specifically, visual art and music have profound effects on emotions, cognition, and mood regulation. Exposure to arts enhances memory, reduces stress, and fosters social inclusion. Recent research has begun to explore the links between positive experiences and epigenetic modifications, suggesting that aesthetic experiences, including visual art and music fruition, might induce dynamic and/or stable changes in gene expression profiles. However, this field is in its infancy, and more research is needed to establish clear connections. Collaborative efforts among genetics, epigenetics, neuroscience, psychology, and the arts are essential for a comprehensive understanding. Longitudinal studies tracking sustained exposure to positive experiences and examining the influence of childhood artistic education on the biological bases of therapeutic effects of art and music are promising avenues for future research. Ultimately, understanding how positive experiences influence epigenetics could provide insights into the long-term enhancement of human well-being.
Collapse
Affiliation(s)
- Marta Gallazzi
- Catholic University of Milan, Milan 20123, Italy
- EPIGET LAB, Department of Clinical Sciences and Community Health, University of Milan, via San Barnaba 8, Milan 20122, Italy
| | - Marta Pizzolante
- Research Center in Communication Psychology (PSICOM), Department of Psychology, Catholic University of Milan, Milan 20123, Italy
| | - Elia Mario Biganzoli
- Unit of Medical Statistics, Bioinformatics and Epidemiology, Department of Biomedical and Clinical Sciences (DIBIC), University of Milan, Via Giovanni Battista Grassi, 74, Milan 20157, Italy
- Unit of Clinical Research and Medical Statistics, Ospedale “L. Sacco” LITA Campus, Via Giovanni Battista Grassi, 74 Milan 20157, Italy
| | - Valentina Bollati
- EPIGET LAB, Department of Clinical Sciences and Community Health, University of Milan, via San Barnaba 8, Milan 20122, Italy
- Occupational Health Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via San Barnaba 8, Milan 20122, Italy
| |
Collapse
|
11
|
Lay-Yee R, Hariri AR, Knodt AR, Barrett-Young A, Matthews T, Milne BJ. Social isolation from childhood to mid-adulthood: is there an association with older brain age? Psychol Med 2023; 53:7874-7882. [PMID: 37485695 PMCID: PMC10755222 DOI: 10.1017/s0033291723001964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Older brain age - as estimated from structural MRI data - is known to be associated with detrimental mental and physical health outcomes in older adults. Social isolation, which has similar detrimental effects on health, may be associated with accelerated brain aging though little is known about how different trajectories of social isolation across the life course moderate this association. We examined the associations between social isolation trajectories from age 5 to age 38 and brain age assessed at age 45. METHODS We previously created a typology of social isolation based on onset during the life course and persistence into adulthood, using group-based trajectory analysis of longitudinal data from a New Zealand birth cohort. The typology comprises four groups: 'never-isolated', 'adult-only', 'child-only', and persistent 'child-adult' isolation. A brain age gap estimate (brainAGE) - the difference between predicted age from structural MRI date and chronological age - was derived at age 45. We undertook analyses of brainAGE with trajectory group as the predictor, adjusting for sex, family socio-economic status, and a range of familial and child-behavioral factors. RESULTS Older brain age in mid-adulthood was associated with trajectories of social isolation after adjustment for family and child confounders, particularly for the 'adult-only' group compared to the 'never-isolated' group. CONCLUSIONS Although our findings are associational, they indicate that preventing social isolation, particularly in mid-adulthood, may help to avert accelerated brain aging associated with negative health outcomes later in life.
Collapse
Affiliation(s)
- Roy Lay-Yee
- Centre of Methods and Policy Application in the Social Sciences, and School of Social Sciences, Faculty of Arts, University of Auckland, Auckland, New Zealand
| | - Ahmad R. Hariri
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Annchen R. Knodt
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | | | - Timothy Matthews
- Department of Social Genetic & Developmental Psychiatry, Institute of Psychiatry, King's College London, London, UK
| | - Barry J. Milne
- Centre of Methods and Policy Application in the Social Sciences, and School of Social Sciences, Faculty of Arts, University of Auckland, Auckland, New Zealand
- Department of Statistics, Faculty of Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Koto A, Tamura M, Wong PS, Aburatani S, Privman E, Stoffel C, Crespi A, McKenzie SK, La Mendola C, Kay T, Keller L. Social isolation shortens lifespan through oxidative stress in ants. Nat Commun 2023; 14:5493. [PMID: 37758727 PMCID: PMC10533837 DOI: 10.1038/s41467-023-41140-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Social isolation negatively affects health, induces detrimental behaviors, and shortens lifespan in social species. Little is known about the mechanisms underpinning these effects because model species are typically short-lived and non-social. Using colonies of the carpenter ant Camponotus fellah, we show that social isolation induces hyperactivity, alters space-use, and reduces lifespan via changes in the expression of genes with key roles in oxidation-reduction and an associated accumulation of reactive oxygen species. These physiological effects are localized to the fat body and oenocytes, which perform liver-like functions in insects. We use pharmacological manipulations to demonstrate that the oxidation-reduction pathway causally underpins the detrimental effects of social isolation on behavior and lifespan. These findings have important implications for our understanding of how social isolation affects behavior and lifespan in general.
Collapse
Affiliation(s)
- Akiko Koto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Ibaraki, Japan.
- Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Ibaraki, Japan.
| | - Makoto Tamura
- NeuroDiscovery Lab, Mitsubishi Tanabe Pharma America, Cambridge, MA, 02139, USA
| | - Pui Shan Wong
- Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Ibaraki, Japan
| | - Sachiyo Aburatani
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Ibaraki, Japan
- Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Ibaraki, Japan
| | - Eyal Privman
- University of Haifa, Institute of Evolution, Department of Evolutionary and Environmental Biology, Haifa, 3498838, Israel
| | - Céline Stoffel
- University of Lausanne, Department of Ecology and Evolution, Lausanne, CH-1015, Switzerland
| | - Alessandro Crespi
- Biorobotics Laboratory, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| | - Sean Keane McKenzie
- University of Lausanne, Department of Ecology and Evolution, Lausanne, CH-1015, Switzerland
| | - Christine La Mendola
- University of Lausanne, Department of Ecology and Evolution, Lausanne, CH-1015, Switzerland
| | - Tomas Kay
- University of Lausanne, Department of Ecology and Evolution, Lausanne, CH-1015, Switzerland
| | - Laurent Keller
- University of Lausanne, Department of Ecology and Evolution, Lausanne, CH-1015, Switzerland.
- Social Evolution Unit, Cornuit 8, BP 855, Chesières, CH-1885, Switzerland.
| |
Collapse
|
13
|
Naumova AA, Oleynik EA, Khramtsova AV, Nikolaeva SD, Chernigovskaya EV, Glazova MV. Short-term hindlimb unloading negatively affects dopaminergic transmission in the nigrostriatal system of mice. Dev Neurobiol 2023; 83:205-218. [PMID: 37489016 DOI: 10.1002/dneu.22924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/04/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023]
Abstract
The nigrostriatal system composed of the dorsal striatum and the substantia nigra (SN) is highly involved in the control of motor behavior. Various extremal and pathological conditions as well as social isolation (SI) may cause an impairment of locomotor function; however, corresponding alterations in the nigrostriatal dopaminergic pathway are far from full understanding. Here, we analyzed the effect of 3-day hindlimb unloading (HU) and SI on the key players of dopamine transmission in the nigrostriatal system of CD1 mice. Three groups of mice were analyzed: group-housed (GH), SI, and HU animals. Our data showed a significant decrease in the expression and phosphorylation of tyrosine hydroxylase (TH) in the SN and dorsal striatum of HU mice that suggested attenuation of dopamine synthesis in response to HU. In the dorsal striatum of HU mice, the downregulation of TH expression was also observed indicating the effect of unloading; however, TH phosphorylation at Ser40 was mainly affected by SI pointing on an impact of isolation too. Expression of dopamine receptors D1 in the dorsal striatum of HU mice was increased suggesting a compensatory response, but the activity of downstream signaling pathways involving protein kinase A and cAMP response element-binding protein was inhibited. At the same time, SI alone did not affect expression of DA receptors and activity of downstream signaling in the dorsal striatum. Obtained data let us to conclude that HU was the main factor which impaired dopamine transmission in the nigrostriatal system but SI made some contribution to its negative effects.
Collapse
Affiliation(s)
- Alexandra A Naumova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Ekaterina A Oleynik
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Anna V Khramtsova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Svetlana D Nikolaeva
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Elena V Chernigovskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Margarita V Glazova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
14
|
Cheng YT, Woo J, Luna-Figueroa E, Maleki E, Harmanci AS, Deneen B. Social deprivation induces astrocytic TRPA1-GABA suppression of hippocampal circuits. Neuron 2023; 111:1301-1315.e5. [PMID: 36787749 PMCID: PMC10121837 DOI: 10.1016/j.neuron.2023.01.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 12/13/2022] [Accepted: 01/18/2023] [Indexed: 02/16/2023]
Abstract
Social experience is essential for the development and maintenance of higher-order brain function. Social deprivation results in a host of cognitive deficits, and cellular studies have largely focused on associated neuronal dysregulation; how astrocyte function is impacted by social deprivation is unknown. Here, we show that hippocampal astrocytes from juvenile mice subjected to social isolation exhibit increased Ca2+ activity and global changes in gene expression. We found that the Ca2+ channel TRPA1 is upregulated in astrocytes after social deprivation and astrocyte-specific deletion of TRPA1 reverses the physiological and cognitive deficits associated with social deprivation. Mechanistically, TRPA1 inhibition of hippocampal circuits is mediated by a parallel increase of astrocytic production and release of the inhibitory neurotransmitter GABA after social deprivation. Collectively, our studies reveal how astrocyte function is tuned to social experience and identifies a social-context-specific mechanism by which astrocytic TRPA1 and GABA coordinately suppress hippocampal circuit function.
Collapse
Affiliation(s)
- Yi-Ting Cheng
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Junsung Woo
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Estefania Luna-Figueroa
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ehson Maleki
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Benjamin Deneen
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
15
|
Majid U, Hussain SAS, Zahid A, Haider MH, Arora R. Mental health outcomes in health care providers during the COVID-19 pandemic: an umbrella review. Health Promot Int 2023; 38:daad025. [PMID: 37067168 DOI: 10.1093/heapro/daad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
As we head into the third year of the COVID-19 pandemic, there is an increasing need to consider the long-term mental health outcomes of health care workers (HCWs) who have experienced overwhelming work pressure, economic and social deprivation, burnout, and post-traumatic stress disorder (PTSD). This scoping umbrella review summarizes the mental health outcomes of published evidence syntheses on HCWs worldwide. We analyzed 39 evidence syntheses representing the findings from 1297 primary studies. We found several persistent fears and concerns (job-related fears, fear of stigmatization, worries about the pandemic, and infection-related fears) that shaped HCW experiences in delivering health care. We also describe several risk factors (job-related, social factors, poor physical and mental health, and inadequate coping strategies) and protective factors (individual and external factors). This is the first scoping umbrella review comprehensively documenting the various risk and protective factors that HCWs have faced during the COVID-19 pandemic. HCWs continue to fear the risk that they may infect their family and friends since they regularly interact with COVID-19 patients. This places HCWs in a precarious situation requiring them to balance risk to their family and friends and potential social deprivation from isolation.
