1
|
Liu F, Howard CB, Huda P, Fletcher NL, Bell CA, Blakey I, Agrez M, Thurecht KJ. Immune-modulating nanomedicines for enhanced drug delivery to non-small-cell lung cancer. Biomaterials 2025; 317:123089. [PMID: 39793167 DOI: 10.1016/j.biomaterials.2025.123089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/20/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
Immune-modulating peptides have shown potential as novel immune-stimulating agents which enhance the secretion of anticancer cytokines in vitro. However, fast clearance from blood hampers the ability of such peptides to accumulate in the tumour and results in limited therapeutic efficacy in animal studies. To address the fast blood clearance, this work reports the development and validation of a novel polymeric nanoparticle delivery system for the efficient localization of an immunomodulating peptide in the tumour microenvironment (TME). To identify the optimal polymeric nanoparticle for this study, two types of nanoparticles were developed as either branched polymers or micelles that have similar chemical functionality but different sizes. The effect of targeting the nanomedicine to the tumour-specific antigen, glycoprotein GPC-1, was explored using a bispecific antibody (BsAb) that shows an affinity for the cell protein (GPC-1) and the nanoparticle. These systems were evaluated for targeting efficiency and tumour penetration using tumour spheroids of Lewis Lung Cancer (LLC) cells and it was shown that the targeted system significantly enhanced cell association compared to the untargeted control with minor differences in penetration. The lead micelle-peptide conjugates were identified and using in vivo allograft models they were demonstrated to have high delivery efficiency of the peptide to tumours, prolonged blood circulation, enhanced tumour accumulation and tumour suppression that was associated with immune cell recruitment to the tumour.
Collapse
Affiliation(s)
- Feifei Liu
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD, 4072, Australia; ARC Training Centre for Innovation in Biomedical Imaging Technology, University of Queensland, QLD, Australia
| | - Christopher B Howard
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Pie Huda
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Craig A Bell
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Idriss Blakey
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Michael Agrez
- ARC Training Centre for Innovation in Biomedical Imaging Technology, University of Queensland, QLD, Australia; InterK Peptide Therapeutics Limited, Sydney, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD, 4072, Australia; ARC Training Centre for Innovation in Biomedical Imaging Technology, University of Queensland, QLD, Australia.
| |
Collapse
|
2
|
Bogdanovic B, Hugonnet F, Montemagno C. Theranostics in Hematological Malignancies: Cutting-Edge Advances in Diagnosis and Targeted Therapy. Cancers (Basel) 2025; 17:1247. [PMID: 40227793 PMCID: PMC11987953 DOI: 10.3390/cancers17071247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/15/2025] Open
Abstract
Hematologic malignancies, including leukemia, lymphoma, and multiple myeloma, continue to challenge clinicians with complex treatment regimens that often involve significant side effects and limited success, especially in advanced stages. Recent advancements in nuclear medicine have introduced theranostic strategies that merge diagnostic imaging with targeted therapeutic approaches, offering the potential for more precise and personalized treatment. A key area of progress lies in the development of alpha-emitting radiopharmaceuticals, such as 225Ac, 211At, or 212Pb, which can deliver potent radiation directly to tumor cells, sparing healthy tissue and minimizing collateral damage. In parallel with these therapeutic advancements, molecular imaging using radiolabeled agents enables better disease monitoring, assessment of treatment efficacy, and personalized management of patients with hematologic malignancies. The integration of diagnostic imaging with radiotherapy allows for a more tailored approach, where treatment can be adjusted based on real-time information about tumor progression and response. This review examines the recent strides made in both the development of radiopharmaceuticals and their applications in molecular imaging, with a focus on the potential to improve precision, reduce toxicity, and optimize patient outcomes. The synergy between targeted therapy and molecular imaging represents a transformative shift in the management of hematologic malignancies. As these technologies evolve, they are poised to redefine treatment paradigms, offering new hope for patients and potentially improving survival rates with more effective and less toxic treatment options.