Collapse
Affiliation(s)
- Umair Majid
- Institute of Health Policy, Management, and Evaluation, University of Toronto, Ontario, Canada
- The Methodologists (TMT) Corp. Toronto, Ontario, Canada
| | | | - Anas Zahid
- Department of Internal Medicine, Azra Naheed Medical College, Lahore, Pakistan
| | | | - Ritika Arora
- Department of Health Research Methods, Evidence and Impact, McMaster University, Ontario, Canada
| |
Collapse
|
16
|
Teshale AB, Htun HL, Hu J, Dalli LL, Lim MH, Neves BB, Baker JR, Phyo AZZ, Reid CM, Ryan J, Owen AJ, Fitzgerald SM, Freak-Poli R. The relationship between social isolation, social support, and loneliness with cardiovascular disease and shared risk factors: A narrative review. Arch Gerontol Geriatr 2023; 111:105008. [PMID: 37003026 DOI: 10.1016/j.archger.2023.105008] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Cardiovascular disease (CVD) is the greatest contributor to global morbidity and mortality. Poor social health plays a critical role in CVD incidence. Additionally, the relationship between social health and CVD may be mediated through CVD risk factors. However, the underlying mechanisms between social health and CVD are poorly understood. Certain social health constructs (social isolation, low social support and loneliness) have complicated the characterisation of a causal relationship between social health and CVD. AIM To provide an overview of the relationship between social health and CVD (and its shared risk factors). METHOD In this narrative review, we examined published literature on the relationship between three social health constructs (social isolation, social support, and loneliness) and CVD. Evidence was synthesised in a narrative format, focusing on the potential ways in which social health affects CVD, including shared risk factors. RESULTS The current literature highlights an established relationship between social health and CVD with a likelihood for bi-directionality. However, there is speculation and varied evidence regarding how these relationships may be mediated through CVD risk factors. CONCLUSIONS Social health can be considered an established risk factor for CVD. However, the potential bi-directional pathways of social health with CVD risk factors are less established. Further research is needed to understand whether targeting certain constructs of social health may directly improve the management of CVD risk factors. Given the health and economic burdens of poor social health and CVD, improvements to addressing or preventing these interrelated health conditions would have societal benefits.
Collapse
Affiliation(s)
| | - Htet Lin Htun
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.
| | - Jessie Hu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Lachlan L Dalli
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia.
| | - Michelle H Lim
- Prevention Research Collaboration, School of Public Health, The University of Sydney, New South Wales, Australia.
| | | | - J R Baker
- School of Health, Southern Cross University, Australia; Primary & Community Care Limited, Australia.
| | - Aung Zaw Zaw Phyo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.
| | - Christopher M Reid
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia; School of Population Health, Curtin University, Perth, Western Australia, Australia.
| | - Joanne Ryan
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.
| | - Alice J Owen
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.
| | - Sharyn M Fitzgerald
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.
| | - Rosanne Freak-Poli
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia; Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
17
|
Sadino JM, Bradeen XG, Kelly CJ, Brusman LE, Walker DM, Donaldson ZR. Prolonged partner separation erodes nucleus accumbens transcriptional signatures of pair bonding in male prairie voles. eLife 2023; 12:e80517. [PMID: 36852906 PMCID: PMC10112888 DOI: 10.7554/elife.80517] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 02/27/2023] [Indexed: 03/01/2023] Open
Abstract
The loss of a spouse is often cited as the most traumatic event in a person's life. However, for most people, the severity of grief and its maladaptive effects subside over time via an understudied adaptive process. Like humans, socially monogamous prairie voles (Microtus ochrogaster) form opposite-sex pair bonds, and upon partner separation, show stress phenotypes that diminish over time. We test the hypothesis that extended partner separation diminishes pair bond-associated behaviors and causes pair bond transcriptional signatures to erode. Opposite-sex or same-sex paired males were cohoused for 2 weeks and then either remained paired or were separated for 48 hours or 4 weeks before collecting fresh nucleus accumbens tissue for RNAseq. In a separate cohort, we assessed partner-directed affiliation at these time points. We found that these behaviors persist despite prolonged separation in both same-sex and opposite-sex paired voles. Opposite-sex pair bonding led to changes in accumbal transcription that were stably maintained while animals remained paired but eroded following prolonged partner separation. Eroded genes are associated with gliogenesis and myelination, suggesting a previously undescribed role for glia in pair bonding and loss. Further, we pioneered neuron-specific translating ribosomal affinity purification in voles. Neuronally enriched transcriptional changes revealed dopaminergic-, mitochondrial-, and steroid hormone signaling-associated gene clusters sensitive to acute pair bond disruption and loss adaptation. Our results suggest that partner separation erodes transcriptomic signatures of pair bonding despite core behavioral features of the bond remaining intact, revealing potential molecular processes priming a vole to be able to form a new bond.