Collapse
Affiliation(s)
- Bojana Bogdanovic
- Laboratory of Bioclinical Radiopharmaceutics, University Grenoble Alpes, INSERM, CHU Grenoble Alpes, 38000 Grenoble, France;
| | - Florent Hugonnet
- Nuclear Medicine Department, Centre Hospitalier Princesse Grace, 98000 Monaco, Monaco;
| | - Christopher Montemagno
- Laboratory of Bioclinical Radiopharmaceutics, University Grenoble Alpes, INSERM, CHU Grenoble Alpes, 38000 Grenoble, France;
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco
| |
Collapse
|
3
|
Bai T, He X, Liu S, He YZ, Feng J. A comprehensive review of GPR84: A novel player in pathophysiology and treatment. Int J Biol Macromol 2025; 300:140088. [PMID: 39832584 DOI: 10.1016/j.ijbiomac.2025.140088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
G protein-coupled receptor 84 (GPR84), a member of the highly conserved rhodopsin-like superfamily, represents a promising target for therapeutic drug development. Its distinctive expression profiles in adipocytes, gut endocrine cells, and various myeloid immune cells underscore its critical roles in fundamental physiological processes, particularly in metabolic regulation and immune responses. Over the past two decades, emerging research has demonstrated that GPR84 regulates immune cell chemotaxis, phagocytosis, and inflammatory responses, playing a pivotal role in metabolic disorders, inflammatory diseases, and organ fibrosis. However, the precise molecular mechanisms by which GPR84 is involved in these diseases remain largely uncharacterized, highlighting a significant gap in our understanding. Medium-chain fatty acids (MCFAs) are considered potential endogenous ligands for GPR84. Furthermore, the development of synthetic agonists and antagonists have provided valuable pharmacological tools for analyzing the ligand-GPR84 complex structure and investigating the extensive biological functions of GPR84. Ongoing preclinical and clinical studies highlight the potential of targeting GPR84 in molecular therapies, although concerns regarding drug safety and specificity require further investigation.
Collapse
Affiliation(s)
- Tao Bai
- Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning Province, China
| | - Xin He
- Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning Province, China
| | - Shuo Liu
- Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning Province, China; The Fourth People's Hospital of Shenyang, 20 Huanghe South Street, Shenyang, Liaoning Province, China
| | - Yu-Ze He
- Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning Province, China
| | - Juan Feng
- Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning Province, China.
| |
Collapse
|
4
|
Golestanifar A, Khedri H, Noorabadi P, Saberiyan M. Identification of hub genes, non-coding RNAs and pathways in Renal cell carcinoma (RCC): A comprehensive in silico study. Biochem Biophys Rep 2025; 41:101942. [PMID: 39980583 PMCID: PMC11840516 DOI: 10.1016/j.bbrep.2025.101942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/26/2025] [Accepted: 01/31/2025] [Indexed: 02/22/2025] Open
Abstract
Backgrounds Renal cell carcinoma (RCC) is the most common type of kidney cancer in adults. RCC begins in the renal tubule epithelial cells, essential for blood filtration and urine production. Methods In this study, we aim to uncover the molecular mechanisms underlying kidney renal clear cell carcinoma (KIRC) by analyzing various non-coding RNAs (ncRNAs) and protein-coding genes involved in the disease. Using high-throughput sequencing datasets from the Gene Expression Omnibus (GEO), we identified differentially expressed mRNAs (DEMs), miRNAs (DEMIs), and circRNAs (DECs) in KIRC samples compared to normal kidney tissues. Our approach combined differential expression analysis, functional enrichment through Gene Ontology (GO) and KEGG pathway mapping, and a Protein-Protein Interaction (PPI) network to identify crucial hub genes in KIRC progression. Results Key findings include the identification of hub genes such as EGFR, FN1, IL6, and ITGAM, which were closely associated with immune responses, cell signaling, and metabolic dysregulation in KIRC. Further analysis indicated that these genes could be potential biomarkers for prognosis and therapeutic targets. We constructed a competitive endogenous RNA (ceRNA) network involving lncRNAs, circRNAs, and miRNAs, suggesting complex regulatory interactions that drive KIRC pathogenesis.Additionally, the study examined drug sensitivity associated with the expression of hub genes, revealing the potential for personalized treatments. Immune cell infiltration patterns showed significant correlations with hub gene expression, highlighting the importance of immune modulation in KIRC. Conclusion This research provides a foundation for developing targeted therapies and diagnostic biomarkers for KIRC while underscoring the need for experimental validation to confirm these bioinformatics insights.
Collapse
Affiliation(s)
- Ahmad Golestanifar
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hengameh Khedri
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Parisa Noorabadi
- Department of Internal Medicine, School of Medicine, Urmia University of Medical sciences, Urmia, Iran
| | - Mohammadreza Saberiyan
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
5
|
Crilly NP, Zita MD, Beaver AK, Sysa-Shah P, Bhalodia A, Gabrielson K, Adamo L, Mugnier MR. A murine model of Trypanosoma brucei-induced myocarditis and cardiac dysfunction. Microbiol Spectr 2025; 13:e0162324. [PMID: 39791886 PMCID: PMC11792545 DOI: 10.1128/spectrum.01623-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/12/2024] [Indexed: 01/12/2025] Open
Abstract
Trypanosoma brucei is a protozoan parasite that causes human and animal African trypanosomiases (HAT and AAT). Cardiac symptoms are commonly reported in HAT patients, and intracardiac parasites with accompanying myocarditis have been observed in both natural hosts and animal models of T. brucei infection. Despite the importance of T. brucei as a cause of cardiac dysfunction and the dramatic socioeconomic impact of African trypanosomiases in sub-Saharan Africa, there are currently no reproducible murine models of T. brucei-associated cardiomyopathy. We present the first clinically relevant, reproducible murine model of cardiac dysfunction in chronic T. brucei infection. Similar to humans, mice showed histological evidence of myocarditis and elevation of serum NT-proBNP with electrocardiographic abnormalities. Serum NT-proBNP levels were elevated prior to the development of severe ventricular dysfunction. On flow cytometry, myocarditis was associated with an increase of most myocardial immune cell populations, including multiple T cell and macrophage subsets, corroborating the notion that T. brucei-associated cardiac damage is an immune-mediated event. This novel mouse model represents a powerful and practical tool to investigate the pathogenesis of T. brucei-mediated heart damage and supports the development of therapeutic options for T. brucei-associated cardiac disease. In characterizing this model, we provide evidence that T. brucei causes cardiac disease, and we suggest that immunopathology is an important contributor to cardiac pathology. Along with other recent studies, our work demonstrates the importance of extravascular spaces, including the heart, for T. brucei pathogenesis. IMPORTANCE African trypanosomiasis is a neglected tropical disease affecting both people and cattle, which represents a major public health problem in sub-Saharan Africa with an enormous socioeconomic impact. Cardiac disease represents an underappreciated clinical manifestation of African trypanosomiasis that may lead to lifelong illness despite successful treatment of infection. However, this aspect of African trypanosomiasis remains poorly understood, partially due to a lack of well-characterized and practical animal models. In this study, we present the development and characterization of a novel, reproducible, and cost-effective mouse model of cardiac dysfunction in African trypanosomiasis. We demonstrate that this model recapitulates major features of cardiac dysfunction in natural infection, including the presence of parasites in the cardiac interstitial spaces, alterations of cardiac biomarkers, and functional changes. This model represents a resource to support the understanding of cardiac complications of trypanosomiasis and the development of new therapies to prevent and treat cardiac involvement in African trypanosomiasis.
Collapse
Affiliation(s)
- Nathan P. Crilly
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Marcelle Dina Zita
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alexander K. Beaver
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Polina Sysa-Shah
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Molecular Imaging Service Center and Cancer Functional Imaging Core, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Aashik Bhalodia
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kathy Gabrielson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Luigi Adamo
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Monica R. Mugnier
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Barajas Ordonez F, Gottschling S, Eger KI, Borggrefe J, Jechorek D, Surov A. MRI analysis of relative tumor enhancement in liver metastases and correlation with immunohistochemical features. Insights Imaging 2024; 15:294. [PMID: 39636546 PMCID: PMC11621246 DOI: 10.1186/s13244-024-01866-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024] Open
Abstract
OBJECTIVE Investigate the association between the relative tumor enhancement (RTE) of gadoxetic acid across various MRI phases and immunohistochemical (IHC) features in patients with liver metastases (LM) from colorectal cancer (CRC), breast cancer (BC), and pancreatic cancer (PC). METHODS A retrospective analysis was conducted on 68 patients with LM who underwent 1.5-T MRI scans. Non-contrast and contrast-enhanced T1-weighted (T1-w) gradient echo (GRE) sequences were acquired before LM biopsy. RTE values among LM groups were compared by cancer type using analysis of variance. The relationships between RTE and IHC features tumor stroma ratio, cell count, Ki67 proliferation index, and CD45 expression were evaluated using Spearman's rank correlation coefficients. RESULTS Significant differences in RTE were observed across different MRI phases among patients with BCLM, CRCLM, and PCLM: arterial phase (0.75 ± 0.42, 0.37 ± 0.36, and 0.44 ± 0.19), portal venous phase (1.09 ± 0.41, 0.59 ± 0.44, and 0.53 ± 0.24), and venous phase (1.11 ± 0.45, 0.65 ± 0.61, and 0.50 ± 0.20). In CRCLM, RTE inversely correlated with mean Ki67 (r = -0.50, p = 0.01) in the hepatobiliary phase. Negative correlations between RTE and CD45 expression were found in PCLM and CRCLM in the portal venous phase (r = -0.69, p = 0.01 and r = -0.41, p = 0.04) and the venous phase (r = -0.65, p = 0.01 and r = -0.44, p = 0.02). CONCLUSION Significant variations in RTE were identified among different types of LM, with correlations between RTE values and IHC markers such as CD45 and Ki67 suggesting that RTE may serve as a non-invasive biomarker for predicting IHC features in LM. CRITICAL RELEVANCE STATEMENT RTE values serve as a predictive biomarker for IHC features in liver metastasis, potentially enhancing non-invasive patient assessment, disease monitoring, and treatment planning. KEY POINTS Few studies link gadoxetic acid-enhanced MRI with immunohistochemistry in LM. RTE varies by liver metastasis type and correlates with CD45 and Ki67. RTE reflects IHC features in LM, aiding non-invasive assessment.