Collapse
Affiliation(s)
- Julie M Sadino
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado BoulderBoulderUnited States
| | - Xander G Bradeen
- Department of Psychology and Neuroscience, University of Colorado BoulderBoulderUnited States
- Department of Adult Hematology, University of Colorado- Anschutz Medical CampusAuroraUnited States
| | - Conor J Kelly
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado BoulderBoulderUnited States
- BioFrontiers Institute, University of Colorado BoulderBoulderUnited States
| | - Liza E Brusman
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado BoulderBoulderUnited States
| | - Deena M Walker
- Department of Behavioral Neuroscience, Oregon Health and Science University, School of MedicinePortlandUnited States
| | - Zoe R Donaldson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado BoulderBoulderUnited States
- Department of Psychology and Neuroscience, University of Colorado BoulderBoulderUnited States
| |
Collapse
|
18
|
Shirenova SD, Khlebnikova NN, Narkevich VB, Kudrin VS, Krupina NA. Nine-month-long Social Isolation Changes the Levels of Monoamines in the Brain Structures of Rats: A Comparative Study of Neurochemistry and Behavior. Neurochem Res 2023; 48:1755-1774. [PMID: 36680692 DOI: 10.1007/s11064-023-03858-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/22/2023]
Abstract
Social isolation (SI) is chronic psycho-emotional stress for humans and other socially living species. There are few comparative studies that have measured monoamine levels in brain structures in male and female rats subjected to SI. Existing data is highly controversial. In our recent study, we investigated behavioral effects of SI prolonged up to 9 months on a rather large sample of 69 male and female Wistar rats. In the present study, we measured the levels of monoamines-norepinephrine (NE), dopamine (DA), 5-hydroxytryptamine (5-HT), and DA and 5-HT metabolites-in the brain structures of 40 rats from the same sample. The single-housed rats of both sexes showed hyperactivity and reduced reactivity to novelty in the Open Field test, and impaired passive avoidance learning. Regardless of their sex, by the time of sacrifice, the single-housed rats weighed less and had lower pain sensitivity and decreased anxiety compared with group-housed animals. SI decreased NE levels in the hippocampus and increased them in the striatum. SI induced functional activation of the DA-ergic system in the frontal cortex and hypothalamus, with increased DA and 3-methoxytyramine levels. SI-related changes were found in the 5-HT-ergic system: 5-HT levels increased in the frontal cortex and striatum, while 5-hydroxyindoleacetic acid only increased in the frontal cortex. We believe that SI prolonged for multiple months could be a valuable model for comparative analysis of the behavioral alterations and the underlying molecular processes in dynamics of adaptation to chronic psychosocial stress in male and female rats in relation to age-dependent changes.
Collapse
Affiliation(s)
- Sophie D Shirenova
- Laboratory of General Pathology of the Nervous System, Research Institute of General Pathology and Pathophysiology, 8 Baltiyskaya St, 125315, Moscow, Russian Federation
| | - Nadezhda N Khlebnikova
- Laboratory of General Pathology of the Nervous System, Research Institute of General Pathology and Pathophysiology, 8 Baltiyskaya St, 125315, Moscow, Russian Federation
| | - Viktor B Narkevich
- Laboratory of Neurochemical Pharmacology, V. V. Zakusov Research Institute of Pharmacology, 8 Baltiyskaya St, 125315, Moscow, Russian Federation
| | - Vladimir S Kudrin
- Laboratory of Neurochemical Pharmacology, V. V. Zakusov Research Institute of Pharmacology, 8 Baltiyskaya St, 125315, Moscow, Russian Federation
| | - Nataliya A Krupina
- Laboratory of General Pathology of the Nervous System, Research Institute of General Pathology and Pathophysiology, 8 Baltiyskaya St, 125315, Moscow, Russian Federation.
| |
Collapse
|
19
|
Modifiable risk factors of dementia linked to excitation-inhibition imbalance. Ageing Res Rev 2023; 83:101804. [PMID: 36410620 DOI: 10.1016/j.arr.2022.101804] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Recent evidence identifies 12 potentially modifiable risk factors for dementia to which 40% of dementia cases are attributed. While the recognition of these risk factors has paved the way for the development of new prevention measures, the link between these risk factors and the underlying pathophysiology of dementia is yet not well understood. A growing number of recent clinical and preclinical studies support a role of Excitation-Inhibition (E-I) imbalance in the pathophysiology of dementia. In this review, we aim to propose a conceptual model on the links between the modifiable risk factors and the E-I imbalance in dementia. This model, which aims to address the current gap in the literature, is based on 12 mediating common mechanisms: the hypothalamic-pituitary-adrenal (HPA) axis dysfunction, neuroinflammation, oxidative stress, mitochondrial dysfunction, cerebral hypo-perfusion, blood-brain barrier (BBB) dysfunction, beta-amyloid deposition, elevated homocysteine level, impaired neurogenesis, tau tangles, GABAergic dysfunction, and glutamatergic dysfunction. We believe this model serves as a framework for future studies in this field and facilitates future research on dementia prevention, discovery of new biomarkers, and developing new interventions.
Collapse
|
20
|
Rusconi F, Rossetti MG, Forastieri C, Tritto V, Bellani M, Battaglioli E. Preclinical and clinical evidence on the approach-avoidance conflict evaluation as an integrative tool for psychopathology. Epidemiol Psychiatr Sci 2022; 31:e90. [PMID: 36510831 PMCID: PMC9762142 DOI: 10.1017/s2045796022000725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022] Open
Abstract
The approach-avoidance conflict (AAC), i.e. the competing tendencies to undertake goal-directed actions or to withdraw from everyday life challenges, stands at the basis of humans' existence defining behavioural and personality domains. Gray's Reinforcement Sensitivity Theory posits that a stable bias toward approach or avoidance represents a psychopathological trait associated with excessive sensitivity to reward or punishment. Optogenetic studies in rodents and imaging studies in humans associated with cross-species AAC paradigms granted new emphasis to the hippocampus as a hub of behavioural inhibition. For instance, recent functional neuroimaging studies show that functional brain activity in the human hippocampus correlates with threat perception and seems to underlie passive avoidance. Therefore, our commentary aims to (i) discuss the inhibitory role of the hippocampus in approach-related behaviours and (ii) promote the integration of functional neuroimaging with cross-species AAC paradigms as a means of diagnostic, therapeutic, follow up and prognosis refinement in psychiatric populations.