Collapse
Affiliation(s)
- Felix Barajas Ordonez
- University Clinic for Radiology and Nuclear Medicine, Otto- von-Guericke-University Magdeburg, Magdeburg, Germany.
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH, Aachen, Germany.
| | - Sebastian Gottschling
- University Clinic for Radiology and Nuclear Medicine, Otto- von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Kai Ina Eger
- Institute of Pathology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Jan Borggrefe
- Institute for Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University, Ruhr University Bochum, Minden, Germany
| | - Dörthe Jechorek
- Institute of Pathology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Alexey Surov
- University Clinic for Radiology and Nuclear Medicine, Otto- von-Guericke-University Magdeburg, Magdeburg, Germany
- Institute for Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University, Ruhr University Bochum, Minden, Germany
| |
Collapse
|
7
|
Jia ZC, Yang X, Wu YK, Li M, Das D, Chen MX, Wu J. The Art of Finding the Right Drug Target: Emerging Methods and Strategies. Pharmacol Rev 2024; 76:896-914. [PMID: 38866560 PMCID: PMC11334170 DOI: 10.1124/pharmrev.123.001028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
Drug targets are specific molecules in biological tissues and body fluids that interact with drugs. Drug target discovery is a key component of drug discovery and is essential for the development of new drugs in areas such as cancer therapy and precision medicine. Traditional in vitro or in vivo target discovery methods are time-consuming and labor-intensive, limiting the pace of drug discovery. With the development of modern discovery methods, the discovery and application of various emerging technologies have greatly improved the efficiency of drug discovery, shortened the cycle time, and reduced the cost. This review provides a comprehensive overview of various emerging drug target discovery strategies, including computer-assisted approaches, drug affinity response target stability, multiomics analysis, gene editing, and nonsense-mediated mRNA degradation, and discusses the effectiveness and limitations of the various approaches, as well as their application in real cases. Through the review of the aforementioned contents, a general overview of the development of novel drug targets and disease treatment strategies will be provided, and a theoretical basis will be provided for those who are engaged in pharmaceutical science research. SIGNIFICANCE STATEMENT: Target-based drug discovery has been the main approach to drug discovery in the pharmaceutical industry for the past three decades. Traditional drug target discovery methods based on in vivo or in vitro validation are time-consuming and costly, greatly limiting the development of new drugs. Therefore, the development and selection of new methods in the drug target discovery process is crucial.
Collapse
Affiliation(s)
- Zi-Chang Jia
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.)
| | - Xue Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.)
| | - Yi-Kun Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.)
| | - Min Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.)
| | - Debatosh Das
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.) ;
| | - Mo-Xian Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.) ;
| | - Jian Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.) ;
| |
Collapse
|
8
|
Lee YJ, Song JY, Lee SH, Lee Y, Hwang KT, Lee JY. Vinpocetine, a phosphodiesterase 1 inhibitor, mitigates atopic dermatitis-like skin inflammation. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:303-312. [PMID: 38926838 PMCID: PMC11211756 DOI: 10.4196/kjpp.2024.28.4.303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 06/28/2024]
Abstract
Atopic dermatitis (AD) is the most common inflammatory pruritic skin disease worldwide, characterized by the infiltration of multiple pathogenic T lymphocytes and histological symptoms such as epidermal and dermal thickening. This study aims to investigate the effect of vinpocetine (Vinp; a phosphodiesterase 1 inhibitor) on a 1-chloro-2,4-dinitrobenzene (DNCB)-induced AD-like model. DNCB (1%) was administered on day 1 in the AD model. Subsequently, from day 14 onward, mice in each group (Vinp-treated groups: 1 mg/kg and 2 mg/kg and dexamethasone- treated group: 2 mg/kg) were administered 100 µl of a specific drug daily, whereas 0.2% DNCB was administered every other day for 30 min over 14 days. The Vinp-treated groups showed improved Eczema Area and Severity Index scores and trans-epidermal water loss, indicating the efficacy of Vinp in improving AD and enhancing skin barrier function. Histological analysis further confirmed the reduction in hyperplasia of the epidermis and the infiltration of inflammatory cells, including macrophages, eosinophils, and mast cells, with Vinp treatment. Moreover, Vinp reduced serum concentrations of IgE, interleukin (IL)-6, IL-13, and monocyte chemotactic protein-1. The mRNA levels of IL-1β, IL-6, Thymic stromal lymphopoietin, and transforming growth factor-beta (TGF-β) were reduced by Vinp treatment. Reduction of TGF-β protein by Vinp in skin tissue was also observed. Collectively, our results underscore the effectiveness of Vinp in mitigating DNCB-induced AD by modulating the expression of various biomarkers. Consequently, Vinp is a promising therapeutic candidate for treating AD.
Collapse
Affiliation(s)
- Yeon Jin Lee
- Department of Pathophysiology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Jin Yong Song
- Department of Pathophysiology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Su Hyun Lee
- Department of Pathophysiology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Yubin Lee
- Department of Pathophysiology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Kyu Teak Hwang
- Department of Pathophysiology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Ji-Yun Lee
- Department of Pathophysiology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
9
|
Gunning JA, Gilman KE, Zúñiga TM, Simpson RJ, Limesand KH. Parotid glands have a dysregulated immune response following radiation therapy. PLoS One 2024; 19:e0297387. [PMID: 38470874 PMCID: PMC10931461 DOI: 10.1371/journal.pone.0297387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 01/04/2024] [Indexed: 03/14/2024] Open
Abstract
Head and neck cancer treatment often consists of surgical resection of the tumor followed by ionizing radiation (IR), which can damage surrounding tissues and cause adverse side effects. The underlying mechanisms of radiation-induced salivary gland dysfunction are not fully understood, and treatment options are scarce and ineffective. The wound healing process is a necessary response to tissue injury, and broadly consists of inflammatory, proliferative, and redifferentiation phases with immune cells playing key roles in all three phases. In this study, select immune cells were phenotyped and quantified, and certain cytokine and chemokine concentrations were measured in mouse parotid glands after IR. Further, we used a model where glandular function is restored to assess the immune phenotype in a regenerative response. These data suggest that irradiated parotid tissue does not progress through a typical inflammatory response observed in wounds that heal. Specifically, total immune cells (CD45+) decrease at days 2 and 5 following IR, macrophages (F4/80+CD11b+) decrease at day 2 and 5 and increase at day 30, while neutrophils (Ly6G+CD11b+) significantly increase at day 30 following IR. Additionally, radiation treatment reduces CD3- cells at all time points, significantly increases CD3+/CD4+CD8+ double positive cells, and significantly reduces CD3+/CD4-CD8- double negative cells at day 30 after IR. Previous data indicate that post-IR treatment with IGF-1 restores salivary gland function at day 30, and IGF-1 injections attenuate the increase in macrophages, neutrophils, and CD4+CD8+ T cells observed at day 30 following IR. Taken together, these data indicate that parotid salivary tissue exhibits a dysregulated immune response following radiation treatment which may contribute to chronic loss of function phenotype in head and neck cancer survivors.