Collapse
Affiliation(s)
- F. Rusconi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milano, Italy
| | - M. G. Rossetti
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - C. Forastieri
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milano, Italy
| | - V. Tritto
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milano, Italy
| | - M. Bellani
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - E. Battaglioli
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
21
|
Olaniran A, Garcia KT, Burke MAM, Lin H, Venniro M, Li X. Operant social seeking to a novel peer after social isolation is associated with activation of nucleus accumbens shell in rats. Psychopharmacology (Berl) 2022:10.1007/s00213-022-06280-9. [PMID: 36449074 PMCID: PMC10227185 DOI: 10.1007/s00213-022-06280-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022]
Abstract
RATIONALE AND OBJECTIVE Deprivation of social interaction promotes social reward seeking in rodents, assessed primarily by the conditioned place preference procedure. Here, we used an operant social procedure in rats and examined the effect of the housing condition (pair-housing vs. single-housing) during or after social self-administration on social reward seeking. METHODS We first trained paired-housed or single-housed rats to gain access to an age- and sex-matched novel peer. On post-training day 1 (PTD1), we tested both groups for social seeking without the presence of the novel peer. Next, we divided each group into pair-housing or single-housing conditions and tested all four groups (pair-pair, pair-single, single-pair, and single-single) for social seeking on post-training day 12 (PTD12). Finally, we analyzed Fos expression in the striatum associated with social seeking on PTD12. RESULT Single-housed rats earned more social rewards during social self-administration than pair-housed rats. Social isolation during social self-administration also promoted social seeking on PTD1 and PTD12, regardless of their housing conditions after social self-administration training. Additionally, in pair-housed rats, social isolation during the post-training period led to a time-dependent increase of social seeking on PTD12 compared with PTD1. Finally, the Fos analyses revealed an increase of Fos expression in NAc shell of single-single rats after social seeking test on PTD12 compared with pair-pair rats. CONCLUSION Our data suggest that social isolation promotes operant social self-administration and social seeking. In addition, neuronal activation of NAc shell is associated with social seeking after social isolation.
Collapse
Affiliation(s)
- Adedayo Olaniran
- Department of Psychology, University of Maryland College Park, College Park, MD, 20742, USA
| | - Kristine T Garcia
- Department of Psychology, University of Maryland College Park, College Park, MD, 20742, USA
| | - Megan A M Burke
- Department of Psychology, University of Maryland College Park, College Park, MD, 20742, USA
| | - Hongyu Lin
- Department of Psychology, University of Maryland College Park, College Park, MD, 20742, USA
| | - Marco Venniro
- Department of Neurobiology and Anatomy, University of Maryland Baltimore, Baltimore, MD, 21201, USA.
| | - Xuan Li
- Department of Psychology, University of Maryland College Park, College Park, MD, 20742, USA.
| |
Collapse
|
22
|
Grigoryan GA, Pavlova IV, Zaichenko MI. Effects of Social Isolation on the Development of Anxiety and Depression-Like Behavior in Model Experiments in Animals. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2022; 52:722-738. [PMID: 36119650 PMCID: PMC9471030 DOI: 10.1007/s11055-022-01297-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/02/2021] [Indexed: 11/24/2022]
Abstract
This review describes the role of social isolation in the development of anxiety and depression-like behavior in rodents. The duration of social isolation, age from onset of social isolation, sex, species, and strain of animals, the nature of the model used, and other factors have been shown to have influences. The molecular-cellular mechanisms of development of anxiety and depression-like behavior under the influence of social isolation and the roles of the HHAS, oxidative and nitrosative stress, neuroinflammation, BDNF, neurogenesis, synaptic plasticity, as well as monoamines in these mechanisms are discussed. This review presents data on sex differences in the effects of social isolation, along with the effects of interactions with other types of stress, and the roles of an enriched environment and other factors in ameliorating the negative sequelae of social isolation.
Collapse
Affiliation(s)
- G. A. Grigoryan
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - I. V. Pavlova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - M. I. Zaichenko
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
23
|
Abstract
Until recently laboratory tasks for studying behavior were highly artificial, simplified, and designed without consideration for the environmental or social context. Although such an approach offers good control over behavior, it does not allow for researching either voluntary responses or individual differences. Importantly for neuroscience studies, the activity of the neural circuits involved in producing unnatural, artificial behavior is variable and hard to predict. In addition, different ensembles may be activated depending on the strategy the animal adopts to deal with the spurious problem. Thus, artificial and simplified tasks based on responses, which do not occur spontaneously entail problems with modeling behavioral impairments and underlying brain deficits. To develop valid models of human disorders we need to test spontaneous behaviors consistently engaging well-defined, evolutionarily conserved neuronal circuits. Such research focuses on behavioral patterns relevant for surviving and thriving under varying environmental conditions, which also enable high reproducibility across different testing settings.