Collapse
Affiliation(s)
- Jordan A. Gunning
- Department of Nutritional Sciences, The University of Arizona, Tucson, Arizona, United States of America
| | - Kristy E. Gilman
- Department of Nutritional Sciences, The University of Arizona, Tucson, Arizona, United States of America
| | - Tiffany M. Zúñiga
- Department of Nutritional Sciences, The University of Arizona, Tucson, Arizona, United States of America
- Department of Immunology and Microbiology, Aurora, Colorado, United States of America
| | - Richard J. Simpson
- Department of Nutritional Sciences, The University of Arizona, Tucson, Arizona, United States of America
| | - Kirsten H. Limesand
- Department of Nutritional Sciences, The University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
10
|
Al Barashdi MAS, Ali A, McMullin MF, Mills K. CD45 inhibition in myeloid leukaemia cells sensitizes cellular responsiveness to chemotherapy. Ann Hematol 2024; 103:73-88. [PMID: 37917373 PMCID: PMC10761371 DOI: 10.1007/s00277-023-05520-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023]
Abstract
Myeloid malignancies are a group of blood disorders characterized by the proliferation of one or more haematopoietic myeloid cell lineages, predominantly in the bone marrow, and are often caused by aberrant protein tyrosine kinase activity. The protein tyrosine phosphatase CD45 is a trans-membrane molecule expressed on all haemopoietic blood cells except that of platelets and red cells. CD45 regulates various cellular physiological processes including proliferation, apoptosis, and lymphocyte activation. However, its role in chemotherapy response is still unknown; therefore, the aim of this study was to investigate the role of CD45 in myeloid malignancies in terms of cellular growth, apoptosis, and response to chemotherapy. The expression of CD45 on myeloid leukaemia primary cells and cell lines was heterogeneous with HEL and OCI-AML3 cells showing the highest level. Inhibition of CD45 resulted in increased cellular sensitivity to cytarabine and ruxolitinib, the two main therapies for AML and MPN. Bioinformatics analysis identified genes whose expression was correlated with CD45 expression such as JAK2, ACTR2, THAP3 Serglycin, and PBX-1 genes, as well as licensed drugs (alendronate, allopurinol, and balsalazide), which could be repurposed as CD45 inhibitors which effectively increases sensitivity to cytarabine and ruxolitinib at low doses. Therefore, CD45 inhibition could be explored as a potential therapeutic partner for treatment of myeloid malignancies in combination with chemotherapy such as cytarabine especially for elderly patients and those showing chemotherapy resistance.
Collapse
Affiliation(s)
- Maryam Ahmed S Al Barashdi
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Ahlam Ali
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Mary Frances McMullin
- Haematology Department, C-Floor Tower Block, Belfast City Hospital, Belfast, Northern Ireland, UK
| | - Ken Mills
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, UK.
| |
Collapse
|
11
|
Urumarudappa SKJ, Tran VNT, Oo HM, Suntiparpluacha M, Sampattavanich S, Rosa V, Ruangritchankul K, Ferreira JN, Chaisuparat R. Identifying potential immuno-oncology targets in salivary gland mucoepidermoid carcinoma based on inflammatory status and treatment response. J Oral Pathol Med 2023; 52:939-950. [PMID: 37756121 DOI: 10.1111/jop.13488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/29/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Mucoepidermoid carcinoma is a rare salivary gland malignant tumour. This study aimed to investigate inflammatory and immune signatures of mucoepidermoid carcinoma by identifying potential proteo-transcriptomic biomarkers towards the development of precision immuno-oncology treatment strategies. METHODS A total of 30 biopsies obtained from patients diagnosed with mucoepidermoid carcinoma between 2013 and 2022 were analysed after H&E staining for scoring of histological inflammatory stroma subtypes and inflammatory hotspots with QuPath. Multiplex immunofluorescence staining and NanoString nCounter PanCancer IO 360™ panel were used to assess stroma and tumour inflammation signatures in high grade mucoepidermoid carcinoma cases in the tumour microenvironment via proteomics and transcriptomics, respectively. RESULTS Inflammatory cells within the histological inflammatory stroma inflammatory (HIS-INF/hot) tumour neighbourhoods were greater compared to the histological inflammatory stroma-immune desert (HIS-ID/cold) (p = 0.001). A similar trend was observed between treatment non-responders and responders in stroma neighbourhoods (p = 0.0625) and in stroma-to-interface inflammatory hotspots (p = 0.0081), indicating an augmented inflammatory response in hot tumours and non-responders. Furthermore, there were striking differences in the expression of pan-immune leukocyte marker CD45 between responders and non responders particularly in the tumour neighbourhoods (p = 0.0341), but such were not robust for PD-1 and macrophage fractions. Additionally, transcriptomic analysis revealed key differences in leukocyte activation profiles between responders and non-responders. CONCLUSION This preliminary report unveils the importance of assessing immune leukocyte cellular fractions and pathways for future prognostic biomarker discoveries in mucoepidermoid carcinoma as per the involvement of CD45-driven inflammatory and immune mediators in high grade mucoepidermoid carcinoma in non-responders to treatment. These findings will potentially contribute to the development of novel personalised immunotherapies.
Collapse
Affiliation(s)
- Santhosh Kumar J Urumarudappa
- Avatar Biotechnologies for Oral Health and Healthy Longevity, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Vy Ngoc Thuy Tran
- Oral Biology, International Graduate Program, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Hay Mar Oo
- Siriraj Center of Research Excellence for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Monthira Suntiparpluacha
- Siriraj Center of Research Excellence for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Somponnat Sampattavanich
- Siriraj Center of Research Excellence for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
- Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore, Singapore
| | | | - Joao N Ferreira
- Avatar Biotechnologies for Oral Health and Healthy Longevity, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Risa Chaisuparat
- Avatar Biotechnologies for Oral Health and Healthy Longevity, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Department of Oral Pathology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
12
|
Dylag AM, Misra RS, Bandyopadhyay G, Poole C, Huyck HL, Jehrio MG, Haak J, Deutsch GH, Dvorak C, Olson HM, Paurus V, Katzman PJ, Woo J, Purkerson JM, Adkins JN, Mariani TJ, Clair GC, Pryhuber GS. New insights into the natural history of bronchopulmonary dysplasia from proteomics and multiplexed immunohistochemistry. Am J Physiol Lung Cell Mol Physiol 2023; 325:L419-L433. [PMID: 37489262 PMCID: PMC10642360 DOI: 10.1152/ajplung.00130.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/26/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a disease of prematurity related to the arrest of normal lung development. The objective of this study was to better understand how proteome modulation and cell-type shifts are noted in BPD pathology. Pediatric human donors aged 1-3 yr were classified based on history of prematurity and histopathology consistent with "healed" BPD (hBPD, n = 3) and "established" BPD (eBPD, n = 3) compared with respective full-term born (n = 6) age-matched term controls. Proteins were quantified by tandem mass spectroscopy with selected Western blot validations. Multiplexed immunofluorescence (MxIF) microscopy was performed on lung sections to enumerate cell types. Protein abundances and MxIF cell frequencies were compared among groups using ANOVA. Cell type and ontology enrichment were performed using an in-house tool and/or EnrichR. Proteomics detected 5,746 unique proteins, 186 upregulated and 534 downregulated, in eBPD versus control with fewer proteins differentially abundant in hBPD as compared with age-matched term controls. Cell-type enrichment suggested a loss of alveolar type I, alveolar type II, endothelial/capillary, and lymphatics, and an increase in smooth muscle and fibroblasts consistent with MxIF. Histochemistry and Western analysis also supported predictions of upregulated ferroptosis in eBPD versus control. Finally, several extracellular matrix components mapping to angiogenesis signaling pathways were altered in eBPD. Despite clear parsing by protein abundance, comparative MxIF analysis confirms phenotypic variability in BPD. This work provides the first demonstration of tandem mass spectrometry and multiplexed molecular analysis of human lung tissue for critical elucidation of BPD trajectory-defining factors into early childhood.NEW & NOTEWORTHY We provide new insights into the natural history of bronchopulmonary dysplasia in donor human lungs after the neonatal intensive care unit hospitalization. This study provides new insights into how the proteome and histopathology of BPD changes in early childhood, uncovering novel pathways for future study.
Collapse
Affiliation(s)
- Andrew M Dylag
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Ravi S Misra
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Gautam Bandyopadhyay
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Cory Poole
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Heidie L Huyck
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Matthew G Jehrio
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Jeannie Haak
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Gail H Deutsch
- Department of Laboratory Medicine and Pathology, University of Washington, University of Washington, Seattle, Washington, United States
| | - Carly Dvorak
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Heather M Olson
- Pacific Northwest National Laboratories, Richland, Washington, United States
| | - Vanessa Paurus
- Pacific Northwest National Laboratories, Richland, Washington, United States
| | - Philip J Katzman
- Department of Pathology, University of Rochester Medical Center, Rochester, New York, United States
| | - Jongmin Woo
- Pacific Northwest National Laboratories, Richland, Washington, United States
| | - Jeffrey M Purkerson
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Joshua N Adkins
- Pacific Northwest National Laboratories, Richland, Washington, United States
| | - Thomas J Mariani
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Geremy C Clair
- Pacific Northwest National Laboratories, Richland, Washington, United States