Collapse
Affiliation(s)
- Alicja Puścian
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders – BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur 3 Street, 02-093 Warsaw, Poland
| | - Ewelina Knapska
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders – BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur 3 Street, 02-093 Warsaw, Poland
| |
Collapse
|
24
|
Tonon AC, de Abreu ACOV, da Silva MM, Tavares PDS, Nishino F, Versignassi P, Amando GR, Constantino DB, Pilz LK, Steibel E, Suchecki D, do Amaral FG, Hidalgo MP. Human social isolation and stress: a systematic review of different contexts and recommendations for future studies. TRENDS IN PSYCHIATRY AND PSYCHOTHERAPY 2022; 46:e20210452. [PMID: 35714313 PMCID: PMC11332683 DOI: 10.47626/2237-6089-2021-0452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/07/2022] [Indexed: 11/20/2022]
Abstract
OBJECTIVES The emergence of the coronavirus disease 2019 (COVID-19) pandemic and subsequent lockdowns and social distancing measures adopted worldwide raised questions about the possible health effects of human social isolation. METHODS We conducted a systematic review on PubMed, Scopus, and Embase electronic databases using terms related to human social isolation - defined as the isolation of an individual from regular routines and usual social contact - and psychological stress, searching for simulated or naturalistic isolation environments. We present the main results, as well as the validity and limitations of each model. PROSPERO registry number: CRD42021241880. RESULTS Despite the diversity of contexts reviewed, some outcomes almost ubiquitously relate to psychological stress, i.e., longer periods, expectation of a longer period, confinement, lack of social interaction, and support. Based on the results, and considering that most studies were not designed for the purpose of understanding isolation itself, we propose a group of recommendations for future experimental or naturalistic research on the topic. CONCLUSION Evidence on the impact of different situations in which individuals are subjected to social isolation can assist in development of directed preventive strategies to support people under similar circumstances. Such strategies might increase the general public's compliance with social distancing as a non-pharmacological intervention for emerging infectious diseases.
Collapse
Affiliation(s)
- André Comiran Tonon
- Laboratório de Cronobiologia e SonoHCPAUFRGSPorto AlegreRSBrazil Laboratório de Cronobiologia e Sono, Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Psiquiatria e Ciências do ComportamentoUFRGSPorto AlegreRSBrazil Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, UFRGS, Porto Alegre, RS, Brazil.
| | - Ana Carolina O. V. de Abreu
- Laboratório de Cronobiologia e SonoHCPAUFRGSPorto AlegreRSBrazil Laboratório de Cronobiologia e Sono, Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Mariana Mendonça da Silva
- Laboratório de Cronobiologia e SonoHCPAUFRGSPorto AlegreRSBrazil Laboratório de Cronobiologia e Sono, Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Patrice de Souza Tavares
- Laboratório de Cronobiologia e SonoHCPAUFRGSPorto AlegreRSBrazil Laboratório de Cronobiologia e Sono, Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em PsicologiaLPNeCUFRGSPorto AlegreRSBrazil Programa de Pós-Graduação em Psicologia, Laboratório de Psicologia Experimental, Neurociências e Comportamento (LPNeC), UFRGS, Porto Alegre, RS, Brazil.
| | - Fernanda Nishino
- Laboratório de Neurobiologia da PinealDepartamento de FisiologiaUNIFESPSão PauloSPBrazil Laboratório de Neurobiologia da Pineal, Departamento de Fisiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
| | - Paula Versignassi
- Laboratório de Neurobiologia da PinealDepartamento de FisiologiaUNIFESPSão PauloSPBrazil Laboratório de Neurobiologia da Pineal, Departamento de Fisiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
| | - Guilherme Rodriguez Amando
- Laboratório de Cronobiologia e SonoHCPAUFRGSPorto AlegreRSBrazil Laboratório de Cronobiologia e Sono, Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Psiquiatria e Ciências do ComportamentoUFRGSPorto AlegreRSBrazil Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, UFRGS, Porto Alegre, RS, Brazil.
| | - Débora Barroggi Constantino
- Laboratório de Cronobiologia e SonoHCPAUFRGSPorto AlegreRSBrazil Laboratório de Cronobiologia e Sono, Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Psiquiatria e Ciências do ComportamentoUFRGSPorto AlegreRSBrazil Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, UFRGS, Porto Alegre, RS, Brazil.
| | - Luísa Klaus Pilz
- Laboratório de Cronobiologia e SonoHCPAUFRGSPorto AlegreRSBrazil Laboratório de Cronobiologia e Sono, Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Psiquiatria e Ciências do ComportamentoUFRGSPorto AlegreRSBrazil Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, UFRGS, Porto Alegre, RS, Brazil.
| | - Eduardo Steibel
- Laboratório de Cronobiologia e SonoHCPAUFRGSPorto AlegreRSBrazil Laboratório de Cronobiologia e Sono, Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Deborah Suchecki
- Departamento de PsicobiologiaUNIFESPSão PauloSPBrazil Departamento de Psicobiologia, UNIFESP, São Paulo, SP, Brazil.