| | - Gloria S Pryhuber
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| |
Collapse
|
13
|
Lee S, Toft NJ, Axelsen TV, Espejo MS, Pedersen TM, Mele M, Pedersen HL, Balling E, Johansen T, Burton M, Thomassen M, Vahl P, Christiansen P, Boedtkjer E. Carbonic anhydrases reduce the acidity of the tumor microenvironment, promote immune infiltration, decelerate tumor growth, and improve survival in ErbB2/HER2-enriched breast cancer. Breast Cancer Res 2023; 25:46. [PMID: 37098526 PMCID: PMC10127511 DOI: 10.1186/s13058-023-01644-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/30/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Carbonic anhydrases catalyze CO2/HCO3- buffer reactions with implications for effective H+ mobility, pH dynamics, and cellular acid-base sensing. Yet, the integrated consequences of carbonic anhydrases for cancer and stromal cell functions, their interactions, and patient prognosis are not yet clear. METHODS We combine (a) bioinformatic analyses of human proteomic data and bulk and single-cell transcriptomic data coupled to clinicopathologic and prognostic information; (b) ex vivo experimental studies of gene expression in breast tissue based on quantitative reverse transcription and polymerase chain reactions, intracellular and extracellular pH recordings based on fluorescence confocal microscopy, and immunohistochemical protein identification in human and murine breast cancer biopsies; and (c) in vivo tumor size measurements, pH-sensitive microelectrode recordings, and microdialysis-based metabolite analyses in mice with experimentally induced breast carcinomas. RESULTS Carbonic anhydrases-particularly the extracellular isoforms CA4, CA6, CA9, CA12, and CA14-undergo potent expression changes during human and murine breast carcinogenesis. In patients with basal-like/triple-negative breast cancer, elevated expression of the extracellular carbonic anhydrases negatively predicts survival, whereas, surprisingly, the extracellular carbonic anhydrases positively predict patient survival in HER2/ErbB2-enriched breast cancer. Carbonic anhydrase inhibition attenuates cellular net acid extrusion and extracellular H+ elimination from diffusion-restricted to peripheral and well-perfused regions of human and murine breast cancer tissue. Supplied in vivo, the carbonic anhydrase inhibitor acetazolamide acidifies the microenvironment of ErbB2-induced murine breast carcinomas, limits tumor immune infiltration (CD3+ T cells, CD19+ B cells, F4/80+ macrophages), lowers inflammatory cytokine (Il1a, Il1b, Il6) and transcription factor (Nfkb1) expression, and accelerates tumor growth. Supporting the immunomodulatory influences of carbonic anhydrases, patient survival benefits associated with high extracellular carbonic anhydrase expression in HER2-enriched breast carcinomas depend on the tumor inflammatory profile. Acetazolamide lowers lactate levels in breast tissue and blood without influencing breast tumor perfusion, suggesting that carbonic anhydrase inhibition lowers fermentative glycolysis. CONCLUSIONS We conclude that carbonic anhydrases (a) elevate pH in breast carcinomas by accelerating net H+ elimination from cancer cells and across the interstitial space and (b) raise immune infiltration and inflammation in ErbB2/HER2-driven breast carcinomas, restricting tumor growth and improving patient survival.
Collapse
Affiliation(s)
- Soojung Lee
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergs Gade 10, Building 1115, DK-8000, Aarhus C, Denmark
| | - Nicolai J Toft
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergs Gade 10, Building 1115, DK-8000, Aarhus C, Denmark
| | - Trine V Axelsen
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergs Gade 10, Building 1115, DK-8000, Aarhus C, Denmark
| | - Maria Sofia Espejo
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergs Gade 10, Building 1115, DK-8000, Aarhus C, Denmark
| | - Tina M Pedersen
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergs Gade 10, Building 1115, DK-8000, Aarhus C, Denmark
| | - Marco Mele
- Department of Surgery, Randers Regional Hospital, Randers, Denmark
| | - Helene L Pedersen
- Department of Pathology, Randers Regional Hospital, Randers, Denmark
| | - Eva Balling
- Department of Surgery, Randers Regional Hospital, Randers, Denmark
| | - Tonje Johansen
- Department of Pathology, Randers Regional Hospital, Randers, Denmark
| | - Mark Burton
- Department of Clinical Genetics, University of Southern Denmark, Odense, Denmark
- Clinical Genome Center, University and Region of Southern Denmark, Odense, Denmark
- Department of Clinical Medicine, University of Southern Denmark, Odense, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, University of Southern Denmark, Odense, Denmark
- Clinical Genome Center, University and Region of Southern Denmark, Odense, Denmark
| | - Pernille Vahl
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Peer Christiansen
- Department of Surgery, Randers Regional Hospital, Randers, Denmark
- Department of Plastic and Breast Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergs Gade 10, Building 1115, DK-8000, Aarhus C, Denmark.
| |
Collapse
|