| | - Fernanda Gaspar do Amaral
- Laboratório de Neurobiologia da PinealDepartamento de FisiologiaUNIFESPSão PauloSPBrazil Laboratório de Neurobiologia da Pineal, Departamento de Fisiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
| | - Maria Paz Hidalgo
- Laboratório de Cronobiologia e SonoHCPAUFRGSPorto AlegreRSBrazil Laboratório de Cronobiologia e Sono, Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Psiquiatria e Ciências do ComportamentoUFRGSPorto AlegreRSBrazil Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
25
|
Kim J, Park J, Mikami T. Regular Low-Intensity Exercise Prevents Cognitive Decline and a Depressive-Like State Induced by Physical Inactivity in Mice: A New Physical Inactivity Experiment Model. Front Behav Neurosci 2022; 16:866405. [PMID: 35600989 PMCID: PMC9121131 DOI: 10.3389/fnbeh.2022.866405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/29/2022] [Indexed: 12/26/2022] Open
Abstract
Regular exercise has already been established as a vital strategy for maintaining physical health via experimental results in humans and animals. In addition, numerous human studies have reported that physical inactivity is a primary factor that causes obesity, muscle atrophy, metabolic diseases, and deterioration in cognitive function and mental health. Regardless, an established animal experimental method to examine the effect of physical inactivity on physiological, biochemical, and neuroscientific parameters is yet to be reported. In this study, we made a new housing cage, named as the physical inactivity (PI) cage, to investigate the effect of physical inactivity on cognitive function and depressive-like states in mice and obtained the following experimental results by its use. We first compared the daily physical activity of mice housed in the PI and standard cages using the nano-tag method. The mice’s physical activity levels in the PI cage decreased to approximately half of that in the mice housed in the standard cage. Second, we examined whether housing in the PI cage affected plasma corticosterone concentration. The plasma corticosterone concentration did not alter before, 1 week, or 10 weeks after housing. Third, we investigated whether housing in the PI cage for 10 weeks affected cognitive function and depressive behavior. Housing in an inactive state caused a cognitive decline and depressive state in the mice without increasing body weight and plasma corticosterone. Finally, we examined the effect of regular low-intensity exercise on cognitive function and depressive state in the mice housed in the PI cage. Physical inactivity decreased neuronal cell proliferation, blood vessel density, and gene expressions of vascular endothelial growth factors and brain-derived neurotrophic factors in the hippocampus. In addition, regular low-intensity exercise, 30 min of treadmill running at a 5–15 m/min treadmill speed 3 days per week, prevented cognitive decline and the onset of a depressive-like state caused by physical inactivity. These results showed that our novel physical inactivity model, housing the mice in the PI cage, would be an adequate and valuable experimental method for examining the effect of physical inactivity on cognitive function and a depressive-like state.
Collapse
Affiliation(s)
- Jimmy Kim
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Jonghyuk Park
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Toshio Mikami
- Department of Health and Sports Science, Nippon Medical School, Tokyo, Japan
- *Correspondence: Toshio Mikami,
| |
Collapse
|
26
|
Hamilton A, Rizzo R, Brod S, Ono M, Perretti M, Cooper D, D'Acquisto F. The immunomodulatory effects of social isolation in mice are linked to temperature control. Brain Behav Immun 2022; 102:179-194. [PMID: 35217174 DOI: 10.1016/j.bbi.2022.02.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/17/2022] [Accepted: 02/18/2022] [Indexed: 12/25/2022] Open
Abstract
Living in isolation is considered an emerging societal problem that negatively affects the physical wellbeing of its sufferers in ways that we are just starting to appreciate. This study investigates the immunomodulatory effects of social isolation in mice, utilising a two-week program of sole cage occupancy followed by the testing of immune-inflammatory resilience to bacterial sepsis. Our results revealed that mice housed in social isolation showed an increased ability to clear bacterial infection compared to control socially housed animals. These effects were associated with specific changes in whole blood gene expression profile and an increased production of classical pro-inflammatory cytokines. Interestingly, equipping socially isolated mice with artificial nests as a substitute for their natural huddling behaviour reversed the increased resistance to bacterial sepsis. Together these results suggest that the control of body temperature through social housing and huddling behaviour are important factors in the regulation of the host immune response to infection in mice and might provide another example of the many ways by which living conditions influence immunity.
Collapse
Affiliation(s)
- Alice Hamilton
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Raffaella Rizzo
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Samuel Brod
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Masahiro Ono
- University of London Imperial College Science Technology & Medicine, Department of Life Science, Faculty of Natural Science, London SW7 2AZ, England
| | - Mauro Perretti
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Dianne Cooper
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Fulvio D'Acquisto
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK; School of Life and Health Science, University of Roehampton, London SW15, 4JD, UK.
| |
Collapse
|
27
|
Benfato ID, Quintanilha ACS, Henrique JS, Souza MA, Rosário BDA, Beserra Filho JIA, Santos RLO, Ribeiro AM, Le Sueur Maluf L, de Oliveira CAM. Effects of long-term social isolation on central, behavioural and metabolic parameters in middle-aged mice. Behav Brain Res 2022; 417:113630. [PMID: 34656691 PMCID: PMC8516156 DOI: 10.1016/j.bbr.2021.113630] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 12/27/2022]
Abstract
Social isolation gained discussion momentum due to the COVID-19 pandemic. Whereas many studies address the effects of long-term social isolation in post-weaning and adolescence and for periods ranging from 4 to 12 weeks, little is known about the repercussions of adult long-term social isolation in middle age. Thus, our aim was to investigate how long-term social isolation can influence metabolic, behavioural, and central nervous system-related areas in middle-aged mice. Adult male C57Bl/6 mice (4 months-old) were randomly divided into Social (2 cages, n = 5/cage) and Isolated (10 cages, n = 1/cage) housing groups, totalizing 30 weeks of social isolation, which ended concomitantly with the onset of middle age of mice. At the end of the trial, metabolic parameters, short-term memory, anxiety-like behaviour, and physical activity were assessed. Immunohistochemistry in the hippocampus (ΔFosB, BDNF, and 8OHDG) and hypothalamus (ΔFosB) was also performed. The Isolated group showed impaired memory along with a decrease in hippocampal ΔFosB at dentate gyrus and in BDNF at CA3. Food intake was also affected, but the direction depended on how it was measured in the Social group (individually or in the group) with no alteration in ΔFosB at the hypothalamus. Physical activity parameters increased with chronic isolation, but in the light cycle (inactive phase), with some evidence of anxiety-like behaviour. Future studies should better explore the timepoint at which the alterations found begin. In conclusion, long-term social isolation in adult mice contributes to alterations in feeding, physical activity pattern, and anxiety-like behaviour. Moreover, short-term memory deficit was associated with lower levels of hippocampal ΔFosB and BDNF in middle age.
Collapse
Affiliation(s)
- Izabelle Dias Benfato
- Interdisciplinary Graduate Program in Health Sciences, Federal University of Sao Paulo (UNIFESP), Brazil
| | | | - Jessica Salles Henrique
- Neurology / Neuroscience Graduate Program, Federal University of Sao Paulo (UNIFESP), Brazil
| | - Melyssa Alves Souza
- Interdisciplinary Graduate Program in Health Sciences, Federal University of Sao Paulo (UNIFESP), Brazil
| | - Barbara Dos Anjos Rosário
- Interdisciplinary Graduate Program in Health Sciences, Federal University of Sao Paulo (UNIFESP), Brazil
| | | | | | - Alessandra Mussi Ribeiro
- Department of Biosciences, Institute of Health and Society, Federal University of Sao Paulo (UNIFESP), Brazil
| | - Luciana Le Sueur Maluf
- Department of Biosciences, Institute of Health and Society, Federal University of Sao Paulo (UNIFESP), Brazil
| | | |
Collapse
|
28
|
Tomar A, McHugh TJ. The impact of stress on the hippocampal spatial code. Trends Neurosci 2021; 45:120-132. [PMID: 34916083 DOI: 10.1016/j.tins.2021.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Hippocampal function is severely compromised by prolonged, uncontrollable stress. However, how stress alters neural representations of our surroundings and events that occur within them remains less clear. We review hippocampal place cell studies that examine how spatial coding is affected by acute and chronic stress, as well as by stress accompanying fear conditioning. Emerging data suggest that chronic stress disrupts the acuity and specificity of CA1 spatial coding, both in familiar and novel contexts, and alters hippocampal oscillations. By contrast, acute stress may have a facilitatory impact on spatial representations. These findings encourage a fresh look at the documented stress-induced changes in hippocampal anatomy and in vitro excitability, and offer a new perspective on the links between stress and memory.
Collapse
Affiliation(s)
- Anupratap Tomar
- Center for Synaptic Plasticity, School of Physiology, Pharmacology, and Neuroscience, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, Japan.
| |
Collapse
|
29
|
Social isolation: An underappreciated determinant of physical health. Curr Opin Psychol 2021; 43:232-237. [PMID: 34438331 DOI: 10.1016/j.copsyc.2021.07.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 02/08/2023]
Abstract
While a sizable body of research demonstrates the associations between social connection and health, much of the recent focus in the broader public and to some extent among academics has been on loneliness, with more objective/structural aspects often assumed to be proxies for more influential relationship factors such as relationship functions and quality. However, evidence suggests the actual presence of others (proximity and regular contact) is essential, and many studies document these structural indicators have just as powerful and, in some cases, more potent effects on indicators of health and well-being. This paper summarizes the evidence on social isolation and health and provides a framework for why social isolation may be a powerful predictor of health and mortality.
Collapse
|
30
|
Abstract
Purpose of review In this review, we synthesise recent research on the association between loneliness and cardiovascular disease (CVD). We present evidence for mechanisms underlying this association and propose directions for future research. Recent findings Loneliness is related to increased risk of early mortality and CVD comparable to other well-established risk factors such as obesity or smoking. Summary Loneliness has been linked to higher rates of incident CVD, poorer CVD patient outcomes, and early mortality from CVD. Loneliness likely affects risk for these outcomes via health-related behaviours (e.g. physical inactivity and smoking), biological mechanisms (e.g. inflammation, stress reactivity), and psychological factors (e.g. depression) to indirectly damage health.
Collapse
|
31
|
Rajkumar RP. Harnessing the Neurobiology of Resilience to Protect the Mental Well-Being of Healthcare Workers During the COVID-19 Pandemic. Front Psychol 2021; 12:621853. [PMID: 33815205 PMCID: PMC8012770 DOI: 10.3389/fpsyg.2021.621853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/22/2021] [Indexed: 01/26/2023] Open
Abstract
Healthcare workers are at a high risk of psychological morbidity in the face of the COVID-19 pandemic. However, there is significant variability in the impact of this crisis on individual healthcare workers, which can be best explained through an appreciation of the construct of resilience. Broadly speaking, resilience refers to the ability to successfully adapt to stressful or traumatic events, and thus plays a key role in determining mental health outcomes following exposure to such events. A proper understanding of resilience is vital in enabling a shift from a reactive to a proactive approach for protecting and promoting the mental well-being of healthcare workers. Research in the past decade has identified six areas that provide promising leads in understanding the biological basis of individual variations in resilience. These are: (1) the key role played by the monoamines noradrenaline and serotonin, (2) the centrality of the hypothalamic-pituitary-adrenal axis in influencing stress vulnerability and resilience, (3) the intimate links between the immune system and stress sensitivity, (4) the role of epigenetic modulation of gene expression in influencing the stress response, (5) the role played by certain neuropeptides as a natural “brake” mechanism in the face of stress, and (6) the neurobiological mechanisms by which environmental factors, such as exercise, diet, and social support, influence resilience to subsequent life events. Though much of this research is still in its early stages, it has already provided valuable information on which strategies – including dietary changes, lifestyle modification, environmental modification, psychosocial interventions, and even pharmacological treatments – may prove to be useful in fostering resilience in individuals and groups. This paper examines the above evidence more closely, with a specific focus on the challenges faced by healthcare workers during the COVID-19 pandemic, and provides suggestions regarding how it may be translated into real-world interventions, as well as how the more tentative hypotheses advanced in this field may be tested during this critical period.
Collapse
Affiliation(s)
- Ravi Philip Rajkumar
- Department of Psychiatry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| |
Collapse
|